Research into Surface Wave Phenomena in Sedimentary Basins.
1981-12-31
150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
NASA Technical Reports Server (NTRS)
Jensen, L. D.
1972-01-01
The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena
A Course on Surface Phenomena.
ERIC Educational Resources Information Center
Woods, Donald R.
1983-01-01
Describes a graduate or senior elective course combining fundamentals of surface phenomena with practical problem-solving structured around a series of case problems. Discusses topics covered and their development through acquiring new knowledge applied to the case problem, practical calculations of solutions, and applications to additional…
Surface phenomena and the evolution of radiating fluid spheres in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, L.; Jimenez, J.; Esculpi, M.
1989-10-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.
2014-05-21
simulating air-water free -surface flow, fluid-object interaction (FOI), and fluid-structure interaction (FSI) phenomena for complex geometries, and...with no limitations on the motion of the free surface, and with particular emphasis on ship hydrodynamics. The following specific research objectives...were identified for this project: 1) Development of a theoretical framework for free -surface flow, FOI and FSI that is a suitable starting point
Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan
2017-03-01
Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.
2006-02-01
Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.
Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting
NASA Astrophysics Data System (ADS)
Ali, Muddassir; Henda, Redhouane
2017-12-01
Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less
Peak effect versus skating in high-temperature nanofriction
NASA Astrophysics Data System (ADS)
Zykova-Timan, T.; Ceresoli, D.; Tosatti, E.
2007-03-01
The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to `skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.
Investigation of surface tension phenomena using the KC-135 aircraft
NASA Technical Reports Server (NTRS)
Alter, W. S.
1982-01-01
The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.
NASA Astrophysics Data System (ADS)
Schuster, Jonathan; Bellotti, Enrico
2013-06-01
We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.
Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only
NASA Technical Reports Server (NTRS)
Kaplan, G.
1983-01-01
The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.
Nonlinear friction dynamics on polymer surface under accelerated movement
NASA Astrophysics Data System (ADS)
Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune
2017-04-01
Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.
NASA Astrophysics Data System (ADS)
Kaneko, D.
2016-12-01
Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.
Monitoring sediment transfer processes on the desert margin
NASA Technical Reports Server (NTRS)
Millington, Andrew C.; Arwyn, R. Jones; Quarmby, Neil; Townshend, John R. G.
1987-01-01
LANDSAT Thematic Mapper and Multispectral Scanner data have been used to construct change detection images for three playas in south-central Tunisia. Change detection images have been used to analyze changes in surface reflectance and absorption between wet and dry season (intra-annual change) and between different years (inter-annual change). Change detection imagery has been used to examine geomorphological changes on the playas. Changes in geomorphological phenomena are interpreted from changes in soil and foliar moisture levels, differences in reflectances between different salt and sediments and the spatial expression of geomorphological features. Intra-annual change phenomena that can be detected from multidate imagery are changes in surface moisture, texture and chemical composition, vegetation cover and the extent of aeolian activity. Inter-annual change phenomena are divisible into those restricted to marginal playa facies (sedimentation from sheetwash and alluvial fans, erosion from surface runoff and cliff retreat) and these are found in central playa facies which are related to the internal redistribution of water, salt and sediment.
NASA Astrophysics Data System (ADS)
Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe
2018-06-01
Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1
Visualizing Chemical Phenomena in Microdroplets
ERIC Educational Resources Information Center
Lee, Sunghee; Wiener, Joseph
2011-01-01
Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976
NASA Technical Reports Server (NTRS)
Runcorn, S. K.; Oreilly, W.; Srnka, L. J.
1977-01-01
The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.
Nucleate boiling performance on nano/microstructures with different wetting surfaces
2012-01-01
A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173
Viscous theory of surface noise interaction phenomena
NASA Technical Reports Server (NTRS)
Yates, J. E.
1980-01-01
A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.
Surface Chemistry in Heterogeneous Catalysis: An Emerging Discipline.
ERIC Educational Resources Information Center
White, J. M.; Campbell, Charles T.
1980-01-01
Provides background data on surface chemistry as an emerging discipline. Highlights the important role which surfaces play in catalysis by focusing on the catalyzed oxidation of carbon monoxide. Provides a demonstration of how surfaces exert their influences in heterogeneous phenomena and illustrates how experimental problems in this field are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...
2018-02-23
Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less
Sulfur-induced structural motifs on copper and gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walen, Holly
The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence ofmore » metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.« less
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
Electrostatic Phenomena on Planetary Surfaces
NASA Astrophysics Data System (ADS)
Calle, Carlos I.
2017-02-01
The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.
Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol
2013-03-01
In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.
Heterodyne lock-in thermography of early demineralized in dental tissues
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang
2017-12-01
Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Nagarajan, R.
1985-01-01
Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.
In the Footsteps of Irving Langmuir: Physical Chemistry in Service of Society
NASA Astrophysics Data System (ADS)
Carter, Emily
The approach that Irving Langmuir took during his scientific career in industry at General Electric exemplifies the best that we chemical physicists/physical chemists can offer the world. His name is associated with very fundamental concepts and phenomena (e.g., the Langmuir isotherm, Langmuir-Blodgett films) along with practical inventions (e.g., the Langmuir probe, Langmuir trough). He worked at the interface of physics, chemistry, and engineering, with much of his important work devoted to understanding surface and interface phenomena. I have - unintentionally - followed in his footsteps, trained as a physical chemist who now leads the engineering school at Princeton. In this talk, I will give examples from my research as to how fundamental physical chemistry techniques and concepts - based largely on quantum mechanics - can be harnessed to help the world transition to a sustainable energy future. In the footsteps of Irving, surface and interfacial phenomena will figure prominently in the examples chosen.
PV cells electrical parameters measurement
NASA Astrophysics Data System (ADS)
Cibira, Gabriel
2017-12-01
When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
Recent advances in vacuum sciences and applications
NASA Astrophysics Data System (ADS)
Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.
2014-04-01
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.
Subsurface And Surface Water Flow Interactions
In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...
Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saucier, R.T.
1977-02-01
Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less
Lin, Shiji; Zhao, Binyu; Zou, Song; Guo, Jianwei; Wei, Zheng; Chen, Longquan
2018-04-15
In this paper, we experimentally investigated the impact dynamics of different viscous droplets on solid surfaces with diverse wettabilities. We show that the outcome of an impinging droplet is dependent on the physical property of the droplet and the wettability of the surface. Whereas only deposition was observed on lyophilic surfaces, more impact phenomena were identified on lyophobic and superlyophobic surfaces. It was found that none of the existing theoretical models can well describe the maximum spreading factor, revealing the complexity of the droplet impact dynamics and suggesting that more factors need to be considered in the theory. By using the modified capillary-inertial time, which considers the effects of liquid viscosity and surface wettability on droplet spreading, a universal scaling law describing the spreading time was obtained. Finally, we analyzed the post-impact droplet oscillation with the theory for damped harmonic oscillators and interpreted the effects of liquid viscosity and surface wettability on the oscillation by simple scaling analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
CubeRovers for Lunar Exploration
NASA Astrophysics Data System (ADS)
Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.
2017-10-01
CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Charge-Carrier-Scattering Spectroscopy With BEEM
NASA Technical Reports Server (NTRS)
Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.
1992-01-01
Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena
NASA Astrophysics Data System (ADS)
Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory
2012-02-01
Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey
2012-01-01
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.
VHF electromagnetic wave propagation
NASA Astrophysics Data System (ADS)
Gole, P.
Theoretical and experimental study of large-scale VHF propagation characteristics is presented. Certain phenomena that are difficult to model, such as the effects of ground near the antenna, are examined from a purely experimental point of view. The characteristics of electromagnetic waves over a spherical surface and through a medium having a certain refractive index, such as is the case for waves propagated over the earth's surface, are analytically described. Two mathematical models are used, one for the case of the receiver being within the radioelectric horizon of the transmitter and the other for when it is not. Propagation phenomena likely to increase the false alarm probability of an air surveillance radar are briefly considered.
Can deformation of a polymer film with a rigid coating model geophysical processes?
NASA Astrophysics Data System (ADS)
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.
Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan
2017-11-07
Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.
Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction
NASA Astrophysics Data System (ADS)
Krywonos, Andrey
Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.
The nature of the air-cleaved mica surface
NASA Astrophysics Data System (ADS)
Christenson, Hugo K.; Thomson, Neil H.
2016-06-01
The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.
Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules
NASA Astrophysics Data System (ADS)
Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.
1981-01-01
The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.
A Method to Calculate the Surface Tension of a Cylindrical Droplet
ERIC Educational Resources Information Center
Wang, Xiaosong; Zhu, Ruzeng
2010-01-01
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…
Wang, Ying; Luo, Guoyu; Liu, Junwei; ...
2017-08-28
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Luo, Guoyu; Liu, Junwei
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
Cao, Moyuan; Li, Zhe; Ma, Hongyu; Geng, Hui; Yu, Cunming; Jiang, Lei
2018-06-20
Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.
Flow phenomena on plates and airfoils of short span
NASA Technical Reports Server (NTRS)
Winter, H
1936-01-01
Investigations on the flow phenomena at plates and cambered models were carried out with the aid of force measurements, some pressure distribution measurements, and photographic observation. The experimental methods are described and the results given. Section III of this work gives a comprehensive account of the results and enables us to see how nearly the lift line and lift surface theories agree with the experimental results.
ERIC Educational Resources Information Center
Utgikar, Vivek P.; MacPherson, David
2016-01-01
Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…
Spatial structures arising along a surface wave produced plasma column: an experimental study
NASA Astrophysics Data System (ADS)
Atanassov, V.; Mateev, E.
2007-04-01
The formation of spatial structures in high-frequency and microwave discharges has been known for several decades. Nevertheless it still raises increased interest, probably due to the variety of the observed phenomena and the lack of adequate and systematic theoretical interpretation. In this paper we present preliminary results on observation of spatial structures appearing along a surface wave sustained plasma column. The experiments have been performed in noble gases (xenon and neon) at low to intermediate pressure and the surface wave has been launched by a surfatron. Under these conditions we have observed and documented: i) appearance of stationary plasma rings; ii) formation of standing-wave striationlike patterns; iii) contraction of the plasma column; iv) plasma column transition into moving plasma balls and filaments. Some of the existing theoretical considerations of these phenomena are reviewed and discussed.
The power laws of nanoscale forces in ambient conditions
NASA Astrophysics Data System (ADS)
Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun
Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only
Wetting and spreading behaviors of impinging microdroplets on textured surfaces
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Lee, Sang Joon; CenterBiofluid and Biomimic Reseach Team
2012-11-01
Textured surfaces having an array of microscale pillars have been receiving large attention because of their potential uses for robust superhydrophobic and superoleophobic surfaces. In many practical applications, the textured surfaces usually accompany impinging small-scale droplets. To better understand the impinging phenomena on the textured surfaces, the wetting and spreading behaviors of water microdroplets are investigated experimentally. Microdroplets with diameter less than 50 μm are ejected from a piezoelectric printhead with varying Weber number. The final wetting state of an impinging droplet can be estimated by comparing the wetting pressures of the droplet and the capillary pressure of the textured surface. The wetting behaviors obtained experimentally are well agreed with the estimated results. In addition, the transition from bouncing to non-bouncing behaviors in the partially penetrated wetting state is observed. This transition implies the possibility of withdrawal of the penetrated liquid from the inter-pillar space. The maximum spreading factors (ratio of the maximum spreading diameter to the initial diameter) of the impinging droplets have close correlation with the texture area fraction of the surfaces. This work was supported by Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of MEST/KOSEF.
Light-induced phenomena in one-component gas: The transport phenomena
NASA Astrophysics Data System (ADS)
Chermyaninov, I. V.; Chernyak, V. G.
2016-09-01
The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.
Preliminary Chaotic Model of Snapover on High Voltage Solar Cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
Collective phenomena in volume and surface barrier discharges
NASA Astrophysics Data System (ADS)
Kogelschatz, U.
2010-11-01
Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Jesse, Stephen; Yu, Pu
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A
2017-06-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.
Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.
2017-01-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674
Balke, Nina; Jesse, Stephen; Yu, Pu; ...
2016-09-15
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab
The high level objectives of the this work were to: 1) scientifically understand critical phenomena affecting the surface figure during full aperture finishing; 2) utilize these fundamentals to more deterministically control the surface figure during finishing; 3) successfully polish under rogue particle-‘free’ environments during polishing by understanding/preventing key sources of rogue particles.
Preliminary results from the Viking orbiter imaging experiment
Carr, M.H.; Masursky, H.; Baum, W.A.; Blasius, K.R.; Briggs, G.A.; Cutts, J.A.; Duxbury, T.; Greeley, R.; Guest, J.E.; Smith, B.A.; Soderblom, L.A.; Veverka, J.; Wellman, J.B.
1976-01-01
During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.
Ion transport in a pH-regulated nanopore.
Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2013-08-06
Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.
Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip
Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; ...
2015-06-19
The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less
One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces
NASA Astrophysics Data System (ADS)
Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.
2017-11-01
Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.
Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts
Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...
2017-10-25
Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
NASA Astrophysics Data System (ADS)
2014-12-01
This special issue of Applied Surface Science is a compilation of papers inspired by the symposium on "Surface/Interfaces Characterization and Renewable Energy" held at the 2013 MRS Fall Meeting. Practical uses of renewable energy are one of the greatest technical challenges today. The symposium explored a number of surface and interface-related questions relevant to this overarching theme. Topics from fuel cells to photovoltaics, from water splitting to fundamental and practical issues in charge generation and storage were discussed. The work presented included the use of novel experimental spectroscopic and microscopic analytical techniques, theoretical and computational understanding of interfacial phenomena, characterization of intricate behavior of charged species, as well as molecules and molecular fragments at surfaces and interfaces. It emphasized fundamental understanding of underlying processes, as well as practical devices design and applications of surface and interfacial phenomena related to renewable energy. These subjects are complicated by the transport of photons, electrons, ions, heat, and almost any other form of energy. Given the current concerns of climate change, energy independence and national security, this work is important and of interest to the field of Applied Surface Science. The sixteen papers published in this special issue have all been refereed.
Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques
NASA Astrophysics Data System (ADS)
Romulus, Costache; Iulia, Fontanine; Ema, Corodescu
2014-09-01
S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.
Surface-tension phenomena in organismal biology: an introduction to the symposium.
Bourouiba, Lydia; Hu, David L; Levy, Rachel
2014-12-01
Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics
NASA Astrophysics Data System (ADS)
Roden, E. E.
2003-12-01
Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, I.C.; Sposito, G.
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less
Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate
NASA Astrophysics Data System (ADS)
Bertagnolli, Mauro; Marchese, Maurizio; Jacucci, Gianni; St. Doltsinis, Ioannis; Noelting, Swen
1997-05-01
Finite element simulation techniques have been applied to the spreading process of single ceramic liquid droplets impacting on a flat cold surface under plasma-spraying conditions. The goal of the present investigation is to predict the geometrical form of the splat as a function of technological process parameters, such as initial temperature and velocity, and to follow the thermal field developing in the droplet up to solidification. A non-linear finite element programming system has been utilized in order to model the complex physical phenomena involved in the present impact process. The Lagrangean description of the motion of the viscous melt in the drops, as constrained by surface tension and the developing contact with the target, has been coupled to an analysis of transient thermal phenomena accounting also for the solidification of the material. The present study refers to a parameter spectrum as from experimental data of technological relevance. The significance of process parameters for the most pronounced physical phenomena is discussed as are also the consequences of modelling. We consider the issue of solidification as well and touch on the effect of partially unmelted material.
A Surface Science Perspective on TiO2 Photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2011-06-15
The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
Picosecond Laser Pulse Interactions with Metallic and Semiconducting Surfaces
1990-01-31
Few Picoseconds," Nonlinear Opics and Ultrafast Phenomena, eds. R.R. Alfano and L.J. Rothberg, (Nova Publishers, NY 1990). J.K. Wang, P. Saeta, M...Etching," Materials Science and Engineering 97:325-328 (1988). Nonlinear Opics & Ultrafast Phenomena Eds. R.R. Alfano and L.J. Rothberg Publ. Nova, NY...Progress in Materials Science, ed. by J.W. Christian , P. Haasen and T.B. Massalski, Chalmers Anniversay Volume, 269, Pergamon (1981). 13. F. Spaepen
Nondestructive study of corrosion by the analysis of diffused light
NASA Astrophysics Data System (ADS)
Hogert, Elsa N.; Landau, Monica R.; Marengo, Jose A.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.; Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya
1999-07-01
This work describes the application of mean intensity diffusion analysis to detect and analyze metallic corrosion phenomena. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. Valuable information is provided about surface microrelief changes, which is also useful for numerous engineering applications. The quality of our results supports the idea that this technique can contribute to a better analysis of corrosion processes, in particular in real time.
NASA Astrophysics Data System (ADS)
Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.
2018-03-01
This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.
Sound Visualization and Holography
ERIC Educational Resources Information Center
Kock, Winston E.
1975-01-01
Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)
NASA Astrophysics Data System (ADS)
Lembessis, V. E.; Babiker, M.; Andrews, D. L.
2009-01-01
It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.
On the surface-to-bulk mode conversion of Rayleigh waves.
NASA Technical Reports Server (NTRS)
Chang, C.-P.; Tuan, H.-S.
1973-01-01
Surface-to-bulk wave conversion phenomena occurring at a discontinuity characterized by a surface contour deformation are shown to be usable as a means for tapping Rayleigh waves in a nonpiezoelectric solid. A boundary perturbation technique is used in the treatment of the mode conversion problem. A systematic procedure is presented for calculating not only the first-order scattered waves, which include the reflected surface wave and the converted bulk wave, but also the higher order terms.
Spontaneous De-Icing Phenomena on Extremely Cold Surfaces
NASA Astrophysics Data System (ADS)
Song, Dong; Choi, Chang-Hwan
2017-11-01
Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.
Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam
2016-10-14
The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.
2005-08-01
is an angular surface. This phenomena has important applications in areas as diverse as heat exchange and catalysis. JOURNAL PAPERS W.P...densify these composites. In addressing the oxidation protection of carbon-carbon composites, the entirely new field of microtube technology was born...nozzle; exit cone; missile nosetip; hypersonic vehicle; oxidation resistance; cost; densification; MEMs; surface tension; microtube 16. SECURITY
A Laboratory Experiment on Oil Weathering under Arctic Conditions.
1982-09-01
water ( Fazal and Milgram, 1977), and both on the surface and underneath a smooth solid ice sheet (Cox et al., 1980). In addition, Free et al. (1981...Covered Waters of Buzzards Bay," NOAA OCSEAP Report, Boulder, Colorado, June 1977. 3. Fazal , R.A. and J.H. Milgram, "The Effects of Surface Phenomena
Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration
NASA Technical Reports Server (NTRS)
Davoodi, Faranak; Murphy, Neil
2013-01-01
A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
NASA Astrophysics Data System (ADS)
Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir
2017-06-01
Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.
SEASAT views oceans and sea ice with synthetic aperture radar
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1982-01-01
Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.
Quantum phenomena in gravitational field
NASA Astrophysics Data System (ADS)
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
Exotic Phenomena in Quantum limit in nodal-line semimetal ZrSiS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jin; Liu, Jinyu; Mao, Zhiqiang
2017-03-01
In quantum limit, all carriers condense to the lowest Landau level, leading to possible exotic quantum phenomena such as Lifshitz transition and density waves. Usually, quantum limit is not easily achieved due to relatively large Fermi surface in metals. Fortunately, the nodal-line semimetal ZrSiS possesses a very small Fermi pocket with a characteristic quantum oscillation frequency of 8.4T, which represents the 2D Dirac states protected by non-symmorphic symmetry. The quantum limit of such Dirac bands can be reached in moderate magnetic field ~25T, indicating that ZrSiS could be a nice platform to explore the novel quantum phenomena of Dirac fermionsmore » in quantum limit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.B.
1982-01-01
Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less
Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.
Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M
2011-02-02
Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.
2015-09-30
ocean surface. It is ideal for studying fronts, river plumes, near-‐surface phenomena like ice-‐ melt or rain puddles, air...regions too dangerous for manned craft (like near glacier faces), and for interpreting the undersea structure of satellite
Chemical Phenomena of Atomic Force Microscopy Scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.
Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less
Chemical Phenomena of Atomic Force Microscopy Scanning
Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.; ...
2018-01-30
Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less
Optimizing Grid Patterns on Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Burger, D. R.
1984-01-01
CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.
Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers
NASA Technical Reports Server (NTRS)
Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.
1984-01-01
A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.
Tribology experiment in zero gravity
NASA Technical Reports Server (NTRS)
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.
