NASA Astrophysics Data System (ADS)
Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2011-10-01
A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.
Characteristic analysis of surface waves in a sensitive plasma absorption probe
NASA Astrophysics Data System (ADS)
You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong
2018-01-01
With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.
Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R
2014-01-01
The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.
Plasmon resonances, anomalous transparency, and reflectionless absorption in overdense plasmas
NASA Astrophysics Data System (ADS)
Smolyakov, A.; Sternberg, N.
2018-03-01
The structure of the surface and standing wave resonances and their coupling in the configuration of the overdense plasma slab with a single diffraction grating are studied, using impedance matching techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating parameters which define resonance conditions for absolute transparency in the ideal plasma and reflectionless absorption in a plasma with dissipation.
Efficient energy absorption of intense ps-laser pulse into nanowire target
NASA Astrophysics Data System (ADS)
Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.
2016-06-01
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu
1988-12-01
An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.
Efficient energy absorption of intense ps-laser pulse into nanowire target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habara, H.; Honda, S.; Katayama, M.
The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less
NASA Astrophysics Data System (ADS)
Choudhury, Faraz Anwar
A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR and FTIR measurements both reveal that the oxygen plasma exposure leads to surface oxidation of the silicon dioxide film and the formation of a denser surface layer which restricts the transmission of the radicals through the film. It was found that the extent of modification of the film partially depends on the radical dose. The calculated enthalpies of the reactions show that they are all exothermic reactions, however, the radicals need enough energy to overcome the activation energy for the reaction to take place.
Adhesion of Blood Plasma Proteins and Platelet-rich Plasma on l-Valine-Based Poly(ester urea).
Childers, Erin P; Peterson, Gregory I; Ellenberger, Alex B; Domino, Karen; Seifert, Gabrielle V; Becker, Matthew L
2016-10-10
The competitive absorption of blood plasma components including fibrinogen (FG), bovine serum albumin (BSA), and platelet-rich plasma (PRP) on l-valine-based poly(ester urea) (PEU) surfaces were investigated. Using four different PEU polymers, possessing compositionally dependent trends in thermal, mechanical, and critical surface tension measurements, water uptake studies were carried out to determine in vitro behavior of the materials. Quartz crystal microbalance (QCM) measurements were used to quantify the adsorption characteristics of PRP onto PEU thin films by coating the surfaces initially with FG or BSA. Pretreatment of the PEU surfaces with FG inhibited the adsorption of PRP and BSA decreased the absorption 4-fold. In vitro studies demonstrated that cells cultured on l-valine-based PEU thin films allowed attachment and spreading of rat aortic cells. These measurements will be critical toward efforts to use this new class of materials in blood-contacting biomaterials applications.
Heating and cooling of the earth's plasma sheet
NASA Technical Reports Server (NTRS)
Goertz, C. K.
1990-01-01
Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.
Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment
NASA Astrophysics Data System (ADS)
Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.
2013-05-01
In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.
2008-05-01
We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.
Investigation of rf power absorption in the plasma of helicon ion source.
Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V
2008-02-01
The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.
Prospects of target nanostructuring for laser proton acceleration
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-01-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479
Prospects of target nanostructuring for laser proton acceleration.
Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-14
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Prospects of target nanostructuring for laser proton acceleration
NASA Astrophysics Data System (ADS)
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation
Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong
2015-01-01
Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653
Characterization of an atmospheric pressure air plasma source for polymer surface modification
NASA Astrophysics Data System (ADS)
Yang, Shujun; Tang, Jiansheng
2013-10-01
An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU
Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla
2017-01-01
The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.
Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla
2017-01-01
The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions. PMID:28904833
Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2015-01-01
The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.
Surface characterization and adhesion of oxygen plasma-modified LARC-TPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, J.W.; Wightman, J.P.
1992-01-01
LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment of adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact angle analysis, ellipsometry and high resolution scanning electron microscopy (HR-SEM). A 180{degree} peel test with an acrylate-based pressure sensitive adhesive as a flexible adherend was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, whilemore » creating a more hydrophilic, polar surface, also caused chain scission resulting in the formation of a weak boundary layer which inhibited adhesion.« less
Surface modification of paper on a continuous atmospheric-pressure-plasma system
NASA Astrophysics Data System (ADS)
Cruz-Barba, Luis Emilio
Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Characteristics of plasma scalds in multilayer dielectric films
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Zhao, Yuan'an; Li, Dawei; Hu, Guohang; Gao, Yanqi; Fan, Zhengxiu; Shao, Jianda
2011-07-01
Plasma scalding is one of the most typical laser damage morphologies induced by a nanosecond laser with a wavelength of 1053nm in HfO2/SiO2 multilayer films. In this paper, the characteristics of plasma scalds are systematically investigated with multiple methods. The scalding behaves as surface discoloration under a microscope. The shape is nearly circular when the laser incidence angle is close to normal incidence and is elliptical at oblique incidence. The nodular-ejection pit is in the center of the scalding region when the laser irradiates at the incidence angle close to normal incidence and in the right of the scalding region when the laser irradiates from left to right at oblique incidence. The maximum damage size of the scalding increases with laser energy. The edge of the scalding is high compared with the unirradiated film surface, and the region tending to the center is concave. Plasma scald is proved to be surface damage. The maximum depth of a scald increases with its size. Tiny pits of nanometer scale can be seen in the scalding film under a scanning electronic microscope at a higher magnification. The absorptions of the surface plasma scalds tend to be approximately the same as the lower absorptions of test sites without laser irradiation. Scalds do not grow during further illumination pulses until 65J/cm2. The formation of surface plasma scalding may be related to the occurrence of the laser-supported detonation wave.
NASA Astrophysics Data System (ADS)
Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei
2010-12-01
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment
NASA Astrophysics Data System (ADS)
Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.
2010-08-01
Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.
Features of plasma produced by excimer laser at low intensities
NASA Astrophysics Data System (ADS)
Vergunova, G. A.; Magunov, A. I.; Dyakin, V. M.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Batani, D.; Bossi, S.; Bernardinello, A.; Flora, F.; di Lazzaro, P.; Bollanti, S.; Lisi, N.; Letardi, T.; Reale, A.; Palladino, L.; Scafati, A.; Reale, L.; Osterheld, A. L.; Goldstein, W. H.
1997-04-01
A plasma, created at interaction of short-wavelength excimer laser radiation with flat targets was investigated (tlas = 12 ns, λlas = 0.308 μm, qlas = 4 - 8 × 1012 W/cm2) with the help of various x-ray spectroscopic methods. The comparison of shapes and intensities of some observable spectral lines of H-, He and Li-like ions of Na, Mg and Al with results of model calculations has allowed to determine space distributions of laser plasma parameters up to distances of 0.4 mm from the target surface. Comparison of obtained results with theoretical models of absorption of short-wavelength radiation in a plasma shows, that the absorption of short-wavelength laser radiation in a plasma (at considered values of laser flux density) is executed due to inverse bremsstrahlung process in the areas with Ne < Ne, crit..
Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation
NASA Astrophysics Data System (ADS)
Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.
2018-02-01
Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Karmali, Priya Prakash; Chao, Ying; Park, Ji-Ho (Joe); Sailor, Michael J.; Ruoslahti, Erkki; Esener, Sadik C.; Simberg, Dmitri
2012-01-01
Premature recognition and clearance of nanoparticulate imaging and therapeutic agents by macrophages in the tissues can dramatically reduce both the nanoparticle half-life and delivery to the diseased tissue. Grafting nanoparticles with hydrogels prevents nanoparticulate recognition by liver and spleen macrophages and greatly prolongs circulation times in vivo. Understanding the mechanisms by which hydrogels achieve this “stealth” effect has implications for the design of long-circulating nanoparticles. Thus, the role of plasma protein absorption in the hydrogel effect is not yet understood. Short-circulating dextran-coated iron oxide nanoparticles could be converted into stealth hydrogel nanoparticles by crosslinking with 1-chloro-2,3-epoxypropane. We show that hydrogelation did not affect the size, shape and zeta potential, but completely prevented the recognition and clearance by liver macrophages in vivo. Hydrogelation decreased the number of hydroxyl groups on the nanoparticle surface and reduced the binding of the anti-dextran antibody. At the same time, hydrogelation did not reduce the absorption of cationic proteins on the nanoparticle surface. Specifically, there was no effect on the binding of kininogen, histidine-rich glycoprotein, and protamine sulfate to the anionic nanoparticle surface. In addition, hydrogelation did not prevent activation of plasma kallikrein on the metal oxide surface. These data suggest that: (a) a stealth hydrogel coating does not mask charge interactions with iron oxide surface and (b) the total blockade of plasma protein absorption is not required for maintaining iron oxide nanoparticles’ long-circulating stealth properties. These data illustrate a novel, clinically promising property of long-circulating stealth nanoparticles. PMID:22243419
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-01-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties. PMID:27877837
Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers
NASA Astrophysics Data System (ADS)
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M.; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiOx) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiOx coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiOx coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiOx films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.
Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk
2015-10-01
We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.
Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato
NASA Astrophysics Data System (ADS)
Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG
2018-04-01
The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.
Analysis of Voyager images of Europa - plasma bombardment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.E.; Nelson, M.L.; Nccord, T.B.
1988-09-01
Voyager-derived data on the albedos of Europa are presently photometrically corrected and converted into average, single-scattering form, in order to analyze them as a function of angular distance from the apex of orbital motion. A hypothesized magnetospheric modification of the Europa surface is confirmed by the UV absorption found in the 0.35-micron filter data; this absorption directly correlates with the longitudinal ion implantation distribution in both terrain types. A red spectrum is found in both terrain types as well, and is found to be constant across the surface. A uniform increase is noted in the dark terrain absorption over thatmore » in the bright terrain. 43 references.« less
RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface
NASA Astrophysics Data System (ADS)
Sahin, Halil Turgut
2013-01-01
An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.
Increase in the energy absorption of pulsed plasma by the formation of tungsten nanostructure
NASA Astrophysics Data System (ADS)
Sato, D.; Ohno, N.; Domon, F.; Kajita, S.; Kikuchi, Y.; Sakuma, I.
2017-06-01
The synergistic effects of steady-state and pulsed plasma irradiation to material have been investigated in the device NAGDIS-PG (NAGoya DIvertor Simulator with Plasma Gun). The duration of the pulsed plasma was ~0.25 ms. To investigate the pulsed plasma heat load on the materials, we developed a temperature measurement system using radiation from the sample in a high time resolution. The heat deposited in response to the transient plasma on a tungsten surface was revealed by using this system. When the nanostructures were formed by helium plasma irradiation, the temperature increase on the bulk sample was enhanced. The result suggested that the amount of absorbed energy on the surface was increased by the formation of nanostructures. The possible mechanisms causing the phenomena are discussed with the calculation of a sample temperature in response to the transient heat load.
Plasma-driven self-organization of Ni nanodot arrays on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, I.; Ostrikov, K.; Diwan, K.
The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles.
Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
Kemp, A J; Divol, L
2012-11-09
We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2018-01-01
The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.
Kim, YongBok; Kim, GeunHyung
2015-01-01
Herein, poly(ɛ-caprolactone) (PCL) surfaces were treated to form various roughness values (R(a)=290-445 nm) and polar functional groups on the surfaces using a plasma-etching process, followed by immersion into simulated body fluid (SBF) for apatite formation. The surface morphology, chemical composition, and mean roughness of the plasma-etched PCL surfaces were measured, and various physical and morphological properties (water contact angles, protein absorption ability, and crystallite size of the apatite layer) of the in vitro mineralized PCL surfaces were evaluated. The roughened PCL surface P-3, which was treated with a sufficient plasma exposure time (4 h), achieved homogeneously distributed apatite formation after soaking in SBF for 7 days, as compared with other surfaces that were untreated or plasma-treated for 30 min or 2 h. Furthermore, to demonstrate their feasibility as a biomimetic surface, pre-osteoblast cells (MC3T3-E1) were cultured on the mineralized PCL surfaces, and cell viability, DAPI-phalloidin fluorescence assay, and alizarin red-staining of the P-3 surface were highly improved compared to the P-1 surface treated with a 30-min plasma exposure time; compared to untreated mineralized PCL surface (N-P), P-3 showed even greater improvements in cell viability and DAPI-phalloidin fluorescence assay. Based on these results, we found that the mineralized PCL surface supplemented with the appropriate plasma treatment can be implicitly helpful to achieve rapid hard tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.
Electron Bernstein waves in spherical torus plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveliev, A. N.
2006-11-30
Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasmamore » interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.« less
Contour forming of metals by laser peening
Hackel, Lloyd; Harris, Fritz
2002-01-01
A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.
NASA Astrophysics Data System (ADS)
Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.
2018-03-01
Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, Kh. A.; Gabdullin, M. T.; Gritsenko, L. V.
The photoluminescence and optical absorption spectra and electrical properties of ZnO films grown by the metal–organic chemical vapor deposition and hydrothermal techniques, subjected to heat treatments and plasma treatment in a hydrogen atmosphere, are studied. It is shown that the adsorption of oxygen at grain boundaries upon annealing in an oxidizing atmosphere determines the electrical properties of the films. Vacuum annealing improves the electrical properties of the samples after degradation induced by annealing in air. Treatment in hydrogen plasma passivates surface states at the grain boundaries. The intrinsic photoluminescence intensity after plasma treatment is higher in the case of increasedmore » amounts of oxygen adsorbed at grain surfaces upon annealing in air. Surface states involving oxygen and hydrogen atoms are responsible for the high-intensity intrinsic photoluminescence band.« less
Owen, Peter; Salton, Milton R. J.
1977-01-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722
Owen, P; Salton, M R
1977-12-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.
Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions
NASA Astrophysics Data System (ADS)
Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.
2008-04-01
This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk
2016-11-15
The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.
NASA Astrophysics Data System (ADS)
Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun
2014-03-01
Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.
Constitutive apical membrane recycling in Aplysia enterocytes.
Keeton, Robert Aaron; Runge, Steven William; Moran, William Michael
2004-11-01
In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.
Classical plasma dynamics of Mie-oscillations in atomic clusters
NASA Astrophysics Data System (ADS)
Kull, H.-J.; El-Khawaldeh, A.
2018-04-01
Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].
Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning
2014-03-21
Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.
NASA Astrophysics Data System (ADS)
Vempaire, D.; Cunge, G.
2009-01-01
Measuring decay rates of radical densities in the afterglow of pulsed plasmas is a powerful approach to determine their gas phase and surface loss kinetics. We show that this measurement can be achieved by absorption spectroscopy with low cost and simple apparatus by using light emitting diodes as a light source. The feasibility is demonstrated by monitoring BCl radicals in pulsed low pressure high-density BCl3 plasmas. It is shown that BCl is lost both in the gas phase by reacting with Cl2 with a cross section of 9 Å2 and in the chamber walls with a sticking coefficient of about 0.3.
NASA Astrophysics Data System (ADS)
Jaafarian, Rokhsare; Ganjovi, Alireza; Etaati, Gholamreza
2018-01-01
In this work, a Particle in Cell-Monte Carlo Collision simulation technique is used to study the operating parameters of a typical helicon plasma source. These parameters mainly include the gas pressure, externally applied static magnetic field, the length and radius of the helicon antenna, and the frequency and voltage amplitude of the applied RF power on the helicon antenna. It is shown that, while the strong radial gradient of the formed plasma density in the proximity of the plasma surface is substantially proportional to the energy absorption from the existing Trivelpiece-Gould (TG) modes, the observed high electron temperature in the helicon source at lower static magnetic fields is significant evidence for the energy absorption from the helicon modes. Furthermore, it is found that, at higher gas pressures, both the plasma electron density and temperature are reduced. Besides, it is shown that, at higher static magnetic fields, owing to the enhancement of the energy absorption by the plasma charged species, the plasma electron density is linearly increased. Moreover, it is seen that, at the higher spatial dimensions of the antenna, both the plasma electron density and temperature are reduced. Additionally, while, for the applied frequencies of 13.56 MHz and 27.12 MHz on the helicon antenna, the TG modes appear, for the applied frequency of 18.12 MHz on the helicon antenna, the existence of helicon modes is proved. Moreover, by increasing the applied voltage amplitude on the antenna, the generation of mono-energetic electrons is more probable.
Interaction of laser pulse with confined plasma during exit surface nanosecond laser damage
NASA Astrophysics Data System (ADS)
Rubenchik, Alexander M.; Feit, Michael D.; Demos, Stavros G.
2013-12-01
Interpretation of spatial and time resolved images of rear surface ns laser damage in dielectrics requires understanding of the dynamic interaction of the incoming laser beam with the confined expanding plasma in the material. The detailed kinetics of the plasma, involving both expansion and retraction, depends on details of reflection and absorption in the hot material. The growth of the hot region is treated using a model previously developed to understand laser peening. The pressure is found to scale as the square root of laser intensity and drops off slowly after energy deposition is complete. For the conditions of our experimental observations in fused silica, our model predicts a pressure of about 9 GPa and a surface expansion velocity of about 1.5 km/sec, in good agreement with experimental observation.
Synthesis and energy applications of mesoporous titania thin films
NASA Astrophysics Data System (ADS)
Islam, Syed Z.
The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.
NASA Astrophysics Data System (ADS)
Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon
2018-04-01
Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomashuk, A.L.; Dianov, E.M.; Golant, K.M.
Gamma-radiation-induced absorption spectra (2.15 MGy(Si)) are compared in N-doped and pure silica fibers fabricated by surface plasma CVD-process under different regimes with the aim to reveal the chief absorption mechanisms in the telecom spectral windows and to work out an optimum fiber design. The long wavelength absorption edge is shown to be the main absorption mechanism at megagray doses. Its value increases with increasing bonded hydrogen concentration in the fiber glass network and is slightly greater in N-doped fibers. No nitrogen-related color centers have been revealed in the short wavelength loss edge, which is determined by chlorine impurity in silica.
Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.
Rochau, Gregory A; Bailey, J E; Macfarlane, J J
2005-12-01
High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.
NASA Astrophysics Data System (ADS)
Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen
2011-08-01
In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications
NASA Astrophysics Data System (ADS)
Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul
2015-09-01
The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.
Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations.
Hindmarsh, Peter C; Charmandari, Evangelia
2015-04-01
Hydrocortisone therapy should be individualized in congenital adrenal hyperplasia (CAH) patients to avoid over and under replacement. We have assessed how differences in absorption and half-life of cortisol influence glucocorticoid exposure. Forty-eight patients (21 M) aged between 6·1 and 20·3 years with CAH due to CYP21A2 deficiency were studied. Each patient underwent a 24-h plasma cortisol profile with the morning dose used to calculate absorption parameters along with an intravenous (IV) hydrocortisone (15 mg/m(2) body surface area) bolus assessment of half-life. Parameters derived were maximum plasma concentration (Cmax ), time of maximum plasma concentration (tmax ), time to attaining plasma cortisol concentration <100 nmol/l and half-life of cortisol. Mean half-life was 76·5 ± 5·2 (range 40-225·3) min, Cmax 780·7 ± 61·6 nmol/l and tmax 66·7 (range 20-118) min. Time taken to a plasma cortisol concentration less than 100 nmol/l was 289 (range 140-540) min. Those with a fast half-life and slow tmax took longest to reach a plasma cortisol concentration less than 100 nmol/l (380 ± 34·6 min), compared to those with a slow half-life and fast tmax (298 ± 34·8 min) and those with a fast half-life and fast tmax (249·5 ± 14·4 min) (One-way anovaF = 4·52; P = 0·009). Both rate of absorption and half-life of cortisol in the circulation play important roles in determining overall exposure to oral glucocorticoid. Dose regimens need to incorporate estimates of these parameters into determining the optimum dosing schedule for individuals. © 2014 John Wiley & Sons Ltd.
Surface thermohardening by the fast-moving electric arch
NASA Astrophysics Data System (ADS)
Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.
2017-01-01
This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.
Microwave Induced Direct Bonding of Single Crystal Silicon Wafers
NASA Technical Reports Server (NTRS)
Budraa, N. K.; Jackson, H. W.; Barmatz, M.
1999-01-01
We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.