1984-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates studies of the motion of liquid lubricants over solid surfaces as controlled by interfacial and capillary forces. Observations were made of phenomena associated with the liquid on one solid surface and also with the liquid between a pair of closely spaced surfaces. Typical photographic records obtained on Spacelab 1 are described.
Shapes of embedded minimal surfaces
Colding, Tobias H.; Minicozzi, William P.
2006-01-01
Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2. PMID:16847265
NASA Astrophysics Data System (ADS)
García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.
2017-12-01
The relationships between air and ground surface temperatures across North America are examined in the historical and future projection simulations from 32 General Circulation Models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The covariability between surface air (2 m) and ground surface temperatures (10 cm) is affected by simulated snow cover, vegetation cover and precipitation through changes in soil moisture at the surface. At high latitudes, the differences between air and ground surface temperatures, for all CMIP5 simulations, are related to the insulating effect of snow cover and soil freezing phenomena. At low latitudes, the differences between the two temperatures, for the majority of simulations, are inversely proportional to leaf area index and precipitation, likely due to induced-changes in latent and sensible heat fluxes at the ground surface. Our results show that the transport of energy across the air-ground interface differs from observations and among GCM simulations, by amounts that depend on the components of the land-surface models that they include. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model, illustrate the need for improving the representation of processes controlling the coupling of the lower atmosphere and the land surface in GCMs as a means of reducing the variability in their representation of weather and climate phenomena, with potentially important implications for positive climate feedbacks such as permafrost and soil carbon stability.
Transport phenomena in the micropores of plug-type phase separators
NASA Technical Reports Server (NTRS)
Fazah, M. M.
1995-01-01
This study numerically investigates the transport phenomena within and across a porous-plug phase separator. The effect of temperature differential across a single pore and of the sidewall boundary conditions, i.e., isothermal or linear thermal gradient, are presented and discussed. The effects are quantified in terms of the evaporation mass flux across the boundary and the mean surface temperature. A two-dimensional finite element model is used to solve the continuity, momentum, and energy equations for the liquid. Temperature differentials across the pore interface of 1.0, and 1.5 K are examined and their effect on evaporation flux and mean surface temperature is shown. For isothermal side boundary conditions, the evaporation flux across the pore is directly proportional and linear with Delta T. For the case of an imposed linear thermal gradient on the side boundaries, Biot numbers of 0.0, 0.15, and 0.5 are examined. The most significant effect of Biot number is to lower the overall surface temperature and evaporation flux.
Wetting hysteresis induced by nanodefects
Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried
2016-01-01
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395
NASA Astrophysics Data System (ADS)
Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.
2018-01-01
Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.
Brcka, Jozef; Faguet, Jacques; Zhang, Guigen
2017-01-01
Dielectrophoretic (DEP) phenomena have been explored to great success for various applications like particle sorting and separation. To elucidate the underlying mechanism and quantify the DEP force experienced by particles, the point-dipole and Maxwell Stress Tensor (MST) methods are commonly used. However, both methods exhibit their own limitations. For example, the point-dipole method is unable to fully capture the essence of particle-particle interactions and the MST method is not suitable for particles of non-homogeneous property. Moreover, both methods fare poorly when it comes to explaining DEP phenomena such as the dependence of crossover frequency on medium conductivity. To address these limitations, the authors have developed a new method, termed volumetric-integration method, with the aid of computational implementation, to reexamine the DEP phenomena, elucidate the governing mechanism, and quantify the DEP force. The effect of an electric double layer (EDL) on particles' crossover behavior is dealt with through consideration of the EDL structure along with surface ionic/molecular adsorption, unlike in other methods, where the EDL is accounted for through simply assigning a surface conductance value to the particles. For validation, by comparing with literature experimental data, the authors show that the new method can quantify the DEP force on not only homogeneous particles but also non-homogeneous ones, and predict particle-particle interactions fairly accurately. Moreover, the authors also show that the predicted dependence of crossover frequency on medium conductivity and particle size agrees very well with experimental measurements. PMID:28396710
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2002-01-01
This article is a chapter of the book entitled, "Tribology of Mechanical Systems," to be published by ASME Press, New York, NY. It describes selected analytical techniques, which are being used in understanding phenomena and mechanisms of oxidation, adhesion, bonding, friction, erosion, abrasion, and wear, and in defining the problems. The primary emphasis is on microanalytical approaches to engineering surfaces.
Peter R. Robichaud
1997-01-01
Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...
A Survey Course: The Energy and Mass Budget at the Surface of the Earth.
ERIC Educational Resources Information Center
Association of American Geographers, Washington, DC. Commission on College Geography.
The objectives of this geography course for liberal arts students include the following: 1) to demonstrate cooperative action among sciences, by showing that physical and chemical phenomena occur at biological surfaces that usually exist in economic and cultural frameworks; 2) to show that laboratory principles of mass and energy exchange and…
ERIC Educational Resources Information Center
Taylor, Amy; Jones, Gail
2009-01-01
The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…
Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species
K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone
2011-01-01
In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...
NASA Technical Reports Server (NTRS)
Poulos, Gregory S.; Stamus, Peter A.; Snook, John S.
2005-01-01
The Cold Land Processes Experiment (CLPX) experiment emphasized the development of a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. Our work sought to investigate which topographically- generated atmospheric phenomena are most relevant to the CLPX MSA's for the purpose of evaluating their climatic importance to net local moisture fluxes and snow transport through the use of high-resolution data assimilation/atmospheric numerical modeling techniques. Our task was to create three long-term, scientific quality atmospheric datasets for quantitative analysis (for all CLPX researchers) and provide a summary of the meteorologically-relevant phenomena of the three MSAs (see Figure) over northern Colorado. Our efforts required the ingest of a variety of CLPX datasets and the execution an atmospheric and land surface data assimilation system based on the Navier-Stokes equations (the Local Analysis and Prediction System, LAPS, and an atmospheric numerical weather prediction model, as required) at topographically- relevant grid spacing (approx. 500 m). The resulting dataset will be analyzed by the CLPX community as a part of their larger research goals to determine the relative influence of various atmospheric phenomena on processes relevant to CLPX scientific goals.
ALCHEMIC: Advanced time-dependent chemical kinetics
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2017-08-01
ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.
NASA Technical Reports Server (NTRS)
Karimi, Majid
1993-01-01
Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.
Shape evolution of a melting nonspherical particle
NASA Astrophysics Data System (ADS)
Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron
2015-09-01
In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.
ESM of ionic and electrochemical phenomena on the nanoscale
Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...
2011-01-01
Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less
Karamanidis, Kiros; Arampatzis, Adamantios; Brüggemann, Gert-Peter
2006-10-01
The goals of the study were to identify adaptational phenomena in running mechanics over a variety of surfaces due to age related changes in the muscle-tendon units (MTUs) capacities, to examine whether running experience is associated with adaptational effects on running mechanics over a variety of surfaces even at old age, and to investigate whether surface condition affects running mechanics. The investigation was executed on 30 old and 19 young including 29 runners and 20 non-active subjects. In a previous study we documented that the older had lower MTUs capacities. In the present study running mechanics were analysed as the same subjects ran at 2.7 m/s over three surfaces having different compliance. Surface condition did not affect centre of mass trajectory, duty factor or joint kinetics (P > 0.01). Older react to the reduced MTUs capacity by increasing duty factor and benefiting from a mechanical advantage for the triceps surae MTU and a lower rate of force generation on all surfaces (P < 0.01). Runners displayed lower average horizontal forces and a higher mechanical advantage for the quadriceps femoris MTU for all surfaces (P < 0.01). The results provided strong evidence on that running strategy remained essentially unchanged over a variety of surfaces. Adaptive improvements in running mechanics due to task experience were present for all surfaces and did not depend on age. We further concluded that older adults were able to recalibrate their running strategy to adjust the task effort to the reduced MTUs capacities in a feedforward control manner for a variety of mechanical environments.
The Early Years: Looking at Landscapes
ERIC Educational Resources Information Center
Ashbrook, Peggy
2017-01-01
This column discusses resources and science topics related to students in grades preK to 2. In this month's issue students study landscape surfaces to recognize changes due to human impacts or natural phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbs, T.; Heinle, R.
1997-06-01
This containment data report for the SECO event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation, pressure, collapse phenomena, and motion. Surface array measurements are provided.
Meteorological satellite accomplishments
NASA Technical Reports Server (NTRS)
Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.
1974-01-01
The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.
Surface elastic properties in silicon nanoparticles
NASA Astrophysics Data System (ADS)
Melis, Claudio; Giordano, Stefano; Colombo, Luciano
2017-09-01
The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.
Digital speckle correlation for nondestructive testing of corrosion
NASA Astrophysics Data System (ADS)
Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.
1999-07-01
This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.
Collective motion in Proteus mirabilis swarms
NASA Astrophysics Data System (ADS)
Haoran, Xu
Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.
Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas
NASA Astrophysics Data System (ADS)
Takamura, S.; Uesugi, Y.
2015-03-01
Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
Study on Controls of Fluids in Nanochannel via Hybrid Surface
NASA Astrophysics Data System (ADS)
Ye, Ziran
This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.
What causes the trends in Geocenter motion estimates?
NASA Astrophysics Data System (ADS)
Rietbroek, Roelof; Schrama, Ernst
2015-04-01
Over time, the geometrical center of figure of the Earth (CF) and the center of mass of the Earth system (CM) exhibit small changes. This phenomena, generally referred to as 'geocenter motion', is mainly caused by present-day and past surface loading and (visco)-elastic deformation processes occurring near the surface of the Earth. It is now well known that the computation of surface loading variations from the GRACE product requires the application of geocenter corrections, and not doing so introduce significant errors in estimates of, for example, melt-rates of the cryosphere. But, to understand observed geocenter motion more closely, one can also ask how much the different surface loading phenomena contribute to it. In this study, we compare different estimates of the geocenter motion, and discuss the underlying causes, with a special focus on trends. Using a 'fingerprint' inversion approach, where predefined patterns are fitted to GRACE and altimetry data, we can now consistently break down the geocenter estimates into different contributions. We find that the present day melting in Antarctica and Greenland shift the CM-CF offset with 0.1 mm/yr and -0.3 mm/yr in the Z-direction respectively, while GIA additionally contributes with roughly -0.3 mm/yr.
Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces
NASA Astrophysics Data System (ADS)
Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.
2018-04-01
Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.
Melting of the Dipalmitoylphosphatidylcholine Monolayer.
Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y
2018-04-17
Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.
Passive Optical Technique to Measure Physical Properties of a Vibrating Surface
2014-01-01
it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2
Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.
Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit
2017-09-13
Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.
Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiemstra, T.; Riemsdijk, W.H. van
1999-02-01
An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less
Surface critical behavior of thin Ising films at the ‘special point’
NASA Astrophysics Data System (ADS)
Moussa, Najem; Bekhechi, Smaine
2003-03-01
The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.
NASA Astrophysics Data System (ADS)
Cortés, Joaquín.; Valencia, Eliana
1999-04-01
Two novel phenomena are discussed in this paper. The first one refers to the effect of the catalyst's surface heterogeneity on the smoothing of the first-order transition observed in the ( A+ B2) reaction (ZGB model). The second effect corresponds to obtaining information on the surface heterogeneity from the shape of the transition curve. Two types of heterogeneity were considered: the structure obtained by the random blocking of reactive sites, and the existence of a distribution in independent strips or terraces on the catalyst's surface.
Interference of conically scattered light in surface plasmon resonance.
Webster, Aaron; Vollmer, Frank
2013-02-01
Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.
Tools for proximal soil sensing
USDA-ARS?s Scientific Manuscript database
Proximal soil sensing (i.e. near-surface geophysical methods) are used to study soil phenomena across spatial scales. Geophysical methods exploit contrasts in physical properties (dielectric permittivity, apparent electrical conductivity or resistivity, magnetic susceptibility) to indirectly measur...
Classical theory of atom-surface scattering: The rainbow effect
NASA Astrophysics Data System (ADS)
Miret-Artés, Salvador; Pollak, Eli
2012-07-01
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
Classical theory of atom-surface scattering: The rainbow effect
NASA Astrophysics Data System (ADS)
Miret-Artés, Salvador; Pollak, Eli
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the "washboard model" in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
Extending topological surgery to natural processes and dynamical systems.
Antoniou, Stathis; Lambropoulou, Sofia
2017-01-01
Topological surgery is a mathematical technique used for creating new manifolds out of known ones. We observe that it occurs in natural phenomena where a sphere of dimension 0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For example, 1-dimensional surgery happens during chromosomal crossover, DNA recombination and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts which enhance topological surgery with the observed forces and dynamics. To do this, we first extend the formal definition to a continuous process caused by local forces. Next, for modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-dimensional, we fill in the interior space by defining the notion of solid topological surgery. We further introduce the notion of embedded surgery in S3 for modeling phenomena which involve more intrinsically the ambient space, such as the appearance of knotting in DNA and phenomena where the causes and effect of the process lies beyond the initial manifold, such as the formation of black holes. Finally, we connect these new theoretical concepts with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and natural phenomena exhibiting a 'hole drilling' behavior. We hope that through this study, topology and dynamics of many natural phenomena, as well as topological surgery itself, will be better understood.
Extending topological surgery to natural processes and dynamical systems
Antoniou, Stathis; Lambropoulou, Sofia
2017-01-01
Topological surgery is a mathematical technique used for creating new manifolds out of known ones. We observe that it occurs in natural phenomena where a sphere of dimension 0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For example, 1-dimensional surgery happens during chromosomal crossover, DNA recombination and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts which enhance topological surgery with the observed forces and dynamics. To do this, we first extend the formal definition to a continuous process caused by local forces. Next, for modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-dimensional, we fill in the interior space by defining the notion of solid topological surgery. We further introduce the notion of embedded surgery in S3 for modeling phenomena which involve more intrinsically the ambient space, such as the appearance of knotting in DNA and phenomena where the causes and effect of the process lies beyond the initial manifold, such as the formation of black holes. Finally, we connect these new theoretical concepts with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and natural phenomena exhibiting a ‘hole drilling’ behavior. We hope that through this study, topology and dynamics of many natural phenomena, as well as topological surgery itself, will be better understood. PMID:28915271
1982-09-20
SURFACE WEATHER OBSERVATIONS 2 2 SEP W ISJRLSURT FLD FL MSC #747770 E 30 26 w o86 41 FLU ELEV 38 FT FRT PARTS A-F POR FROM HOURLY OBS: JAN 67 - DEC 70...amounts and extreme valuesl; C) Surface winds; (D) Ceiling versus Visibility; Sky Cover; ( E )-Psychrometric Summaries (daily maximum and minimum...for this station: PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN TEMP PART I PRECIPITATION
1994-02-01
known gold atomic diameter of 2.89 A. Within a given domain, featuring adjacent terrace strings separated by monoatomic steps, the measured unit-cell...to utilize high-index gold faces in exploring the influence of monoatomic steps and related structural features on surface electrochemical phenomena...110) Gold Electrode Surfaces D1 T IC as Revealed by Scanning Tunneling Microscopy FLECTE MAR 10 19941 by E Xiaoping Gao, Gregory J. Edens, Antoinette
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7
Li, Guorong; Li, Qing; Pan, Minghu; Hu, Biao; Chen, Chen; Teng, Jing; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.
2013-01-01
Chemical doping in materials is known to give rise to emergent phenomena. These phenomena are extremely difficult to predict a priori, because electron-electron interactions are entangled with local environment of assembled atoms. Scanning tunneling microscopy and low energy electron diffraction are combined to investigate how the local electronic structure is correlated with lattice distortion on the surface of Sr3(Ru1−xMnx)2O7, which has double-layer building blocks formed by (Ru/Mn)O6 octahedra with rotational distortion. The presence of doping-dependent tilt distortion of (Ru/Mn)O6 octahedra at the surface results in a C2v broken symmetry in contrast with the bulk C4v counterpart. It also enables us to observe two Mn sites associated with the octahedral rotation in the bulk through the “chirality” of local electronic density of states surrounding Mn, which is randomly distributed. These results serve as fingerprint of chemical doping on the atomic scale. PMID:24108411
Quantum Dots' Photo-luminescence Line Shape Modeling
NASA Astrophysics Data System (ADS)
Hua, Muchuan; Decca, Ricardo
Two usual phenomena observed in quantum dots (QDs) photo-luminescence (PL) spectra are line broadening and energy shift between absorption and emission peaks. They have been attributed to electron-phonon coupling and surface trapping during the PL process. Although many qualitative work describing these phenomena has been carried out, quantitative results are far less common. In this work, a semi-empirical model is introduced to simulate steady state QDs' PL processes at room temperature. It was assumed that the vast majority of radiative recombination happens from surface trapped states. Consequently, the PL line shape should be highly modulated by transition rates between states in the conduction band and between them and surface trapping states. CdSe/ZnS (core/shell) colloidal QD samples with different sizes were used to examine the model. The model was able to successfully reproduce the PL spectra of these samples even when the excitation happens within the emission spectra, giving raise to up-conversion events. This model might help understand and make more precise predictions of QDs' PL spectra and could also aid on the design of QDs' optical devices.
Recombination phenomena in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Sah, C. T.
1985-01-01
The dominant recombination phenomena which limit the highest efficiency attainable in silicon solar cells under terrestrial sunlight are reviewed. The ultimate achievable efficiency is limited by the two intrinsic recombination mechanisms, the interband Auger recombination and interband Radiative recombination, both of which occur in the entire cell body but principally in the base layer. It is suggested that an optimum (26%) cell design is one with lowly doped 50 to 100 micron thick base, a perfect BSF, and zero extrinsic recombination such as the thermal mechanism at recombination centers the Shockley-Read-Hall process (SRH) in the bulk, on the surface and at the interfaces. The importance of recombination at the interfaces of a high-efficiency cell is demonstrated by the ohmic contact on the back surface whose interface recombination velocity is infinite. The importance of surface and interface recombination is demonstrated by representing the auger and radiative recombination losses by effective recombination velocities. It is demonstrated that the three highest efficiency cells may all be limited by the SRH recombination losses at recombination centers in the base layer.
Deionization shocks in microstructures
NASA Astrophysics Data System (ADS)
Mani, Ali; Bazant, Martin Z.
2011-12-01
Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.
Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing
2001-09-30
of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates.
Kreisel, A; Choubey, Peayush; Berlijn, T; Ku, W; Andersen, B M; Hirschfeld, P J
2015-05-29
We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.
Applications of Geodesy to Geodynamics, an International Symposium
NASA Technical Reports Server (NTRS)
Mueller, I. I. (Editor)
1978-01-01
Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.
Investigation of wear phenomena by microscopy
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1982-01-01
The various wear mechanisms involved in the loss of material from metallic and nonmetallic surfaces are discussed. The results presented indicate how various microscopy techniques used in conjunction with other analytical tools can assist in the elucidation of a wear mechanism. Without question, microscopy is the single most important tool for the study of the wear of surfaces, to assess and address inherent mechanisms of the material removal process.
NASA Astrophysics Data System (ADS)
Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael
2018-01-01
In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.
Dynamic recrystallization in friction surfaced austenitic stainless steel coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.
2012-12-15
Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.
Moon-based Earth Observation for Large Scale Geoscience Phenomena
NASA Astrophysics Data System (ADS)
Guo, Huadong; Liu, Guang; Ding, Yixing
2016-07-01
The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.
A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo
2017-04-01
Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed deformation phenomena. Acknowledgments This work is partially supported by the IREA-CNR/Italian Department of Civil Protection agreement and the I-AMICA project (Infrastructure of High Technology for Environmental and Climate Monitoring-PONa3_00363). References Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. Manzo, M., G. P. Ricciardi, F. Casu, G. Ventura, G. Zeni, S. Borgström, P. Berardino, C. Del Gaudio, and R. Lanari (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, Journal of Volcanology and Geothermal Research, 151, 399-416, doi:10.1016/j.jvolgeores.2005.09.010.
Understanding Surface Adhesion in Nature: A Peeling Model.
Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao
2016-07-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J.M.
Chemical phenomena occurring at boundaries between insulating solids and liquids (adsorption, partition, monolayer self-assembly, catalysis, and chemical reactions) are important to energy-related analytical chemistry. These phenomena are central to chromatography, solid-phase extraction, immobilized analytical reagents, and optical sensors. Chemical interactions in these processes cannot generally be identified solely by equilibrium surface concentrations, since the steady-state behavior does not reveal the mechanism or rates of surface reactions. Goal therefore is to develop surface-sensitive spectroscopies by which chemical kinetics at liquid/solid interfaces can be observed on time-scales from nanoseconds to seconds. In the first year, we have used Joule-discharge heating kinetics tomore » study pore structure of silica gels; effects of pore diameter, particle size, and chemical modification on pore connectivity were investigated. Temperature-jump relaxation measurements of sorption/desorption kinetics at liquid/solid interfaces were also carried out using Joule heating; kinetic barriers to sorption of ions from solution were found for both C18 and Cl surfaces. Through a collaboration with Fritz-Haber Institute in Berlin, we were able to acquire laser temperature-jump data on kinetics at liquid/solid interfaces using a colloidal sample. We also quantified the rate of migration of covalently attached ligands on silica surfaces; from the temperature dependence, the large energy barrier to migration was estimated. A review of applications of electronic spectroscopy (absorption and fluorescence) to reversed-phase chromatographic interfaces was published.« less
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
Microchemical investigation on Renaissance coins minted at Gubbio (Central Italy)
NASA Astrophysics Data System (ADS)
Ingo, G. M.; de Caro, T.; Padeletti, G.; Chiozzini, G.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver. The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties.
NASA Astrophysics Data System (ADS)
Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing
2018-05-01
Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l-1, 30 g l-1, 60 g l-1, 90 g l-1) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l-1, the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l-1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.
Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing
2018-05-01
Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l -1 , 30 g l -1 , 60 g l -1 , 90 g l -1 ) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni 2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l -1 , the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l -1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.
Ocean Surface Topography Mission/Jason 2 Artist Concept
2008-09-23
An artist concept of the Ocean Surface Topography Mission/Jason 2 Earth satellite. The Ocean Surface Topography Mission/Jason 2 is an Earth satellite designed to make observations of ocean topography for investigations into sea-level rise and the relationship between ocean circulation and climate change. The satellite also provides data on the forces behind such large-scale climate phenomena as El Niño and La Niña. The mission is a follow-on to the French-American Jason 1 mission, which began collecting data on sea-surface levels in 1992. http://photojournal.jpl.nasa.gov/catalog/PIA18158
An investigation of relationships between meso- and synoptic-scale phenomena
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Wood, J. E.; Fuelberg, H. E.; Read, W. L.
1972-01-01
Methods based on the vorticity equation, the adiabatic method, the curvature of the vertical wind profile, and the structure of synoptic waves are used to determine areas of positive vertical motion in the mid-troposphere for a period in each season. Parameters indicative of low-level moisture and conditional instability are areas in which mesoscale systems may be present. The best association between mesoscale and synoptic-scale phenomena was found for a period during December when synoptic-scale systems were well developed. A good association between meso- and synoptic-scale events also was found for a period during March, while the poorest association was found for a June period. Daytime surface heating apparently is an important factor in the formation of mesoscale systems during the summer. It is concluded that the formation of mesoscale phenomena may be determined essentially from synoptic-scale conditions during winter, late fall, and early spring.
Gotoh, Keiko
2017-01-01
The detergency of products, mainly textiles, was evaluated using various experimental systems and discussed from the viewpoint of interfacial phenomena. The detergency phenomena observed for geometrically simple model systems were explained in terms of the total potential energy of interaction between the soil and the substrate, which was calculated as the sum of the electrical double layer, Lifshitzvan der Waals, and acid-base interactions using electrokinetic potentials and surface free energy components. Cleaning experiments using artificially soiled fabrics were performed using electro-osmotic flow and ultrasound as mechanical actions for soil removal, and the results were compared with those obtained with mechanical actions commonly used in textile washing. Simultaneous hydrophilization of the substrate and soil by an atmospheric pressure plasma jet remarkably improved the detergency in aqueous solutions. The application of the atmospheric pressure plasma jet to anti-fouling textiles was also proposed.
Planetary geomorphology field studies: Iceland and Antarctica
NASA Technical Reports Server (NTRS)
Malin, M. C.
1984-01-01
Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. These studies, conducted in Iceland and in Antarctica, investigated physical and chemical weathering mechanisms and rates, eolitan processes, mudflow phenomena, drainage development, and catastrophic fluvial and volcanic phenomena. Continuing investigations in Iceland fall in three main catagories: (1) catastrophic floods of the Jokulsa a Fjollum, (2) lahars associated with explosive volcanic eruptions of Askja caldera, and (3) rates of eolian abrasion in cold, volcanic deserts. The ice-free valleys of Antarctica, in particular those in South Victoria Land, have much is common with the surface of Mars. In addition to providing independent support for the application of the Iceland findings to consideration of the martian erosional system, the Antarctic observations also provide analogies to other martian phenomena. For example, a family of sand dunes in Victoria Valley are stabilized by the incorporation of snow as beds.
Observational data needs for plasma phenomena
NASA Technical Reports Server (NTRS)
Niedner, M. B., Jr.
1981-01-01
Bright comets display a rich variety of interesting plasma phenomena which occur over an enormous range of spatial scales, and which require different observational techniques to be studied effectively. Wide-angle photography of high time resolution is probably the best method of studying the phenomenon of largest known scale: the plasma tail disconnection event (DE), which has been attributed to magnetic reconnection at interplanetary sector boundary crossings. These structures usually accelerate as they recede from the head region and observed velocities are typically in the range 50 V km/s. They are often visible for several days following the time of disconnection, and are sometimes seen out past 0.2 AU from the cometary head. The following areas pertaining to plasma phenomena in the ionoshere are addressed: the existence, size, and heliocentric distance variations of the contact surface, and the observational signatures of magnetic reconnection at sector boundary crossings.
Low-gravity fluid physics: A program overview
NASA Technical Reports Server (NTRS)
1990-01-01
An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.
The Nature and Timing of Tele-Pseudoscopic Experiences
Hill, Harold; Allison, Robert S
2016-01-01
Interchanging the left and right eye views of a scene (pseudoscopic viewing) has been reported to produce vivid stereoscopic effects under certain conditions. In two separate field studies, we examined the experiences of 124 observers (76 in Study 1 and 48 in Study 2) while pseudoscopically viewing a distant natural outdoor scene. We found large individual differences in both the nature and the timing of their pseudoscopic experiences. While some observers failed to notice anything unusual about the pseudoscopic scene, most experienced multiple pseudoscopic phenomena, including apparent scene depth reversals, apparent object shape reversals, apparent size and flatness changes, apparent reversals of border ownership, and even complex illusory foreground surfaces. When multiple effects were experienced, patterns of co-occurrence suggested possible causal relationships between apparent scene depth reversals and several other pseudoscopic phenomena. The latency for experiencing pseudoscopic phenomena was found to correlate significantly with observer visual acuity, but not stereoacuity, in both studies. PMID:27482368
Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom
NASA Astrophysics Data System (ADS)
Hibi, Shigeyuki
2018-06-01
Impulsive loads should be excited under nonlinear phenomena with free surface fluctuating severely such as sloshing and slamming. Estimating impulsive loads properly are important to recent numerical simulations. But it is still difficult to rely on the results of simulations perfectly because of the nonlinearity of the phenomena. In order to develop the algorithm of numerical simulations experimental results of nonlinear phenomena are needed. In this study an apparatus which can oscillate a tank by force was introduced in order to investigate impulsive pressure on the wall of the tank. This apparatus can oscillate it simultaneously towards 3 degrees of freedom with each phase differences. The impulsive pressure under the various combinations of oscillation direction was examined and the specific phase differences to appear the largest peak values of pressure were identified. Experimental results were verified through FFT analysis and statistical methods.
Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui
2018-02-08
The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.
Excimer laser-induced hydrohynamical effects and surface modifications on silicon carbide
NASA Astrophysics Data System (ADS)
Nicolas, Gines; Autric, Michel
1996-04-01
The use of lasers in many applications requires an understanding and control of the fundamental processes involved during the laser radiation-material interaction. The importance and the duration of the phenomena involved (optical, thermal, mechanical, electromagnetic, radiative) depend on parameters such as the power density of the laser radiation, the nature and the surface morphology of the material, the surrounding gas and the wavelength of the radiation. A part of the incident energy is reflected by the surface, while the remaining quantity of this energy is absorbed by the material. This incident energy contributes to heating, melting, vaporization and plasma formation if the laser intensity is sufficiently high. The present study is devoted to the ceramic material irradiation in air by an excimer laser at a wavelength of 248 nm and a pulse duration of 20 ns. The objective is to understand the different phenomena induced by radiation and to improve mechanical properties of the surface. Presented results concern the dynamics of plasmas and shock waves, plus surface modifications (porosity, roughness, composition changes) on silicon carbide samples (SiC). A part of the study has resulted in the characterization of the flow created in front of the sample revealing different hydrodynamical regimes. Visualizations of the luminous plasma front and shock waves have been obtained using a fast electronic camera IMACON 790 and a ICCD camera. These optical devices have permitted us to observe simultaneously the formation and expansion of different fronts (plasma and shock waves) propagating into the surrounding gas. The results have been compared to the theory. Complex structures inside the plume have been observed inducing a turbulence phenomena some milliseconds after the irradiation. On the other hand, the surface morphology has been characterized by observations with a scanning electron microscope (SEM) showing important modifications of the morphology according to the energy density and number of pulses applied. A decrease of surface porosity is revealed using image processing technique. This improvement is accompanied with an increase of roughness which has been measured by mechanical profilometry and might be detrimental for friction applications. In addition, an analysis of the material in depth by Auger electron spectroscopy (AES) has shown chemical composition changes (an increase in the percentage of silicon) in the zone irradiated.
3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.
Zhu, Q; Kato, S; Murakami, S; Ito, K
2007-06-01
This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.
Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej
2016-06-09
Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.
ERIC Educational Resources Information Center
Kozma, Robert B.; Russell, Joel
1997-01-01
Examines how professional chemists and undergraduate chemistry students respond to chemistry-related video segments, graphs, animations, and equations. Discusses the role that surface features of representations play in the understanding of chemistry. Contains 36 references. (DDR)
NASA Technical Reports Server (NTRS)
1976-01-01
An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.
Wetting-dewetting films: the role of structural forces.
Nikolov, Alex; Wasan, Darsh
2014-04-01
The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.
Lateral engineering of surface states - towards surface-state nanoelectronics.
García de Abajo, F J; Cordón, J; Corso, M; Schiller, F; Ortega, J E
2010-05-01
Patterned metal surfaces can host electron quantum waves that display interference phenomena over distances of a few nanometres, thus providing excellent information carriers for future atomic-scale devices. Here we demonstrate that collimation and waveguiding of surface electrons can be realized in silver-induced strain dislocation networks on Cu(111) surfaces, as a conceptual proof-of-principle of surface-state nanoelectronics (SSNE). The Ag/Cu(111) system exhibits featured surface bands with gaps at the Fermi energy, which are basic requirements for a potential SSNE material. We establish a solid analogy between the behavior of surface-state electrons and surface plasmons in patterned metal surfaces, thus facilitating the transfer of existing knowledge on plasmonic structures to the new scenario presented by engineered electronic surface-state nanostructures, with the advantage of a 1000-fold reduction in wavelength and geometrical parameters.
Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter
2006-04-15
We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.
NASA Astrophysics Data System (ADS)
Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.
The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.
Casting technology for manufacturing metal rods from simulated metallic spent fuels
NASA Astrophysics Data System (ADS)
Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.
2000-09-01
A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.
Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity
Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.
2005-01-01
Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1983-01-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Astrophysics Data System (ADS)
Fu, L. L.; Holt, B.
1983-07-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Hydrodynamics of spatially inhomogeneous real membranes
NASA Astrophysics Data System (ADS)
Kirii, V. A.; Shelistov, V. S.; Demekhin, E. A.
2017-07-01
Electrokinetic processes in the vicinity of inhomogeneous ion-selective surfaces (electrodes, membranes, microchannels, and nanochannels) consisting of alternating conducting and nonconducting regions in the presence of a normal-to-surface electric current are numerically studied. An increase in the electric current density is observed in the case of some particular alternation of conducting and nonconducting regions of the surface. The current-voltage characteristics of homogeneous and inhomogeneous electric membranes are found to be in qualitative agreement. Various physical phenomena leading to the emergence of a supercritical current in homogeneous and inhomogeneous membranes are detected.
A 5-micron-bright spot on Titan: evidence for surface diversity.
Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno
2005-10-07
Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.
Experimental verification of ‘waveguide’ plasmonics
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Costa, Jorge R.; Fernandes, Carlos A.; Engheta, Nader; Silveirinha, Mário G.
2017-12-01
Surface plasmons polaritons are collective excitations of an electron gas that occur at an interface between negative-ɛ and positive-ɛ media. Here, we report the experimental observation of such surface waves using simple waveguide metamaterials filled only with available positive-ɛ media at microwave frequencies. In contrast to optical designs, in our setup the propagation length of the surface plasmons can be rather long as low loss conventional dielectrics are chosen to avoid typical losses from negative-ɛ media. Plasmonic phenomena have potential applications in enhancing light-matter interactions, implementing nanoscale photonic circuits and integrated photonics.
The past, present and future of African dust.
Evan, Amato T; Flamant, Cyrille; Gaetani, Marco; Guichard, Françoise
2016-03-24
African dust emission and transport exhibits variability on diurnal to decadal timescales and is known to influence processes such as Amazon productivity, Atlantic climate modes, regional atmospheric composition and radiative balance and precipitation in the Sahel. To elucidate the role of African dust in the climate system, it is necessary to understand the factors governing its emission and transport. However, African dust is correlated with seemingly disparate atmospheric phenomena, including the El Niño/Southern Oscillation, the North Atlantic Oscillation, the meridional position of the intertropical convergence zone, Sahelian rainfall and surface temperatures over the Sahara Desert, all of which obfuscate the connection between dust and climate. Here we show that the surface wind field responsible for most of the variability in North African dust emission reflects the topography of the Sahara, owing to orographic acceleration of the surface flow. As such, the correlations between dust and various climate phenomena probably arise from the projection of the winds associated with these phenomena onto an orographically controlled pattern of wind variability. A 161-year time series of dust from 1851 to 2011, created by projecting this wind field pattern onto surface winds from a historical reanalysis, suggests that the highest concentrations of dust occurred from the 1910s to the 1940s and the 1970s to the 1980s, and that there have been three periods of persistent anomalously low dust concentrations--in the 1860s, 1950s and 2000s. Projections of the wind pattern onto climate models give a statistically significant downward trend in African dust emission and transport as greenhouse gas concentrations increase over the twenty-first century, potentially associated with a slow-down of the tropical circulation. Such a dust feedback, which is not represented in climate models, may be of benefit to human and ecosystem health in West Africa via improved air quality and increased rainfall. This feedback may also enhance warming of the tropical North Atlantic, which would make the basin more suitable for hurricane formation and growth.
Supported Intrinsically Porous Oligomers as Hybrid Materials for Separations, Storage, and Sensing
NASA Astrophysics Data System (ADS)
Thompson, Anthony Boone
Adsorption-desorption phenomena are often difficult to study at the molecular level because the surfaces on which they occur can be heterogeneous, giving a wide distribution of adsorption sites and associated energies. Considering that these phenomena underlie an incredibly wide variety of industrially important processes, a better understanding could aid in the development of more efficient methods. In this work, we describe an approach to designing materials with well-defined adsorption sites by covalently attaching intrinsically porous molecules to solid surfaces by a rigid multidentate linker. These cup-shaped molecules are intended to act as adsorption sites on the material, whereas the rigid attachment to the solid support serves to prevent movement and conformational changes of the sites, leading to better understanding of adsorption phenomena. As a proof-of-concept application, materials were used for adsorption of n-butanol biofuel and related compounds from dilute aqueous solution. The materials were thermally and hydrolytically stable, and adsorption phenomena were reversible. Adsorption sites containing more hydrophobic molecular area led to stronger adsorption, suggesting that it is driven by weak van der Waals forces. Likewise, adsorption sites that were strongly polarized performed poorly, possibly reflecting a greater energy penalty of removing water molecules from the cavity. Upon placing a Lewis acidic metal at the bottom of the cavity, an enhancement was seen only with the most acidic metal, which may indicate weak guest coordination. Observing that hydrophobic interactions dominate adsorption on these materials, efforts were made to develop hybrid materials with large hydrophobic area for adsorption. Glaser coupling of diethynylbenzene was used to grow oligo(phenylene butadiynylene)s from the surface of silica, resulting in materials that were more than 25% organic by weight. In addition to their potential use as adsorbents, these materials may be promising for hydrogen storage via spillover. Finally, to demonstrate other potential uses of supported intrinsically porous oligomers, a TiO2-supported calixarene material was synthesized and used as a simple molecular sensor, opening up the possibility of using these materials for sensing. Overall, the methods used here result in robust hybrid materials with narrow adsorption site distributions and therefore are of potential use in many future applications.
Pattern formation and self-organization in plasmas interacting with surfaces
NASA Astrophysics Data System (ADS)
Trelles, Juan Pablo
2016-10-01
Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.
NASA Astrophysics Data System (ADS)
Fisher, Kevin B.
Degradation of structural components in nuclear environments is a limiting factor in the lifetime of nuclear power plants. Despite decades of research on the topic, there are still aspects of the degradation phenomena that are not well understood, leading to premature failure of components that can be both expensive to repair and potentially dangerous. The current work addresses the role of material deformation on the corrosion phenomena of 304 SS in a simulated nuclear reactor environment by studying the relationship of the material microstructure and microchemistry with the resulting corrosion products using a multiscale analysis approach. The general corrosion phenomenon was studied in relation to the surface deformation of the material, and it was determined that surface deformation not only increases the rate of oxidation, but also has a pronounced impact on the microchemical structure of the oxide film when compared to undeformed material. These findings were applied to understanding the role of deformation in the more complex corrosion phenomena of stress corrosion cracking (SCC) and corrosion fatigue cracking (CFC). In SCC experiments, material deformation in the form of cold work played a synergistic role with unique microchemical features of the materials studied to promote the cracking process under certain environmental and material heat treatment conditions. Despite the fact that the materials studied were low carbon heats of 304L SS thought to be immune to the sensitization and therefore resistant to SCC, elevated boron and delta ferrites in the material were implicated in the SCC susceptibility after heat treatment. On the other hand, low levels of residual deformation played only a minor role in the corrosion processes occurring during CFC experiments over a wide range of rise times. Instead, deformation was suspected to play a larger role in the mechanical cracking response of the material. By studying multiple corrosion processes of 304 SS a greater understanding of the role of deformation and microchemical factors in the related corrosion phenomena has been achieved, and provides evidence that material and component fabrication, in terms of surface and bulk deformation, material microchemistry, and heat treatment must be considered to avoid degradation issues.
Understanding Surface Adhesion in Nature: A Peeling Model
Gu, Zhen; Li, Siheng; Zhang, Feilong
2016-01-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on. PMID:27812476
Beyond the Isogloss: Trends in Hispanic Dialectology.
ERIC Educational Resources Information Center
Lipski, John M.
1989-01-01
An overview of contemporary Hispanic dialectology, focusing on phonological phenomena, syntax, classification schemes, and bilingual communities, demonstrates that dialectology has long ceased to be the collection of innumerable surface deviations. It is suggested that dialectology is a theoretical discipline searching for universal principles to…
The Freshwater Landscape: Lake, Wetland, and Stream Abundance and Connectivity at Macroscales
It is becoming increasingly recognized that inland waterbodies and their surface hydrologic connections are active components in the landscape, influencing multiple ecological processes that can propagate to broad-scale phenomena such as regional nutrient and carbon cycles and me...
Neutron Reflectivity and Grazing Angle Diffraction
Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.
1993-01-01
Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457
Joint Services Electronics Program. Electronics Research at the University of Texas at Austin.
1986-09-30
L.S. Davis and J.K. Aggarwal, "Region Correspondence in Multi-Resolution Images Taken from Dynamic Scenes." Mexican Polytechnic Institute Mexico...Estimation and Control of Stochastic Systems ,", ’ Dept. of Mathematics Mexican Polytechnic Institute ,,, 1 Mexico City, Mexico March 27, 1985 * S.I...surface with well known stoichiometry. We have observed interesting new phenomena asociated with the 0__ local surface crystal field (splitting of the
Variation of surface water spectral response as a function of in situ sampling technique
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Hodgson, Michael E.
1988-01-01
Tests were carried out to determine the spectral variation contributed by a particular sampling technique. A portable radiometer was used to measure the surface water spectral response. Variation due to the reflectance of objects near the radiometer (i.e., the boat side) during data acquisition was studied. Consideration was also given to the variation due to the temporal nature of the phenomena (i.e., wave activity).
Nanoscale live cell imaging using hopping probe ion conductance microscopy
Novak, Pavel; Li, Chao; Shevchuk, Andrew I.; Stepanyan, Ruben; Caldwell, Matthew; Hughes, Simon; Smart, Trevor G.; Gorelik, Julia; Ostanin, Victor P.; Lab, Max J.; Moss, Guy W. J.; Frolenkov, Gregory I.; Klenerman, David; Korchev, Yuri E.