Space-dependent characterization of laser-induced plasma plume during fiber laser welding
NASA Astrophysics Data System (ADS)
Xiao, Xianfeng; Song, Lijun; Xiao, Wenjia; Liu, Xingbo
2016-12-01
The role of a plasma plume in high power fiber laser welding is of considerable interest due to its influence on the energy transfer mechanism. In this study, the space-dependent plasma characteristics including spectrum intensity, plasma temperature and electron density were investigated using optical emission spectroscopy technique. The plasma temperature was calculated using the Boltzmann plot of atomic iron lines, whereas the electron density was determined from the Stark broadening of the Fe I line at 381.584 nm. Quantitative analysis of plasma characteristics with respect to the laser radiation was performed. The results show that the plasma radiation increases as the laser power increases during the partial penetration mode, and then decreases sharply after the initiation of full penetration. Both the plasma temperature and electron density increase with the increase of laser power until they reach steady state values after full penetration. Moreover, the hottest core of the plasma shifts toward the surface of the workpiece as the penetration depth increases, whereas the electron density is more evenly distributed above the surface of the workpiece. The results also indicate that the absorption and scattering of nanoparticles in the plasma plume is the main mechanism for laser power attenuation.
NASA Astrophysics Data System (ADS)
Costa, G.; Orlando, S.; Peres, G.; Argiroffi, C.; Bonito, R.
2017-01-01
Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods: We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results: We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W.
Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabricationmore » result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.« less
Kinetics and Chemistry of Ionization Wave Discharges Propagating Over Dielectric Surfaces
NASA Astrophysics Data System (ADS)
Petrishchev, Vitaly
Experimental studies of near-surface ionization wave electric discharges generated by high peak voltage (20-30 kV), nanosecond duration pulses (full width at half-maximum 50-100 ns) of positive and negative polarity and propagating over dielectric surfaces have been performed. A novel way to sustain diffuse, reproducible, ns pulse surface plasmas at a liquid-vapor interface is demonstrated at buffer gas pressures ranging from 10 to 200 Torr. Generation of surface ionization waves well reproduced shot-to-shot and sustaining diffuse near-surface plasmas is one of the principal advantages of the use of ns pulse discharge waveforms. This makes possible characterization of these plasmas in repetitively pulsed experiments. Numerous applications of these plasmas include low-temperature plasma assisted combustion, plasma fuel reforming, plasma flow control, plasma materials processing, agriculture, biology, and medicine. The objectives of the present work are (i) to demonstrate that surface ionization wave discharge plasmas sustained at a liquid-vapor interface can be used as an experimental platform for studies of near-surface plasma chemical reaction kinetics, at the conditions when the interface acts as a high-yield source of radical species, and (ii) to obtain quantitative insight into dynamics, kinetics and chemistry of surface ionization wave discharges and provide experimental data for validation of kinetic models, to assess their predictive capability. Generation of the initial radical pool may trigger a number of plasma chemical processes leading to formation of a variety of stable product species, depending on the initial composition of the liquid and the buffer gas flow. One of the products formed and detected during surface plasma / liquid water interaction is hydroxyl radical, which is closely relevant to applications of plasmas for biology and medicine. The present work includes detailed studies of surface ionization wave discharges sustained in different buffer gases over solid and liquid dielectric surfaces, such as quartz, distilled water, saline solution, and alcohols, over a wide range of pressures. Specific experiments include: measurements of ionization wave speed; plasma emission imaging using a ns gate camera; detection of surface discharge plasma chemistry products using Fourier transform infrared absorption spectroscopy; surface charge dynamics on short (ns) and long (hundreds of mus) time scales; time-resolved electron density and electron temperature measurements in a ns pulse surface discharge in helium by Thomson scattering; spatially-resolved absolute OH and H atom concentration measurements in ns pulse discharges over distilled water by single-photon and two-photon Laser Induced Fluorescence; and schlieren imaging of perturbations generated by a ns pulse dielectric barrier discharge in a surface plasma actuator in quiescent atmospheric pressure air.
NASA Astrophysics Data System (ADS)
Shaw, David; West, Andrew; Bredin, Jerome; Wagenaars, Erik
2016-12-01
Plasma treatments are common for increasing the surface energy of plastics, such as polypropylene (PP), to create improved adhesive properties. Despite the significant differences in plasma sources and plasma properties used, similar effects on the plastic film can be achieved, suggesting a common dominant plasma constituent and underpinning mechanism. However, many details of this process are still unknown. Here we present a study into the mechanisms underpinning surface energy increase of PP using atmospheric-pressure plasmas. For this we use the effluent of an atmospheric-pressure plasma jet (APPJ) since, unlike most plasma sources used for these treatments, there is no direct contact between the plasma and the PP surface; the APPJ provides a neutral, radical-rich environment without charged particles and electric fields impinging on the PP surface. The APPJ is a RF-driven plasma operating in helium gas with small admixtures of O2 (0-1%), where the effluent propagates through open air towards the PP surface. Despite the lack of charged particles and electric fields on the PP surface, measurements of contact angle show a decrease from 93.9° to 70.1° in 1.4 s and to 35° in 120 s, corresponding to a rapid increase in surface energy from 36.4 mN m-1 to 66.5 mN m-1 in the short time of 1.4 s. These treatment effects are very similar to what is found in other devices, highlighting the importance of neutral radicals produced by the plasma. Furthermore, we find an optimum percentage of oxygen of 0.5% within the helium input gas, and a decrease of the treatment effect with distance between the APPJ and the PP surface. These observed effects are linked to two-photon absorption laser-induced fluorescence spectroscopy (TALIF) measurements of atomic oxygen density within the APPJ effluent which show similar trends, implying the importance of this radical in the surface treatment of PP. Analysis of the surface reveals a two stage mechanism for the production of polar bonds on the surface of the polymer: a fast reaction producing carboxylic acid, or a similar ketone, followed by a slower reaction that includes nitrogen from the atmosphere on the surface, producing amides from the ketones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, A. D., E-mail: adc87@cornell.edu; Hoyt, C. L., E-mail: adc87@cornell.edu; Shelkovenko, T. A., E-mail: adc87@cornell.edu
2014-12-15
X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emittedmore » by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization
NASA Astrophysics Data System (ADS)
Wang, Linzhi; Liu, Ying; Chang, Sen
2016-05-01
Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.
Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry
Blomfield, Jeanette; Macmahon, R. A.
1969-01-01
The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543
NASA Astrophysics Data System (ADS)
Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.
2016-06-01
The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.
Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability
NASA Astrophysics Data System (ADS)
Shimizu, K.; Tran, N. A.; Hayashida, K.; Blajan, M.
2016-08-01
Atmospheric plasma is attracting interest for medical applications such as sterilization, treatment of cancer cells and blood coagulation. Application of atmospheric plasma in dermatology has potential as a novel tool for wound healing, skin rejuvenation and treatment of wrinkles. In this study, we investigated the enhancement of percutaneous absorption of dye as alternative agents of transdermal drugs. Hypodermic needles are often the only way to deliver large-molecule drugs into the dermis, although a safe transdermal drug delivery method that does not require needles would be desirable. We therefore explored the feasibility of using atmospheric microplasma irradiation to enhance percutaneous absorption of drugs, as an alternative delivery method to conventional hypodermic needles. Pig skin was used as a biological sample, exposed to atmospheric microplasma, and analyzed by attenuated total reflection-Fourier transform infrared spectroscopy. A tape stripping test, a representative method for evaluating skin barrier performance, was also conducted for comparison. Transepidermal water loss (TEWL) was measured and compared with and without atmospheric microplasma irradiation, to quantify water evaporation from the inner body through the skin barrier. The results show that the stratum corneum, the outermost skin layer, could be chemically and physically modified by atmospheric microplasma irradiation. Physical damage to the skin by microplasma irradiation and an atmospheric plasma jet was also assessed by observing the skin surface. The results suggest that atmospheric microplasma has the potential to enhance percutaneous absorption.
Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph John; Rochau, Gregory Alan; Bailey, James E.
2005-06-01
High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution inmore » each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.« less
Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.
Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin
2016-02-01
Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
NASA Astrophysics Data System (ADS)
Praveen, K. M.; Thomas, Sabu; Grohens, Yves; Mozetič, Miran; Junkar, Ita; Primc, Gregor; Gorjanc, Marija
2016-04-01
The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic features and etching of coir wall, which points to the removal of the first layer of coir fibre. X-ray photoelectron spectroscopy (XPS) analysis revealed that the oxygen content measured for samples treated at 50 Pa increased from initial 18% to about 32%.
NASA Astrophysics Data System (ADS)
Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI
2018-06-01
A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.
Immobilization of biomolecules to plasma polymerized pentafluorophenyl methacrylate.
Duque, Luis; Menges, Bernhard; Borros, Salvador; Förch, Renate
2010-10-11
Thin films of plasma polymerized pentafluorophenyl methacrylate (pp-PFM) offer highly reactive ester groups throughout the structure of the film that allow for subsequent reactions with different aminated reagents and biological molecules. The present paper follows on from previous work on the plasma deposition of pentafluorophenyl methacrylate (PFM) for optimum functional group retention (Francesch, L.; Borros, S.; Knoll, W.; Foerch, R. Langmuir 2007, 23, 3927) and reactivity in aqueous solution (Duque, L.; Queralto, N.; Francesch, L.; Bumbu, G. G.; Borros, S.; Berger, R.; Förch, R. Plasma Process. Polym. 2010, accepted for publication) to investigate the binding of a biologically active peptide known to induce cellular adhesion (IKVAV) and of biochemically active proteins such as BSA and fibrinogen. Analyses of the films and of the immobilization of the biomolecules were carried out using infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The attachment of the biomolecules on pulsed plasma polymerized pentafluorophenyl methacrylate was monitored using surface plasmon resonance spectroscopy (SPR). SPR analysis confirmed the presence of immobilized biomolecules on the plasma polymer and was used to determine the mass coverage of the peptide and proteins adsorbed onto the films. The combined analysis of the surfaces suggests the covalent binding of the peptide and proteins to the surface of the pp-PFM.
The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...
Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)
Bormashenko, Edward; Shapira, Yekaterina; Grynyov, Roman; Whyman, Gene; Bormashenko, Yelena; Drori, Elyashiv
2015-01-01
The impact of cold radiofrequency air plasma on the wetting properties and water imbibition of beans (Phaseolus vulgaris) was studied. The influence of plasma on wetting of a cotyledon and seed coat (testa) was elucidated. It was established that cold plasma treatment leads to hydrophilization of the cotyledon and tissues constituting the testa when they are separately exposed to plasma. By contrast, when the entire bean is exposed to plasma treatment, only the external surface of the bean is hydrophilized by the cold plasma. Water imbibition by plasma-treated beans was studied. Plasma treatment markedly accelerates the water absorption. The crucial role of a micropyle in the process of water imbibition was established. It was established that the final percentage of germination was almost the same in the cases of plasma-treated, untreated, and vacuum-pumped samples. However, the speed of germination was markedly higher for the plasma-treated samples. The influence of the vacuum pumping involved in the cold plasma treatment on the germination was also clarified. PMID:25948708
Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung
NASA Astrophysics Data System (ADS)
Taiurskii, A. A.; Gavrikov, M. B.
2016-10-01
We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.
NASA Astrophysics Data System (ADS)
Daksha, M.; Derzsi, A.; Wilczek, S.; Trieschmann, J.; Mussenbrock, T.; Awakowicz, P.; Donkó, Z.; Schulze, J.
2017-08-01
In particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations of capacitively coupled plasmas (CCPs), the plasma-surface interaction is generally described by a simple model in which a constant secondary electron emission coefficient (SEEC) is assumed for ions bombarding the electrodes. In most PIC/MCC studies of CCPs, this coefficient is set to γ = 0.1, independent of the energy of the incident particle, the electrode material, and the surface conditions. Here, the effects of implementing energy-dependent secondary electron yields for ions, fast neutrals, and taking surface conditions into account in PIC/MCC simulations is investigated. Simulations are performed using self-consistently calculated effective SEECs, {γ }* , for ‘clean’ (e.g., heavily sputtered) and ‘dirty’ (e.g., oxidized) metal surfaces in single- and dual-frequency discharges in argon and the results are compared to those obtained by assuming a constant secondary electron yield of γ =0.1 for ions. In single-frequency (13.56 MHz) discharges operated under conditions of low heavy particle energies at the electrodes, the pressure and voltage at which the transition between the α- and γ-mode electron power absorption occurs are found to strongly depend on the surface conditions. For ‘dirty’ surfaces, the discharge operates in α-mode for all conditions investigated due to a low effective SEEC. In classical dual-frequency (1.937 MHz + 27.12 MHz) discharges {γ }* significantly increases with increasing low-frequency voltage amplitude, {V}{LF}, for dirty surfaces. This is due to the effect of {V}{LF} on the heavy particle energies at the electrodes, which negatively influences the quality of the separate control of ion properties at the electrodes. The new results on the separate control of ion properties in such discharges indicate significant differences compared to previous results obtained with different constant values of γ.
NASA Astrophysics Data System (ADS)
Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.
2016-08-01
This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.
Absorption of a laser light pulse in a dense plasma.
NASA Technical Reports Server (NTRS)
Mehlman-Balloffet, G.
1973-01-01
An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.
A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qian; Ma, Ruonan; Tian, Ying
2013-05-20
Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.
Absorption of the laser radiation by the laser plasma with gas microjet targets
NASA Astrophysics Data System (ADS)
Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.
2017-01-01
An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.
Xu, Kun; Cheng, Han; Lv, Haifeng; Wang, Jingyu; Liu, Linqi; Liu, Si; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi
2018-01-01
Developing highly efficient hydrogen evolution reaction (HER) catalysts in alkaline media is considered significant and valuable for water splitting. Herein, it is demonstrated that surface reorganization engineering by oxygen plasma engraving on electocatalysts successfully realizes a dramatically enhanced alkaline HER activity. Taking CoP nanowire arrays grown on carbon cloth (denoted as CoP NWs/CC) as an example, the oxygen plasma engraving can trigger moderate CoO x species formation on the surface of the CoP NWs/CC, which is visually verified by the X-ray absorption fine structure, high-resolution transmission electron microscopy, and energy-dispersive spectrometer (EDS) mapping. Benefiting from the moderate CoO x species formed on the surface, which can promote the water dissociation in alkaline HER, the surface reorganization of the CoP NWs/CC realizes almost fourfold enhanced alkaline HER activity and a 180 mV decreased overpotential at 100 mA cm -2 , compared with the pristine ones. More interestingly, this surface reorganization strategy by oxygen plasma engraving can also be effective to other electrocatalysts such as free-standing CoP, Co 4 N, O-CoSe 2 , and C-CoSe 2 nanowires, which verifies the universality of the strategy. This work thus opens up new avenues for designing alkaline HER electrocatalysts based on oxygen plasma engraving. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Beibei; Zhao, Zongbin; Zhou, Quan; Meng, Bo; Meng, Xiangtong; Qiu, Jieshan
2014-11-03
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non-thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2 , and NH3 . The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2 @TiO2-x ), which exhibit the improved visible and near-infrared light absorption. The types of dopants (oxygen vacancy/surface Ti(3+) /substituted N) in oxygen-deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti(3+) and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti(3+) (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2 @TiO2-x from NH3 plasma with a green color shows the highest photocatalytic activity under visible-light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.
2010-01-01
Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...
Virtual Laboratory Environment for High Voltage Radiation Source Experiments
2005-05-01
Dielectric ," Phys. Rev. Lett. 80, 103 (1998). 26.A. Valfells, J. P. Verboncoeur and Y. Y. Lau, " Space charge effects on multipactor on a dielec... effects at the edges of the surface, or due to space charge effects if a plasma is formed at the surface. High density multipactor can result in... multipactors , which can cause significant reflection and absorption of microwave power as well as space charge effects . X-rays can also
Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems
NASA Technical Reports Server (NTRS)
Cappelli, Mark A.
1999-01-01
In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.
Test-Wave Measurements of Microwave Absorption Efficiency in a Planar Surface-Wave Plasma Reactor
NASA Astrophysics Data System (ADS)
Ghanashev, Ivan; Morita, Shin; \\scToyoda, Naoki; Nagatsu, Masaaki; Sugai, Hideo
1999-07-01
A major obstacle for experimental surface-wave (SW) excitationand propagation studies in SW plasma is the self-consistentbehaviour of the latter, which does not permit continuousvariation of the electron density ne. In the presentstudy, we demonstrate how this obstacle can be overcome by anindependent plasma source, in our case, an inductively coupledplasma (ICP) created by a high-power RF (13.56 MHz) generator.Through a rectangular waveguide short-circuited at its end by amovable plunger, we introduced into the ICP a weak (powerless than 20 W) nonionising 2.4 GHz microwave.This permitted us to highlight important SW excitation andpropagation phenomena. In particular, we confirmed the existenceof the predicted [Jpn. J. Appl. Phys. 36 (1997) 4704]resonance minima in the ne dependence of the powerreflection coefficient. The influence of the plunger positionon the chamber matching was studied systematically and fourdifferent coupling aperture geometries were compared.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B Atomic...
NASA Astrophysics Data System (ADS)
Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.
2015-12-01
Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.
Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet
NASA Astrophysics Data System (ADS)
Hong, Y. J.; Nam, C. J.; Song, K. B.; Cho, G. S.; Uhm, H. S.; Choi, D. I.; Choi, E. H.
2012-03-01
Atmospheric pressure bioplasmas are being used in a variety of bio-medical and material processing applications, surface modifications of polymers. This plasma can generate the various kinds of radicals when it contacs with the water. Especially, hydroxyl radical species have very important role in the biological and chemical decontamination of media in this situation. It is very important to investigate the hydroxyl radical density in needle-typed plasma jet since it plays a crucial role in interaction between the living body and plasma. We have generated the needle-typed plasma jet bombarding the water surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy). It is noted that the electron temperature and plasma density are measured to be about 1.7 eV and 3.4 × 1012 cm-3, respectively, under Ar gas flow ranged from 80 to 300 sccm (standard cubic centimeter per minute) in this experiment. The hydroxyl radical density has also been investigated and measured to be maximum value of 2.6 × 1015 cm-3 for the gas flow rate of 150 sccm in the needle-typed plasma jet by the ultraviolet optical absorption spectroscopy.
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Relativistic Laser Absorption and Magnetic Field Channel Formation in 3D PIC Simulation
NASA Astrophysics Data System (ADS)
Sentoku, Yasuhiko; Mima, Kunioki; Sheng, Zheng-Ming; Kaw, Predhiman; Nishihara, Katsunobu; Nishikawa, Kyoji
2000-10-01
We carried out 3D PIC simulations on overdense plasmas. On the surface of the plasmas, relativistic electrons are generated and transported into overdense plasmas. In the transport, it is found that energy is transferred to dense plasmas by convective cells. Namely, hot electron and cold electron return flows form convective cells through the magnetic instabilities (e.g. Weibel Instability). The heat flux associating with the convective cells and the anomalous stoppings in 3D simulations are compared with these in 2D simulations by Meyer-ter-Vehn etal. and Taguchi etal. [1] M. Honda, J. Meyer-ter-Vehn, and A. Pukhov, Phys. Plasmas 7, 1302, (2000). [2] ``Relativistic Electron Transport Simulation by 2D hybrid Simulation with Darwin Approximation." by T. Taguchi etal. (to be present in the poster of this conference)
X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse
NASA Astrophysics Data System (ADS)
Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.
2007-05-01
Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.
NASA Astrophysics Data System (ADS)
Leng, Yumin; He, Junbao; Li, Bo; Xing, Xiaojing; Guo, Yongming; Ye, Liqun; Lu, Zhiwen
2017-09-01
The different sized and shaped Au NPs have intrigued considerable attention, because they possess different surface plasma resonance (SPR) absorption bands and thus result in many colorimetric Au NP-based detection applications. In this article, four different sized and shaped Au NPs of nanodots/rods were prepared and characterized. The as-prepared Au NPs were modified by the negatively charged anions of [SCH2CO2]2- to investigate both the size and shape effects of modified Au NPs on colorimetric detection of Co2+ and the corresponding SPR absorption properties. The different-shaped Au NPs possess different SPR absorption properties. The Au nanorods appeared to be colorimetric sensitive for Co2+ sensing.
Plasma Boundary Collisionless Absorption Effects in the Loading of RF Conductors,
1979-10-01
a quasi-thermodynamic equilibrium between the charged particles and the applied RF potential. It is clear that the effect of external magnetic fields...AO-AOBI 115 CALIFORNIA UNIV LOS ANBELES PLASMA PHYSICS BROUP F/6O 20/9 PLASMA BOUNDARY COLLISIONLESS ABSORPTION EFFECTS IN THE LbADINGS-E*IC(U) OCT...79 B J MORALES N00OOIATB-C-0NA NLASIED PPB-435 NL mii-hiiiii PLASMA BOUNDARY COLLISIONLESS ABSORPTION EFFECTS IN THE LOADING OF ONDUCTOR) (.J. Oral
Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír
2015-01-01
Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wei, Hong
2000-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. The principle of the laser power propulsion is that when high-powered laser is focused at a small area near the surface of a thruster, the intense energy causes the electrical breakdown of the working fluid (e.g. air) and forming high speed plasma (known as the inverse Bremsstrahlung, IB, effect). The intense heat and high pressure created in the plasma consequently causes the surrounding to heat up and expand until the thrust producing shock waves are formed. This complex process of gas ionization, increase in radiation absorption and the forming of plasma and shock waves will be investigated in the development of the present numerical model. In the first phase of this study, laser light focusing, radiation absorption and shock wave propagation over the entire pulsed cycle are modeled. The model geometry and test conditions of known benchmark experiments such as those in Myrabo's experiment will be employed in the numerical model validation simulations. The calculated performance data will be compared to the test data.