2009-01-01
We describe a major advance in scanning ion conductance microscopy: a new hopping mode that allows non-contact imaging of the complex surfaces of live cells with resolution better than 20 nm. The effectiveness of this novel technique was demonstrated by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allows studying nanoscale phenomena on the surface of live cells under physiological conditions. PMID:19252505
Relaxation-phenomena in LiAl/FeS-cells
NASA Astrophysics Data System (ADS)
Borger, W.; Kappus, W.; Panesar, H. S.
A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.
Brenner, Howard
2011-12-01
This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.
NASA Technical Reports Server (NTRS)
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.NASA Technical Reports Server (NTRS)
Chesnutwood, C. M. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Episodic phenomena such as rainfall shortly before data pass, thin translucent clouds, cloud shadows, and aircraft condensation trails and their shadows are responsible for changes in the spectral reflectivities of some surfaces. These changes are readily detected on LANDSAT full-frame imagery. Histograms of selected areas in Kansas show a distinct decrease in mean radiance values, but also, an increase in scene contrast, in areas where recent rains had occurred. Histograms from a few individual fields indicate that the mean radiance values for winter wheat followed a different trend after a rainfall than alfalfa or grasses.
Preliminary chaotic model of snapover on high voltage solar cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
The boundary layer as a means of controlling the flow of liquids and gases
NASA Technical Reports Server (NTRS)
Schrenk, Oskar
1930-01-01
According to one of the main propositions of the boundary layer theory the scarcely noticeable boundary layer may, under certain conditions, have a decisive influence on the form of the external flow by causing it to separate from the wing surface. These phenomena are known to be caused by a kind of stagnation of the boundary layer at the point of separation. The present report deals with similar phenomena. It is important to note that usually the cause (external interference) directly affects only the layer close to the wall, while its indirect effect extends to a large portion of the external flow.
Industrial processes influenced by gravity
NASA Technical Reports Server (NTRS)
Ostrach, Simon
1988-01-01
In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.
Significance of radiation models in investigating the flow phenomena around a Jovian entry body
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Subramanian, S. V.
1978-01-01
Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow phenomena in the viscous radiating shock layer of a Jovian entry body. The body configurations used are a 55 degree sphere cone and 50 degree hyperboloid. A nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0 to 20 eV. By employing this model, results were obtained for temperature, pressure, density, the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature.
Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.
Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano
2011-06-21
The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses. © 2011 American Chemical Society
Hot streak characterization in serpentine exhaust nozzles
NASA Astrophysics Data System (ADS)
Crowe, Darrell S.
Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes in nozzle geometry.
Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.
2014-01-01
Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663
NASA Astrophysics Data System (ADS)
Bando, T.; Ohdachi, S.; Suzuki, Y.; Sakamoto, R.; Narushima, Y.; Takemura, Y.; Watanabe, K. Y.; Sakakibara, S.; Du, X. D.; Motojima, G.; Tanaka, K.; Morisaki, T.; LHD Experiment Group
2018-01-01
Two types of oscillation phenomena are found just after hydrogen ice pellet injections in the Large Helical Device (LHD). Oscillation phenomena appear when the deposition profile of a hydrogen ice pellet is localized around the rotational transform ι = 1 rational surface. At first, damping oscillations (type-I) appear only in the soft X-ray (SX) emission. They are followed by the second type of oscillations (type-II) where the magnetic fluctuations and density fluctuations synchronized to the SX fluctuations are observed. Both oscillations have poloidal/toroidal mode number, m/n = 1/1. Since the type-II oscillations appear when the local pressure is large and/or the local magnetic Reynold's number is small, it is reasonable that type-II oscillations are caused by the resistive interchange modes. Because both types of oscillations appear simultaneously at slightly different locations and with slightly different frequencies, it is certain that type-I oscillations are different from type-II oscillations, which we believe is the MHD instability. It is possible that type-I oscillations are caused by the asymmetric concentration of the impurities. The type-I oscillations are similar to the impurity snake phenomena observed in tokamaks though type-I oscillations survive only several tens of milliseconds in LHD.
NASA Astrophysics Data System (ADS)
Elgeti, Jens; Gompper, Gerhard
2016-11-01
Both, in their natural environment and in a controlled experimental setup, microswimmers regularly interact with surfaces. These surfaces provide a steric boundary, both for the swimming motion and the hydrodynamic flow pattern. These effects typically imply a strong accumulation of microswimmers near surfaces. While some generic features can be derived, details of the swimmer shape and propulsion mechanism matter, which give rise to a broad range of adhesion phenomena and have to be taken into account to predict the surface accumulation for a given swimmer. We show in this minireview how numerical simulations and analytic theory can be used to predict the accumulation statistics for different systems, with an emphasis on swimmer shape, hydrodynamics interactions, and type of noisy dynamics.
Classification Order of Surface-Confined Intermixing at Epitaxial Interface
NASA Astrophysics Data System (ADS)
Michailov, M.
The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
Method of control position of laser focus during surfacing teeth of cutters
NASA Astrophysics Data System (ADS)
Zvezdin, V. V.; Hisamutdinov, R. M.; Rakhimov, R. R.; Israfilov, I. H.; Akhtiamov, R. F.
2017-09-01
Providing the quality laser of surfacing the edges of teeth requires control not only the energy of the radiation parameters, but also the position of the focal spot. The control channel of position of laser focus during surfacing, which determines the parameters of quality of the deposited layer, was calculated in the work. The parameters of the active opto-electronic system for the subsystem adjust the focus position relative to the deposited layer with a laser illumination of the cutting edges the teeth cutters were calculated, the model of a control channel based on thermal phenomena occurring in the zone of surfacing was proposed.
2017-05-02
iss051e034021 (May 2, 2017) --- Astronaut Thomas Pesquet, of the European Space Agency (ESA), participates in the Fluidics experiment inside the Columbus laboratory module developed by ESA. Fluidics is exploring how liquids behave in spacecraft tanks and wave turbulence phenomena that occurs at the surface of liquids.
Kinetic theory and turbulent discontinuities. [shock tube flow
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.
1981-01-01
Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.
NASA Astrophysics Data System (ADS)
Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.
2012-06-01
The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.
NASA Astrophysics Data System (ADS)
Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama
2007-02-01
Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.
Compact vacuum tubes with GaAs(Cs,O) photocathodes for studying spin-dependent phenomena
NASA Astrophysics Data System (ADS)
Alperovich, V. L.; Orlov, D. A.; Grishaev, V. G.; Kosolobov, S. N.; Jaroshevich, A. S.; Scheibler, H. E.; Terekhov, A. S.
2009-08-01
Compact proximity focused vacuum tubes with GaAs(Cs,O) photocathodes are used for experimental studying spindependent phenomena. Firstly, spin-dependent emission of optically oriented electrons from p-GaAs(Cs,O) into vacuum in a magnetic field normal to the surface was observed in a nonmagnetic vacuum diode. This phenomenon is explained by the jump in the electron g-factor at the semiconductor-vacuum interface. Due to this jump, the effective electron affinity on the semiconductor surface depends on the mutual direction of optically oriented electron spins and the magnetic field, resulting in the spin-dependent photoemission. It is demonstrated that the observed effect can be used for the determination of spin diffusion length in semiconductors. Secondly, we developed a prototype of a new spin filter, which consists of a vacuum tube with GaAs(Cs,O) photocathode and a nickel-covered venetian blind dynode. Preliminary results on spin-dependent reflection of electrons from the oxidized polycrystal nickel layer are presented.
Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates
Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; ...
2015-05-27
We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi 2Sr 2CaCu 2O 8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potentialmore » scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.« less
NASA Astrophysics Data System (ADS)
Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo
2015-12-01
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevantmore » interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.« less
Microbead-regulated surface wrinkling patterns in a film-substrate system
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wang, Jiawen; Cao, Yan-Ping; Lu, Conghua; Li, Bo; Feng, Xi-Qiao
2017-10-01
The control of surface wrinkling patterns at the microscale is a concern in many applications. In this letter, we regulate surface wrinkling patterns on a film-substrate system by introducing microbeads atop the film. Both experiments and theoretical analysis reveal the changes in surface wrinkles induced by microbeads. Under equibiaxial compression, the film-substrate system without microbeads bonded on its upper surface often buckles into global, uniform labyrinths, whereas the labyrinthine pattern locally gives way to radial stripes emanating from the microbeads. This regulation of surface wrinkles depends on the sizes and spacing of microbeads. We combine the finite element method and the Fourier spectral method to explore the physical mechanisms underlying the phenomena. This study offers a viable technique for engineering surfaces with tunable functions.
Numerical Estimation of the Curvature of Biological Surfaces
NASA Technical Reports Server (NTRS)
Todd, P. H.
1985-01-01
Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.
NASA Astrophysics Data System (ADS)
Shevyrnogov, Anatoly; Vysotskaya, Galina
Continuous monitoring of phytopigment concentrations in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vege-tation, hydrological processes largely determine phytoplankton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics can manifest as zones quasistationary by seasonal chlorophyll dynamics, perennial variations of phytopigment con-centrations, anomalous variations, etc., that makes possible revealing of hydrological structure of the ocean. While large-scale and frequently occurring phenomena have been much studied, the seldom-occurring changes of small size may be of interest for analysis of long-term processes and rare natural variations. Along with this, the ability to reflect consequences of anthropoge-nous impact or natural ecological disasters on the ocean biota makes the anomalous variations ecologically essential. Civilization aspiring for steady development and preservation of the bio-sphere, must have the knowledge of spatial distribution, seasonal dynamics and anomalies of the primary production process on the planet. In the papers of the authors (Shevyrnogov A.P., Vysotskaya G.S., Gitelzon J.I. Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data. Adv. Space Res. Vol. 18, No. 7, pp. 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of pro-cessing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary areas, especially in areas of large oceanic streams. Biota of surface oceanic layer is more stable in comparison with quickly changing sur-face temperature. It gives a possibility to circumvent influence of high-frequency component (for example, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity can give an additional knowledge of complicated picture of surface oceanic layer hydrology.
Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment
NASA Technical Reports Server (NTRS)
Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.
2006-01-01
When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results.
Laser-assisted surface modification of Ti-implant in air and water environment
NASA Astrophysics Data System (ADS)
Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.
2018-01-01
A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.
NASA Astrophysics Data System (ADS)
Koltsov, A.; Cornu, M.-J.; Scheid, J.
2018-02-01
The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.
Coherence and Chaos Phenomena in Josephson Oscillators for Superconducting Electronics.
1989-01-25
represents dissipation due j+(a+/b)+ b--i(a-) to the surface resistance of the superconducting films , y is the uniform bias current normalized to the...represents series loss due series of time-dependent Fourier spatial compo- to surface resistance of the superconducting films , nents. Tis approach provides...case is that in which there is no ing films , y is the spatially uniform bias current normal- external magnetic field applied to the junction. In this
Comprehensive Study of Plasma-Wall Sheath Transport Phenomena
2016-10-26
function of the applied thermo-mechanical stress. An experiment was designed to test whether and how the process of plasma erosion might depend on ...of exposed surface, a, b) pretest height and laser image, c, d) post - test height and laser image. For the following analysis, a curve fit of the...normal to the ion beam. However, even with a one -dimensional simulation, features of a similar depth and profile to the post - test surface develop
TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator
2016-05-01
phenomena in this surface-bulk system. Sufficient Joule heating , induced by an external DC current, can heat the bulk into a less insulating state, and...are the surface and bulk resistances with insulating gap Δ; H = H0(/0)3 and are the heat capacity dominated by phonons and...0, while Δ is the energy gap in the insulating bulk; is the temperature independent heat transfer rate trough external leads, which plays the
Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries
Hammond, Jules L.; Bhalla, Nikhil; Rafiee, Sarah D.; Estrela, Pedro
2014-01-01
The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a multitude of applications. This review aims to outline the potential applications within developing countries and the challenges that are likely to be faced before the technology can be effectively employed. PMID:25587417
Turbine Engine Hot Section Technology, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.
A combined Eulerian-volume of fraction-Lagrangian method for atomization simulation
NASA Technical Reports Server (NTRS)
Seung, S. P.; Chen, C. P.; Ziebarth, John P.
1994-01-01
The tracking of free surfaces between liquid and gas phases and analysis of the interfacial phenomena between the two during the atomization and breakup process of a liquid fuel jet is modeled. Numerical modeling of liquid-jet atomization requires the resolution of different conservation equations. Detailed formulation and validation are presented for the confined dam broken problem, the water surface problem, the single droplet problem, a jet breakup problem, and the liquid column instability problem.
NASA Astrophysics Data System (ADS)
Gokhshtein, Aleksandr Ya
2000-07-01
The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.
NASA Astrophysics Data System (ADS)
Nesvizhevsky, Valery
2013-03-01
The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It is intensively used and explored due to its numerous crucial applications. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for neutrons and (anti)atoms. For (anti)matter waves, it includes a new feature: a massive particle is settled in quantum states, with parameters depending on its mass. In this talk, we present the first observation of the quantum whispering-gallery effect for matter particles (cold neutrons) 1-2. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to recently discovered gravitational quantum states of neutrons3. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a quantum state. Deeply bound long-living states are weakly sensitive to surface potential; highly excited short-living states are very sensitive to the wall nuclear potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects. Analogous phenomena could be measured with atoms and anti-atoms 4-5.
Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data
NASA Technical Reports Server (NTRS)
Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin
2004-01-01
We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
NASA Technical Reports Server (NTRS)
DeWitt, Keneth J.
1996-01-01
An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.
Rate Coefficients for the Reactions of BF with O and O2.
1981-12-21
2 indicate that indi- vidual molecular orbitals of BF are quite asymmetric so that the small overall dipole moment could be misleading. Nevertheless...radiation effects on materials, lu- brication and surface phenomena, thersionic " emision . photosensitive materials and detectors, atomic frequency standards
Experimental and Theoretical Investigations of Glass Surface Charging Phenomena
NASA Astrophysics Data System (ADS)
Agnello, Gabriel
Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.
Mars - A planet with a complex surface evolution
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Coradini, M.
1975-01-01
The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.
Elastic-plastic adhesive impacts of tungsten dust with metal surfaces in plasma environments
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Shalpegin, A.; Vignitchouk, L.; De Angeli, M.; Bykov, I.; Bystrov, K.; Bardin, S.; Brochard, F.; Ripamonti, D.; den Harder, N.; De Temmerman, G.
2015-08-01
Dust-surface collisions impose size selectivity on the ability of dust grains to migrate in scrape-off layer and divertor plasmas and to adhere to plasma-facing components. Here, we report first experimental evidence of dust impact phenomena in plasma environments concerning low-speed collisions of tungsten dust with tungsten surfaces: re-bouncing, adhesion, sliding and rolling. The results comply with the predictions of the model of elastic-perfectly plastic adhesive spheres employed in the dust dynamics code MIGRAINe for sub- to several meters per second impacts of micrometer-range metal dust.
NASA Astrophysics Data System (ADS)
Schultrich, B.; Wetzig, K.
1987-09-01
A combination of SEM and laser enables direct observation of structural modifications by a high-energy input. With this new device, melting phenomena and fracture processes in a WC-6 percent Co hard metal were investigated. The first laser pulse leads to melting of a thin surface layer with the formation of blisters and craters. Cracking is induced by the relaxation of compressive surface stresses during the high-temperature stage and the appearance of tensile stresses during cooling. Besides crack formation and extension, complete welding of crack surfaces was observed after repeated laser irradiation.
NASA Technical Reports Server (NTRS)
Vanalstine, James M.
1992-01-01
Low gravity biotechnology experiments indicate a need to better understand and control a host of liquid-solid interfacial phenomena which reduce the efficiency of bioseparations methods on earth as well as in space. We have improved and utilized polymeric and silane derivatives, developed in association with MSFC, in order to control such phenomena. The objectives of the proposed research have been obtained. They were to improve NASA-patented coatings capable of controlling macromolecular adsorption, electroosmosis, and particle electrophoresis over a wide range of pH, and to further characterize the ability of polymeric coatings to control wall wetting interactions. To date this research has resulted in six publications and four abstracts. It has also aided researchers at MSFC with studies on the electrophoresis of large DNA molecules in free solution. It will continue to enhance NASA's efforts to exploit the space environment to enhance knowledge of phenomena relevant to biotechnology, and obtain bioseparations currently unobtainable on Earth. Abstracts from the 1994 ACS Meeting in Birmingham are attached.
Electrochemical Transport Phenomena in Hybrid Pseudocapacitors under Galvanostatic Cycling
d'Entremont, Anna L.; Girard, Henri -Louis; Wang, Hainan; ...
2015-11-18
Here, this study aims to provide insights into the electrochemical transport and interfacial phenomena in hybrid pseudocapacitors under galvanostatic cycling. Pseudocapacitors are promising electrical energy storage devices for applications requiring large power density. They also involve complex, coupled, and multiscale physical phenomena that are difficult to probe experimentally. The present study performed detailed numerical simulations for a hybrid pseudocapacitor with planar electrodes and binary, asymmetric electrolyte under various cycling conditions, based on a first-principles continuum model accounting simultaneously for charge storage by electric double layer (EDL) formation and by faradaic reactions with intercalation. Two asymptotic regimes were identified corresponding tomore » (i) dominant faradaic charge storage at low current and low frequency or (ii) dominant EDL charge storage at high current and high frequency. Analytical expressions for the intercalated ion concentration and surface overpotential were derived for both asymptotic regimes. Features of typical experimentally measured cell potential were physically interpreted. These insights could guide the optimization of hybrid pseudocapacitors.« less
DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, R; Miljkovic, N; Alvarado, JL
In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-andmore » nanoscale by exploiting advances in surface engineering developed over the last several decades.« less
Effect of the surface roughness on interfacial breakdown between two dielectric surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, D.
1996-12-31
Cable splices and accessories are the weak link in an underground power distribution system. Investigations of problems related to cable splices and accessories becomes quite intricate once the simpler causes of failures are dismissed to allow more complex phenomena to be examined. The interfacial breakdown between two internal dielectric surfaces represents one of the major causes of failure for power cable joints. In order to better understand this phenomenon, breakdown experiments were performed at interfaces found in cable splices. An experimental jig was designed to induce breakdown between dielectric surfaces longitudinally along their interface. Effects of surface roughness at EPDM/XLPEmore » and EPDM/EPDM interfaces as well as the presence of silicone grease are taken into account.« less
Fluid physics, thermodynamics, and heat transfer experiments in space
NASA Technical Reports Server (NTRS)
Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.
1975-01-01
An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.
Role of adsorption in liquid lubrication
NASA Technical Reports Server (NTRS)
Groszek, A. J.
1973-01-01
Changes at solid-liquid interfaces caused by adsorption from solution are discussed paying attention to the following aspects: (1) stability of adsorbed films and the structure of metal-additive-film-liquid interface and effect of adsorbate orientation. (2) chemical versus physical adsorption, (3) heat of adsorption, (4) adsorption of additives, (5) activated adsorption, effect of activating adsorbates, (6) displacement phenomena at solid-liquid interfaces, (7) competition of antiwear additives, their solvents, and water, (8) effect of adsorption on the orientation of liquid in the interfacial region, and (9) relation between the chemical nature of solid surfaces and their interaction with liquid lubricants. The relevance of the above adsorption phenomena to lubrication is discussed, referring where possible to specific examples.
Mechanical and SEM analysis of artificial comet nucleus samples
NASA Technical Reports Server (NTRS)
Thiel, K.; Kochan, H.; Roessler, K.; Gruen, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Koelzer, G.
1989-01-01
Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given.
Landslide Phenomena in Sevan National Park-Armenia
NASA Astrophysics Data System (ADS)
Lazarov, Dimitrov; Minchev, Dimitar; Aleksanyan, Gurgen; Ilieva, Maya
2010-12-01
Based on data from master and slave complex images obtained on 30 August 2008 and 4 October 2008 by satellite ENVISAT with ASAR sensor,all processing chain is performed to evaluate landslides phenomena in Sevan National park - Republic of Armenia. For this purpose Identification Deformation Inspection and Observation Tool developed by Berlin University of Technology is applied. This software package uses a freely available DEM of the Shuttle Radar Topography Mission (SRTM) and performs a fully automatic generation of differential SAR interferograms from ENVISAT single look complex SAR data. All interferometric processing steps are implemented with maximum quality and precision. The results illustrate almost calm Earth surface in the area of Sevan Lake.
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.; Boslough, Mark B.; Ginn, Warren G.; Vassiliou, Mario S.; Lange, Manfred A.; Watt, J. Peter; Kondo, Ken-Ichi; Svendsen, Robert F.; Rigden, Sally M.; Stolper, Edward M.
1982-04-01
Shock wave and experimental impact phenomena research on geological and planetary materials is being carried out using two propellant (18 and 40 mm) guns (up to 2.5 km/sec) and a two-stage light gas gun (up to 7 km/sec). Equation of state measurements on samples initially at room temperture and at low and high temperatures are being conducted using the 40 mm propellant apparatus in conjunction with Helmholtz coils, and radiative detectors and, in the case of the light gas gun, with streak cameras. The 18 mm propellant gun is used for recovery experiments on minerals, impact on cryogenic targets, and radiative post-shock temperature measurements.
MAC/FAC: A Model of Similarity-Based Retrieval. Technical Report #59.
ERIC Educational Resources Information Center
Forbus, Kenneth D.; And Others
A model of similarity-based retrieval is presented that attempts to capture these seemingly contradictory psychological phenomena: (1) structural commonalities are weighed more heavily than surface commonalities in soundness or similarity judgments (when both members are present); (2) superficial similarity is more important in retrieval from…
Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don
2017-01-01
Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.
High-speed cinematography of muscle contraction.
HAUPT, R E; WALL, D M
1962-07-13
Motion pictures of the "twitch" of an excised frog gastrocnemius muscle taken at rates of 6000 frames per second provide a means of very accurately timing the phases. The extreme "slow motion" reveals surface phenomena not observable by other techniques. Evidence of "active relaxation" is suggested by results of frame-by-frame analysis.
On Capillary Rise and Nucleation
ERIC Educational Resources Information Center
Prasad, R.
2008-01-01
A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)
NASA Technical Reports Server (NTRS)
Brown, Christopher A.
1993-01-01
The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.
Porous Alumina Films with Width-Controllable Alumina Stripes
2010-01-01
Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406
Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.
1980-01-01
The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A.
1980-01-01
Images acquired by the Viking orbiters, beginning in 1976 are presented. The pictures represent only a small fraction of the many thousands taken, and were chosen to illustrate the diverse geology of Mars and its atmospheric phenomena. Specific topics discussed include the Viking mission and its objectives, a brief comparison of Earth and Mars, and surface features of Mars including the great equatorial canyons, channels, volcanic and deformational features, and craters. Martian moons, surface processes, polar regions, and the Martian atmosphere are also covered.
Bifurcations on Potential Energy Surfaces of Organic Reactions
Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.
2009-01-01
A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086
1972-01-01
allocation. Pri- marily it is concerned with any land use that increases surface water runoff and soil compaction, two phenomena that decrease recharge... runoff . Forested filter strips between range and reser- voir boundary should be developed as a land use for water quality control and quail habitat. High...shown on Plates G-10 and G-11) some measures will also be necessary to prevent fertilizer pollution of the reservoir from excessive surface runoff . G
NASA Technical Reports Server (NTRS)
Dlugach, Zh. M.; Mishchenko, M. I.
2013-01-01
The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.
Complex (dusty) plasmas-kinetic studies of strong coupling phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.
2012-05-15
'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less
Pailleux, Mélanie; Boudard, Delphine; Pourchez, Jérémie; Forest, Valérie; Grosseau, Philippe; Cottier, Michèle
2013-04-01
Biomolecules can be adsorbed on nanoparticles (NPs) and degraded during in vitro toxicity assays. These artifactual phenomena could lead to misinterpretation of biological activity, such as false-negative results. To avoid possible underestimation of cytokine release after contact between NP and cells, we propose a methodology to account for these artifactual phenomena and lead to accurate measurements. We focused on the pro-inflammatory cytokine tumor necrosis factor TNF-α. We studied well-characterized boehmite engineered NP [aluminum oxide hydroxide, AlO(OH)]. The rate of TNF-α degradation and its adsorption (on boehmite and on the walls of wells) were determined in cell-free conditions by adding a known TNF-α concentration (1500 pg/ml) under various experimental conditions. After a 24-h incubation, we quantified that 7 wt.% of the initial TNF-α was degraded over time, 6 wt.% adsorbed on the walls of 96-well plates, and 13 wt.% adsorbed on the boehmite surface. Finally, boehmite NP were incubated with murine macrophages (RAW 264.7 cell line). The release of TNF-α was assessed for boehmite NP and the experimental data were corrected considering the artifactual phenomena, which accounted for about 20-30% of the total. Copyright © 2013 Elsevier Ltd. All rights reserved.
The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars
NASA Astrophysics Data System (ADS)
Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.
2014-04-01
The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.
Dynamics of liquid films exposed to high-frequency surface vibration
NASA Astrophysics Data System (ADS)
Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.
2015-05-01
We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.
NASA Astrophysics Data System (ADS)
Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya
2018-04-01
Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.
Wetting failure of hydrophilic surfaces promoted by surface roughness
Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing
2014-01-01
Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390
NASA Technical Reports Server (NTRS)
Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.
1985-01-01
Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.
PREFACE: 13th International Conference on Metrology and Properties of Engineering Surfaces
NASA Astrophysics Data System (ADS)
Leach, Richard
2011-08-01
The 13th International Conference on Metrology and Properties of Engineering Surfaces focused on the progress in surface metrology, surface characterisation instrumentation and properties of engineering surfaces. The conference provided an international forum for academics, industrialists and engineers from different disciplines to meet and exchange their ideas, results and latest research. The conference was held at Twickenham Stadium, situated approximately six miles from Heathrow Airport and approximately three miles from the National Physical Laboratory (NPL). This was the thirteenth in the very successful series of conferences, which have firmly established surface topography as a new and exciting interdisciplinary field of scientific and technological studies. Scientific Themes: Surface, Micro and Nano Metrology Measurement and Instrumentation Metrology for MST Devices Freeform Surface Measurement and Characterisation Uncertainty, Traceability and Calibration AFM/SPM Metrology Tribology and Wear Phenomena Functional Applications Stylus and Optical Instruments
A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface
NASA Astrophysics Data System (ADS)
Hoppe, Sandra; Müller, Stefan
2017-12-01
The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.
MMS observations and hybrid simulations of rippled and reforming quasi-parallel shocks
NASA Astrophysics Data System (ADS)
Gingell, I.; Schwartz, S. J.; Burgess, D.; Johlander, A.; Russell, C. T.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Goodrich, K.; Khotyaintsev, Y. V.; Lavraud, B.; Lindqvist, P. A.; Strangeway, R. J.; Trattner, K. J.; Torbert, R. B.; Wilder, F. D.
2017-12-01
Surface ripples, i.e. deviations in the nominal local shock orientation, are expected to propagate in the ramp and overshoot of collisionless shocks. These ripples have typically been associated with observations and simulations of quasi-perpendicular shocks. We present observations of a crossing of Earth's marginally quasi-parallel (θBn ˜ 45°) bow shock by the MMS spacecraft on 2015-11-27 06:01:44 UTC, for which we identify signatures consistent with a propagating surface ripple. In order to demonstrate the differences between ripples at quasi-perpendicular and quasi-parallel shocks, we also present two-dimensional hybrid simulations over a range of shock normal angles θBn under the observed solar wind conditions. We show that in the quasi-parallel cases surface ripples are transient phenomena modulated by the cyclic reformation of the shock front. These ripples develop faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change of properties of the surface ripple observed by MMS while crossing Earth's quasi-parallel bow shock are consistent with the influence of cyclic reformation on shock structure. Given that both surface ripples and cyclic reformation are expected to affect the acceleration of electrons within the shock, the interaction of these phenomena and any other sources of shock non-stationary are important for models of particle acceleration. We therefore discuss signatures of electron heating and acceleration in several rippled shocks observed by MMS.
Collective Phenomena In Volume And Surface Barrier Discharges
NASA Astrophysics Data System (ADS)
Kogelschatz, U.
2010-07-01
Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.
Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi
2016-04-07
Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.
Monte Carlo simulation of ion-material interactions in nuclear fusion devices
NASA Astrophysics Data System (ADS)
Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.
2017-06-01
One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
NASA Astrophysics Data System (ADS)
Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince
2017-04-01
We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.
A new approach for modeling dry deposition velocity of particles
NASA Astrophysics Data System (ADS)
Giardina, M.; Buffa, P.
2018-05-01
The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.
Distinct ice patterns on solid surfaces with various wettabilities
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun
2017-01-01
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045
Distinct ice patterns on solid surfaces with various wettabilities.
Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun
2017-10-24
No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.
Real-time single-molecule observations of proteins at the solid-liquid interface
NASA Astrophysics Data System (ADS)
Langdon, Blake Brianna
Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.
2013-06-24
ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.
NASA Astrophysics Data System (ADS)
Ito, N.; Uematsu, A.; Yajima, Y.; Isoguchi, O.
2014-12-01
Japan Aerospace Exploration Agency (JAXA) is working on a conceptual study of altimeter mission named Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter (COMPIRA), which will carry a wide-swath altimeter named Synthetic aperture radar (SAR) Height Imaging Oceanic Sensor with Advanced Interferometry (SHIOSAI). Capturing meso/submeso-scale phenomena is one of important objectives of the COMPIRA mission, as well as operational oceanography and fishery. For operational oceanography including coastal forecast, swath of SHIOSAI is selected to be 80 km in left and right sides to maximize temporal and spatial sampling of the sea surface height. Orbit specifications are also designed to be better sampling especially for mid-latitude region. That is, a spatial grid sampling is 5 km and an observation times per revisit period (about 10 days) is 2 to 3 times. In order to meet both sampling frequency and spatial coverage requirements as much as possible, orbit inclination was set relatively low, 51 degrees. Although this sampling frequency is, of course, not enough high to capture time evolution of coastal phenomena, an assimilation process would compensate its time evolution if 2D SSH fields was observed at least once within decal time scale of phenomena. JAXA has launched a framework called "Coastal forecast core team" to aim at developing coastal forecast system through pre-launch activities toward COMPIRA. Assimilation segment as well as satellite and in situ data provision will play an important role on these activities. As a first step, we evaluated effects of ocean current forecast improvement with COMPIRA-simulated wide-swath and high sampling sea surface heights (SSH) data. Simulated SSH data are generated from regional ocean numerical models and the COMPIRA orbit and error specifications. Then, identical twin experiments are conducted to investigate the effect of wide-swath SSH measurements on coastal forecast in the Tohoku Pacific coast region. The experiment shows that simulated sea surface current using COMPIRA data as an input data for assimilation well represents vortical feature, which cannot be reproduced by conventional nadir altimeters.
NASA Astrophysics Data System (ADS)
Gruber, S.; Fiddes, J.
2013-12-01
In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation model grid, or (iii) validation products for locations at which measurements exist, only. The ability of TopoSUB to approximate results simulated by a 2D distributed numerical LSM at a factor of ~10,000 less computations is demonstrated by comparison of 2D and lumped simulations. Successful application of the combined scheme in the European Alps is reported and based on its results, open issues for future research are outlined.
NASA Astrophysics Data System (ADS)
Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François
2018-06-01
Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.
Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.
Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943
Covalently bonded networks through surface-confined polymerization
NASA Astrophysics Data System (ADS)
El Garah, Mohamed; MacLeod, Jennifer M.; Rosei, Federico
2013-07-01
The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.
1989-01-01
Basic mathematical problems on the theory of gearing are covered in this book, such as the necessary and sufficient conditions of envelope existence, relations between principal curvatures and directions for surfaces of mating gears. Also included are singularities of surfaces accompanied by undercutting the process of generation, the phenomena of envelope of lines of contact, and the principles for generation of conjugate surfaces. Special attention is given to the algorithms for computer aided simulation of meshing and tooth contact. This edition was complemented with the results of research recently performed by the author and his doctoral students. The book contains sample problems and also problems for the reader to solve.
USDA-ARS?s Scientific Manuscript database
Access to soil hydrological data is vital for hydrology projects and for supporting decision-making in issues related to the availability of food and water and the forecasting of phenomena related to soil surface stability. Brazil is a country of continental dimensions and has accumulated a signific...
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Verger, F.; Monget, J. M.; Crepon, M. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent.
NASA Technical Reports Server (NTRS)
Ivanov, B. A.
1986-01-01
Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high-speed impact. Models are given for the motion of a medium during cratering. Data from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed.
Playing with Liquid Foams: Learning Physical Chemistry
ERIC Educational Resources Information Center
Ritacco, Hernan
2008-01-01
Who has never played with soap bubbles? They are so beautiful and amazing, they have a perfect spherical shape and surprising tints. Foams are structures of bubbles of an incredible complexity and they are a perfect system to stimulate students' interest in the chemistry and physics of surface phenomena. In this article I propose a simple…
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1978-01-01
Regolith studies are summarized with attention given to isotope and solar wind effects, core studies, and soil maturation and agglutinates. Consideration is also given to radiometric, cosmic-ray and track chronologies for meteorites and lunar samples and to lunar impact phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karantzalis, A.E., E-mail: akarantz@cc.uoi.gr; Lekatou, A.; Tsirka, K.
2012-07-15
Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) materialmore » detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.« less
Simulating Freak Waves in the Ocean with CFD Modeling
NASA Astrophysics Data System (ADS)
Manolidis, M.; Orzech, M.; Simeonov, J.
2017-12-01
Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.
Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.
NASA Astrophysics Data System (ADS)
Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip
2006-03-01
Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.
Flow visualization of unsteady phenomena in the hypersonic regime using high-speed video camera
NASA Astrophysics Data System (ADS)
Hashimoto, Tokitada; Saito, Tsutomu; Takayama, Kazuyoshi
2004-02-01
Flows over double cones and wedges featured with a large shock induced separation zone are representative of many parts of hypersonic vehicle geometries. To be practically important at shock interactions is phenomena that the shock wave produced from another objects carries out incidence to bow shock around a blunt body in the hypersonic flows, the two shock waves interact each other and various shock interactions occur according to the intensity of the shock wave and depending on the case of the local maximum of pressure and heat flux is locally produced on the body surface. The six types of shock interactions are classified, and particularly in the Type IV, a shear layer generated from the intersection of the two shock reached on the body surface, and locally anomalous pressure increase and aerodynamic heating occurred experimentally. In the present study, unsteady shock oscillations and periodically separation flows were visualized by means of high-speed video camera. Particularly, sequential observations with combination of schlieren methods are very effective because of flow unsteadiness.
Tribology behavior on scratch tests: Effects of yield strength
Feng, Biao
2017-03-07
In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less
Tribology behavior on scratch tests: Effects of yield strength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Biao
In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less
Theory of Liquid Film Growth and Wetting Instabilities on Graphene
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Nichols, Nathan S.; Del Maestro, Adrian; Kotov, Valeri N.
2018-06-01
We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.
Development of a miniature solid propellant rocket motor for use in plume simulation studies
NASA Technical Reports Server (NTRS)
Baran, W. J.
1974-01-01
A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Walsh, Stephen J.; Jensen, John R.; Ridd, Merrill K.; Arnold, James E. (Technical Monitor)
2002-01-01
As noted in the first edition of Geography in America, the term remote sensing was coined in the early 1960's by geographers to describe the process of obtaining data by use of both photographic and nonphotographic instruments. Although this is still a working definition today, a more explicit and updated definition as it relates to geography can be phrased as: "remote sensing is the science, art, and technology of identifying, characterizing, measuring, and mapping of Earth surface, and near earth surface, phenomena from some position above using photographic or nonphotographic instruments." Both patterns and processes may be the object of investigation using remote sensing data. The science dimension of geographic remote sensing is rooted in the fact that: a) it is dealing with primary data, wherein the investigator must have an understanding of the environmental phenomena under scrutiny, and b) the investigator must understand something of the physics of the energy involved in the sensing instrument and the atmospheric pathway through which the energy passes from the energy source, to the Earth object to the sensor.
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures
Müller, Frank A.; Kunz, Clemens; Gräf, Stephan
2016-01-01
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces. PMID:28773596
Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2010-05-12
Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.
Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble
NASA Astrophysics Data System (ADS)
Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné
2018-02-01
The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.
Müller, Frank A; Kunz, Clemens; Gräf, Stephan
2016-06-15
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin
2017-12-01
Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.
Optical detection techniques for laser sorting machines
NASA Astrophysics Data System (ADS)
Meulebroeck, W.; Thienpont, H.
2006-04-01
In this work we summarize some of the results we obtained during our research of different physical phenomena which take place when a visible or near-infrared laser beam falls in onto a biological product, more in particular on a vegetable or on a fruit. The most important phenomena are surface reflection, selective absorption, fluorescence, absorption in the near-infrared and internal reflection. While the emphasis lays on the identification of the product type we will show that some of the demonstrated sorting principles can also be used for quality sorting: for example a determination of the ripeness of green vegetables or of the water/oil content of vegetables and fruits and a detection of the presence of the very harmful aflatoxines.
Metal and polymer melt jet formation by the high-power laser ablation
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; Gojani, Ardian B.
2010-02-01
The laser-induced metal and polymer melt jets are studied experimentally. Two classes of physical phenomena of interest are: first, the process of explosive phase change of laser induced surface ablation and second, the hydrodynamic jetting of liquid melts ejected from a beamed spot. We focus on the dynamic link between these two distinct physical phenomena in a framework of forming and patterning of metallic and polymer jets using a high-power Nd:YAG laser. The microexplosion of ablative spot on a target first forms a pocket of hot liquid melt and then it is followed by a sudden volume change of gas-liquid mixture leading to a pressure-induced spray jet ejection into surrounding medium.
NASA Astrophysics Data System (ADS)
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
Surface flow measurements from drones
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore
2016-09-01
Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.
Size-dependent resonance frequencies of cantilevered and bridged nanosensors
NASA Astrophysics Data System (ADS)
Shi, W.; Zou, J.; Lee, K. Y.; Li, X. F.
2018-03-01
This paper studies transverse vibration of nanoscale cantilevered and bridged sensors carrying a nanoparticle. The nanoscale sensors are modelled as Euler-Bernoulli beams with surface effect and nanoparticle as a concentrated mass. Frequency equations of cantilevered and bridged beam-mass system are derived and exact resonance frequencies are calculated. An alternative Fredholm integral equation method is used to obtain an approximate explicit expression for the fundamental frequency for both cases. A comparison between the approximate and analytical results is made and the approximation accuracy is satisfactory. The influences of the residual surface stress, surface elasticity, and attached mass on the resonance frequencies and mode shapes are discussed. These results are useful to illustrate the surface phenomena and are helpful to design micro-/nano-mechanical sensors.
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1974-01-01
The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
Faraday Rotation Due to Surface States in the Topological Insulator (Bi1-xSbx)2Te3.
Shao, Yinming; Post, Kirk W; Wu, Jhih-Sheng; Dai, Siyuan; Frenzel, Alex J; Richardella, Anthony R; Lee, Joon Sue; Samarth, Nitin; Fogler, Michael M; Balatsky, Alexander V; Kharzeev, Dmitri E; Basov, D N
2017-02-08
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2 Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.
Observation and simulation of AGW in Space
NASA Astrophysics Data System (ADS)
Kunitsyn, Vyacheslav; Kholodov, Alexander; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Vorontsov, Artem
2014-05-01
Examples are presented of satellite observations and imaging of AGW and related phenomena in space travelling ionospheric disturbances (TID). The structure of AGW perturbations was reconstructed by satellite radio tomography (RT) based on the signals of Global Navigation Satellite Systems (GNSS). The experiments use different GNSS, both low-orbiting (Russian Tsikada and American Transit) and high-orbiting (GPS, GLONASS, Galileo, Beidou). The examples of RT imaging of TIDs and AGWs from anthropogenic sources such as ground explosions, rocket launching, heating the ionosphere by high-power radio waves are presented. In the latter case, the corresponding AGWs and TIDs were generated in response to the modulation in the power of the heating wave. The natural AGW-like wave disturbances are frequently observed in the atmosphere and ionosphere in the form of variations in density and electron concentration. These phenomena are caused by the influence of the near-space environment, atmosphere, and surface phenomena including long-period vibrations of the Earth's surface, earthquakes, explosions, temperature heating, seisches, tsunami waves, etc. Examples of experimental RT reconstructions of wave disturbances associated with the earthquakes and tsunami waves are presented, and RT images of TIDs caused by the variations in the corpuscular ionization are demonstrated. The results of numerical modeling of AGW generation by some surface and volume sources are discussed. The milli-Hertz AGWs generated by these sources induce perturbations with a typical scale of a few hundred of kilometers at the heights of the middle atmosphere and ionosphere. The numerical modeling is based on the solution of equations of geophysical hydrodynamics. The results of the numerical simulations agree with the observations. The authors acknowledge the support of the Russian Foundation for Basic Research (grants 14-05-00855 and 13-05-01122), grant of the President of Russian Federation MK-2670.2014.5 and Lomonosov Moscow State University Program of Development.