From core to coax: extending core RF modelling to include SOL, Antenna, and PFC
NASA Astrophysics Data System (ADS)
Shiraiwa, Syun'ichi
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.
2013-11-15
In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less
Inductive Electron Heating Revisited
NASA Astrophysics Data System (ADS)
Tuszewski, M.
1996-11-01
Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.
Modeling of plasma and thermo-fluid transport in hybrid welding
NASA Astrophysics Data System (ADS)
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films
Al-Jumaili, Ahmed; Bazaka, Kateryna
2017-01-01
Bacterial colonisation of biomedical devices demands novel antibacterial coatings. Plasma-enabled treatment is an established technique for selective modification of physicochemical characteristics of the surface and deposition of polymer thin films. We investigated the retention of inherent antibacterial activity in geranium based plasma polymer thin films. Attachment and biofilm formation by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was significantly reduced on the surfaces of samples fabricated at 10 W radio frequency (RF) power, compared to that of control or films fabricated at higher input power. This was attributed to lower contact angle and retention of original chemical functionality in the polymer films fabricated under low input power conditions. The topography of all surfaces was uniform and smooth, with surface roughness of 0.18 and 0.69 nm for films fabricated at 10 W and 100 W, respectively. Hardness and elastic modules of films increased with input power. Independent of input power, films were optically transparent within the visible wavelength range, with the main absorption at ~290 nm and optical band gap of ~3.6 eV. These results suggest that geranium extract-derived polymers may potentially be used as antibacterial coatings for contact lenses. PMID:28902134
Spatial distribution of the wave field of the surface modes sustaining filamentary discharges
NASA Astrophysics Data System (ADS)
Lishev, St.; Shivarova, A.; Tarnev, Kh.
2008-01-01
The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.
Peters, Job H C; Wierdsma, Nicolette J; Teerlink, Tom; van Leeuwen, Paul A M; Mulder, Chris J J; van Bodegraven, Ad A
2007-12-01
Our aim was to explore the diagnostic value of fasting citrulline concentrations to detect decreased intestinal energy absorption in patients with recently diagnosed celiac disease (CeD), refractory celiac disease (RCeD), and short bowel syndrome (SBS). Decreased intestinal energy absorption is regarded a marker of intestinal failure. Fasting plasma citrulline concentrations were determined by high performance liquid chromatography (HPLC) in a prospective study of 30 consecutive adult patients (15 CeD, 9 RCeD, and 16 SBS) and 21 healthy subjects. Intestinal energy absorption capacity using bomb calorimetry was determined in all patients and healthy subjects and was regarded as the gold standard for intestinal energy absorption function. The mean fasting plasma citrulline concentration was lower in RCeD patients than in healthy subjects (28.5+/-9.9 vs 38.1+/-8.0 micromol/L, P<0.05) and CeD patients (28.5+/-9.9 vs 38.1+/-6.4 micromol/L, P<0.05), however, clearly within reference values. The mean intestinal energy absorption capacity was lower in SBS patients than in healthy subjects (64.3+/-18.2 vs 90.3+/-3.5%, P<0.001), CeD patients (64.3+/-18.2 vs 89.2+/-3.4%, P<0.001), and the RCeD group (64.3+/-18.2 vs 82.3+/-11.7%, P<0.01). No relation was observed between fasting plasma citrulline concentration and intestinal energy absorption capacity (Pearson r=0.09, P=0.56). The area under the ROC curve for fasting plasma citrulline to detect decreased intestinal energy absorption capacity (i.e., <85%) was 0.50. Fasting plasma citrulline concentrations have poor test characteristics for detection of decreased intestinal energy absorption capacity in patients with enterocyte damage.
Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas
NASA Astrophysics Data System (ADS)
Helal, Yaser H.
Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption signal was used to calculate absolute densities and temperatures of polar species. Measurements of molecular species were demonstrated for inductively coupled plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...
2017-10-26
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
2018-05-01
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less
Nonlinear Absorption and Heating of Dense Plasmas.
plasma focus both illuminated by a high intensity CO2 laser. Results indicate the previously noted increases in absorption due to the inclusion of the nonlinear saturation mechanism. The previously obtained increases in absorption with increasing density scale height and decreasing temperatures are also recovered. The
NASA Astrophysics Data System (ADS)
Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.
2018-03-01
Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.
NASA Astrophysics Data System (ADS)
Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah
2011-10-01
Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.
Effects of Io ejecta on Europa
NASA Astrophysics Data System (ADS)
Eviatar, A.; Siscoe, G. L.; Johnson, T. V.; Matson, D. L.
1981-07-01
The effects of plasma ejected from Io on the nature and evolution of the surface of Europa and on the relative importance of the roles played by the two satellites in the Jupiter magnetosphere are examined. Observations of an ultraviolet absorption feature on the trailing side of Europa are interpreted as due to an equilibrium column density of SO2 in a steady-state model of the implantation of iogenic ions into the surface of Europa and their subsequent sputtering. The observed sulfur column density of 2 x 10 to the 16th/sq cm implies a slow loss of material from Europa, mainly water ice, and indicates that the spectrum of particles sputtered is soft. Considerations of the comparative roles of corotating and energetic heavy ions are shown to suggest that the implantation and sputtering is primarily the result of the proton and light ion component of the plasma. The weakness of Europa as a plasma source resulting from the soft sputtered particle spectrum thus leads to the dominance of Io in contributing to the magnetospheric plasma.
NASA Astrophysics Data System (ADS)
Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.
2018-05-01
When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.
Laser Irradiated Foam Targets: Absorption and Radiative Properties
NASA Astrophysics Data System (ADS)
Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.
2018-01-01
An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.
O2 on ganymede: Spectral characteristics and plasma formation mechanisms
Calvin, W.M.; Johnson, R.E.; Spencer, J.R.
1996-01-01
Weak absorption features in the visible reflectance spectrum of Jupiter's satellite Ganymede have been correlated to those observed in the spectrum of molecular oxygen. We examine the spectral characteristics of these absorption features in all phases of O2 and conclude that the molecular oxygen is most likely present at densities similar to the liquid or solid ??-phase. The contribution of O2 to spectral features observed on Ganymede in the near-infrared wavelength region affects the previous estimates of photon pathlength in ice. The concentration of the visible absorption features on the trailing hemisphere of Ganymede suggests an origin due to bombardment by magneto-spheric ions. We derive an approximate O2 formation rate from this mechanism and consider the state of O2 within the surface.
Comment on "Continuum Lowering and Fermi-Surface Rising in Stromgly Coupled and Degenerate Plasmas"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, C. A.; Sterne, P. A.
In a recent Letter, Hu [1] reported photon absorption cross sections in strongly coupled, degenerate plasmas from quantum molecular dynamics (QMD). The Letter claims that the K-edge shift as a function of plasma density computed with simple ionization potential depression (IPD) models are in violent disagreement with the QMD results. The QMD calculations displayed an increase in Kedge shift with increasing density while the simpler models yielded a decrease. Here, this Comment shows that the claimed large errors reported by Hu for the widely used Stewart- Pyatt (SP) model [2] stem from an invalid comparison of disparate physical quantities andmore » is largely resolved by including well-known corrections for degenerate systems.« less
Enhanced target normal sheath acceleration based on the laser relativistic self-focusing
NASA Astrophysics Data System (ADS)
Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.
2014-06-01
The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.
Controlled synthesis of germanium nanoparticles by nonthermal plasmas
NASA Astrophysics Data System (ADS)
Ahadi, Amir Mohammad; Hunter, Katharine I.; Kramer, Nicolaas J.; Strunskus, Thomas; Kersten, Holger; Faupel, Franz; Kortshagen, Uwe R.
2016-02-01
The size, composition, and crystallinity of plasma produced nanoparticles are crucial factors for their physical and chemical properties. Here, we investigate the role of the process gas composition, particularly the hydrogen (H2) flow rate, on germanium (Ge) nanoparticles synthesized from a chlorinated precursor by nonthermal plasma. We demonstrate that the gas composition can significantly change the nanoparticle size and also adjust the surface chemistry by altering the dominant reaction mechanisms. A red shift of the Ge-Clx infrared absorptions with increasing H2 flow indicates a weakening of the Ge-Clx bonds at high H2 content. Furthermore, by changing the gas composition, the nanoparticles microstructure can be controlled from mostly amorphous at high hydrogen flow to diamond cubic crystalline at low hydrogen flow.
Comment on "Continuum Lowering and Fermi-Surface Rising in Stromgly Coupled and Degenerate Plasmas"
Iglesias, C. A.; Sterne, P. A.
2018-03-16
In a recent Letter, Hu [1] reported photon absorption cross sections in strongly coupled, degenerate plasmas from quantum molecular dynamics (QMD). The Letter claims that the K-edge shift as a function of plasma density computed with simple ionization potential depression (IPD) models are in violent disagreement with the QMD results. The QMD calculations displayed an increase in Kedge shift with increasing density while the simpler models yielded a decrease. Here, this Comment shows that the claimed large errors reported by Hu for the widely used Stewart- Pyatt (SP) model [2] stem from an invalid comparison of disparate physical quantities andmore » is largely resolved by including well-known corrections for degenerate systems.« less
Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D
2012-10-01
Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).
Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.
2018-01-01
The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.
NASA Astrophysics Data System (ADS)
Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.
2017-06-01
Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...
2017-07-14
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Gonçalves, Inês C; Martins, M Cristina L; Barbosa, Mário A; Naeemi, Esmaeel; Ratner, Buddy D
2009-06-01
This study focuses on the selective binding of albumin to a nanostructured surfaces to inhibit other blood proteins from adsorbing thereby reducing platelet adhesion and activation. Tetra (ethylene-glycol)-terminated self-assembled monolayers (EG4 SAMs) with different percentages of C18 ligands on the surface were characterized by contact angle measurements, X-ray photoelectron microscopy, infrared reflection-absorption spectroscopy, and ellipsometry. A specific surface (2.5% C18 SAM) was found to be selective for human serum albumin (HSA) in the presence of both albumin and fibrinogen (HFG). The importance of this concentration of C18 ligands was stressed in reversibility studies since that surface exchanged almost all the preadsorbed HSA by HSA in solution, but not by HFG. The effect of protein adsorption in the subsequent adhesion and activation of platelets was studied by pre-immersing the surfaces in albumin and plasma before contact with platelets. Scanning electron microscopy and glutaraldehyde induced fluorescence technique images showed that as surfaces got more hydrophobic due to the immobilization of C18 ligands, the number of adherent platelets increased and their morphology changed from round to fully spread. Pre-immersion in HSA led to an 80% decrease in platelet adhesion and reduction of activation. Pre-immersion in 1% plasma was only relevant in 2.5% C18 SAMs since this was the only surface that demonstrated less adhesion of platelets comparing with buffer pre-immersion. However, they still adsorb more platelets then when HSA was preadsorbed. This was confirmed in competition studies between HSA and plasma that suggested that other plasma proteins were also adsorbing to this surface. 2008 Wiley Periodicals, Inc.
Latitudinal distribution of O2on ganymede: Observations with the hubble space telescope
Calvin, W.M.; Spencer, J.R.
1997-01-01
To help constrain the spatial variation of oxygen on Jupiter's satellite Ganymede, and hence have more clues to its mode of production and stability, we have obtained spectral data from the Faint Object Spectrograph (FOS) for a single pole-to-pole latitudinal strip, along with several Wide Field Planetary Camera 2 (WFPC2) images in three narrow band visible filters. All observations were made of the trailing hemisphere. In the FOS data we observe both visible absorptions at 0.577 and 0.627 ??m, associated with dense-phase oxygen (compressed gases, liquids, or solids). Filter options limited the WFPC2 observations to wavelengths near the weaker oxygen absorption at 0.627 ??m. These observations suggest that the dense-phase or dimer oxygen form is predominantly found in equatorial and mid-latitudes. The spectroscopic absorption feature appears in both bright and dark terrains but may be somewhat weaker in dark regions, which is consistent with the smaller mean photon path length in the surface in darker areas. Therefore, the abundance of oxygen appears more dependent on latitude and longitude constraints than surface albedo. At the highest latitudes, where the ratio spectra have a strong upturn toward the blue, the oxygen bands do not appear. This relation suggests that dimer oxygen and ozone (as seen by Galileo) have opposite trends with latitude. Possible causes include competition or variation in the preferred stable form, which depends on temperature, solar ultraviolet flux, and/or surface age; enhancement of O3at the poles due to plasma interactions; or viewing geometry effects that reduce the oxygen features at the poles when observed from Earth. The predominantly equatorial feature supports the production of O2through plasma bombardment and favors defect trapping over physical adsorption of the dimer molecules in the surface. We briefly consider the implications of Ganymede's magnetosphere for our understanding of O2and O3distribution on Ganymede. ?? 1997 Academic Press.
Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Leal, David A.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar; Leal-Quiros, E.
2006-12-01
Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.
Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma
NASA Astrophysics Data System (ADS)
Cho, M. S.; Chung, H.-K.; Cho, B. I.
2018-05-01
X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
Interaction of high-intensity laser radiation with metals.
NASA Technical Reports Server (NTRS)
Linlor, W. I.
1971-01-01
The interaction is characterized by the production of plasma, within which the primary absorption occurs. Absorption of laser radiation by a plasma may occur by several processes. The absorption process called 'inverse bremsstrahlung' is discussed. The interaction of a laser beam with the plasma produced from a thick metal target was studied. The results of the measurements of the ion kinetic energies are presented in a graph. In addition to measurements with thick targets, information was also obtained with a thin foil of gold.
Laser-induced plasma characterization through self-absorption quantification
NASA Astrophysics Data System (ADS)
Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang
2018-07-01
A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.
NASA Astrophysics Data System (ADS)
Wang, Gang; Liu, Zhiduo; Zhang, Nan; Li, Jiurong; Xu, Anli; Xiang, Pengcheng; Hu, Xurui; Guo, Qinglei; Chen, Da
2018-04-01
We demonstrate the ultra-light weight and super-hydrophilic hydroxyl modified poly (m-phenylenediamine) (Hy-PmPD) aerogel by utilizing simple oxygen plasma treatment. The average pore size and specific surface area are obtained as 5.21 nm and 671 m2 g‑1, respectively. Due to the large amount of oxygen-containing groups (e.g., C–OH and N–OH), the contact angle of Hy-PmPD for water is about 7.2°, which indicates the super-hydrophilic ability of Hy-PmPD. The large surface area and super-hydrophilic nature of ultra- light weight Hy-PmPD aerogel conclusively certify that high absorption capacities and ultrafast absorption rate for water. As a result, the Hy-PmPD aerogel enables to separate crude oil and water. Additionally, the Hy-PmPD aerogel indicates good biocompatibility that can be implanted as the bio-platform for monitoring the cell culture behavior. This work may provide a facile and effective strategy for the applications in the absorption or removal of organics, particularly in environmental protection, pollution control, as well as noninvasive to the microflora.
NASA Astrophysics Data System (ADS)
Marinov, D.; Lopatik, D.; Guaitella, O.; Hübner, M.; Ionikh, Y.; Röpcke, J.; Rousseau, A.
2012-05-01
A new method for determination of the wall de-excitation probability \\gamma _{N_2 } of vibrationally excited N2 on different surfaces exposed to low-pressure plasmas has been developed. A short dc discharge pulse of only a few milliseconds was applied to a mixture containing 0.05-1% of CO2 in N2 at a pressure of 133 Pa. Due to a nearly resonant fast vibrational transfer between N2(v) and the asymmetric ν3 mode of CO2 the vibrational excitation of these titrating molecules is an image of the degree of vibrational excitation of N2. In the afterglow, the vibrational relaxation of CO2 was monitored in situ using quantum cascade laser absorption spectroscopy. The experimental results were interpreted in terms of a numerical model of non-equilibrium vibrational kinetics in CO2-N2 mixtures. Heterogeneous relaxation was the main quenching process of N2(v) under the conditions of this study, which allowed determination of the value of \\gamma _{N_2 } from the best agreement between the experiment and the model. The new method is suitable for \\gamma _{N_2 } determination in a single plasma pulse with the discharge tube surface pretreated by a low-pressure plasma. The relaxation probability of the first vibrational level of nitrogen γ1 = (1.1 ± 0.15) × 10-3 found for Pyrex and silica is in reasonable agreement with the literature data. Using the new technique the N2(v = 1) quenching probability was measured on TiO2 surface, γ1 = (9 ± 1) × 10-3. A linear enhancement of the N2(v) wall deactivation probability with an increase in the admixture of CO2 was observed for all studied materials. In order to explain this effect, a vibrational energy transfer mechanism between N2(v) and adsorbed CO2 is proposed.
NASA Astrophysics Data System (ADS)
Poli, E.; Bock, A.; Lochbrunner, M.; Maj, O.; Reich, M.; Snicker, A.; Stegmeir, A.; Volpe, F.; Bertelli, N.; Bilato, R.; Conway, G. D.; Farina, D.; Felici, F.; Figini, L.; Fischer, R.; Galperti, C.; Happel, T.; Lin-Liu, Y. R.; Marushchenko, N. B.; Mszanowski, U.; Poli, F. M.; Stober, J.; Westerhof, E.; Zille, R.; Peeters, A. G.; Pereverzev, G. V.
2018-04-01
The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential equations. With respect to its original form, the code has undergone significant transformations and extensions, in terms of both the physical model and the spectrum of applications. The code has been rewritten in Fortran 90 and transformed into a library, which can be called from within different (not necessarily Fortran-based) workflows. The models for both absorption and current drive have been extended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation in electron-electron collisions and the contribution of more than one harmonic to current drive. The code can be run also for reflectometry applications, with relativistic corrections for the electron mass. Formulas that provide the coupling between the reflected beam and the receiver have been developed. Accelerated versions of the code are available, with the reduced physics goal of inferring the location of maximum absorption (including or not the total driven current) for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum and maximum magnetic field can be provided externally to speed up the calculation of full driven-current profiles. These can be employed in real-time control algorithms or for fast data analysis.
The absorption profile of pregabalin in chronic pancreatitis.
Olesen, Anne E; Olofsen, Erik; Olesen, Søren S; Staahl, Camilla; Andresen, Trine; Dahan, Albert; Drewes, Asbjørn M
2012-12-01
It was recently shown that pregabalin decreased pain associated with chronic pancreatitis. It is well known that pancreatitis patients suffer from fat malabsorption with accompanying diarrhoea because of loss of exocrine pancreatic enzyme production. This may lead to changes in the mucosal surface in the small intestine and possibly affect the absorption of pregabalin. The pharmacokinetics of pregabalin has never been investigated in patients suffering from chronic pancreatitis. The aim of this study was to develop a population pharmacokinetic model of pregabalin administered to patients with chronic pancreatitis. The pregabalin population pharmacokinetic analysis was conducted on data from fifteen patients with chronic pancreatitis. Each patient received 75 mg of pregabalin (oral capsule). Pregabalin concentrations were measured using a validated liquid chromatographic method. Data analysis was performed using non-linear mixed effects modelling methodology as implemented by NONMEM. A one-compartment model with first-order absorption and elimination adequately described pregabalin pharmacokinetics. Time to maximum observed plasma concentration (T(max) ) was 1.53 (95% CI 1.09-2.05). The maximum plasma concentration (C(max) ) was 1.98 μg/ml (95% CI 1.69-2.34), and area under the plasma concentration-time profile (area under the curve) was 18.2 μg*hr/ml (95% CI 14.7-26.3). Pregabalin is well absorbed in patients with chronic pancreatitis, and the pharmacokinetic profile of pregabalin is not extensively affected by chronic pancreatitis. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Eldridge, Jeff I.; Spuckler, Charles M.; Street, Ken W.; Markham, Jim R.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The infrared (IR) transmittance and reflectance of translucent thermal barrier coatings (TBCs) have important implications for both the performance of these coatings as radiation barriers and emitters as well as affecting measurements of TBC thermal conductivity, especially as TBCs are being pushed to higher temperatures. In this paper, the infrared spectral directional-hemispherical transmittance and reflectance of plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs are reported. These measurements are compared to those for single crystal YSZ specimens to show the effects of the plasma-sprayed coating microstructure. It is shown that the coatings exhibit negligible absorption at wavelengths up to about 5 micrometers, and that internal scattering rather than surface reflections dominates the hemispherical reflectance. The translucent nature of the 8YSZ TBCs results in the absorptance/emittance and reflectance of TBC-coated substrates depending on the TBC thickness, microstructure, as well as the radiative properties of the underlying substrate. The effects of these properties on TBC measurements and performance are discussed.
Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F
2015-10-01
The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
Electromagnetic-wave propagation in unmagnetized plasmas
NASA Astrophysics Data System (ADS)
Gregoire, D. J.; Santoru, J.; Schumacher, R. W.
1992-03-01
This final report describes an investigation of electromagnetic-wave propagation in unmagnetized plasmas and its application to the reduction of the radar cross section (RCS) of a plasma-filled enclosure. We have demonstrated RCS reduction of 20 to 25 dB with a prototype system at the radar range at Hughes Aircraft's Microwave Products Division in Torrance. The prototype consists of a sealed ceramic enclosure with a microwave reflector and a plasma generator inside it. When the plasma is present, the RCS is significantly reduced over a frequency range of 4 to 14 GHz. As part of the program, we also investigated the basic-plasma-physics issues relating to the absorption and refraction of electromagnetic (EM) waves in collisional plasmas. We demonstrated absorption as high as 63 dB in a section of plasma-loaded C-band rectangular waveguide. We also developed a theoretical model for the plasma cloaking process that includes scattering contributions from the plasma-vacuum interface, partial reflections from the plasma, and collisional absorption in the plasma. The theoretical model is found to be in reasonable agreement with the experimental results and can be used to confidently design future plasma cloaking systems.
Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma
NASA Astrophysics Data System (ADS)
Alves Junior, Clodomiro; de Oliveira Vitoriano, Jussier; da Silva, Dinnara Layza Souza; de Lima Farias, Mikelly; de Lima Dantas, Nadjamara Bandeira
2016-09-01
The effect of plasma applied to mulungu (Erythrina velutina) seeds was studied to verify its influence on the germination, water absorption, wettability and structure of the seeds. The plasma jet used in this study was produced by dielectric barrier discharge (DBD) in a helium gas flow of 0.03 L/s at a distance of 13 mm for 60 s. The plasma treatment significantly affected the seed germination rate, which was approximately 5% higher than that of the untreated group. Micropyle and hilum contributed a greater proportion to uptake. When sealed in the hilar or micropyle regions the amount of water absorbed into the seed decreased approximately 75% compared to the unsealed seed. This difference suggests that these two regions together act cooperatively in the water absorption. However, when plasma treated seed was blocked in the micropyle region, water absorption was higher higher than in seeds blocked hilum. This difference suggests that the plasma treatment changed the wettability of the hilum more effectively than it changed the micropyle. These results indicate that plasma can significantly change the hydrophilicity, water absorption and percentage of seed germination in E. velutina.
Nonlinear absorption of short intense laser pulse in multispecies plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargarian, A.; Hajisharifi, K.; Mehdian, H.
In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtainedmore » results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
NASA Astrophysics Data System (ADS)
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
The Importance of Optical Pathlength Control for Plasma Absorption Measurements
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.; Partridge, Harry (Technical Monitor)
2001-01-01
An inductively coupled GEC Cell with modified viewing ports has been used to measure in-situ absorption in CF4 plasmas via Fourier Transform Infrared Spectroscopy, and the results compared to those obtained in a standard viewport configuration. The viewing ports were modified so that the window boundary is inside, rather than outside, of the GEC cell. Because the absorption obtained is a spatially integrated absorption, measurements made represent an averaging of absorbing species inside and outside of the plasma. This modification is made to reduce this spatial averaging and thus allow a more accurate estimation of neutral species concentrations and temperatures within the plasmas. By reducing this pathlength, we find that the apparent CF4 consumption increases from 65% to 95% and the apparent vibrational temperature of CF4 rises by 50-75 K. The apparent fraction of etch product SiF4 decreases from 4% to 2%. The data suggests that these density changes may be due to significant temperature gradients between the plasma and chamber viewports.
Gallium arsenide/gold nanostructures deposited using plasma method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.
2016-05-23
The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less
Plasma effects on the passive external thermal control coating of Space Station Freedom
NASA Technical Reports Server (NTRS)
Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.
1992-01-01
The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.
Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.
Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans
2018-03-01
Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang
2018-03-01
In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.
Spatial distribution of the wave field of the surface modes sustaining filamentary discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishev, St.; Shivarova, A.; Tarnev, Kh.
2008-01-01
The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less
Olsen, O; Schaffalitzky de Muckadell, O B; Cantor, P
1987-11-01
In 20 normal persons we investigated the effects of duodenal osmolality on the release of secretin and cholecystokinin (CCK), pancreaticobiliary secretion, and fat absorption after intestinal infusion of emulsified oleic acid (pH 6.0). The release of CCK was found to be unaffected by the changes in osmolality, whereas the plasma levels of secretin were affected in parallel with volume and bicarbonate secretion. An inverse relation was found between fatty acid absorption and release of secretin and bicarbonate secretion but not between fatty acid absorption and release of CCK. It is suggested that the secretin and CCK cells respond differently to emulsified oleic acid.
Europa in the Far-UV: Spatial and Spectral Analysis from HST Observations
NASA Astrophysics Data System (ADS)
Becker, Tracy M.; Retherford, Kurt D.; Roth, Lorenz; Hendrix, Amanda R.; McGrath, Melissa; Alday, Juan; Saur, Joachim; Molyneux, Philippa M.; Raut, Ujjwal; Teolis, Benjamin
2017-10-01
We present a spatial and spectral analysis of Europa using far-UV observations from 1999 - 2015 made by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). Disk-integrated observations show that the far-UV spectrum from ~130 nm - 170 nm is blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman-alpha (121.6 nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. At wavelengths shorter than 133.5 nm, the leading hemisphere, which is brighter than the trailing hemisphere at near-UV and visible wavelengths, becomes darker than the trailing hemisphere. We find no evidence of a sharp water-ice absorption edge at 165 nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on most icy moons. This suggests the possibility that radiolytic alteration by Jovian magnetospheric plasma has made the surface more strongly absorbing, masking the absorption edge. We will also present a spatial map of Lyman-alpha across the entire surface of Europa. This map can then be used to distinguish variable H emissions in the atmosphere from surface reflectance, improving our ability to detect potential plumes occurring on the disk of Europa during an observation.
NASA Astrophysics Data System (ADS)
Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.
2013-04-01
Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.
Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.
Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2016-10-03
Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.
Johnson, William E; Hillyard, Stanley D; Propper, Catherine R
2010-12-01
Terrestrial amphibians obtain water by absorption across a specialized region of the ventral skin and exhibit a behavior, the water absorption response (WR) to place that region in contact with moist surfaces. Spadefoot toads (Scaphiopus couchii) spend dry months of the year in burrows, then emerge during brief periods of summer rainfall and seek water sources for rehydration and reproduction. We tested the hypothesis that these toads have changes in plasma and/or central angiotensin concentrations that are associated with seasonal emergence and WR behavior. Immunoreactive concentrations of combined angiotensin II and III (ir-ANG) were measured in plasma samples and microdissected regions of brain tissue taken from toads moving across the road or toads showing WR behavior in shallow puddles on the road. Plasma ir-ANG concentrations were not significantly different between these groups, but were significantly higher in the periventricular region of the hypothalamus in toads showing WR behavior. Concentrations in other brain regions, while highly variable among individuals, were not different between groups. Within the context of the natural history of a specialized desert toad, these results support the hypothesis that ir-ANG is associated with WR behavior in spadefoot toads in a manner analogous to oral drinking exhibited by other vertebrate clades. Copyright © 2010 Elsevier Inc. All rights reserved.
Highly directional thermal emitter
Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W
2015-03-24
A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E. J.; Green, D. L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E.J.; Green, D.L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.
2017-05-01
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.
Bertelli, N.; Valeo, E. J.; Green, D. L.; ...
2017-04-03
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
"CHON" particles: The interstellar component of cometary dust
NASA Technical Reports Server (NTRS)
Lien, David J.
1998-01-01
Interstellar dust is characterized by strong absorption in the ultraviolet and the mid-IR. Current models of interstellar dust are based on three chemically distinct components: a form of carbon (usually graphite), a silicate, and a blend of polycyclic aromatic hydrocarbons or other carbonaceous material. Previous work using effective medium theories to understand the optical properties of cometary dust suggested that an amalgam of materials could reproduce the observed interstellar and cometary dust features. Recently, Lawler and Brownlee (1992) re-analyzed the PIA and PUMA-1 data sets from the Giotto flyby of P/Halley and discovered that the so-called "CHON" particles were actually composed of a blend of carbon-bearing and silicon-bearing materials. Based on effective medium theories, the absorption spectrum of such a material would display the spectral features of each of the components - strong UV absorption from the carbonaceous component and strong absorption in the IR from the silicate component. To test this idea, vapor-deposited samples were created using two different deposition techniques: sputtering with an argon RF magnetron and deposition from an argon plasma torch. Two different compositions were tested: a blend of graphite and silica in a 7:1 ratio and an amalgam of materials whose approximate composition matches the "CHON"-silicate abundances for the uncompressed PIA data set of Lawler and Brownlee: graphite, iron oxide, magnesium oxide, ammonium sulfate, calcium carbonate, and silica in mass ratios of 6:4.3:4:2.2:1:9. The samples were finely ground and pressed into 2" diameter disks using a 40 ton press. In all, four different experiments were performed: one with each of the compositions (C:SiO and "CHON") in both the RF magnetron and the plasma torch chambers. The RF magnetron created a uniform dark thin film on the substrate surface, and the plasma torch created a coating of small (<100 micron) diameter grey particles. The spectra of all four samples show a strong, broad absorption feature at around 220 nm as well as a strong but narrower absorption peak near 10 microns. The RF magnetron sputtered samples showed some sub-structure in the UV, and the peak of the absorption was shifted toward longer wavelengths. The UV absorption in the plasma torch deposited samples have no sub-structure, and the peak absorption is very near 220 nm. Strong absorption near 9 microns is seen in the spectra from both sample preparation techniques, and is consistent with the IR spectra of some terrestrial silicates. Other features, particularly at 6.2 and 8.6 microns, are seen in the interstellar medium. A strong feature near 2 microns is due to absorbed water in the sample. Based on the results of these experiments, there is evidence that a material with a composition similar to that detected in "CHON" particles in the coma of P/Halley have a spectral signature which reproduces the main absorption features of interstellar dust. This suggests that the "CHON" particles could be the interstellar component of cometary dust.
Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases
NASA Astrophysics Data System (ADS)
Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.
2018-01-01
We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.
Effect of plasma absorption on dust lattice waves in hexagonal dust crystals
NASA Astrophysics Data System (ADS)
Kerong, HE; Hui, CHEN; Sanqiu, LIU
2018-04-01
In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.
Extreme ultraviolet interferometry of warm dense matter in laser plasmas.
Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B
2010-11-15
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).
Investigations Of Surface-Catalyzed Reactions In A Mars Mixture
NASA Astrophysics Data System (ADS)
Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.
2011-05-01
In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja
2016-07-15
In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency,more » and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.« less
Laser beam-plasma plume interaction during laser welding
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt
2003-10-01
Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.
Zhang, Hao; Jiang, Lu; Guo, Huiyuan; Sun, Jing; Liu, Xianting; Liu, Ruihai; Ding, Qingbo; Ren, Fazheng
2013-07-01
We assessed the effects of milk proteins and fats, alone and in combination, on the absorption of phenolic acids and the change in plasma antioxidant capacity after jujube juice intake in humans. Twenty volunteers received the following four treatments each in a 4 × 4 Latin square design with a minimum 1 week interval: 200 mL of jujube juice plus 200 mL of (1) water; (2) whole milk; (3) skimmed milk; or (4) milk fat. The results showed that skimmed milk extended the time to reach maximum increase of plasma phenolic acids concentrations and plasma antioxidant capacity. However, neither the skimmed milk nor the milk fat had a significant effect on the absorption of phenolic acids. In contrast, whole milk significantly reduced the absorption of phenolic acids and the increase in plasma antioxidant capacity (p < 0.05). In vitro results suggested the formation of complexes during digestion that involved milk proteins, milk fats, and phenolic acids, which were responsible for the inhibitory effect of whole milk. Milk proteins and fats together, but not alone, are responsible for the inhibitory effect of milk on the absorption of phenolic acids and the change in plasma antioxidant capacity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent measurements in whole blood and plasma using red-emitting dyes
NASA Astrophysics Data System (ADS)
Abugo, Omoefe O.; Herman, Petr; Lakowicz, Joseph R.
2000-04-01
We have determined the fluorescence characteristics of albumin blue 670 and Rhodamine 800 in plasma and blood in order to test the feasibility of making direct fluorescence sensing measurements in blood. These dyes were used because of their absorption in the red/NIR where absorption by hemoglobin is minimized. Front face illumination and detection was used to minimize absorption and scattering during measurement. Fluorescence emission was observed for these dyes in plasma and blood. Attenuation of the fluorescence emission was observed in blood because of hemoglobin absorption. Using frequency domain fluorometry, we recovered the expected lifetime parameters for both dyes in blood and plasma. We were able to quantify HSA concentrations using changes in the mean lifetime of AB670, a dye previously shown to bind preferentially to HSA. Rh800 concentrations in plasma and blood were also determined using modulation sensing. Anisotropy measurements revealed high Anisotropy for these dyes in plasma and blood. It also showed an increase in the anisotropy of AB670 with increase in HSA concentration in the presence of red blood cells. These results indicate that qualitative and quantitative fluorescence measurements can be made directly in blood without the need to process the blood.
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
NASA Technical Reports Server (NTRS)
Hollahan, J. R.; Wydeven, T.
1975-01-01
The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.
Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment
Li, J.; Hu, S. X.; Ren, C.
2017-02-28
Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less
Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Hu, S. X.; Ren, C.
Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less
Front surface structured targets for enhancing laser-plasma interactions
NASA Astrophysics Data System (ADS)
Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass
2016-10-01
We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.
NASA Astrophysics Data System (ADS)
Merten, Jonathan; Johnson, Bruce
2018-01-01
A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn
The positive dc corona plasmas between coaxial cylinders in air under the application of a self-sustained criterion with photoionization are investigated in this paper. A photon absorption function suitable for cylindrical electrode, which can characterize the total photons within the ionization region, is proposed on the basis of the classic corona onset criteria. Based on the general fluid model with the self-sustained criterion, the role of photoionization in the ionization region is clarified. It is found that the surface electric field keeps constant under a relatively low corona current, while it is slightly weakened with the increase of the coronamore » current. Similar tendencies can be found under different conductor radii and relative air densities. The small change of the surface electric field will become more significant for the electron density distribution as well as the ionization activity under a high corona current, compared with the results under the assumption of a constant surface field. The assumption that the surface electric field remains constant should be corrected with the increase of the corona current when the energetic electrons with a distance from the conductor surface are concerned.« less
Plasma and catalyst for the oxidation of NOx
NASA Astrophysics Data System (ADS)
Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen
2018-03-01
Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.
Thermal shock induced oxidation of beryllium
NASA Astrophysics Data System (ADS)
Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.
2017-12-01
Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m-2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m-2 and a pulse duration of 1 ms, leading to a peak surface temperature of ˜800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ˜0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
NASA Astrophysics Data System (ADS)
Krishnamoorthy, S.; Close, S.
2017-03-01
The reentry blackout phenomenon affects most spacecraft entering a dense planetary atmosphere from space, due to the presence of a plasma layer that surrounds the spacecraft. This plasma layer is created by ionization of ambient air due to shock and frictional heating, and in some cases is further enhanced due to contamination by ablation products. This layer causes a strong attenuation of incoming and outgoing electromagnetic waves including those used for command and control, communication and telemetry over a period referred to as the ‘blackout period’. The blackout period may last up to several minutes and is a major contributor to the landing error ellipse at best, and a serious safety hazard in the worst case, especially in the context of human spaceflight. In this work, we present a possible method for alleviation of reentry blackout using electronegative DC pulses applied from insulated electrodes on the reentry vehicle’s surface. We study the reentry plasma’s interaction with a DC pulse using a particle-in-cell (PIC) model. Detailed models of plasma-insulator interaction are included in our simulations. The absorption and scattering of ions and electrons at the plasma-dielectric interface are taken into account. Secondary emission from the insulating surface is also considered, and its implications on various design issues is studied. Furthermore, we explore the effect of changing the applied voltage and the impact of surface physics on the creation and stabilization of communication windows. The primary aim of this analysis is to examine the possibility of restoring L- and S-band communication from the spacecraft to a ground station. Our results provide insight into the effect of key design variables on the response of the plasma to the applied voltage pulse. Simulations show the creation of pockets where electron density in the plasma layer is reduced three orders of magnitude or more in the vicinity of the electrodes. These pockets extend to distances up to three times the electrode length normal to the vehicle surface. Based on our results, we postulate that pulsed electrostatic manipulation (PEM) may be a viable candidate for reentry blackout alleviation in the future.
Optimized ECR plasma apparatus with varied microwave window thickness
Berry, Lee A.
1995-01-01
The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.
A two photon absorption laser induced fluorescence diagnostic for fusion plasmas.
Magee, R M; Galante, M E; McCarren, D; Scime, E E; Boivin, R L; Brooks, N H; Groebner, R J; Hill, D N; Porter, G D
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
Diode laser sensor to monitor HCL in a plasma etch reactor
NASA Astrophysics Data System (ADS)
Kim, Suhong; Klimecky, Pete; Chou, Shang-I.; Jeffries, Jay B.; Terry, Fred L., Jr.; Hanson, Ronald K.
2002-09-01
Absorption measurements of HCl during plasma etching of poly-silicon are made using the P(4) transition in the first vibrational overtone band near 1.79 μm. Single path absorption provides a real-time HCl monitor during etching of six-inch wafers in a commercial Lam Research 9400SE reactor at the University of Michigan. Wavelength modulation at 10.7 MHz is used to distinguish the absorption signal from the strong plasma emission. The laser center frequency is ramp-tuned at 500 Hz providing an HCl measurement every 2ms. Direct absorption measurements without the plasma are used to calibrate the wavelength modulation signal. The minimum detectable absorbance was 5x(10)-6 with 50 ms averaging, leading to an HCl detection limit of ~(10)12cm-3. For a given ratio of the feedstock HBr/Cl2, the measured HCl concentration tracks the average etch rate. These measurements demonstrate the feasibility of a real-time diode laser-based etch rate sensor.
The effect of VUV radiation from Ar/O2 plasmas on low-k SiOCH films
NASA Astrophysics Data System (ADS)
Lee, J.; Graves, D. B.
2011-08-01
The degradation of porous low-k materials, like SiOCH, under plasma processing continues to be a problem in the next generation of integrated-circuit fabrication. Due to the exposure of the film to many species during plasma treatment, such as photons, ions, radicals, etc, it is difficult to identify the mechanisms responsible for plasma-induced damage. Using a vacuum beam apparatus with a calibrated Xe vacuum ultraviolet (VUV) lamp, we show that 147 nm VUV photons and molecular O2 alone can damage these low-k materials. Using Fourier-transform infrared (FTIR) spectroscopy, we show that VUV/O2 exposure causes a loss of methylated species, resulting in a hydrophilic, SiOx-like layer that is susceptible to H2O absorption, leading to an increased dielectric constant. The effect of VUV radiation on chemical modification of porous SiOCH films in the vacuum beam apparatus and in Ar and O2 plasma exposure was found to be a significant contributor to dielectric damage. Measurements of dielectric constant change using a mercury probe are consistent with chemical modification inferred from FTIR analysis. Furthermore, the extent of chemical modification appears to be limited by the penetration depth of the VUV photons, which is dependent on wavelength of radiation. The creation of a SiOx-like layer near the surface of the material, which grows deeper as more methyl is extracted, introduces a dynamic change of VUV absorption throughout the material over time. As a result, the rate of methyl loss is continuously changing during the exposure. We present a model that attempts to capture this dynamic behaviour and compare the model predictions to experimental data through a fitting parameter that represents the effective photo-induced methyl removal. While this model accurately simulates the methyl loss through VUV exposure by the Xe lamp and Ar plasma, the methyl loss from VUV photons in O2 plasma are only accurately depicted at longer exposure times. We conclude that other species, such as oxygen radicals or ions, may play a major role in chemical modification at short times near the surface of the material, while VUV photons contribute to the majority of the damage in the bulk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less
Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min
2015-03-01
We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.