Proceedings of the 2nd Experimental Chaos Conference
NASA Astrophysics Data System (ADS)
Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep
1995-02-01
The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud
Bringing the Coastal Zone into Finer Focus
NASA Astrophysics Data System (ADS)
Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.
2015-12-01
Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
Abdeljawad, Fadi; Foiles, Stephen M.
2016-05-04
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdeljawad, Fadi; Foiles, Stephen M.
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments
NASA Astrophysics Data System (ADS)
Block, Gareth I.; Harris, John G.
2006-01-01
Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.
Gate-tuned Josephson effect on the surface of a topological insulator
2014-01-01
In the study, we investigate the Josephson supercurrent of a superconductor/normal metal/superconductor junction on the surface of a topological insulator, where a gate electrode is attached to the normal metal. It is shown that the Josephson supercurrent not only can be tuned largely by the temperature but also is related to the potential and the length of the weak-link region. Especially, the asymmetry excess critical supercurrent, oscillatory character, and plateau-like structure have been revealed. We except those phenomena that can be observed in the recent experiment. PMID:25249827
Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albersheim, P.; Anderson-Prouty, A.J.
1975-01-01
General plant resistance to pathogenic attack by a myriad of microorganisms, viruses, nematodes, and insects are reviewed. Specifically discussed are: The role of the cell wall and wall-degrading enzymes in infective processes; an hypothesis to account for varietal specificity in gene-for-gene host-pathogen systems; examples which demonstrate that cell surface recognition phenomena are mediated through the interaction of carbohydrate-containing macromolecules and proteins; elicitors of phytoalexin production; and further consideration of the hypothesis and how the gene-for-gene relationship may have evolved. (JWP)
California coastal processes study, LANDSAT 2
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1977-01-01
The authors have identified the following significant results. By using suspended sediments as tracers, objectives were met by qualitative definition of the nearshore circulation along the entire coast of California with special study sites at Humboldt Bay, the mouth of the Russian River, San Francisco Bay, Monterey Bay, and the Santa Barbara Channel. Although LANDSAT primarily imaged fines and silts in the surface waters, the distribution of sediments allowed an examination of upwelling, convergences and coastal erosion and deposition. In Monterey Bay and Humboldt Bay, these coastal phenomena were used to trace seasonal trends in surface currents.
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.
1985-01-01
A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.
The Jupiter system through the eyes of Voyager 1
Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.
1979-01-01
The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.
Physics at the surface of a star in Eddington-inspired Born-Infeld Gravity
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2014-03-01
We study phenomena happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI) gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational backreaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the effective equation of state of the particles or make the surface be unstable depending on its matter contents. The geodesic deviation equations take after Hooke's law, where its frequency squared is proportional to the scalar curvature at the surface. For a positive curvature, a particle collides with a probing wall more often and increases the pressure. With the increased pressure, the surface is no longer singular. For a negative curvature, the matters around the surface experience repulsions with infinite accelerations. Therefore, the EiBI gravity is saved from the pathology of a surface singularity.
Shear driven droplet shedding and coalescence on a superhydrophobic surface
NASA Astrophysics Data System (ADS)
Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A.
2015-03-01
The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.
TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crotts, Arlin P. S.
2009-05-20
Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunarmore » surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.« less
Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece
NASA Astrophysics Data System (ADS)
Tzampoglou, P.; Loupasakis, C.
2017-09-01
Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.
Atomistic modeling of dropwise condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.
The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less
Particle self-assembly at ionic liquid-based interfaces.
Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L
2014-04-01
This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. © 2013.
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
NASA Astrophysics Data System (ADS)
Tan, Xi-bin; Yuan, Ren-mao; Xu, Xi-wei; Chen, Gui-hua; Klinger, Yann; Chang, Chung-Pai; Ren, Jun-jie; Xu, Chong; Li, Kang
2012-09-01
The large oblique reverse slip shock of the 2008 Mw = 7.9 Wenchuan earthquake, China, produced one of the longest and most complicated surface ruptures ever known. The complexity is particularly evident in the Xiaoyudong area, where three special phenomena occurred: the 7 km long Xiaoyudong rupture perpendicular to the Beichuan-Yingxiu fault; the occurrence of two parallel faults rupturing simultaneously, and apparent discontinuity of the Beichuan-Yingxiu rupture. This paper systematically documents these co-seismic rupture phenomena for the Xiaoyudong area. The discussion and results are based on field investigations and analyses of faulting mechanisms and prevalent stress conditions. The results show that the Beichuan-Yingxiu fault formed a 3.5 km wide restraining stepover at the Xiaoyudong area. The Xiaoyudong fault is not a tear fault suggested by previous researches, but a frontal reverse fault induced by the oblique compression at this stepover; it well accommodates the 'deformation gap' of the Beichuan-Yingxiu fault in the Xiaoyudong area. Further, stress along the Peng-Guan fault plane doubles due to a change in dip angle of the Beichuan-Yingxiu fault across the Xiaoyudong restraining stepover. This resulted in two faults rupturing the ground's surface simultaneously, to the north of the Xiaoyudong area. These results are helpful in deepening our understanding of the dynamic processes that produced surface ruptures during the Wenchuan earthquake. Furthermore, the results suggest more attention be focused on the influence of dextral slip component, the change of the control fault's attitude, and property differences in rocks on either side of faults when discussing the formation mechanism of surface ruptures.
An experimental study on soft PDMS materials for aircraft icing mitigation
NASA Astrophysics Data System (ADS)
Liu, Yang; Ma, Liqun; Wang, Wei; Kota, Arun K.; Hu, Hui
2018-07-01
A series of experiments were conducted to characterize the anti-/de-icing performances of soft PDMS materials with different shear modulus and to explore their potentials for aircraft icing mitigation. In the present study, a new class of soft PDMS materials with adjustable shear modulus were fabricated by adding different amounts and different molecular weights of non-reactive trimethyl-terminated PDMS (t-PDMS) into the hydrosilylation mixture of vinyl-terminated PDMS (v-PDMS) and hydride-terminated PDMS (h-PDMS). While the soft PDMS materials were found to be hydrophobic with the contact angle of water droplets over the PDMS surfaces being about 110°, the ice adhesion strength over the soft PDMS materials was found to be extremely low (i.e., being less than 10 kPa at -5 °C or two orders of magnitude smaller), in comparison to those of the conventional rigid surface (i.e., being greater than 1000 kPa for Aluminum or the hard plastic material used to make the airfoil/wing model used in the present study). Upon the dynamic impacting of water droplets at relatively high weber number levels pertinent to aircraft inflight icing phenomena (e.g., We = 4000), the soft PDMS surfaces were found to deform dynamically due to the elastic nature of the PDMS materials, which cause the soft PDMS materials acting as "trampolines" to bounce off most of the impinged water mass away from the impacted surfaces. By applying the soft PDMS materials to coat/cover the surface of a NACA 0012 airfoil/wing model, an explorative study was also performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to demonstrate the feasibility of using the soft PDMS materials to mitigate the impact ice accretion process pertinent to aircraft inflight icing phenomena.
Skating on a Film of Air: Drops Impacting on a Surface
NASA Astrophysics Data System (ADS)
Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.
2012-02-01
The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.
Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid
2014-06-16
Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less
Tribology Experiment in Zero Gravity
NASA Technical Reports Server (NTRS)
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1
VanDelinder, Virginia; Adams, Peter G.; Bachand, George D.
2016-12-21
The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continuemore » to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.« less
The contact sport of rough surfaces
NASA Astrophysics Data System (ADS)
Carpick, Robert W.
2018-01-01
Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.
Small nanoparticles, surface geometry and contact forces.
Takato, Yoichi; Benson, Michael E; Sen, Surajit
2018-03-01
In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang
2010-10-01
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.
Downdraft outflows: climatological potential to influence fire behaviour
Brian E. Potter; Jaime R. Hernandez
2017-01-01
Sudden wind shifts caused by atmospheric gust fronts can lead to firefighter entrapments and fatalities. In this study, we describe the physical processes involved in the related phenomena of convective downdrafts, gust fronts and downbursts. We focus on the dominant process, evaporative cooling in a dry surface layer, as characterised by the measure known as downdraft...
Annual Technical Report, Materials Research Laboratory, 1 July 1984 - 30 June 1986.
1986-06-30
4 -’ Section 2 -Inorganic Glasses , Introduction ....... ........... ........................... 54 Research Results...Inorganic Glasses (coordinated by W. M. Risen, Jr.) Surfaces (coordinated by P. J. Estrup). In addition, MRL supported thrce New Initiatives: Physical...on a series of closely related " phenomena in two-phase polycrystalline materials, single crystals and metallic glasses . Although these research
LF "Wh"-Movement and Its Locality Constraints in Child Japanese
ERIC Educational Resources Information Center
Sugisaki, Koji
2012-01-01
In natural languages, the mapping from surface form to meaning is often quite complex, and hence the acquisition of the phenomena at the boundary between syntax and semantics has been one of the central issues in current acquisition research. This study addresses the issue of whether children have adult-like knowledge of LF "wh"-movement and its…
From Stories of Staying to Stories of Leaving: A US Beginning Teacher's Experience
ERIC Educational Resources Information Center
Craig, Cheryl J.
2014-01-01
This narrative inquiry traces a beginning teacher's unfolding career over a six-year period in a diverse middle school in the fourth largest city in the USA. The work revolves around two conceptualizations: "stories to live by" and "stories to leave by." How these identity-related phenomena surface and play out in an…
Characterization of electrical discharges on Teflon dielectrics used as spacecraft thermal control
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.
1979-01-01
The dual effects of system degradation and reduced life of synchronous-orbit satellites as a result of differential spacecraft charging underscore the need for a clearer understanding of the prevailing electrical discharge phenomena. In a laboratory simulation, the electrical discharge current, surface voltage, emitted particle fluxes, and photo-emission associated with discharge events on electron beam irradiated silver-backed Teflon samples were measured. Sample surface damage was examined with optical and electron beam microscopes. The results are suggestive of a model in which the entire sample surface is discharged by lateral sub-surface currents flowing from a charge deposition layer through a localized discharge channel to the back surface of the sample. The associated return current pulse appears to have a duration which may be a signature by which different discharge processes may be characterized.
Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces
NASA Astrophysics Data System (ADS)
Trinschek, Sarah; John, Karin; Lecuyer, Sigolène; Thiele, Uwe
2017-08-01
We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.
NASA Astrophysics Data System (ADS)
Bonnet, M.; Collino, F.; Demaldent, E.; Imperiale, A.; Pesudo, L.
2018-05-01
Ultrasonic Non-Destructive Testing (US NDT) has become widely used in various fields of applications to probe media. Exploiting the surface measurements of the ultrasonic incident waves echoes after their propagation through the medium, it allows to detect potential defects (cracks and inhomogeneities) and characterize the medium. The understanding and interpretation of those experimental measurements is performed with the help of numerical modeling and simulations. However, classical numerical methods can become computationally very expensive for the simulation of wave propagation in the high frequency regime. On the other hand, asymptotic techniques are better suited to model high frequency scattering over large distances but nevertheless do not allow accurate simulation of complex diffraction phenomena. Thus, neither numerical nor asymptotic methods can individually solve high frequency diffraction problems in large media, as those involved in UNDT controls, both quickly and accurately, but their advantages and limitations are complementary. Here we propose a hybrid strategy coupling the surface integral equation method and the ray tracing method to simulate high frequency diffraction under speed and accuracy constraints. This strategy is general and applicable to simulate diffraction phenomena in acoustic or elastodynamic media. We provide its implementation and investigate its performances for the 2D acoustic diffraction problem. The main features of this hybrid method are described and results of 2D computational experiments discussed.
Remhof, Arndt; Borgschulte, Andreas
2008-12-01
The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.
Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching
NASA Astrophysics Data System (ADS)
Engstrom, James R.; Kummel, Andrew C.
2017-02-01
Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.
Engstrom, James R; Kummel, Andrew C
2017-02-07
Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid
2015-01-01
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717
Walter, Andrew L.; Schiller, Frederik; Corso, Martina; ...
2015-11-12
Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less
Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli
2017-03-08
Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.
The physics and chemistry of graphene-on-surfaces.
Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei
2017-07-31
Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Andrew L.; Schiller, Frederik; Corso, Martina
Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...
2015-04-17
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics
NASA Astrophysics Data System (ADS)
Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.
2017-06-01
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics.
Horikis, Theodoros P; Frantzeskakis, Dimitrios J
2017-06-16
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2+1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y-, X-, and H-shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
Desorption in Mass Spectrometry.
Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi
2017-01-01
In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e. , ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma
NASA Technical Reports Server (NTRS)
Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.
1998-01-01
Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.
Computational characterization of ordered nanostructured surfaces
NASA Astrophysics Data System (ADS)
Mohieddin Abukhdeir, Nasser
2016-08-01
A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1973-01-01
The author has identified the following significant results. Correlations between the S-194 antenna temperature and soil moisture have been obtained for three sets of data; one for Skylab 2 and two for Skylab 3. The best correlations were obtained for the surface to one inch depth in two cases and for the surface to two inches for the third case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, and -0.82. The lowest correlation coefficient was obtained with total soil moisture variations less than 4% across the test site.
Babinet's principle and the band structure of surface waves on patterned metal arrays
NASA Astrophysics Data System (ADS)
Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.
2010-05-01
The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].
Societal Impacts of Natural Decadal Climate Variability - The Pacemakers of Civilizations
NASA Astrophysics Data System (ADS)
Mehta, V. M.
2017-12-01
Natural decadal climate variability (DCV) is one of the oldest areas of climate research. Building on centuries-long literature, a substantial body of research has emerged in the last two to three decades, focused on understanding causes, mechanisms, and impacts of DCV. Several DCV phenomena - the Pacific Decadal Oscillation (PDO) or the Interdecadal Pacific Oscillation (IPO), tropical Atlantic sea-surface temperature gradient variability (TAG for brevity), West Pacific Warm Pool variability, and decadal variability of El Niño-La Niña events - have been identified in observational records; and are associated with variability of worldwide atmospheric circulations, water vapor transport, precipitation, and temperatures; and oceanic circulations, salinity, and temperatures. Tree-ring based drought index data going back more than 700 years show presence of decadal hydrologic cycles (DHCs) in North America, Europe, and South Asia. Some of these cycles were associated with the rise and fall of civilizations, large-scale famines which killed millions of people, and acted as catalysts for socio-political revolutions. Instrument-measured data confirm presence of such worldwide DHCs associated with DCV phenomena; and show these DCV phenomena's worldwide impacts on river flows, crop productions, inland water-borne transportation, hydro-electricity generation, and agricultural irrigation. Fish catch data also show multiyear to decadal catch variability associated with these DCV phenomena in all oceans. This talk, drawn from my recently-published book (Mehta, V.M., 2017: Natural Decadal Climate Variability: Societal Impacts. CRC Press, Boca Raton, Florida, 326 pp.), will give an overview of worldwide impacts of DCV phenomena, with specific examples of socio-economic-political impacts. This talk will also describe national and international security implications of such societal impacts, and worldwide food security implications. The talk will end with an outline of needed actions to adapt to these impacts.
Chemical vapor deposition modeling for high temperature materials
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1992-01-01
The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.
NASA Astrophysics Data System (ADS)
Abrosimov, S. A.; Bazhulin, A. P.; Bol'shakov, A. P.; Konov, V. I.; Krasyuk, I. K.; Pashinin, P. P.; Ral'chenko, V. G.; Semenov, A. Yu; Sovyk, D. N.; Stuchebryukhov, I. A.; Fortov, V. E.; Khishchenko, K. V.; Khomich, A. A.
2014-06-01
The spallation phenomena in poly- and single-crystal synthetic diamonds have been experimentally investigated. A shockwave impact on a target was implemented using a 70-ps laser pulse in the Kamerton-T facility. The ablation pressure of 0.66 TPa on the front target surface was formed by pulsed radiation of a neodymium phosphate glass laser (second harmonic λ = 0.527 mm, pulse energy 2.5 J) with an intensity as high as 2 × 1013 W cm-2. The maximum diamond spall strength σ* ≈ 16.5 GPa is found to be 24% of the theoretical ultimate strength. Raman scattering data indicate that a small amount of crystalline diamond in the spallation region on the rear side of the target is graphitised.
Patoka, Piotr; Ulrich, Georg; Nguyen, Ariana E.; ...
2016-01-13
Here, nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS 2) on silicon dioxide (SiO 2) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO 2-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS 2 islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS 2. The influence of MoS 2 islands on the SiO 2 phonon resonance is discussed. The results reveal themore » plasmonic character of the MoS 2 structures and their interaction with the SiO 2 phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS 2 optical plasmon mode to the SiO 2 surface phonons does not affect the infrared spectrum significantly. For two-layer MoS 2, the coupling of the extra inter-plane acoustic plasmon mode with the SiO 2 surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm -1. This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non-homogeneous structures.« less
2169 steel waveform experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd
2012-11-01
In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included themore » elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.« less
Faraday Rotation Due to Surface States in the Topological Insulator (Bi 1–xSbx) 2Te 3
Shao, Yinming; Post, Kirk W.; Wu, Jhih-Sheng; ...
2016-12-29
For this research, using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb) 2Te 3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. Finally, the FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way formore » observing many exotic quantum phenomena in topological insulators.« less
Dynamic order in a surface process
NASA Astrophysics Data System (ADS)
Eiswirth, M.; Ertl, G.
1988-09-01
Under certain well-defined conditions ( p co,p_{{text{O}}_{text{2}} } , T) the rate of catalytic oxidation of CO on a Pt(110) surface may exhibit sustained temporal oscillations with an autonomous frequency v 0. Small amplitude modulation ofp_{{text{O}}_{text{2}} } with frequency v p causes a variety of phenomena characteristic for systems of nonlinear dynamics which may be identified with temporal order and show formal similarities to spatial order of surface phases: Periodic behavior for certain rational numbers of v p/v0 — corresponding to commensurate surface structures; quasiperiodic behavior characterized by an irrational ratio of the periods of perturbation and response — corresponding to incommensurate structures; and critical slowing down near the boundary of a transition to quasiperiodicity which has its counterpart in the critical fluctuations near a (spatial) phase transition.
Surface emission from neutron stars and implications for the physics of their interiors.
Ozel, Feryal
2013-01-01
Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.
An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles
NASA Astrophysics Data System (ADS)
Takeishi, K.; Matsuura, M.; Aoki, S.; Sato, T.
1989-06-01
The effects of the three-dimensional flow field on the heat transfer and the film cooling on the endwall, suction and pressure surface of an airfoil were studied using a low speed, fully annular, low aspect h/c = 0.5 vane cascade. The predominant effects that the horseshoe vortex, secondary flow, and nozzle wake increases in the heat transfer and decreases in the film cooling on the suction vane surface and the endwall were clearly demonstrated. In addition, it was demonstrated that secondary flow has little effect on the pressure surface. Pertinent flow visualization of the flow passage was also carried out for better understanding of these complex phenomena. Heat transfer and film cooling on the fully annular vane passage surface is discussed.
Fundamental insights into interfacial catalysis.
Gong, Jinlong; Bao, Xinhe
2017-04-03
Surface and interfacial catalysis plays a vital role in chemical industries, electrochemistry and photochemical reactions. The challenges of modern chemistry are to optimize the chemical reaction processes and understand the detailed mechanism of chemical reactions. Since the early 1960s, the foundation of surface science systems has allowed the study of surface and interfacial phenomena on atomic/molecular level, and thus brought a number of significant developments to fundamental and technological processes, such as catalysis, material science and biochemistry, just to name a few. This themed issue describes the recent advances and developments in the fundamental understanding of surface and interfacial catalysis, encompassing areas of knowledge from metal to metal oxide, carbide, graphene, hexagonal boron nitride, and transition metal dichalcogenides under ultrahigh vacuum conditions, as well as under realistic reaction conditions.
Experiment and application of soft x-ray grazing incidence optical scattering phenomena
NASA Astrophysics Data System (ADS)
Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun
2017-08-01
For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.
Surface modification of titanium nitride film by a picosecond Nd:YAG laser
NASA Astrophysics Data System (ADS)
Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.
2007-06-01
The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2018-02-01
Nonlocal and surface effects on nonlinear vibration characteristics of a flexoelectric nanobeams under magnetic field are examined. Eringen’s nonlocal elasticity as well as surface elasticity theories are employed to describe the size-dependency of the flexoelectric nanobeam. Also, flexoelectricity is an important size-dependent phenomena for piezoelectric structures at nanoscale, related to the strain gradient-electric polarization coupling. After the derivation of governing equation via Hamilton’s principle, Galerkin method is employed to satisfy boundary conditions. Also, analytical procedures are implemented to obtain the closed-form nonlinear frequency of flexoelectric nanobeam. It is showed that magnetic field intensity, flexoelectric parameter, nonlocal parameter, elastic foundation and applied voltage on the top surface of the nanobeam have great influences on nonlinear vibration frequency.
Droplet impact on soft viscoelastic surfaces.
Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo
2016-12-01
In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We, complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We, entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We, partial rebound is only identified on the most rigid surface at We≳92. Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact-as the surfaces behave like rigid surfaces-but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.
NASA Astrophysics Data System (ADS)
Vesecky, John F.; Stewart, Robert H.
1982-04-01
Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.
L1-Based Approximations of PDEs and Applications
2012-09-05
the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems
A "Conveyor Belt" Model for the Dynamic Contact Angle
ERIC Educational Resources Information Center
Della Volpe, C.; Siboni, S.
2011-01-01
The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…
Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach
2012-09-30
characterization of extratropical storms and extremes and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson...simulating and predicting a wide range of climate phenomena including ENSO, tropical Atlantic sea surface temperatures (SSTs), storm track variability...into empirical prediction models. Use observations to improve low-order dynamical MJO models. Adam Sobel, Daehyun Kim. Extratropical variability
Stanford MFEL and Near Infrared Science Center
2011-01-28
guiding procedures for restoration of hearing— cochlear implants. Multifaceted approaches have been taken to understand the molecular and cellular...accompanying phenomena of cavitation, liquid flow and heat transfer in various biological tissues. In the field of laser surgery with ultrashort pulses...using yeast cell surface display, the Cochran group has generated EGF mutant libraries and have screened them by flow cytometry using fluorescently
Plain Speaking: A Theory and Grammar of Spontaneous Discourse.
1981-06-01
reveals surface linguistic phenomena that contradict traditional theories based on single sentence studies and longer texts artificially constructed...Excerpt 1 , Chapter 1, to illustrate the importance of functional development and discernment. In the midst of discussing the case of two twins under study ...his social interactive behavior in kindergarten. Authority: Source: Study Method : Investigative filming of kids over time. Credentials: Excellent
Laser-induced structure formation on stretched polymer foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter
2007-04-15
Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.
Smoothing Polymer Surfaces by Solvent-Vapor Exposure
NASA Astrophysics Data System (ADS)
Anthamatten, Mitchell
2003-03-01
Ultra-smooth polymer surfaces are of great importance in a large body of technical applications such as optical coatings, supermirrors, waveguides, paints, and fusion targets. We are investigating a simple approach to controlling surface roughness: by temporarily swelling the polymer with solvent molecules. As the solvent penetrates into the polymer, its viscosity is lowered, and surface tension forces drive surface flattening. To investigate sorption kinetics and surface-smoothing phenomena, a series of vapor-deposited poly(amic acid) films were exposed to dimethyl sulfoxide vapors. During solvent exposure, the surface topology was continuously monitored using light interference microscopy. The resulting power spectra indicate that high-frequency defects smooth faster than low-frequency defects. This frequency dependence was studied by depositing polymer films onto a series of 2D sinusoidal surfaces and performing smoothing experiments. Results show that the amplitudes of the sinusoidal surfaces decay exponentially with solvent exposure time, and the exponential decay constants are proportional to surface frequency. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Roling, Luke T.; Mavrikakis, Manos
2017-09-19
In this paper, we present a database of first-principles calculated activation energy barriers for two competitive processes involving bimetallic adatom-surface permutations of ten transition metals: (i) adatom “hopping” diffusion and (ii) adatom substitution into the surface. We consider the surface structure sensitivity of these events as well as coverage effects. We find that surface hopping mechanisms are facile and always preferred to substitution events on close-packed fcc(111) and hcp(0001) surfaces. However, surface atom substitution is more facile on the more open fcc(100) surfaces and is competitive with adatom surface hopping, which is more difficult than on the close-packed surfaces. Finally,more » by comparing the absolute and relative magnitudes of the energetics of hopping and substitution, our calculations can offer qualitative predictions of intermixing and other phenomena relevant to nanocrystal growth, such as the tendency to form intermixed alloys or core–shell structures during layer-by-layer nanoparticle synthesis involving a given bimetallic pair, and thereby inform the rational design and synthesis of novel bimetallic nanomaterials.« less
New light-shielding technique for shortening the baffle length of a star sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori
2002-10-01
We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.
Development of coatings to control electroosmosis in zero gravity electrophoresis
NASA Technical Reports Server (NTRS)
Krupnick, A. C.
1974-01-01
A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.
NASA Astrophysics Data System (ADS)
Pacheco, Luz; Smith, Katherine; Hamlington, Peter; Niemeyer, Kyle
2017-11-01
Vertical transport flux in the ocean upper mixed layer has recently been attributed to submesoscale currents, which occur at scales on the order of kilometers in the horizontal direction. These phenomena, which include fronts and mixed-layer instabilities, have been of particular interest due to the effect of turbulent mixing on nutrient transport, facilitating phytoplankton blooms. We study these phenomena using a non-hydrostatic, large eddy simulation for submesoscale currents in the ocean, developed using the extensible, open-source finite element platform FEniCs. Our model solves the standard Boussinesq Euler equations in variational form using the finite element method. FEniCs enables the use of parallel computing on modern systems for efficient computing time, and is suitable for unstructured grids where irregular topography can be considered in the future. The solver will be verified against the well-established NCAR-LES model and validated against observational data. For the verification with NCAR-LES, the velocity, pressure, and buoyancy fields are compared through a surface-wind-driven, open-ocean case. We use this model to study the impacts of uncertainties in the model parameters, such as near-surface buoyancy flux and secondary circulation, and discuss implications.
Realization of a Hole-Doped Mott Insulator on a Triangular Silicon Lattice
NASA Astrophysics Data System (ADS)
Ming, Fangfei; Johnston, Steve; Mulugeta, Daniel; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Maier, Thomas A.; Snijders, Paul C.; Weitering, Hanno H.
2017-12-01
The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional s p -bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.
Thermodynamic forces in coarse-grained simulations
NASA Astrophysics Data System (ADS)
Noid, William
Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.
Morphology modulating the wettability of a diamond film.
Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi
2014-10-28
Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.
Simulation and Observation of Acoustic-Gravity Waves in the Ionosphere
NASA Astrophysics Data System (ADS)
Kunitsyn, Viacheslav; Andreeva, Elena; Krysanov, Boris; Nesterov, Ivan
Atmospheric and ionospheric perturbations associated with the acoustic-gravity waves (AGW) with typical frequencies of a few hertz -millihertz are considered. These events may be caused by the influence from space and atmosphere as well as by oscillations of the Earth surface and other near-surface phenomena. The surface sources include long-period oscillations of the Earth's surface, earthquakes, explosions, thermal heating, seisches and tsunami waves. The wavelike phenomena manifest themself as travelling disturbances of air (in the atmosphere) and of electron density (in the ionosphere). Travelling ionospheric disturbances (TIDs) are well detected by radio physical methods. AGW generation by near-surface sources is modeled by the numerical solution of the equation of geophysical fluid dynamics for different sources in two-dimensional non-linear dissipative compressible atmosphere. The numerical calculations are based on the FCT (Flux Corrected Transport) technique of the second order accuracy in time and space. Different scenarios of AGW generation are analyzed. The AGW caused by the surface sources within a few hertz-millihertz frequency band appear at the altitudes of middle atmosphere and ionosphere as the disturbances with typical scales from a few kilometers to several hundreds kilometers. Such structures can be successfully monitored by the methods of satellite radio tomography (RT). For the purposes of RT diagnostics of such disturbances, low-orbiting navigational satellites like Transit and Tsikada and high-orbiting navigation systems GPS/GLONASS are used. The results of numerical modeling of AGW generation by the surface sources are compared with the data of RT sounding. Also, generation of AGW by volumetric sources such as particle precipitation, rocket launching, heating by high-frequency radiation and other are considered. The obtained results proved the capability of RT methods of detecting and distinguishing between TIDs caused by AGW generated by surface sources, on one hand, and the ionospheric disturbances caused by AGW from volumetric sources in the atmosphere and space, on the other hand. The work was supported by the Russian Foundation for Basic Research (grants 08-05-00676 and 10-05-01126).
Computational study of a self-cleaning process on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Farokhirad, Samaneh
All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance beyond the boundary layer of the surface can be accomplished with a surface-parallel shear flow. This thesis presents an investigation of the physics involved in the mechanism of coalescence-induced self-propelled jumping of droplet with and without particle presence, through the use of numerical simulation. (Abstract shortened by ProQuest.).
The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012
Kappel, William M.
2014-01-01
Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for more than two decades, provides the basis for this report.
Influence of surface contamination on the wettability of heat transfer surfaces
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...
2015-08-08
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.
2011-08-01
The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less
Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai
2017-03-10
We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.
Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar
2015-04-01
When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.
Influence of surface contamination on the wettability of heat transfer surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Particle emission from artificial cometary materials
NASA Technical Reports Server (NTRS)
Koelzer, Gabriele; Kochan, Hermann; Thiel, Klaus
1992-01-01
During KOSI (comet simulation) experiments, mineral-ice mixtures are observed in simulated space conditions. Emission of ice-/dust particles from the sample surface is observed by means of different devices. The particle trajectories are recorded with a video system. In the following analysis we extracted the parameters: particle count rate, spatial distribution of starting points on the sample surface, and elevation angle and particle velocity at distances up to 5 cm from the sample surface. Different kinds of detectors are mounted on a frame in front of the sample to register the emitted particles and to collect their dust residues. By means of these instruments the particle count rates, the particle sizes and the composition of the particles can be correlated. The results are related to the gas flux density and the temperature on the sample surface during the insolation period. The particle emission is interpreted in terms of phenomena on the sample surface, e.g., formation of a dust mantle.
Stability analysis of a pressure-solution surface
NASA Astrophysics Data System (ADS)
Gal, Doron; Nur, Amos; Aharonov, Einat
We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Chang W.; Iddir, Hakim; Uzun, Alper
To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir 3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir 3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations providedmore » estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.« less
Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng
2003-11-15
In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.
Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation.
Jo, HangJin; Hwang, Kyung Won; Kim, DongHyun; Kiyofumi, Moriyama; Park, Hyun Sun; Kim, Moo Hwan; Ahn, Ho Seon
2015-04-23
Condensed liquid behavior on hydrophobic micro/nano-structured surfaces is a subject with multiple practical applications, but remains poorly understood. In particular, the loss of superhydrophobicity of hydrophobic micro/nanostructures during condensation, even when the same surface shows water-repellant characteristics when exposed to air, requires intensive investigation to improve and apply our understanding of the fundamental physics of condensation. Here, we postulate the criterion required for condensation to form from inside the surface structures by examining the grand potentials of a condensation system, including the properties of the condensed liquid and the conditions required for condensation. The results imply that the same hydrophobic micro/nano-structured surface could exhibit different liquid droplet behavior depending on the conditions. Our findings are supported by the observed phenomena: the initiation of a condensed droplet from inside a hydrophobic cavity, the apparent wetted state changes, and the presence of sticky condensed droplets on the hydrophobic micro/nano-structured surface.
Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics
NASA Astrophysics Data System (ADS)
Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide
2017-10-01
Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.
Internal and surface waves in vibrofluidized granular materials: Role of cohesion
NASA Astrophysics Data System (ADS)
Huang, Kai
2018-05-01
Wave phenomena in vibrofluidized dry and partially wet granular materials confined in a quasi-two-dimensional geometry are investigated with numerical simulations considering individual particles as hard spheres. Short-ranged cohesive interactions arising from the formation of liquid bridges between adjacent particles are modeled by changing the velocity-dependent coefficient of restitution. Such a change effectively suppresses the formation of surface waves, in agreement with previous experimental observations. The difference in pattern creation arises from the suppressed momentum transfer due to wetting and it can be quantitatively understood from an analysis of binary impacts.
Study of surface phenomena in biomaterials: The influence of physical factors
NASA Astrophysics Data System (ADS)
Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina
2015-10-01
This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.
Non-Markovianity in atom-surface dispersion forces
Intravaia, F.; Behunin, R. O.; Henkel, C.; ...
2016-10-18
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.
RS CVn stars - Chromospheric phenomena
NASA Technical Reports Server (NTRS)
Bopp, B. W.
1983-01-01
The observational information regarding chromospheric emission features in surface-active RS CVn stars is reviewed. Three optical features are considered in detail: Ca II H and K, Balmer H-alpha and He I 10830 A. While the qualitative behavior of these lines is in accord with solar-analogy/rotation-activity ideas, the quantitative variation and scaling are very poorly understood. In many cases, the spectroscopic observations with sufficient SNR and resolution to decide these questions have simply not yet been made. The FK Com stars, in particular, present extreme examples of rotation that may well tax present understanding of surface activity to its limits.
Whispering gallery effect in relativistic optics
NASA Astrophysics Data System (ADS)
Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.
2018-03-01
relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.
Insulator edge voltage gradient effects in spacecraft charging phenomena
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.; Staskus, J. V.
1978-01-01
Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.
Non-Markovianity in atom-surface dispersion forces
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-10-01
We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.
How the stiffness of the optical trap depends on the proximity of the dielectric interface
NASA Astrophysics Data System (ADS)
Jákl, Petr; Šerý, Mojmír; Liška, Miroslav; Zemánek, Pavel
2005-09-01
When a probe confined in a single focused laser beam approaches the surface, it is getting more influenced by the retroreflected beam. This beam interferes with the incident one and a weak standing wave (SW) is created, which slightly modulates the incident beam. We studied experimentally how this phenomena influences the optical trap properties if SW is created using surfaces of two different reflectivities. We used polystyrene probes of diameters 690 nm and 820 nm, tracked their positions with quadrant photodiode (QPD) and analysed their thermal motion to get the axial trap stiffness along optical axis.
NASA Astrophysics Data System (ADS)
Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit
2016-08-01
Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.
NASA Astrophysics Data System (ADS)
Araoka, Fumito; Eremin, Alexey; Aya, Satoshi; Lee, Guksik; Ito, Atsuki; Nadasi, Hajnalka; Sebastian, Nerea; Ishikawa, Ken; Haba, Osamu; Stannarius, Ralf; Yonetake, Koichiro; Takezoe, Hideo
2017-02-01
In this paper, we review some results on our recent studies on photo-induced phenomena of liquid crystals (LCs) by means of interfaces decorated with a photo-responsive azobenzene dendrimer (azo-dendrimer). The azo-dendrimer molecules doped in a LC are spontaneously segregated from bulk and adsorbed onto substrate/LC or solvent/LC interfaces, and their photo-isomerization can bring about the so-called anchoring transition, i.e. reversible switching between homeotropic and planar alignment states of the bulk LC, when exposed to UV/VIS light. In addition to photoinduced anchoring transition in a LC cell, several interesting photo-induced phenomena through the azo-dendrimerdecorated interfaces have been reported, such as photo-induced transformation of the interior topological structures of nematic, cholesteric and smectic droplets, photo-mechanical motion of the micro particles dispersed in a nematic matrix, and optical assistance of the athermal anchoring transition with the aid of a perfluoropolymer surface. In addition to such phenomena, we also discuss the conditions of such photo-responsive interfaces in terms of the polar anchoring energy at the interface upon photo-isomerization under illumination of UV and/or VIS lights. The anisotropy of the polar anchoring energy was evaluated experimentally by means of Polarization Microscopy (POM), Dielectric Spectroscopy (DS), Second Harmonic Generation (SHG), and Attenuated Total Reflection Fourier Transform Infrared (ATR-IR) Spectroscopy, and theoretically based on the simple Rapini-Papoular model. We also demonstrate the continuous bulk orientation change by the photo-dynamic process through the fine control of the polar anchoring energy. Besides, the state-of-the-art video-rate atomic force microscopy (ν-AFM) was carried out to visualize the dynamics of such interfaces at a nano-meter scale.
NASA Astrophysics Data System (ADS)
Sparks, S. R.
2008-12-01
Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective mitigation during volcanic crises.
[Study of blood sedimentation by photo-thermal radiometry with random excitation].
Antoniow, J S; Marx, J; Egee, M; Droulle, C; Potron, G
1994-01-01
The erythrocyte sedimentation rate is a complex phenomena involving a large number of parameters. The rate of sedimentation is highly dependent on the haematocrit, the internal viscosity of the red cells and the viscosity of the suspending medium and its composition. The experimental conditions also have a non-negligible effect (geometry and nature of the test tube, temperature, foreign substances in the medium...). In order to respond to the need for more precise and more rapid methods of analyzing the erythrocyte sedimentation rate, we developed new physical methods allowing a real time evaluation of the phenomena involved. Several of these new photothermal methods have already been applied for non-destructive evaluation of thin or layered material (such as composite material or glued structures) both in laboratory situations and in the industry. When a material is placed in a modulated laser beam, the incident rays absorbed heat the sample. The heat then diffuses throughout the material and the surface temperature of the sample increases locally with a periodicity. The surface thus emits a modulated flow of infrared radiation. The amplitude and phase shift of the photothermal signal generated is characteristically dependent of the optic and thermal properties of the material for a given modulation frequency. The early photothermal modelling based on a two-layer model and a physico-mathematical theory of red cell sedimentation proposed by S. Oka made it possible to simulate the phenomena as they occur over time. We hypothesize that the temperature gradients created within the sample are too small to create a convection current and that the all heat transfer occurs by conduction.(ABSTRACT TRUNCATED AT 250 WORDS)
Studies and research on global climate change produced in Dobrogea
NASA Astrophysics Data System (ADS)
Serban, Cristina; Maftei, Carmen; Zagan, Sabina; Chitu, Greti; Zagan, Remus
2013-04-01
Studies and research on global climate change produced in Dobrogea Atmospheric phenomena risk, high acuity products in recent years compels us to a more careful study of the phenomena caused by global climate change produced in Dobrogea. Risk atmospheric phenomena and quick release is characterized by extremely high energies that are catastrophic, sudden and hard to prognosis in current contexts. In our paper we clarify the concept of aridity, and discusses related concepts including indices of aridity, and their influence on Dobrogea area and soil features including climatic water deficit. The drought impact is evaluated by calculating different indices of drought from meteorological and hydrological point of view. In Dobrogea, the phenomena mentioned already manifested by hail, violent storms, tornadoes, heavy precipitation, rainfall, manifested in short periods, producing floods and landslides. Sudden changes, increased environmental air parameters (temperature, humidity, atmospheric pressure) creates, in turn, serious human discomfort and other negative effects of socio-economic. These "risk events" is frequently interleaves severe periods of drought, completing the sequence of natural disasters are difficult to predict. Another characteristic of desertification in Dobrogea is eroding - cruel impoverishment of the soil created by strong winds and violent rain causes strong erosion. Dust storms and sand pits desert areas severely affects state land, forests and degrade air quality breathable, cruelly destroying into ozone. Summarizing, the objective of this paper is to present some results using drought indices and a Grid computing application, which estimates the land surface temperature (LST) and normalized difference vegetation index (NDVI) at regional scale.
NASA Astrophysics Data System (ADS)
Rajni, Kumar, Prashant
2017-10-01
Many nanofluidic systems are being used in a wide range of applications due to advances in nanotechnology. Due to nanoscale size of the system, the physics involved in the electric double layer and consequently the different phenomena related to it are different than those at microscale. The Poisson-Boltzmann equation governing the electric double layer in the system has many shortcomings such as point sized ions. The inclusion of finite size of ions give rise to various electrokinetic phenomena. Electrocapillarity is one such phenomena where the size effect plays an important role. Theeffect of asymmetric finite ion sizes in nano-confinement in the view of osmotic pressure and electrocapillarity is analyzed. As the confinement width of the system becomes comparable with the Debye length, the overlapped electric double layer (EDL) is influenced and significantly deformed by the steric effects. The osmotic pressure from the modified Poisson-Boltzmann equation in nanoslit is obtained. Due to nonlinear nature of the modified PB equation, the solution is obtained through numerical method. Afterwards, the electrocapillarity due to the steric effect is analyzed under constant surface potential condition at the walls of the nanoslit along with the flat interface assumption.
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
Impact of measurable physical phenomena on contact thermal comfort
NASA Astrophysics Data System (ADS)
Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján
Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.
Dynamic behavior of the weld pool in stationary GMAW
NASA Astrophysics Data System (ADS)
Chapuis, J.; Romero, E.; Bordreuil, C.; Soulié, F.; Fras, G.