Yao, Zhongping; Xia, Qixing; Ju, Pengfei; Wang, Jiankang; Su, Peibo; Li, Dongqi; Jiang, Zhaohua
2016-01-01
Thermal control ceramic coatings on Mg–Li alloys have been successfully prepared in silicate electrolyte system by plasma electrolytic oxidation (PEO) method. The PEO coatings are mainly composed of crystallized Mg2SiO4 and MgO, which have typical porous structure with some bulges on the surface; OES analysis shows that the plasma temperature, which is influenced by the technique parameters, determines the formation of the coatings with different crystalline phases and morphologies, combined with “quick cooling effect” by the electrolyte; and the electron concentration is constant, which is related to the electric spark breakdown, determined by the nature of the coating and the interface of coating/electrolyte. Technique parameters influence the coating thickness, roughness and surface morphology, but do not change the coating composition in the specific PEO regime, and therefore the absorptance (αS) and emissivity (ε) of the coatings can be adjusted by the technique parameters through changing thickness and roughness in a certain degree. The coating prepared at 10 A/dm2, 50 Hz, 30 min and 14 g/L Na2SiO3 has the minimum value of αS (0.35) and the maximum value of ε (0.82), with the balance temperature of 320 K. PMID:27383569
UV excimer laser and low temperature plasma treatments of polyamide materials
NASA Astrophysics Data System (ADS)
Yip, Yiu Wan Joanne
Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH) functional groups, which increased water absorption. However, after tetrafluoromethane plasma treatment it was found that the -CF, -CF2 and -CF3 groups were introduced to the polyamide surface and this enhanced the hydrophobicity of the fabric. Suggested explanations are given of the mechanisms that produce the structure of the polyamide after the processes of laser irradiation (both high- and low-fluence) and plasma treatment. The fundamental approach used in modelling was considered the temperature profile of the material during the treatment. The development of high-fluence induced structures was caused by elevated temperatures in the subsurface volume and preexisting stress caused by fiber extrusion. The structure formation under LF laser irradiation was determined by thermal effect accompanied by the optical phenomenon of interference. Ripple structures formed by plasma were closely related to physical or chemical etching. Possible applications of plasma and laser technologies in the textile and clothing industries are considered. Oxygen plasma seems to be the best candidate to improve the wettability of the fabric, while tetrafluoromethane plasma can be applied to produce a water repellent surface. Surface treatments including CF4 plasma, high-fluence and low-fluence laser treatments produce a deeper color in disperse dyed fabrics using the same amount of dyestuff as chemicals like leveling agents and dyestuff can be reduced during the textile manufacturing process. UV laser and low temperature plasma modification processes are promising techniques for polymer/fabric surface modification and have industrial potential as they are environmentally friendly dry processes which do not involve any solvents.
A two photon absorption laser induced fluorescence diagnostic for fusion plasmasa)
NASA Astrophysics Data System (ADS)
Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E.; Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N.; Porter, G. D.
2012-10-01
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm2), narrow bandwidth (0.1 cm-1) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
Atomic oxygen behavior at downstream of AC excited atmospheric pressure He plasma jet
NASA Astrophysics Data System (ADS)
Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru
2016-09-01
Applications of atmospheric pressure plasma jets (APPJ) have been investigated in the plasma medical fields such as cancer therapy, blood coagulation, etc. Reactive species generated by the plasma jet interacts with the biological surface. Therefore, the issue attracts much attentions to investigate the plasma effects on targets. In our group, a spot-size AC excited He APPJ have been used for the plasma medicine. From diagnostics of the APPJ using optical emission spectroscopy, the gas temperature and the electron density was estimated to be 299 K and 3.4 ×1015 cm-3. The AC excited He APPJ which affords high density plasma at room temperature is considered to be a powerful tool for the medical applications. In this study, by using vacuum ultraviolet absorption spectroscopy, the density of atomic oxygen on a floating copper as a target irradiated by the He APPJ was measured as a function of the distance between the plasma source and the copper wire. The measured density became a maximum value around 8 ×1013 cm-3 at 12 mm distance, and then decreased over the distance. It is considered that the behavior was due to the changes in the plasma density on the copper wire and influence of ambient air.
Design of a novel high efficiency antenna for helicon plasma sources
NASA Astrophysics Data System (ADS)
Fazelpour, S.; Chakhmachi, A.; Iraji, D.
2018-06-01
A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.
ECR apparatus with magnetic coil for plasma refractive index control
Berry, L.A.
1994-04-26
The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figures.
ECR apparatus with magnetic coil for plasma refractive index control
Berry, Lee A.
1994-01-01
The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.
Optimized ECR plasma apparatus with varied microwave window thickness
Berry, L.A.
1995-11-14
The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.
On the possibility of collective attraction in complex plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.
2010-06-15
An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less
Conformal doping of topographic silicon structures using a radial line slot antenna plasma source
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru
2014-06-01
Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.
Equator and High-Latitude Ionosphere-to-Magnetosphere Research
2010-12-04
characterizing plasma velocity profile in the heated region above HAARP has been clearly established. Specification of D region absorption from Digisonde...Electron density profile, Ground truth, Cal/Val, Doppler skymap, HAARP , Plasma velocity profile, Ionogram autoscaling, D region absorption...2 3 HAARP INVESTIGATIONS ............................................................................ 5 3.1
Alfven wave cyclotron resonance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.B.; Yosikawa, S.; Oberman, C.
1981-02-01
The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.
Enigmatic photon absorption in plasmas near solar interior conditions
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2015-06-01
Large systematic discrepancies between theoretical and experimental photon absorption of Fe plasmas applicable to the solar interior were reported [Bailey et al., Nature 517, 56 (2015)]. The disagreement is examined in the context of the Thomas-Reiche-Kuhn f-sum rule. The analysis identifies several anomalies in the experimental results.
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O.
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-20
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag 2 O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O
NASA Astrophysics Data System (ADS)
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-01
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag2O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Sputtering of ices in the outer solar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.E.
1996-01-01
Exploration of the outer solar system has led to studies in a new area of physics: electronically induced sputtering of low-temperature, condensed-gas solids (ices). Many of the icy bodies in the outer solar system were found to be bombarded by relatively intense fluxes of ions and electrons, causing both changes in their optical reflectance and ejection (sputtering) of molecules from their surfaces. The small cohesive energies of the condensed-gas solids afford relatively large sputtering rates from the electronic excitations produced in the solid by fast ions and electrons. Such sputtering produces an ambient gas about an icy body, often themore » source of the local plasma. This colloquium outlines the physics of the sputtering of ices and its relevance to several outer-solar-system phenomena: the sputter-produced plasma trapped in Saturn{close_quote}s magnetosphere; the O{sub 2} atmosphere on Europa; and optical absorption features such as SO{sub 2} in the surface of Europa and O{sub 2} and, possibly, O{sub 3} in the surface of Ganymede. {copyright} {ital 1996 The American Physical Society.}« less
NASA Astrophysics Data System (ADS)
Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian
2016-12-01
In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.
The role of laser wavelength on plasma generation and expansion of ablation plumes in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, A. E.; Department of Physics, McGill University, Montreal, Quebec H3A 0G4; Diwakar, P. K.
2013-04-14
We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photographymore » and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.« less
NASA Astrophysics Data System (ADS)
Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.
2011-10-01
Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.
Microtextured metals for stray-light suppression in the Clementine startracker
NASA Technical Reports Server (NTRS)
Johnson, E. A.
1993-01-01
Anodized blacks for suppressing stray light in optical systems can now be replaced by microscopically textured metal surfaces. An application of these black surfaces to the Clementine star-tracker navigational system, which will be launched in early 1994 to examine the Moon, en route to intercept an asteroid, is detailed. Rugged black surfaces with Lambertian BRDF less than 10(exp -2) srad(sup -1) are critical for suppressing stray light in the star-tracker optical train. Previously available materials spall under launch vibrations to contaminate mirrors and lenses. Microtextured aluminum is nearly as dark, but much less fragile. It is made by differential ion beam sputtering, which generates light-trapping pores and cones slightly smaller than the wavelength to be absorbed. This leaves a sturdy but light-absorbing surface that can survive challenging conditions without generating debris or contaminants. Both seeded ion beams and plasma immersion (from ECR plasmas) extraction can produce these microscopic textures without fragile interfaces. Process parameters control feature size, spacing, and optical effects (THR, BRDF). Both broad and narrow absorption bands can be engineered with tuning for specific wavelengths and applications. Examples are presented characterized by FTIR in reflection librators (0.95 normal emissivity), heat rejection, and enhanced nucleate boiling.
NASA Astrophysics Data System (ADS)
Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi
2017-12-01
Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.
Energy absorption in cold inhomogeneous plasmas - The Herlofson paradox.
NASA Technical Reports Server (NTRS)
Crawford, F. W.; Harker, K. J.
1972-01-01
Confirmation of Barston's (1964) conclusions regarding the underlying mechanism of the Herlofson paradox by examining in detail several analytically tractable cases of delta-function and sinusoidal excitation. The effects of collisions and nonzero electron temperature in determining the steady state fields and dissipation are considered. Energy absorption without dissipation in plasmas is shown to be analogous to that occurring after application of a signal to a network of lossless resonant circuits. This analogy is pursued and is extended to cover Landau damping in a warm homogeneous plasma in which the resonating elements are the electron streams making up the velocity distribution. Some of the practical consequences of resonant absorption are discussed, together with a number of paradoxical plasma phenomena which can also be elucidated by considering a superposition of normal modes rather than a single Fourier component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.
2016-05-06
This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.
Radiation effects on ETFE polymer exposed to glow discharge
NASA Astrophysics Data System (ADS)
Minamisawa, Renato Amaral; Abidzina, Volha; de Almeida, Adelaide; Budak, Satilmis; Tereshko, I.; Elkin, I.; Ila, Daryush
2007-08-01
The polymer ethylenetetrafluoroethylene (ETFE) is composed of alternating ethylene and tetrafluoroethylene segments. Because it has applications in areas such as medical physics and industrial coatings, there is a great interest in surface modification studies of ETFE polymer. When this material is exposed to ionizing radiation it suffers damage that depends on the type, energy and intensity of the irradiation. In order to determine the radiation damage mechanism from exposure to low voltage plasma, ETFE films were exposed to residual gas plasma in glow discharge regime to a fluence of 2 × 1017 ions/cm2. Irradiated films were analyzed with optical absorption photospectrometry, Fourier transform infrared (FTIR) and Raman spectroscopy to determine the chemical nature of the structural changes caused by low energy glow discharge.
Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.
2000-01-01
Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated watermore » (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.« less
NASA Astrophysics Data System (ADS)
Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan
2015-01-01
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.
Physical properties of erupting plasma associated with coronal mass ejections
NASA Astrophysics Data System (ADS)
Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.
2013-12-01
We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.
Bødker, A; Rasmussen, T B; Christensen, M B
1991-04-01
We describe the absorption of chlortetracycline from the emptied hydrocele sac, which was instilled to treat a primary hydrocele of the testis. The study included 7 patients and 2 control subjects who were given 500 mg. chlortetracycline. Plasma concentration was determined at 0, 1/2, 1, 2, 4, 6, 12 and 24 hours after instillation, and in 2 patients plasma levels also were determined at 48 and 72 hours. The area under the plasma concentration-time curve (AUC1) was calculated in each case by using the trapezoidal rule. In the control group the plasma level was determined at 0, 1, 2, 4 and 6 hours after instillation. The area under the plasma concentration-time curve (AUC2) was calculated by the formula AUC2 = Co/Kc. The fraction F of absorption can be expressed as F = AUC1/AUC2; median F = 0.67 (range 0.41 to 0.92). We conclude that chlortetracycline passes readily and almost completely through the tunica vaginalis lining the hydrocele sac.
Laser production and heating of plasma for MHD application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1988-01-01
Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.
Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe
2016-09-01
Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.
Functional and rheological properties of cold plasma treated rice starch.
Thirumdas, Rohit; Trimukhe, A; Deshmukh, R R; Annapure, U S
2017-02-10
The present work deals with aimed to study the effect of cold plasma treatment on the functional and rheological properties of rice starch using two different power levels (40 and 60W). The changes in amylose content, turbidity, pH, water and fat absorption due to plasma treatment were evaluated. Where decrease in the turbidity and pH after the treatment was observed. Gel hydration properties and syneresis study revealed that there is an increase in leaching of amylose molecules after the treatment. Rapid Visco Analyzer examination showed an increase in pasting and final viscosities. From G' and G″ moduli determination we observed that there is decrease in retrogradation tendency of starch gels. XRD did not show any change in A-type pattern but decrease in the relative crystallinity was observed due to depolymerization caused by active plasma species. FTIR shows some of the additional functional groups after treatment. SEM showed formation of fissures on the surface of starch granules due to etching caused by the plasma species. Thus, plasma treatment can be one of the methods for physical modification of starch. Copyright © 2016 Elsevier Ltd. All rights reserved.
EUV laser produced and induced plasmas for nanolithography
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2017-10-01
EUV produced plasma sources are being extensively studied for the development of new technology for computer chips production. Challenging tasks include optimization of EUV source efficiency, producing powerful source in 2 percentage bandwidth around 13.5 nm for high volume manufacture (HVM), and increasing the lifetime of collecting optics. Mass-limited targets, such as small droplet, allow to reduce contamination of chamber environment and mirror surface damage. However, reducing droplet size limits EUV power output. Our analysis showed the requirement for the target parameters and chamber conditions to achieve 500 W EUV output for HVM. The HEIGHTS package was used for the simulations of laser produced plasma evolution starting from laser interaction with solid target, development and expansion of vapor/plasma plume with accurate optical data calculation, especially in narrow EUV region. Detailed 3D modeling of mix environment including evolution and interplay of plasma produced by lasers from Sn target and plasma produced by in-band and out-of-band EUV radiation in ambient gas, used for the collecting optics protection and cleaning, allowed predicting conditions in entire LPP system. Effect of these conditions on EUV photon absorption and collection was analyzed. This work is supported by the National Science Foundation, PIRE project.
NASA Astrophysics Data System (ADS)
Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.
2013-09-01
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.
Effects of the plasma-facing materials on the negative ion H ‑ density in an ECR (2.45 GHz) plasma
NASA Astrophysics Data System (ADS)
Bentounes, J.; Béchu, S.; Biggins, F.; Michau, A.; Gavilan, L.; Menu, J.; Bonny, L.; Fombaron, D.; Bès, A.; Lebedev, Yu A.; Shakhatov, V. A.; Svarnas, P.; Hassaine, T.; Lemaire, J. L.; Lacoste, A.
2018-05-01
Within the framework of fundamental research, the present work focuses on the role of surface material in the production of H ‑ negative ion, with a potential application of designing cesium-free H ‑ negative ion sources oriented to fusion application. It is widely accepted that the main reaction leading to H ‑ production, in the plasma volume, is the dissociative attachment of low-energy electrons (T e ≤ 1 eV) on highly ro-vibrationally excited hydrogen molecules. In parallel with other mechanisms, the density of these excited molecules may be enhanced by means of the recombinative desorption, i.e. the interaction between surface absorbed atoms with other atoms (surface adsorbed or not) through the path {H}{{ads}}+{H}{{gas}/{{ads}}}\\to {H}2{(v,J)}{{gas}}+{{Δ }}E. Accordingly, a systematic study on the role played by the surface in this reaction, with respect to the production of H ‑ ion in the plasma volume, is here performed. Thus, tantalum and tungsten (already known as H ‑ enhancers) and quartz (inert surface) materials are employed as inner surfaces of a test bench chamber. The plasma inside the chamber is produced by electron cyclotron resonance (ECR) driving and it is characterized with conventional electrostatic probes, laser photodetachment, and emission and absorption spectroscopy. Two different positions (close to and away from the ECR driving zone) are investigated under various conditions of pressure and power. The experimental results are supported by numerical data generated by a 1D model. The latter couples continuity and electron energy balance equations in the presence of magnetic field, and incorporates vibrational kinetics, H2 molecular reactions, H electronically excited states and ground-state species kinetics. In the light of this study, recombinative desorption has been evidenced as the most probable mechanism, among others, responsible for an enhancement by a factor of about 3.4, at 1.6 Pa and 175 W of microwave power, in the case of tantalum.
Growth of diamond by RF plasma-assisted chemical vapor deposition
NASA Technical Reports Server (NTRS)
Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.
1988-01-01
A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.
Curcumin therapeutic promises and bioavailability in colorectal cancer.
Shehzad, A; Khan, S; Shehzad, O; Lee, Y S
2010-07-01
Curcumin, a polyphenol and derivative of turmeric is one of the most commonly used and highly researched phytochemicals. Several research studies have provided interesting insights into the multiple mechanisms by which curcumin may mediate chemotherapy and chemopreventive effects on cancers, including colorectal cancer. Curcumin has the ability to inhibit carcinogenic promotion of colorectal cancer through the modulation of multiple molecular targets such as transcription factors, enzymes, cell cycle proteins, cell surface adhesion proteins, survival pathways and cytokines. A number of clinical trials dealing with curcumin's efficacy and safety revealed poor absorption and low bioavailability. Different factors contributing to the low bioavailability include low plasma level, tissue distribution, rapid metabolism and elimination from the body. Although, curcumin poor absorption and low systemic bioavailability limit its translation into clinics, some of the methods for its use can be approached to enhance the absorption and achieve a therapeutic level of curcumin. Recent clinical trials suggest a potential role for curcumin in regards to colorectal cancer therapy.
Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A
2012-05-01
Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Isliker, Heinz; Chatziantonaki, Ioanna; Tsironis, Christos; Vlahos, Loukas
2012-09-01
We analyze the propagation of electron-cyclotron waves, their absorption and current drive when neoclassical tearing modes (NTMs), in the form of magnetic islands, are present in a tokamak plasma. So far, the analysis of the wave propagation and power deposition in the presence of NTMs has been performed mainly in the frame of an axisymmetric magnetic field, ignoring any effects from the island topology. Our analysis starts from an axisymmetric magnetic equilibrium, which is perturbed such as to exhibit magnetic islands. In this geometry, we compute the wave evolution with a ray-tracing code, focusing on the effect of the island topology on the efficiency of the absorption and current drive. To increase the precision in the calculation of the power deposition, the standard analytical flux-surface labeling for the island region has been adjusted from the usual cylindrical to toroidal geometry. The propagation up to the O-point is found to be little affected by the island topology, whereas the power absorbed and the driven current are significantly enhanced, because the resonant particles are bound to the small volumes in between the flux surfaces of the island. The consequences of these effects on the NTM evolution are investigated in terms of the modified Rutherford equation.
NASA Astrophysics Data System (ADS)
Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.
2011-01-01
Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the possibility to develop compact ozonizers having high ozone yield at the low energy cost of O → O3 conversion.
NASA Astrophysics Data System (ADS)
Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.
1994-09-01
A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.
44th Annual Anomalous Absorption Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, Farhat
Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I.more » Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded beyond ICF-related laser-plasma interactions to encompass closely related technical areas including laser particle acceleration, high-intensity laser effects, short pulse laser interactions, PIC and Vlasov/rad-hydro modeling, inertial and magnetic fusion plasmas, advanced plasma diagnostics, alternate ignition schemes, EOS/transport/opacity, and this year, x ray free-electron lasers and their applications. The conference continues to be a showcase for the presentation and discussion of the latest developments in these areas. II. Meeting Report The conference was extremely successful with more than one hundred participants. There were ninety-nine (99) abstracts submitted. There were forty-four (44) presentations including eleven (11) invited talks. The following topics were covered: a) Radiation Hydrodynamics b) Implosion Plasma Kinetic Effects c) Alternate Ignition Schemes d) Astrophysical Phenomena e) Opacity/Transport/EOS f) High Power Lasers and Facilities g) High-Intensity Laser-Matter Interactions h) Hydrodynamics and Hydro-instabilities i) Hot Dense Plasma Atomic Processes j) High Energy Density Physics k) Laser Particle Acceleration Physics l) Advanced Plasma Diagnostics m) Advanced light sources and applications Despite significant advertising, there were two students who applied for the travel grants: Charlie Jarrott and Joohwan Kim. The total funds expended were $3,216.14.« less
Picosecond laser bonding of highly dissimilar materials
NASA Astrophysics Data System (ADS)
Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.
2016-10-01
We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.
Lunar surface magnetometer experiment
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Sonett, C. P.
1972-01-01
The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.
NASA Astrophysics Data System (ADS)
Shimamura, Kohei
2016-09-01
To reduce the computational cost in the particle method for the numerical simulation of the laser plasma, we examined the simplification of the laser absorption process. Because the laser frequency is sufficiently larger than the collision frequency between the electron and heavy particles, we assumed that the electron obtained the constant value from the laser irradiation. First of all, the simplification of the laser absorption process was verified by the comparison of the EEDF and the laser-absorptivity with PIC-FDTD method. Secondary, the laser plasma induced by TEA CO2 laser in Argon atmosphere was modeled using the 1D3V DSMC method with the simplification of the laser-absorption. As a result, the LSDW was observed with the typical electron and neutral density distribution.
Food Ingredients That Inhibit Cholesterol Absorption
Jesch, Elliot D.; Carr, Timothy P.
2017-01-01
Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol absorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food components that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consumers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identified as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. PMID:28702423
NASA Astrophysics Data System (ADS)
May, Joshua Joseph
The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only possible when the temperature is high in the direction parallel to the electric field of the laser. In multi-dimensions, absorption into relativistic electrons arises independent of the initial temperature for both fixed and mobile ions, although the absorption is higher for mobile ions. In most cases however, absorption remains at 100s of percent, and as such a standing wave structure from the incoming and reflected wave is setup in front of the plasma surface. The peak momentum of the accelerated electrons is found to be 2 a0mec, where a 0 = eA0/mec 2 is the normalized vector potential of the laser in vacuum, e is the electron charge, me is the electron mass, and c is the speed of light. We consider cases for which a0 > 1. We therefore call this the 2 a0 acceleration process. Using particle tracking, we identify the detailed physics behind the 2a0 process and find it is related to the standing wave structure of the fields. We observe that the particles which gain energy do so by interacting with the laser electric field within a quarter wavelength of the surface where it is at an anti-node (it is a node at the surface). We find that only particles with high initial momentum - in particular high transverse momentum - are able to navigate through the laser magnetic field as its magnitude decreases in time each half laser cycle (it is an anti-node at the surface) to penetrate a quarter wavelength into the vacuum where the laser electric field is large. For a circularly polarized laser the magnetic field amplitude never decreases at the surface, instead its direction simply rotates. This prevents electrons from leaving the plasma and they therefore cannot gain energy from the electric field. (Abstract shortened by ProQuest.).
Nonlinear Optical Interactions in Plasmas at JILA
NASA Astrophysics Data System (ADS)
Dollar, F.; Hickstein, D. D.; Popmintchev, D.; Becker, A.; Ellis, J.; Hernandez-Garcia, C.; Jaron-Becker, A.; Popmintchev, T.; Xiong, W.; Murnane, M. M.; Kapteyn, H. C.; Dukovic, G.; Jimenez, J.; Palm, B.; Schnitzenbaumer, K.; Perez-Hernandez, J.; Gaeta, A.; Gao, X.; Shim, B.; Plaja, L.; Levis, R.; Tarazkar, M.; Foord, M. E.; Gaffney, J. A.; Libby, S. B.
2014-10-01
We present data from two recent experiments. First, we demonstrate direct observations of localized light absorption in a single nanoparticle irradiated by a strong femtosecond laser field. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Secondly, we show the high linear and nonlinear UV refractive indices of both neutral atoms and ions compensate for plasma dispersion, even in multiply-ionized gases. The experimental work was primarily funded by DOE Grant Number: DE-SC0008803, the DARPA PULSE program, and ARO W911NF-12-1-0436.
NASA Astrophysics Data System (ADS)
Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru
2017-10-01
Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.
Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary
2016-10-01
We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.
Vree, T B; Dammers, E; Exler, P S; Maes, R A
2000-06-01
This study was based on data from a bioequivalence study (n=24) of two different formulations of suppositories containing 500 mg mesalazine (formulation I and II), with a similar dissolution profile in phosphate buffer pH 6.8. There was a large intra- and intersubject variability in the plasma concentration-time curves of mesalazine from both suppositories. The aim of the investigation was to identify the parameters that caused the observed large variations in release and absorption of mesalazine in the rectum. Plasma mesalazine and acetylmesalazine, and urine acetylmesalazine concentrations were determined according to validated methods involving HPLC analysis with coulometric detection. Lower limit of quantitation values were respectively 10.4 and 19.4 ng mL(-1) in plasma and 0.96 microg mL(-1) in urine. The time of defecation before and after insertion was recorded. There was a clear distinction between subjects who showed monophasic mesalazine release/absorption and those who showed biphasic and more extended release/absorption. With formulation I there was a correlation between time of defecation before dosing and the type of absorption, monophasic and biphasic absorbers showed a significant difference in the time of defecation, e.g. 9.7+/-5.6 h vs 18.8+/-11.9 h (P = 0.0218). The impact of time of defecation before dosing was non-significant with formulation II, 16.7+/-7.2 h vs 15.1+/-4.2 h (P = 0.67). The impact of the time elapsed between administration and time of defecation after the insertion of the suppository was not significant for the type of release/absorption. The plasma concentration-time curves of the metabolite ran parallel to that of the parent drug, the more parent drug was released/absorbed, the more was acetylated (P = 0.0013) and excreted into the urine (P = 0.0004). After absorption the compound was metabolized into acetylmesalazine, and renally excreted (12-13% of the dose). Monophasic release/ absorption resulted in 7.1% metabolite with I and 10.3% with II (P = 0.0004), while biphasic release/absorption gave 16.8% metabolite with I and 15.5% with II. The renal clearance of the metabolite acetylmesalazine was independent of the observed defecation patterns (300 mL min(-1), P > 0.8), stool composition, and type of absorption.
NASA Astrophysics Data System (ADS)
Kochetov, A. V.
2018-05-01
This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com
2015-11-15
This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less
Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucose sensing
NASA Astrophysics Data System (ADS)
Muhimmah, Luthviyah Choirotul; Roekmono, Hadi, Harsono; Yuwono, Rio Akbar; Wahyuono, Ruri Agung
2018-04-01
Blood plasma separation is essential to analyze and quantify the bio-substances in the human blood and hence, allows for diagnosing various diseases. This paper presents the two layer paper-based microfluidic analytical devices coated with ZnO nanoflowers (ZnO NF-µPAD) for a rapid blood plasma separation and glucose sensing. Plasma separation in ZnO NF-µPAD was evaluated experimentally and numerically using computational fluid dynamics package for a flow over porous networks. Glucose detection was carried out using Fourier-transform infrared (FTIR) measurements. The glucose concentrations in the red blood samples investigated here vary in the range of 150 - 310 mg.dl-1. The plasma separation process on ZnO NF-μPAD requires 240 ± 93 s. The spectroscopic data reveals that the IR absorptions and Raman signals at the typical vibrational frequencies of glucose are increasing at higher glucose concentration. After subtraction from absorption background arising from ZnO NF and the paper, linearly increasing IR absorption (913 and 1349 cm-1) and Raman signals (1346 and 1461 cm-1) are observable with a relatively good sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Sherman, V. E.
2016-08-15
The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result ofmore » using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.« less
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Xiang-kun; Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Shao-Bin, E-mail: plrg@nuaa.edu.cn
2014-12-15
A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incidentmore » angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.« less
Studies on the absorption and disposition of meptazinol following rectal administration.
Franklin, R A; Southgate, P J; Coleman, A J
1977-01-01
1 Rectal administration of the new analgesic drug, meptazinol, resulted in rapid absorption of the compound both in the monkey and in man. Peak plasma levels were observed within 0.5 h of dosing. 2 Absorption of the drug following rectal administration was extensive as shown by the recovery of 65-90% of the dose in the urine. 3 Despite substantial inter-individual variation in the observed maximum plasma concentrations of the drug, it was still evident that concentrations after rectal dosage were considerably higher than when the same dosage was given orally. 4 Elimination of the drug from plasma took place rapidly in an apparently mono-exponential manner in both species. The half-life of elimination in monkeys was 1.25 h and in man 2.0 h. PMID:405029
Helicon mode formation and radio frequency power deposition in a helicon-produced plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, K.; Kraemer, M.
2008-07-15
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated bymore » showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.« less
Radiation reabsorption in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Brunner, W.; John, R. W.; Paul, H.; Steudel, H.
1988-11-01
Taking into account the emission and absorption of resonance radiation in a recombining laser-produced plasma of intermediate density, the system of rate equations for the population densities coupled with the radiative transfer equation is approximately treated. In the case of spatially varying absorption, an approximate form of the rate equation determining the population density of the upper resonance level is derived. By applying this relation to an axially symmetric plasma, a simple formula that describes the effect of radiation reabsorption on the spatial behavior of the population density is obtained.
Inertization of heavy metals present in galvanic sludge by DC thermal plasma.
Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan
2014-01-01
Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.
Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes
2016-04-01
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutanen, M.L.; Mykkaenen, H.M.
1984-05-01
The effect of dietary fat on the availability of selenium was investigated in chicks fed either 4 or 20% butter, olive oil, rape oil, corn oil or sunflower oil in the diet for 3 weeks after hatching. Plasma glutathione peroxidase (GSH-Px) activity was used as an indicator of the body selenium status. In addition, the intestinal absorption of sodium selenite (/sup 75/Se-labeled) was determined by using both the in vivo ligated loop procedure and oral administration of the isotope. The plasma GSH-Px levels increased with increasing proportion of the polyunsaturated fatty acids in the diet. Increasing the amount of fatmore » from 4 to 20% significantly enhanced the GSH-Px activity in the groups receiving butter or olive oil, but had no effect in animals fed the unsaturated fats. The absorption of (/sup 75/Se)selenite from the ligated duodenal loops tended to be reduced in chicks fed corn oil or sunflower oil as compared to the animals receiving butter in their diet. On the other hand, the type of dietary fat did not appear to affect the absorption of the orally administered selenite. The present study demonstrates that the type of dietary fat can affect the plasma GSH-Px levels in chicks without altering the intestinal absorption of selenite. However, the results on the absorption of the intraduodenally injected sodium selenite suggest that dietary fat plays some role in the intestinal transport of selenium.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D
2015-12-01
The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.
High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui
2017-05-01
This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.
Laser-Material Interaction of Powerful Ultrashort Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komashko, A
2003-01-06
Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.« less
Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin
2015-01-01
Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway significantly reduced oral bioavailability of CRV niosomes. Overall twofold enhancement in bioavailability in comparison with drug suspension confers the potential of niosomes as suitable carriers for improved oral delivery of CRV.
Ikeda, Saiko; Uchida, Tomono; Ichikawa, Tomio; Watanabe, Takashi; Uekaji, Yukiko; Nakata, Daisuke; Terao, Keiji; Yano, Tomohiro
2010-01-01
To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.
Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...
2014-02-12
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Jackson, G. L.; Luce, T. C.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Austin, M. E.; Diem, S. J.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
NASA Astrophysics Data System (ADS)
Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.
2017-08-01
Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.
Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.
Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng
2018-01-01
We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.
NASA Astrophysics Data System (ADS)
Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.
1998-03-01
Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.
Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber
DOUGHTY, FRANK C.; [et al
2001-05-01
A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.
Effect of nonlinear absorption on self focusing of short laser pulse in a plasma
NASA Astrophysics Data System (ADS)
Kumar, Ashok
2012-06-01
Paraxial theory of self focusing of short pulse laser in a plasma under transient and saturating effects of nonlinearity and nonlinear absorption is developed. The absorption is averaged over the cross-section of the beam and is different for different time segments of the pulse. The electron temperature includes cumulative effect of previous history of temporal profile of pulse intensity, however, the ambipolar diffusion is taken to be faster than the heating time. The relaxation effect causes self-distortion of the pulse temporal profile where as the nonlinear absorption weakens self focusing. For the pulses of duration comparable to the electron ion collision time, the front part of the pulse gets defocused where as the latter part undergoes periodic self focusing.
NASA Astrophysics Data System (ADS)
Lee, Geon Joon; Park, Gyungsoon; Choi, Eun Ha
2017-11-01
We studied the effect of plasma treatment on the optical, structural and biological properties of Neurospora crassa ( N. crassa) spores. An atmospheric-pressure plasma jet (APPJ) was used to generate reactive oxygen and nitrogen species in aqueous solution. The APPJ treatment of N. crassa spores in water significantly reduced the viability of spores. The reduction in the spore viability can be attributed to the reactive species from the plasma itself and those derived from the reaction of plasma radicals with aqueous solution. These structural modifications were contingent on the medium in which N. crassa spores were suspended; plasma treatment of N. crassa spores in PBS did not significantly affect the viability of spores as compared with N. crassa spores in water. Scanning electron microscopy images and circular dichroism spectra indicated that the spore cell wall was damaged by plasma treatment. The optical absorption spectrum of untreated N. crassa spores exhibited two resonance absorption bands at approximately λ1 ≈ 260 nm and λ2 ≈ 472 nm, originating from deoxyribonucleic acid (DNA) and β-carotene. The Raman spectrum of untreated N. crassa spores exhibited three main peaks at 1519, 1157 and 1006 cm -1, attributed to β-carotene inside the cell wall. The Raman spectra showed that the APPJ treatment of N. crassa spores in water caused degradation of β-carotene, affecting the viability of spores.
Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans.
Overgaard, Julie; Porsgaard, Trine; Guo, Zheng; Lauritzen, Lotte; Mu, Huiling
2008-10-01
The postprandial effects of a butter product containing fish oil were investigated in a single-meal, randomized crossover study with a commercial butter product as the control. Twelve healthy males consumed two test meals with (13)C-labelled cholesterol (45 mg) and either an interesterified butter blend with fish oil (352 mg n-3 long-chain PUFA (LCPUFA)) or the commercial butter blend. Blood samples were collected after the meals and in the fasting condition on the test day and the following morning, and were analysed for cholesterol absorption, plasma lipid profile and fatty acid composition. No significant difference in the postprandial plasma fatty acid composition was observed between the groups, neither difference in cholesterol absorption, plasma cholesterol or the cholesterol contents of plasma lipoproteins. The incorporation of fish oil in the butter resulted in a significant lower concentration of triacylglycerols in the plasma 2 h after the meal in comparison with the commercial butter blend (p = 0.02); there was, however, no significant difference 24 h after the meal. In conclusion, fish oil-enriched butter blend provides a source to increase the intake of n-3 LCPUFA in the population, but has no acute effect on cholesterol absorption and plasma cholesterol concentration in human.
Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy
Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...
2015-03-02
We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.
Boriskina, Svetlana V; Tsurimaki, Yoichiro
2018-06-06
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Tsurimaki, Yoichiro
2018-06-01
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
NASA Astrophysics Data System (ADS)
Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.
2007-01-01
On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.
Berton, Paula; Di Bona, Kristin R; Yancey, Denise; Rizvi, Syed A A; Gray, Marquita; Gurau, Gabriela; Shamshina, Julia L; Rasco, Jane F; Rogers, Robin D
2017-05-11
Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague-Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components.
2017-01-01
Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague–Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components. PMID:28523100
The effect of antacids on the absorption of simultaneously ingested iron.
O'Neil-Cutting, M A; Crosby, W H
1986-03-21
Most discussions of iron therapy include a statement about the ineffectiveness of iron ingested simultaneously with antacids. This study was designed to determine whether or not antacids inhibit iron absorption. A small-dose iron tolerance test was used to compare absorption of iron with and without various antacids. Liquid antacid containing aluminum hydroxide and magnesium hydroxide did not significantly decrease iron absorption. Sodium bicarbonate and calcium carbonate caused the plasma iron increase to be 50% and 67% less than the control values, respectively. However, when calcium carbonate was present in a multivitamin-plus-minerals tablet, the plasma iron change was not significantly different from control trials. Presumably the competitive binding of iron by ascorbic acid in the vitamin pill allowed uninhibited absorption of the iron. Our results suggest that certain antacids may be combined with iron therapy without reducing the efficacy of the iron.
VUV absorption spectroscopy of bacterial spores and DNA components
NASA Astrophysics Data System (ADS)
Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina
2017-01-01
Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.
Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview
Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen
2010-01-01
The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581
Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.
Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B; Röpcke, Jürgen
2010-01-01
The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
Modeling of nanosecond pulsed laser processing of polymers in air and water
NASA Astrophysics Data System (ADS)
Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon
2018-07-01
Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.
Rodríguez-Alcalá, Luís M; Ares, Irma; Fontecha, Javier; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu
2017-09-06
This study aimed to assess the oral absorption and plasma kinetics of two main isomers contained in commercial conjugated linoleic acid (CLA)-rich oil (Tonalin TG-80), rumenic acid (RA), and C18:2 trans-10, cis-12. The isomer plasma disposition after the single oral dose of 3000 mg of Tonalin TG-80/kg, containing 1200 mg/kg of each isomer, was studied in rats. The isomer plasma concentrations were determined by gas chromatography with flame ionization detection. The plasma kinetics showed rapid oral absorption of RA and C18:2 trans-10, cis-12 (t 1/2a 0.34 ± 0.09 and 0.53 ± 0.01 h) and slow elimination (t 1/2β 25.68 ± 3.29 and 18.12 ± 1.71 h); the maximal isomer plasma concentrations (C max ) of 8.48 ± 0.98 and 7.67 ± 0.80 μg mL -1 , respectively, were estimated at 2.08 ± 0.14 and 2.26 ± 0.11 h. Our results from a preclinical kinetic study in rats help to design future studies in humans for evaluating the CLA isomer dose-response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.
The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less
NASA Astrophysics Data System (ADS)
Fang, Yingcui; Wu, Qingmeng; Li, Huanhuan; Zhang, Bing; Yan, Rong; Chen, Junling; Sun, Mengtao
2018-04-01
We construct a kind of structure of silver oxide capped silver nanoparticles (AgNPs) by cost-efficient air plasma irradiation, and study its visible-light driven photocatalytic activity (PA). By controlling the oxidization time, the relationship between the intensity of the localized surface plasmon resonance (LSPR) and the PA is well established. The PA reaches the maximum when the LSPR of AgNPs is nearly completely damped (according to absorption spectra); however, under this condition, the LSPR still works, confirmed with the high efficient selective transformation of p-Aminothiophenol (PATP) to p, p'-dimercaptoazobenzene (DMAB) under visible light. The mechanism of the LSPR damping induced PA improvement is discussed. We not only provide a cost-efficient approach to construct a LSPR strong damping structure but also promote the understanding of LSPR strong damping and its relationship with photocatalysis.
Industrial ion source technology. [for ion beam etching, surface texturing, and deposition
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1977-01-01
Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.
NASA Astrophysics Data System (ADS)
Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.
2011-12-01
Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.
NASA Astrophysics Data System (ADS)
Henriquez, Miguel F.; Thompson, Derek S.; Keniley, Shane; Curreli, Davide; Steinberger, Thomas E.; Caron, David D.; Jemiolo, Andrew J.; McLaughlin, Jacob W.; Dufor, Mikal T.; Neal, Luke A.; Scime, Earl E.; Siddiqui, M. Umair
2017-10-01
Plasma-boundary interactions are strongly affected by the sheath and presheath structures that form near the boundary surface. Recent measurements have observed ion transport across magnetic field lines in regions where the surface is oblique to the background magnetic field (ψ =74°) . In these boundary regions, charge exchange collisions may provide a mechanism through which neutral particles interact with the long distance presheath electric field. We report efforts to directly compare Boltzmann and particle-in-cell simulations with 3D neutral velocity distribution functions (NVDFs) using laser induced fluorescence (LIF) in a magnetized plasma boundary region. We present a novel LIF method for measuring Ar-II metastable velocity distributions, in which we observe the 738.6014 nm fluorescence (2p3 to 1s4 in Paschen's notation), that results from absorption of the 706.9167 nm (1s5 metastable to 2p3) pump laser, providing neutral temperatures and flows. We additionally describe electrostatic probe measurements in the same region.
Ultrafast carrier dynamics and optical pumping of lasing from Ar-plasma treated ZnO nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Ketaki; Mukherjee, Souvik; Wiederrecht, Gary
We report that it is a well-known fact that ZnO has been one of the most studied wide bandgap II-VI materials by the scientific community specifically due to its potential for being used as exciton-related optical devices. Hence, realizing ways to increase the efficiency of these devices is important. We discuss a plasma treatment technique to enhance the near-band-edge (NBE) excitonic emission from ZnO based nanoribbons. We observed an enhancement of the NBE peak and simultaneous quenching of the visible emission peak resulting from the removal of surface traps on these ZnO nanoribbons. More importantly, we report here the associatedmore » ultrafast carrier dynamics resulting from this surface treatment. Femtosecond transient absorption spectroscopy was performed using pump-probe differential transmission measurements shedding new light on these improved dynamics with faster relaxation times. The knowledge obtained is important for improving the application of ZnO based optoelectronic devices. Finally, we also observed how these improved carrier dynamics have a direct effect on the threshold and efficiency of random lasing from the material.« less
Ultrafast carrier dynamics and optical pumping of lasing from Ar-plasma treated ZnO nanoribbons
Sarkar, Ketaki; Mukherjee, Souvik; Wiederrecht, Gary; ...
2018-01-04
We report that it is a well-known fact that ZnO has been one of the most studied wide bandgap II-VI materials by the scientific community specifically due to its potential for being used as exciton-related optical devices. Hence, realizing ways to increase the efficiency of these devices is important. We discuss a plasma treatment technique to enhance the near-band-edge (NBE) excitonic emission from ZnO based nanoribbons. We observed an enhancement of the NBE peak and simultaneous quenching of the visible emission peak resulting from the removal of surface traps on these ZnO nanoribbons. More importantly, we report here the associatedmore » ultrafast carrier dynamics resulting from this surface treatment. Femtosecond transient absorption spectroscopy was performed using pump-probe differential transmission measurements shedding new light on these improved dynamics with faster relaxation times. The knowledge obtained is important for improving the application of ZnO based optoelectronic devices. Finally, we also observed how these improved carrier dynamics have a direct effect on the threshold and efficiency of random lasing from the material.« less
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
Relativistic Electron Beams, Forward Thomson Scattering, and ``Raman'' Scattering
NASA Astrophysics Data System (ADS)
Simon, A.
1999-11-01
Experiments at LLE (see abstract by D. Hicks at this meeting) show that surprisingly high potentials (+0.5 to 2.0 MV) develop in plasmas irradiated by high-energy lasers. The highly conducting plasma will be a near equipotential and should attract return-current electrons in a radial beam-like distribution, especially in the outer low-density regions. This will initiate the BOT instability, creating large plasma waves with phase velocities close to c. Coherent Thomson scattering of the interaction beam from these waves must occur primarily in the forward direction. This will appear to be ``backward SRS'' upon reflection from a critical surface. We will show that the resulting spectrum is fairly broad and at short wavelengths. Collisional absorption of the scattered EM wave limits the reflectivity to low values (depending on the density scale length). Thus, a distinct difference exists between the spectrum for thick targets (nc surface present) and thin targets (gasbags, etc., from which primarily a narrow absolute-SRS backward emission occurs, at the peak density). The thick-target, reflected-wave angular distribution will be concentrated in the backward direction. The corresponding plasma-wave k-vector will be a fraction of k_0. The variation of the spectrum with potential and angle will be discussed. Comparison will be made with recent results at LLE and LLNL. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, UR, and NYSERDA.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
NASA Astrophysics Data System (ADS)
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163
Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E
2011-01-01
Background: The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. Objective: We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Design: Plasma sterols were measured by gas chromatography–mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (SI) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. Results: The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol–cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with SI and negatively associated with obesity, whereas lathosterol correlations were the opposite. Conclusions: Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve SI and to decrease cholesterol overproduction in LIR and OIR persons. PMID:21940599
Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E
2011-11-01
The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.
Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma
NASA Astrophysics Data System (ADS)
McCarren, Dustin W.
Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less
Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer
2013-07-16
Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC was within one standard deviation of the observed mean plasma AUC in 74% of the simulations. GI-Sim was also able to correctly capture the trends in dose- and particle size dependent absorption for the study drugs with solubility and dissolution limited absorption, respectively. In addition, GI-Sim was also shown to be able to predict the increase in absorption and plasma exposure achieved with nanoformulations. Based on the results, the performance of GI-Sim was shown to be suitable for early risk assessment as well as to guide decision making in pharmaceutical formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.
2014-09-01
Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less
The Pharmacokinetics of Atomized Lidocaine Administered via the Trachea: A Randomized Trial.
Takaenoki, Yumiko; Masui, Kenichi; Oda, Yutaka; Kazama, Tomiei
2016-07-01
Under emergent conditions, endotracheal drug administration may be an effective method of delivering emergency drugs. A common technique is to administer these drugs using a nonatomized spray. Atomized drug delivery may be an attractive alternative to nonatomized delivery because atomized particles are small, cover a large surface area, and may better adhere to endotracheal membrane resulting in more effective drug absorption. In this study, we compared the pharmacokinetic profile of lidocaine administered into the trachea using an atomized or a nonatomized technique. Twenty patients were anesthetized using propofol and remifentanil. Ten minutes after rocuronium was administered, patients received 4% lidocaine (2 mg/kg) intratracheally over 2 seconds before tracheal intubation. Ten patients received atomized lidocaine using a mucosal atomization device, and the other 10 patients received nonatomized lidocaine using a traditional spray tube. Arterial lidocaine plasma concentrations were measured before; at 1, 3, 5, 7, 10, 15, 20, 30, 45, and 60 minutes; and then every 60 minutes after the administration of lidocaine until the end of the operation. We developed a pharmacokinetic model to examine whether bioavailability or absorption rate was different between atomized versus nonatomized lidocaine administration. The total body clearance was fixed at a published value to determine the bioavailability. Peak plasma concentrations were larger using the mucosal atomization device (median [range]: 1.9 [1.4-3.2] μg/mL) than the spray tube (1.1 [0.6-2.0] μg/mL; P = 0.0021). Our pharmacokinetic model estimated a difference of bioavailability between the atomized and the nonatomized lidocaine (0.801 and 0.559 respectively, P = 0.0005), whereas our model estimated no difference in the absorption rate constant (0.00688/min). Our results suggest that when using atomized delivery of lidocaine, less drug is required to achieve a near equivalent plasma lidocaine concentration. Atomized drug administration may be a more efficient method for endotracheal drug administration.
NASA Technical Reports Server (NTRS)
Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro
1990-01-01
A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Absorption and pharmacokinetics of grapefruit flavanones in beagles.
Mata-Bilbao, Maria de Lourdes; Andrés-Lacueva, Cristina; Roura, Elena; Jáuregui, Olga; Escribano, Elvira; Torre, Celina; Lamuela-Raventós, Rosa Maria
2007-07-01
The present study evaluated the pharmacokinetics of three different grapefruit flavanone forms in dog plasma and demonstrated their absorption after an oral intake of a grapefruit extract; pharmacokinetic parameters of these forms were also determined. Ten healthy beagles were administered 70 mg citrus flavonoids as a grapefruit extract contained in capsules, while two additional dogs were used as controls and given an excipient. The grapefruit flavanone naringin, along with its metabolites naringenin and naringenin glucuronide, was detected in dog plasma. Blood samples were collected between 0 and 24 h after administration of the extract. Naringin reached its maximun plasma concentration at around 80 min, whereas naringenin and naringenin glucuronide reached their maximun plasma concentrations at around 20 and 30 min, respectively. Maximum plasma concentrations of naringin, naringenin and naringenin glucuronide (medians and ranges) were 0.24 (0.05-2.08), 0.021 (0.001-0.3) and 0.09 (0.034-0.12) micromol/l, respectively. The areas under the curves were 23.16 l (14.04-70.62) min x micromol/for nariningin, 1.78 (0.09-4.95) min x micromol/l for naringenin and 22.5 (2.74-99.23) min x micromol/l for naringenin glucuronide. The median and range values for mean residence time were 3.3 (1.5-9.3), 2.8 (0.8-11.2) and 8.0 (2.3-13.1) h for naringin, naringenin and naringenin glucuronide, respectively. The results of the present study demonstrate the absorption of grapefruit flavanones via the presence of their metabolites in plasma, thus making an important contribution to the field since the biological activities ascribed to these compounds rely on their specific forms of absorption.
Measurements of uranium mass confined in high density plasmas
NASA Technical Reports Server (NTRS)
Stoeffler, R. C.
1976-01-01
An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.
Vitamin A absorption in cystic fibrosis: risk of hypervitaminosis A.
James, D R; Owen, G; Campbell, I A; Goodchild, M C
1992-01-01
Vitamin A status was examined in nine adult cystic fibrosis patients and six adult control subjects, together with an assessment of their ability to absorb 10,000 IU of retinyl palmitate from a test meal, taken with appropriate pancreatic enzyme supplements. Median baseline values for plasma retinol and carotene, as well as median serum retinol binding protein concentrations, were significantly lower in cystic fibrosis patients than in control subjects. One cystic fibrosis patient had a raised fasting plasma retinyl ester concentration suggestive of chronic hypervitaminosis A, but no symptoms of toxicity. Measures of vitamin A absorption were also significantly lower in cystic fibrosis patients, although there was considerable overlap with control values. No correlation was observed between measures of baseline status and vitamin A absorption. Measurement of plasma retinyl esters may be an appropriate investigation in those patients considered to be at risk of chronic hypervitaminosis A. PMID:1612491
Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo
2017-08-01
In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.
Experimental study of current loss and plasma formation in the Z machine post-hole convolute
NASA Astrophysics Data System (ADS)
Gomez, M. R.; Gilgenbach, R. M.; Cuneo, M. E.; Jennings, C. A.; McBride, R. D.; Waisman, E. M.; Hutsel, B. T.; Stygar, W. A.; Rose, D. V.; Maron, Y.
2017-01-01
The Z pulsed-power generator at Sandia National Laboratories drives high energy density physics experiments with load currents of up to 26 MA. Z utilizes a double post-hole convolute to combine the current from four parallel magnetically insulated transmission lines into a single transmission line just upstream of the load. Current loss is observed in most experiments and is traditionally attributed to inefficient convolute performance. The apparent loss current varies substantially for z-pinch loads with different inductance histories; however, a similar convolute impedance history is observed for all load types. This paper details direct spectroscopic measurements of plasma density, temperature, and apparent and actual plasma closure velocities within the convolute. Spectral measurements indicate a correlation between impedance collapse and plasma formation in the convolute. Absorption features in the spectra show the convolute plasma consists primarily of hydrogen, which likely forms from desorbed electrode contaminant species such as H2O , H2 , and hydrocarbons. Plasma densities increase from 1 ×1016 cm-3 (level of detectability) just before peak current to over 1 ×1017 cm-3 at stagnation (tens of ns later). The density seems to be highest near the cathode surface, with an apparent cathode to anode plasma velocity in the range of 35 - 50 cm /μ s . Similar plasma conditions and convolute impedance histories are observed in experiments with high and low losses, suggesting that losses are driven largely by load dynamics, which determine the voltage on the convolute.
Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A
2016-04-01
Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.
2017-02-01
The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.
Plasma noncholesterol sterols: current uses, potential and need for standardization.
Mackay, Dylan S; Jones, Peter J H
2012-06-01
Noncholesterol sterols (NCSs) in plasma encompass endogenous cholesterol precursors and exogenous phytosterols and cholesterol metabolites, which are used as surrogate measures of cholesterol synthesis and cholesterol absorption, respectively. The ratios of cholesterol synthesis to cholesterol absorption surrogates are also utilized to assess the overall balance of cholesterol metabolism, with higher values representing more synthesis and lower values more absorption. The objective of this review is to focus on recent findings using plasma NCSs and their potential in customizing dietary and pharmacological hypolipidemic therapies. NCSs are often used to assess the impact of pharmacological and dietary interventions on cholesterol metabolism. Various forms of dyslipidemia have been characterized using NCSs, and NCSs may be a valuable tool in selecting appropriate treatment therapies. NCSs levels are affected by genetic, dietary and physiological factors and have been related to cardiovascular disease risk. The expanded use of plasma NCSs is currently limited by the lack of standardized methodology. However, noncholesterol sterols are still a valuable research tool for the overall assessment of cholesterol metabolism and may have clinical potential in the personalization of diet and medicine.
Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran
2017-09-13
Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.
NASA Astrophysics Data System (ADS)
Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong
2017-07-01
Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.
NASA Astrophysics Data System (ADS)
Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping
2018-05-01
Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Han, YiPing; Guo, LiXin
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just nearmore » the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.« less
Helicon and Trivelpiece-Gould modes in uniform unbounded plasmas
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2016-10-01
Helicon modes are whistler modes with angular orbital momentum caused by phase rotation in addition to the axial phase propagation. Although these modes have been associated with whistler eigenmodes in bounded plasma columns, they do exist in unbounded plasmas. Experiments in a large laboratory plasma show the wave excitation with phased antenna arrays, the wave field topology and the propagation of helicons. Low frequency whistlers can have two modes with different wavelengths at a given frequency, called helicons and Trivelpiece-Gould modes. The latter are whistler modes near the oblique cyclotron resonance. The oblique propagation is due to short radial wavelengths near the boundary. In unbounded plasmas, the oblique propagation arises from short azimuthal wavelengths. This has been observed in high-mode number helicons (e.g., m = 8). It creates wave absorption in the center of the helicon mode. The strong absorption of the wave can heat electrons and create perpendicular wave-particle interactions. These results may be of interest in space plasmas for scattering of energetic electrons and in helicon plasma sources for plasma processing and thruster applications. Work supported by NSF/DOE.
Dynamics of the formation and loss of boron atoms in a H2/B2H6 microwave plasma
NASA Astrophysics Data System (ADS)
Duluard, C. Y.; Aubert, X.; Sadeghi, N.; Gicquel, A.
2016-09-01
For further improvements in doped-diamond deposition technology, an understanding of the complex chemistry in H2/CH4/B2H6 plasmas is of general importance. In this context, a H2/B2H6 plasma ignited by microwave power in a near resonant cavity at high pressure (100-200 mbar) is studied to measure the B-atom density in the ground state. The discharge is ignited in the gas mixture (0-135 ppm B2H6 in H2) by a 2.45 GHz microwave generator, leading to the formation of a hemispheric plasma core, surrounded by a faint discharge halo filling the remaining reactor volume. Measurements with both laser induced fluorescence and resonant absoption with a boron hollow cathode lamp indicate that the B-atom density is higher in the halo than in the plasma core. When the absorption line-of-sight is positioned in the halo, the absorption is so strong that the upper detection limit is reached. To understand the mechanisms of creation and loss of boron atoms, time-resolved absorption measurements have been carried out in a pulsed plasma regime (10 Hz, duty cycle 50%). The study focuses on the influence of the total pressure, the partial pressure of B2H6, as well as the source power, on the growth and decay rates of boron atoms when the plasma is turned off.
Bioavailability of a Lipidic Formulation of Curcumin in Healthy Human Volunteers
Pawar, Yogesh B.; Munjal, Bhushan; Arora, Saurabh; Karwa, Manoj; Kohli, Gunjan; Paliwal, Jyoti K.; Bansal, Arvind K.
2012-01-01
Numerous publications have reported the significant pharmacodynamic activity of Curcumin (CRM) despite low or undetectable levels in plasma. The objective of the present study was to perform a detailed pharmacokinetic evaluation of CRM after the oral administration of a highly bioavailable lipidic formulation of CRM (CRM-LF) in human subjects. Cmax, Tmax and AUC0–∞ were found to be 183.35 ± 37.54 ng/mL, 0.60 ± 0.05 h and 321.12 ± 25.55 ng/mL respectively, at a dose of 750 mg. The plasma profile clearly showed three distinct phases, viz., absorption, distribution and elimination. A close evaluation of the primary pharmacokinetic parameters provided valuable insight into the behavior of the CRM after absorption by CRM-LF. CRM-LF showed a lag time (Tlag) of 0.18 h (around 12 min). Pharmacokinetic modeling revealed that CRM-LF followed a two-compartment model with first order absorption, lag time and first order elimination. A high absorption rate constant (K01, 4.51/h) signifies that CRM-LF ensured rapid absorption of the CRM into the central compartment. This was followed by the distribution of CRM from the central to peripheral compartment (K12, 2.69/h). The rate of CRM transfer from the peripheral to central compartment (K21, 0.15/h) was slow. This encourages higher tissue levels of CRM as compared with plasma levels. The study provides an explanation of the therapeutic efficacy of CRM, despite very low/undetectable levels in the plasma. PMID:24300368
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, Aleksei N; Orishich, Anatolii M
Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
NASA Astrophysics Data System (ADS)
Ombaba, Jackson M.
This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is also discussed. The program supplied by LC Resources (Lafayette, CA) is used for separation optimization and prediction of gas chromatographic parameters. Column dead-time and average plate number were used as input data in conjunction with the retention times and peak areas of solutes at two different temperature programming rates. Once input data are entered into an IBM or IBM compatible personal computer, the program produces a 'relative resolution map' (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.
Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki
2017-09-01
Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The mechanism of plasma-assisted penetration of NO2- in model tissues
NASA Astrophysics Data System (ADS)
He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.
2017-11-01
Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
NASA Astrophysics Data System (ADS)
Nowak, S.; Orefice, A.
1994-05-01
In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.
Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas
NASA Technical Reports Server (NTRS)
Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)
2001-01-01
Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.
Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas
NASA Astrophysics Data System (ADS)
Chattopadhyay, Asim Kumar
2018-01-01
A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.
Waveguide to Core: A New Approach to RF Modelling
NASA Astrophysics Data System (ADS)
Wright, John; Shiraiwa, Syunichi; Rf-Scidac Team
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL) and core propagation [Shiraiwa, NF 2017]. Calculations with this technique naturally capture wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss. The main motivating insight is that the core plasma region having closed flux surfaces requires a hot plasma dielectric while the open field line region in the scrape-off layer needs only a cold plasma dielectric. Spectral approaches work well for the former and finite elements work well for the latter. The validity of this process follows directly from the superposition principle of Maxwell's equations making this technique exact. The method is independent of the codes or representations used and works for any frequency regime. Applications to minority heating in Alcator C-Mod and ITER and high harmonic heating in NSTX-U will be presented in single pass and multi-pass regimes. Support from DoE Grant Number DE-FG02-91-ER54109 (theory and computer resources) and DE-FC02-01ER54648 (RF SciDAC).
NASA Astrophysics Data System (ADS)
Brubaker, Timothy R.; Ishikawa, Kenji; Takeda, Keigo; Oh, Jun-Seok; Kondo, Hiroki; Hashizume, Hiroshi; Tanaka, Hiromasa; Knecht, Sean D.; Bilén, Sven G.; Hori, Masaru
2017-12-01
The liquid-phase chemical kinetics of a cell culture basal medium during treatment by an argon-fed, non-equilibrium atmospheric-pressure plasma source were investigated using real-time ultraviolet absorption spectroscopy and colorimetric assays. Depth- and time-resolved NO2- and NO3- concentrations were strongly inhomogeneous and primarily driven by convection during and after plasma-liquid interactions. H2O2 concentrations determined from deconvolved optical depth spectra were found to compensate for the optical depth spectra of excluded reactive species and changes in dissolved gas content. Plasma-activated media remained weakly basic due to NaHCO3 buffering, preventing the H+-catalyzed decomposition of NO2- seen in acidic plasma-activated water. An initial increase in pH may indicate CO2 sparging. Furthermore, the pH-dependency of UV optical depth spectra illustrated the need for pH compensation in the fitting of optical depth data.
Jiang, Shuwen; Zhao, Weiman; Chen, Yang; Zhong, Zeyu; Zhang, Mian; Li, Feng; Xu, Ping; Zhao, Kaijing; Li, Ying; Liu, Li; Liu, Xiaodong
2015-06-01
Accumulating evidences have shown that diabetes is often accompanied with depression, thus it is possible that oral antidiabetic agent glyburide and antidepressive agent paroxetine are co-administered in diabetic patients. The aim of this study was to assess interactions between glyburide and paroxetine in rats. Effect of paroxetine on pharmacokinetics of orally administered glyburide was investigated. Effect of naringin (NAR), an inhibitor of rat intestinal organic anion transporting polypeptides 1a5 (Oatp1a5), on pharmacokinetics of glyburide was also studied. The results showed that co-administration of paroxetine markedly reduced plasma exposure and prolonged Tmax of glyburide, accompanied by significant increase in fecal excretion of glyburide. Co-administration of naringin also significantly decreased plasma exposure of glyburide. Data from intestinal perfusion experiments showed that both paroxetine and naringin significantly inhibited intestinal absorption of glyburide. Caco-2 cells were used to investigate whether paroxetine and naringin affected intestinal transport of glyburide and fexofenadine (a substrate of Oatp1a5). The results showed that both paroxetine and naringin greatly inhibited absorption of glyburide and fexofenadine. All results gave a conclusion that co-administration of paroxetine decreased plasma exposure of glyburide in rats via inhibiting intestinal absorption of glyburide, which may partly be attributed to the inhibition of intestinal Oatp1a5 activity. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin
2015-11-01
In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
Zeng, Jiaolong; Yuan, Jianmin
2007-08-01
Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration
2018-06-01
We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.
Creating and measuring white dwarf photospheres in a terrestrial laboratory
NASA Astrophysics Data System (ADS)
Falcon, Ross Edward
2014-08-01
As the ultimate fate of nearly all stars, including our Sun, white dwarfs (WDs) hold rich and informative histories in their observable light. To determine a fundamental parameter of WDs, mass, we perform the first measurement of the average gravitational redshift of an ensemble of WDs. We find a larger mean mass than that determined from the primary and expansive technique known as the spectroscopic method. The potential inaccuracy of this method has broad astrophysical implications, including for our understanding of Type 1a supernova progenitors and for constraining the age of the Universe. This motivates us to investigate the WD atmosphere models used with the spectroscopic method, particularly the input theoretical line profiles, by developing a new experimental platform to create plasmas at WD photospheric conditions (Te~1 eV, ne~1017 cm-3). Instead of observing WD spectra to infer the plasma conditions at the surface of the star, we set the conditions and measure the emergent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell to initiate formation of a large (120x20x10 mm or 24 cm3) plasma. We observe multiple Balmer lines from our plasma in emission and in absorption simultaneously along relatively long (~120 mm) lines of sight perpendicular to the heating radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity along our observed lines of sight. With time-resolved spectroscopy we measure lines at a range of electron densities that spans an order of magnitude, and we do this within one pulsed power shot experiment. Observing our plasma in absorption not only provides the signal-to-noise to measure relative line shapes, it allows us to measure relative line strengths because the lines share the same lower level population. This constrains the theoretical reduction factors used to describe ionization potential depression or the occupation probabilities associated with these Balmer lines. We compare our measured line shapes with the theoretical ones used in WD atmosphere models as part of the first fruits of this rich experimental platform.
NASA Astrophysics Data System (ADS)
Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.
2015-12-01
Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
The dissipation of electromagnetic waves in plasmas
NASA Astrophysics Data System (ADS)
Basov, N. G.
The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.
Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water
NASA Astrophysics Data System (ADS)
Sava, Ion; Kruth, Angela; Kolb, Juergen F.; Miron, Camelia
2018-01-01
Fluorinated polyimide films containing cobalt chloride based on hexafluoroisopropylidenediphthalic dianhydride and 4,4‧-diamino-3,3‧-dimethyl diphenylmethane were treated by nanosecond pulsed electrical discharges generated in distilled water. The polyimide films have been characterized by Fourier transform infrared (FTIR) spectra and contact angle measurements, optical transmission spectroscopy, and fluorescence spectroscopy. Significant changes in some intrinsic fluorescence features, such as the intensity and position of the emission peak, have been observed during exposure to water plasma. These effects have been considered to correlate with the development of specific chemical interactions between the liquid and the macromolecules, including the formation of hydrogen bridges. A slight increase in surface hydrophobicity was observed after plasma treatment. FTIR spectra showed a decrease in the intensity of the absorption band and an opening of the imide ring, depending on the treatment time.
Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals
NASA Technical Reports Server (NTRS)
Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy
1998-01-01
The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.
On pulsating cosmic /radio/ noise absorption
NASA Technical Reports Server (NTRS)
Dangelo, N.
1981-01-01
It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.
Hollow laser plasma self-confined microjet generation
NASA Astrophysics Data System (ADS)
Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team
2017-10-01
Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.
NASA Astrophysics Data System (ADS)
Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan
2018-05-01
Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.
Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu
2015-07-03
In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.
Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu
2015-01-01
In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830
An overview of atmosphere and plasma observations planned for the New Horizons flyby of 2014 MU69
NASA Astrophysics Data System (ADS)
Gladstone, R.; Young, L. A.; Parker, J. W.; Elliott, H. A.; Hill, M. E.; Piquette, M. R.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Spencer, J. R.
2017-12-01
Due to its small size, it is highly likely that all volatiles that might have once been present on 2014 MU69 are now gone, having long ago escaped to space. However, it is possible that 2014 MU69 retains some volatiles (e.g., methanol, acetylene, ethane, hydrogen cyanide, ammonia) at the present day. Although these volatiles are likely quite stable on the surface at their current temperature, ongoing radiation processing and occasional impacts provide a possible source for a transient atmosphere. Such a transient atmosphere will be searched for by the Alice ultraviolet spectrograph, e.g., in absorption, using stellar and solar appulses, and in emission, using resonantly scattered solar emissions. Dust associated with 2014 MU69 will be searched for with high phase angle LORRI and MVIC imaging, and with in situ SDC observations. In addition, the particle and plasma environment of KBOs is largely unknown. SWAP and PEPSSI observations will establish the interaction of the interplanetary medium with 2014 MU69, e.g., looking for pickup ions resulting from sputtering of surface materials. Although it is likely that only upper limits will be set on neutrals and ions in the vicinity of 2014 MU69, the New Horizons observations will characterize the fluxes of UV, solar wind, interstellar pickup ions, and energetic particles, i.e., space weathering, that can modify the surface of 2014 MU69 and other KBOs. In this presentation, we will outline the plans for New Horizons plasma and atmospheres observations during the flyby of 2014 MU69.
NASA Astrophysics Data System (ADS)
Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul
2015-08-01
Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2 × 10-5 across a spectral range of 250 nm.
Studies on absorption of EC waves in assisted startup experiment on FTU
NASA Astrophysics Data System (ADS)
Granucci, G.; Ricci, D.; Farina, D.; Figini, L.; Iraji, D.; Tudisco, O.; Ramponi, G.; Bin, W.
2012-09-01
Assistance of EC wave for plasma breakdown and current ramp up is the proposed scenario for the ITER case, characterized by low toroidal electric field. The experimental results on many tokamaks clearly indicate the capabilities of the proposed scheme to have a robust breakdown in ITER. The key aspect of this technique is the EC power required, strongly related to the absorption of the wave in the initial stage of plasma formation. This aspect is generally neglected due to the diagnostics difficulties in the plasma formation phase. As a consequence a multi-pass absorption scheme is usually considered reasonable, leading to a strong absorption after many reflections on the walls. The present study exploits the high temporal and spatial resolution of the fast scanning interferometer of FTU together with the measure of residual power obtained by a sniffer probe. The absorbed EC power is calculated considering also the polarization rotation and the subsequent mode conversion after incidence on the internal wall and compared with that derived from experimental data. The resulting EC power distribution can explain differences observed between perpendicular and oblique injection results, indicating future investigations to define ITER power requirements.
Diagnostics of jaundice from the change of the transmission coefficient of the human body
NASA Astrophysics Data System (ADS)
Guminetskiy, S. G.; Kirsh, N. L.; Lomanets, V. S.; Lazurka, I. I.; Yakobets, I. I.
2004-06-01
The paper deals with the absorption spectra of bilirubin solutions, patient blood plasma with jaundice manifestations with a different degree of disease and whole blood. Using as an analysis base the dependencies of blood plasma absorption spectra on bilirubin concentration in this blood there has been proposed the method of disease diagnostics with jaundice manifestations, and there has been realized the corresponding portable laboratory device, the functioning of which is based on registering the radiation propagated through the ear lobule.
Laser absorption waves in metallic capillaries
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.
1987-07-01
The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.
Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity
NASA Astrophysics Data System (ADS)
Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.
2006-12-01
After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burm, A.G.; Van Kleef, J.W.; Vermeulen, N.P.
1988-10-01
The pharmacokinetics of lidocaine and bupivacaine following subarachnoid administration were studied in 12 surgical patients using a stable isotope method. After subarachnoid administration of the agent to be evaluated, a deuterium-labelled analogue was administered intravenously. Blood samples were collected for 24 h. Plasma concentrations of the unlabelled and the deuterium-labelled local anesthetics were determined using a combination of capillary gas chromatography and mass fragmentography. Bi-exponential functions were fitted to the plasma concentration-time data of the deuterium-labelled local anesthetics. The progression of the absorption was evaluated using deconvolution. Mono- and bi-exponential functions were then fitted to the fraction absorbed versus timemore » data. The distribution and elimination half-lives of the deuterium-labelled analogues were 25 +/- 13 min (mean +/- SD) and 121 +/- 31 min for lidocaine and 19 +/- 10 min and 131 +/- 33 min for bupivacaine. The volumes of the central compartment and steady-state volumes of distribution were: lidocaine 57 +/- 10 l and 105 +/- 25 l, bupivacaine 25 +/- 6 l and 63 +/- 22 l. Total plasma clearance values averaged 0.97 +/- 0.21 l/min for lidocaine and 0.56 +/- 0.14 l/min for bupivacaine. The absorption of lidocaine could be described by a single first order absorption process, characterized by a half-life of 71 +/- 17 min in five out of six patients. The absorption of bupivacaine could be described adequately assuming two parallel first order absorption processes in all six patients. The half-lives, characterizing the fast and slow absorption processes of bupivacaine, were 50 +/- 27 min and 408 +/- 275 min, respectively. The fractions of the dose, absorbed in the fast and slow processes, were 0.35 +/- 0.17 and 0.61 +/- 0.16, respectively.« less
Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo
2016-03-15
Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less
Sieradzki, A; Kuznicki, Z T
2013-01-01
The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.
NASA Astrophysics Data System (ADS)
Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško
2016-07-01
Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seredin, P. V., E-mail: paul@phys.vsu.ru; Lenshin, A. S.; Goloshchapov, D. L.
2015-07-15
The purpose of this study is the deposition of nanodimensional Al{sup 2}O{sup 3} films on the surface of nanoporous silicon and also fundamental investigations of the structural, optical, and morphological properties of these materials. Analyzing the results obtained here, it is possible to state that ultrathin nanostructured Al{sup 2}O{sup 3} films can be obtained in the form of threads oriented in one direction and located at a distance of 300–500 nm from each other using ion-plasma sputtering on a layer of porous silicon. Such a mechanism of aluminum-oxide growth is conditioned by the crystallographic orientation of the initial single-crystalline siliconmore » wafer used to fabricate the porous layer. The results of optical spectroscopy show that the Al{sup 2}O{sup 3}/por-Si/Si(111) heterophase structure perfectly transmits electromagnetic radiation in the range of 190–900 nm. The maximum in the dispersion of the refractive index obtained for the Al{sup 2}O{sup 3} film grown on por-Si coincides with the optical-absorption edge for aluminum oxide and is located in the region of ∼5.60 eV. This fact is confirmed by the results of calculations of the optical-absorption spectrum of the Al{sup 2}O{sup 3}/por-Si/Si(lll) heterophase structure. The Al{sup 2}O{sup 3} films formed on the heterophase-structure surface in the form of nanodimensional structured threads can serve as channels of optical conduction and can be rather efficiently introduced into conventional technologies, which are of great importance in microelectronics and optoelectronics.« less
Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H
2017-01-01
Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.
NASA Astrophysics Data System (ADS)
Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.
2012-08-01
The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.
Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Celona, L.
2016-02-15
The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which themore » selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.« less
Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder
NASA Astrophysics Data System (ADS)
Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.
2016-02-01
The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.
Wang, Shuya; Li, Ding; Pi, Jiaxin; Li, Wen; Zhang, Bing; Qi, Dongli; Li, Nan; Guo, Pan; Liu, Zhidong
2017-11-01
The purpose of this work was to determine and investigate the absorption of ginkgo terpenoids (GT) in plasma and aqueous humour after oral administration of ginkgo biloba extract (GBE) by UPLC-MS/MS method. The UPLC-MS/MS determination of GT employed the multiple reaction monitoring mode using an electrospray negative ionization. The rabbits were orally administered the suspension of GBE at a dose of 500 mg/kg. Serial plasma and dialysate samples were collected at the corresponding time and then analysed by UPLC-MS/MS. In plasma, the mean AUC from 0 to 48 h was 14.12, 12.59, 23.75, 1.51 h μg/ml for GLJ and 5.34 h μg/ml for GLA, GLB, GLC, GLJ and BLL, respectively. In aqueous humour, the five ginkgo terpenoids have been detected. Compared with the other four GT, BLL has better absorption in the eyes. A selective and reproducible UPLC-MS/MS method was developed and validated to determine and investigate the absorption of ginkgo terpenoids in plasma and aqueous humour of rabbits after oral administration of GBE. The main five ginkgo terpenoids could be absorbed into eyes. © 2017 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl
2017-10-01
Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.
Time-dependent spectroscopy of plasma plume under laser welding conditions
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Szymanski, Zygmunt
2004-07-01
Momentary emission spectra of iron and argon lines were measured in a plasma plume induced during welding with a continuous wave CO2 laser. Time-dependent spectra were registered using a fast gate, lens coupled microchannel plate image intensifier placed between a spectrograph and a 1254 silicon intensified target detector connected to an optical multichannel analyser. The results, together with the analysis of the colour images from a fast camera, show that in the case when argon is the shielding gas, two plasmas exist: the argon plasma and the iron plasma. It has been found that during strong bursts the plasma plume over the keyhole consists mainly of metal vapour, not being diluted by the shielding gas. No apparent mixing of the metal vapour and the shielding gas has been observed. The space-averaged electron densities determined from the Stark broadening of the 7503.87, 7514.65 Å Ar I lines amounts to (0.75-1.05) × 1023 m-3 depending on the distance from the surface. Assuming that argon is not mixed with the metal vapour and is in local thermodynamic equilibrium these electron densities correspond to the temperatures of 12-13 kK. At the peaks of strong vapour bursts the space-averaged electron densities determined from the Stark broadening of the 5383.37 Å Fe I line are (0.6-1) × 1023 m-3. Numerical simulations showed that the maximum densities in the plasma centre are considerably higher and amount to ~1.8 × 1023 m-3 and ~2.45 × 1023 m-3 in the case of the argon and metal plasma, respectively. Consequently the absorption of the laser beam in the plasma plume amounts to ~5% of the beam power in the case of argon and 10% in the case of metal plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fengtao; Yuan Jianmin
The experimental transmission spectrum of a hot bromine plasma [J. E. Bailey et al., J. Quant. Spectrosc. Radiat. Transf. 81, 31 (2003)] has been simulated by using a detailed level accounting model (DLA). With assumption of the local thermodynamic equilibrium, the major absorption lines of the experimental spectrum are well reproduced by the present DLA calculation, and the details of the absorption line shapes are used to determine the temperature of the plasma. In contrast to the results of two former statistical models, where the temperature was determined via a global fitting to the experimental data, the present DLA diagnosesmore » the plasma temperature by the line ratios of different charge states in the 2p{yields}3d transition groups resulting in a temperature of 37 eV. It is shown that a change of 1 eV in temperature could cause perceptible changes in the simulated spectrum. It is also shown that the 2p{sub 1/2}{yields}3d{sub 3/2} absorptions have been overestimated by the statistical models.« less
Diesel NO{sub x} reduction by plasma-regenerated absorbent beds
Wallman, P.H.; Vogtlin, G.E.
1998-02-10
Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.
Diesel NO.sub.x reduction by plasma-regenerated absorbend beds
Wallman, P. Henrik; Vogtlin, George E.
1998-01-01
Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.
Santangelo, W C; O'Dorisio, T M; Kim, J G; Severino, G; Krejs, G J
1985-09-01
The effect of a synthetic somatostatin analog was studied in a patient with severe secretory diarrhea due to pancreatic cholera syndrome. Basal intestinal perfusion studies indicated an absence of water and sodium absorption, and active chloride secretion in the small bowel. Intravenous administration of the somatostatin analog (1 microgram/kg.h) changed zero net water movement to absorption (122 mL/30 cm of the jejunum per hour). Chloride secretion changed to absorption (5.0 to 7.9 meq/30 cm.h), and plasma vasoactive intestinal polypeptide concentration was reduced from 330 to 45 pmol/L (normal, less than 51). When the analog was given subcutaneously, 100 micrograms twice daily, stool weight decreased, and plasma vasoactive intestinal polypeptide concentration fell toward the normal range (67 pmol/L). Plasma concentration of pancreatic polypeptide was initially elevated and dropped during intravenous infusion of somatostatin analog but returned to baseline on maintenance therapy with the analog delivered subcutaneously. The patient has not had further diarrhea during 9 months of therapy.
Amplification of terahertz pulses in gases beyond thermodynamic equilibrium
NASA Astrophysics Data System (ADS)
Schwaab, G. W.; Schroeck, K.; Havenith, M.
2007-03-01
In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.
Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls
NASA Astrophysics Data System (ADS)
Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.
2017-06-01
The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum hohlraums should be stable to both two plasmon decay and stimulated Raman scattering instabilities for intensities ≤ 10 15 W/cm2. In gas-filled hohlraums, shocks may be induced in the blowoff gold plasma, which leads to more complex density and temperatures profiles. The resulting effect on LPI stability depends strongly on the details of the profile, and it is possible for the gas-filled hohlraum to become unstable to two plasmon decay at 1015 W/cm2 if the quarter-critical surface reaches temperatures exceeding 1 keV.
Borkar, Nrupa; Xia, Dengning; Holm, René; Gan, Yong; Müllertz, Anette; Yang, Mingshi; Mu, Huiling
2014-01-23
Lipid matrix particles (LMP) may be used as better carriers for poorly water-soluble drugs than liquid lipid carriers because of reduced drug mobilization in the formulations. However, the digestion process of solid lipid particles and their effect on the absorption of poorly water-soluble drugs are not fully understood. This study aimed at investigating the effect of particle size of LMP on drug release in vitro as well as absorption in vivo in order to get a better understanding on the effect of degradation of lipid particles on drug solubilisation and absorption. Fenofibrate, a model poorly water-soluble drug, was incorporated into LMP in this study using probe ultrasound sonication. The resultant LMP were characterised in terms of particle size, size distribution, zeta potential, entrapment efficiency, in vitro lipolysis and in vivo absorption in rat model. LMP of three different particle sizes i.e. approximately 100 nm, 400 nm, and 10 μm (microparticles) were produced with high entrapment efficiencies. The in vitro lipolysis study showed that the recovery of fenofibrate in the aqueous phase for 100 nm and 400 nm LMP was significantly higher (p<0.05) than that of microparticles after 30 min of lipolysis, suggesting that nano-sized LMP were digested to a larger extent due to greater specific surface area. The 100 nm LMP showed faster initial digestion followed by 400 nm LMP and microparticles. The area under the plasma concentration-time curve (AUC) following oral administration of 100 nm LMP was significantly higher (p<0.01) than that of microparticles and fenofibrate crystalline suspension (control). However, no significant difference was observed between the AUCs of 100 nm and 400 nm LMP. The same rank order on the in vivo absorption and the in vitro response was observed. The recovery (%) of fenofibrate partitioning into the aqueous phase during in vitro lipolysis and the AUC of plasma concentration-time curve of fenofibric acid was in the order of 100 nm LMP>microparticles>control. In summary, the present study demonstrated the particle size dependence of bioavailability of fenofibrate loaded LMP in rat model which correlates well with the in vitro drug release performed in the biorelevant medium. Copyright © 2013 Elsevier B.V. All rights reserved.
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1985-01-01
Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.
Wu, Qing-Qing; Chen, Yan; Xin, Ran; Wang, Jin-Yan; Zhou, Lei; Yuan, Ling; Jia, Xiao-Bin
2012-05-01
The aim of this study is to investigate the rat intestinal absorption behavior of two main active components, liquiritin, glycyrrhizin and the extract of Glycyrrhiza uralensis. The rat intestinal perfusion model was employed. Concentrations of the compounds of the interest in the intestinal perfusate, bile and plasma samples were determined by HPLC and UPLC. At the same time, the intestinal enzymes incubation test and the partition coefficient determination, the absorption of liquiritin and glycyrrhizin alone and the extract were multiple analyzed. The results showed that the P(eff) (effective permeability) of liquiritin or glycyrrhizin alone or the extract was less than 0.3, which suggested their poor absorption in the intestine. The P(eff) of the two main active components or the extract was not significantly different in duodenum, jejunum, colon and ileum segment. The P(eff) of the glycyrrhizin in the extract had no significant difference in the four intestinal segments compared with the glycyrrhizin alone. The absorption of the liquiritin displayed significant difference (P < 0.05) at ileum segment compared with the liquiritin alone, while it had no markedly change in the other three segments. This phenomenon indicated that some ingredients in the extract might improve the absorption of liquiritin. Moreover, no parent compounds and their metabolites were found in the intestinal perfusate, bile and the plasma samples. The results demonstrated that the influence of the other ingredients in the extract on the two components might not increase the amount of liquiritin and glycyrrhizin in the bile and plasma within the duration of the test.
Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood
2013-01-01
We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
NASA Astrophysics Data System (ADS)
Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.
2013-11-01
Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field. Conclusions: The initial magnetic field strength and configuration in the region of impact of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. In addition, the field strength and configuration also influence the energy balance of the shocked plasma with its emission measure at T > 106 K, which is lower than expected for a uniform field. The above effects contribute to underestimating the mass accretion rates derived in the X-ray band. Movies are available in electronic form at http://www.aanda.org
Metal powder absorptivity: Modeling and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Metal