2010-06-01
Because hump formation limits welding productivity, better understanding of the humping phenomena during the welding process is needed to access to process modifications that decrease the tendency for hump formation and then allow higher productivity welding. From a physical point of view, the mechanism identified is the Rayleigh instability initiated by strong surface tension gradient which induces a variation of kinetic flow. But the causes of the appearance of this instability are not yet well explained. Because of the phenomena complex and multi-physics, we chose in first step to conduct an analysis of the characteristic times involved in weld pool in pulsed stationary GMAW. The goal is to study the dynamic behavior of the weld pool, using our experimental multi physics approach. The experimental tool and methodology developed to understand these fast phenomena are presented first: frames acquisition with high speed digital camera and specific optical devices, numerical library. The analysis of geometric parameters of the weld pool during welding operation are presented in the last part: we observe the variations of wetting angles (or contact lines angles), the base and the height of the weld pool (macro-drop) versus weld time.
NASA Astrophysics Data System (ADS)
Funakoshi, Kunio; Negishi, Rina; Nakagawa, Hiroshi; Kawasaki, Rentaro
2017-06-01
Dissolution of potassium sulphate (K2SO4) crystals was decelerated or stopped since the trivalent chrome ions (Cr(III)) or the iron ions were added into a K2SO4 aqueous solution, but inhibition mechanism of crystal dissolving by additives is not discussed well. Moreover, the melting inhibition of organic compound crystals by addition of the second components is not reported. In this study, inorganic or organic compound crystals are dissolved in a solution added the third component or were melted in a melt added the second one, and the dissolving and melting inhibition phenomena of the inorganic and organic crystals with additives are discussed. The dissolving rates of K2SO4 crystals decreased with the increasing of the amount of Cr(III) added into an K2SO4 unsaturated solution. The melting rates of m-chloronitrobenzene (CNB) crystals were also decreased by addition of p-CNB. The dissolving rates of a K2SO4 mother crystal and the melting rates of a m-CNB mother crystal were scattered during experiments and the dissolving and the melting phenomena would be caused by adsorption and detachments of additives on and from crystal surfaces.
Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.
Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin
2017-10-11
Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.
Mechanical instability driven self-assembly and architecturing of 2D materials
NASA Astrophysics Data System (ADS)
Cai Wang, Michael; Leem, Juyoung; Kang, Pilgyu; Choi, Jonghyun; Knapp, Peter; Yong, Keong; Nam, SungWoo
2017-06-01
Two-dimensional (2D) materials have been well studied for their diverse and impressive properties and superlative mechanical strength. Their atomic thinness and weak van der Waals interaction, while fascinating and unique, dictate their tendency to exhibit out of plane morphologies such as bending, buckling, folding, rippling, scrolling, and wrinkling, etc. In this review, we discuss the mechanisms behind these instability driven morphologies and the resultant phenomena that arise. We then survey methods to manipulate them especially in a scalable manner, and elucidate some interesting applications uniquely enabled by these structures. Contrary to conventional wisdom, the deterministic control of these features has great implications for the local and overall material properties due to heterogeneous distribution of stresses and strains. The introduction of deformable and shape memory substrates especially allow for facile and large scale synthesis of various types of out of plane morphologies. We show that a variety of exciting phenomena and applications arise, including tunable surfaces and coatings, robust devices and electronics, adaptive optoelectronics, material toughening, energy storage, and chemical sensing. This new perspective on these otherwise nuisance thin-film phenomena enable new tools for future materials discovery, design, and synthesis with the ever growing library of 2D atomically thin materials.
Gatos, H C
1962-08-03
The role of crystalline structure in the surface reactivity of predominantly covalent materials has been examined in terms of chemical bonding concepts. In this context a solid surface can be viewed as a giant lattice defect characterized by dangling bonds. Although it is difficult, at the present stage of development of the quantum mechanical approach to surfaces, to define precisely the perturbations resulting from the abrupt termination of the lattice at the surface, a host of experimental observations can be understood by assuming displacements of surface atoms and distortions of bonding configurations in accordance with simple chemical bonding principles. A purely atomistic approach has been shown to account not only for the chemical behavior but also for certain structural and electrical characteristics of the surfaces considered. A number of phenomena, such as crystal growth and the behavior of certain lattice defects (for example, dislocations), are intimately related to the presence of dangling bonds and the associated distortions of the lattice at the surface (32).
Chen, Ran; Riviere, Jim E
2017-01-01
Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.
Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J
2015-12-01
Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.
NASA Technical Reports Server (NTRS)
Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.
1985-01-01
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.
Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho
2018-03-01
We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.
Selective Deposition of SiO2 on Ion Conductive Area of Soda-lime Glass Surface
Sakai, Daisuke; Harada, Kenji; Hara, Yuichiro; Ikeda, Hiroshi; Funatsu, Shiro; Uraji, Keiichiro; Suzuki, Toshio; Yamamoto, Yuichi; Yamamoto, Kiyoshi; Ikutame, Naoki; Kawaguchi, Keiga; Kaiju, Hideo; Nishii, Junji
2016-01-01
Selective deposition of SiO2 nanoparticles was demonstrated on a soda-lime glass surface with a periodic sodium deficient pattern formed using the electrical nanoimprint. Positively charged SiO2 particles generated using corona discharge in a cyclic siloxane vapor, were selectively deposited depending on the sodium pattern. For such phenomena to occur, the sodium ion migration to the cathode side was indispensable to the electrical charge compensation on the glass surface. Therefore, the deposition proceeded preferentially outside the alkali-deficient area. Periodic SiO2 structures with 424 nm and 180 nm heights were obtained using one-dimensional (6 μm period) and two-dimensional (500 nm period) imprinted patterns. PMID:27291796
Surface-admittance equivalence principle for nonradiating and cloaking problems
NASA Astrophysics Data System (ADS)
Labate, Giuseppe; Alù, Andrea; Matekovits, Ladislau
2017-06-01
In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).
Integrating Satellite, Radar and Surface Observation with Time and Space Matching
NASA Astrophysics Data System (ADS)
Ho, Y.; Weber, J.
2015-12-01
The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.
Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys
NASA Astrophysics Data System (ADS)
Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun
2015-07-01
Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.
Desorption in Mass Spectrometry
Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi
2017-01-01
In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
ERTS-1 observes algal blooms in Lake Erie and Utah Lake
NASA Technical Reports Server (NTRS)
Strong, A. E.
1973-01-01
During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.
Combustion interaction with radiation-cooled chambers
NASA Technical Reports Server (NTRS)
Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.
1990-01-01
Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.
Whisker/Cone growth on the thermal control surfaces experiment no. S0069
NASA Technical Reports Server (NTRS)
Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.
1995-01-01
An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.
Real-time detection of laser-GaAs interaction process
NASA Astrophysics Data System (ADS)
Jia, Zhichao; Li, Zewen; Lv, Xueming; Ni, Xiaowu
2017-05-01
A real-time method based on laser scattering technology was used to detect the interaction process of GaAs with a 1080 nm laser. The detector collected the scattered laser beam from the GaAs wafer. The main scattering sources were back surface at first, later turn into front surface and vapor, so scattering signal contained much information of the interaction process. The surface morphologies of GaAs with different irradiation times were observed using an optical microscope to confirm occurrence of various phenomena. The proposed method is shown to be effective for the real-time detection of GaAs. By choosing a proper wavelength, the scattering technology can be promoted in detection of thicker GaAs wafer or other materials.
Huang, Xian-Rong; Peng, Ru-Wen
2010-04-01
Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.
A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles
NASA Astrophysics Data System (ADS)
Hauser, Andreas W.; Schnedlitz, Martin; Ernst, Wolfgang E.
2017-06-01
A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells.
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Wu, Jianzhong
2017-07-01
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.
NASA Astrophysics Data System (ADS)
Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi
The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.
Neupane, Madhab; Xu, Su-Yang; Sankar, R.; ...
2015-08-20
Here we report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb 1more » $${-}$$xSnxSe, as a function of various material parameters including composition x, temperature T , and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states’ response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi 2Se 3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb 1$${-}$$xSnxSe are a valuable materials guide to realize new topological phenomena.« less
Acoustic-gravity waves generated by atmospheric and near-surface sources
NASA Astrophysics Data System (ADS)
Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.
2013-04-01
Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented. The ionospheric footprints of atmospheric disturbances are given. The effects of AGW evolution after launching the rockets are studied. One of the possible applications of RT imaging of wavelike disturbances is the study of AGW and TID as probable precursors of the earthquakes. The key difficulty here is to distinguish between the AGW and atmospheric and ionospheric disturbances of non-seismic nature (for example, those caused by the enhanced solar-geomagnetic activity), which can be done by analyzing spatial two-dimensional and three-dimensional structures revealed by tomographic methods. The examples of AGW RT imaging based on the real experimental satellite data measured in regions of the Europe, North America and Asia are demonstrated. The example of AGW and TID generation by the tsunami wave after the Tohoku earthquake is presented. Our results prove the capability of RT methods to detect wavelike disturbances in the ionosphere, which are caused by the near-surface sources, and to distinguish between these disturbances and the influence from the atmosphere and space. The work was supported by the Russian Foundation for Basic Research (grants 11-05-01157 and 13-05-01122 ).
Lattice Boltzmann Modeling of Complex Flows for Engineering Applications
NASA Astrophysics Data System (ADS)
Montessori, Andrea; Falcucci, Giacomo
2018-01-01
Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LB, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. In this book, the authors present the most recent advances of the application of the LB to complex flow phenomena of scientific and technical interest with focus on the multiscale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Numerical Simulation of Atomization in Nozzle Injection Flow
NASA Astrophysics Data System (ADS)
Fan, Qinyin; Guo, Chenhai; Takagi, Tosimi; Narumiya, Kikuo; Hattori, Hiroshi
At the initial stage of injection, the injection flow has not yet broken up and in a range of small atmosphere pressure (16˜500KPa), the tip of the injection flow always forms a shape of mushroom. [1] [2] Moreover, the umbrella of the mushroom is always very big and its root is always very thin, especially when the atmosphere pressure is relatively low (88KPa, or 100mmHg). These phenomena are not known popularly and the reason of mushroom formation is not clear. In this paper, with the MARS method for simulating free surface, analysis of injection flow is practiced. The phenomena are reproduced and the reason is cleared that the formation of the mushroom is induced by the momentum exchange between the injection fuel flow with very high speed and the very complex flow of the air.
Čejková, Jitka; Banno, Taisuke; Hanczyc, Martin M; Štěpánek, František
2017-01-01
Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter. It is argued that droplets can be considered as liquid robots possessing some characteristics of living systems, and such properties can be applied to unconventional computing through maze solving or operation in logic gates. In particular, the lifelike properties and behavior of liquid robots, namely (i) movement, (ii) self-division, and (iii) group dynamics, will be discussed.
Capillary channel flow experiments aboard the International Space Station
NASA Astrophysics Data System (ADS)
Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.
2013-12-01
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
The Fourth Law of Motion in Classical Mechanics and Electrodynamics
NASA Astrophysics Data System (ADS)
Pinheiro, Mario J.
2010-01-01
Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.
Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces
NASA Technical Reports Server (NTRS)
Feo, A.; Vargas, M.; Sor, A.
2012-01-01
This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
NASA Astrophysics Data System (ADS)
Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie
2017-04-01
Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.
Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru
2014-01-01
Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.
Experimental study of elliptical jet from sub to supercritical conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2014-04-15
The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less
NASA Astrophysics Data System (ADS)
Nachshon, Uri; Shahraeeni, Ebrahim; Or, Dani; Dragila, Maria; Weisbrod, Noam
2011-12-01
Evaporation of saline solutions from porous media, common in arid areas, involves complex interactions between mass transport, energy exchange and phase transitions. We quantified evaporation of saline solutions from heterogeneous sand columns under constant hydraulic boundary conditions to focus on effects of salt precipitation on evaporation dynamics. Mass loss measurements and infrared thermography were used to quantify evaporation rates. The latter method enables quantification of spatial and temporal variability of salt precipitation to identify its dynamic effects on evaporation. Evaporation from columns filled with texturally-contrasting sand using different salt solutions revealed preferential salt precipitation within the fine textured domains. Salt precipitation reduced evaporation rates from the fine textured regions by nearly an order of magnitude. In contrast, low evaporation rates from coarse-textured regions (due to low capillary drive) exhibited less salt precipitation and consequently less evaporation rate suppression. Experiments provided insights into two new phenomena: (1) a distinct increase in evaporation rate at the onset of evaporation; and (2) a vapor pumping mechanism related to the presence of a salt crust over semidry media. Both phenomena are related to local vapor pressure gradients established between pore water and the surface salt crust. Comparison of two salts: NaCl and NaI, which tend to precipitate above the matrix surface and within matrix pores, respectively, shows a much stronger influence of NaCl on evaporation rate suppression. This disparity reflects the limited effect of NaI precipitation on matrix resistivity for solution and vapor flows.
Surface science in hernioplasty: The role of plasma treatments
NASA Astrophysics Data System (ADS)
Nisticò, Roberto; Magnacca, Giuliana; Martorana, Selanna
2017-10-01
The aim of this review is to clarify the importance of surface modifications induced in biomaterials for hernia-repair application. Starting from the pioneering experiences involving proto-materials as ancient prosthesis, a historical excursus between the biomaterials used in hernioplasty was realized. Subsequently, after the revolutionary discovery of stereoregular polymerization followed by the PP application in the biomedical field performed by the surgeon F. Usher, a comparative study on different hernia-repair meshes available was realized in order to better understand all the outstanding problems and possible future developments. Furthermore, since many unsolved problems on prosthetic devices implantation are linked to phenomena occurring at the interface between the biomaterials surface and the body fluids, the importance of surface science in hernioplasty was highlighted and case studies of new surface-modified generations of prosthesis presented. The results discussed in the following evidence how the surface study are becoming increasingly important for a proper knowledge of issues related to the interaction between the living matter and the artificial prostheses.
Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei
2016-01-01
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378
Song, Qi; Mi, Jian; Zhao, Dan; ...
2016-11-11
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less
Hyperbolic Harmonic Mapping for Surface Registration
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-01-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948
Giant and switchable surface activity of liquid metal via surface oxidation
Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.
2014-01-01
We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767
Ievlev, Anton V.; Maksymovych, Petro; Trassin, Morgan; ...
2016-10-11
Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence towards the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristinemore » surfaces contain ions (e.g. Cl -) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. Finally, at higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.« less
Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance
NASA Astrophysics Data System (ADS)
Balabajew, Marco; van Engers, Christian D.; Perkin, Susan
2017-12-01
The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.
Effects of space environment on structural materials
NASA Technical Reports Server (NTRS)
Miglionico, C.; Stein, C.; Roybal, R.; Robertson, R.; Murr, L. E.; Quinones, S.; Rivas, J.; Marquez, B.; Advani, A. H.; Fisher, W. W.
1992-01-01
A preliminary study of materials exposed in space in a low Earth orbit for nearly six years has revealed a wide range of micrometeorite or microparticle impact craters ranging in size from 1 to 1000 micron in diameter, debris particles from adjacent and distant materials systems, reaction products, and other growth features on the specimen surfaces, and related phenomena. The exposed surface features included fine grained and nearly amorphous materials as well as a large array of single crystal particles. A replication type, lift off technique was developed to remove reaction products and debris from the specimen surfaces in order to isolate them from the background substrate without creating microchemical or microstructural artifacts or alterations. This resulted in surface features resting on a carbon support film which was virtually invisible to observation by electron microscopy and nondispersive x ray analysis. Some evidence for blisters on leading edge aluminum alloy surfaces and a high surface region concentration of oxygen determined by Auger electron spectrometry suggests oxygen effects where fluences exceed 10(exp 21) atoms/sq cm.
NASA Astrophysics Data System (ADS)
Wang, Wei; Lv, Dan; Liu, Ying; Yang, Yi; Gao, Zhong-yue; Zhao, Xue-ru
2017-12-01
A Monte Carlo simulation has been used to study the magnetic properties and the critical behaviors of a ferrimagnetic mixed spin-1 and spin-3/2 Ising system with two alternating layers on a honeycomb lattice. Particular emphasis is given to the effects of the surface exchange coupling R1 = J1S/J1, R2 = J2S/J1, R3 = J3S/J1, the surface single-ion anisotropy DS/J1 and the layer thickness L on the magnetizations, phase diagrams and hysteresis loops of the system. Some characteristic phenomena have been found, depending on the competition among the surface parameters R1, R2, R3 and DS. In particular, we have also found that, for appropriate values of surface parameters, there exist three critical surface parameters R1C, R3C and DSC/J1, where the phase transition temperature Tc is independent of the layer thickness L.
Photospheric Activity in Selected Be STARS: lambda Eri and gamma Cas
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1994-01-01
Recent observations of rapid variations in optical He I lines, X-rays, and FUV wavelengths in the prototypical classical Be stars lambda Eri and star gamma Cas hint that the violent processes occur on the surfaces of these stars almost all the time. We suggest that of these phenomena show greater similarities with magnetic flaring than any other process through to occur on stars.
Investigation of lubricants under boundary friction
NASA Technical Reports Server (NTRS)
Heidebroek, E; Pietsch, E
1942-01-01
Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."
D-1 report: The first German spacelab mission
NASA Technical Reports Server (NTRS)
1985-01-01
Introduction of a new popular magazine on the DI mission, the first West German Space mission. The DI project office publishes the magazine. The German sponsored astronauts are to study the gravitational effects of reduced gravity on the human generated processes of the environment. Other areas of concern are boundary surface and transport phenomena, physical chemisty and process engineering, metals and composite materials, and single crystals.
23RD International Conference on Phenomena in Ionized Gases, Volume 3
1998-12-01
discharges, and high pressure glows; arcs; high frequency discharges; ionospheric magnetospheric, and astrophysical plasmas; plasma diagnostic methods ...kf) in pulse reflectometry. Second, it different frequencies , and an Abel inversion is gives a quantitative model of the behaviour of the wave... design V method in the case of narrow mutual pitch of surface electrodes for high concentration ozone generation. 2. Experimental setup 20 The electrode
Establishment of a Cutting Fluid Control System (Phase 1)
1981-01-01
that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with
Some New Mathematical Methods for Variational Objective Analysis
NASA Technical Reports Server (NTRS)
Wahba, G.; Johnson, D. R.
1984-01-01
New and/or improved variational methods for simultaneously combining forecast, heterogeneous observational data, a priori climatology, and physics to obtain improved estimates of the initial state of the atmosphere for the purpose of numerical weather prediction are developed. Cross validated spline methods are applied to atmospheric data for the purpose of improved description and analysis of atmospheric phenomena such as the tropopause and frontal boundary surfaces.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
Airborne ultrasound surface motion camera: Application to seismocardiography
NASA Astrophysics Data System (ADS)
Shirkovskiy, P.; Laurin, A.; Jeger-Madiot, N.; Chapelle, D.; Fink, M.; Ing, R. K.
2018-05-01
The recent achievements in the accelerometer-based seismocardiography field indicate a strong potential for this technique to address a wide variety of clinical needs. Recordings from different locations on the chest can give a more comprehensive observation and interpretation of wave propagation phenomena than a single-point recording, can validate existing modeling assumptions (such as the representation of the sternum as a single solid body), and provide better identifiability for models using richer recordings. Ultimately, the goal is to advance our physiological understanding of the processes to provide useful data to promote cardiovascular health. Accelerometer-based multichannel system is a contact method and laborious for use in practice, and also even ultralight accelerometers can cause non-negligible loading effects. We propose a contactless ultrasound imaging method to measure thoracic and abdominal surface motions, demonstrating that it is adequate for typical seismocardiogram (SCG) use. The developed method extends non-contact surface-vibrometry to fast 2D mapping by originally combining multi-element airborne ultrasound arrays, a synthetic aperture implementation, and pulsed-waves. Experimental results show the ability of the developed method to obtain 2D seismocardiographic maps of the body surface 30 × 40 cm2 in dimension, with a temporal sampling rate of several hundred Hz, using ultrasound waves with the central frequency of 40 kHz. Our implementation was validated in-vivo on eight healthy human participants. The shape and position of the zone of maximal absolute acceleration and velocity during the cardiac cycle were also observed. This technology could potentially be used to obtain more complete cardio-vascular information than single-source SCG in and out of clinical environments, due to enhanced identifiability provided by the distributed measurements, and observation of propagation phenomena.
Du, Huijing; Xu, Zhiliang; Anyan, Morgen; Kim, Oleg; Leevy, W. Matthew; Shrout, Joshua D.; Alber, Mark
2012-01-01
This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces. PMID:22947877
Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pöschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten
2015-06-21
The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications.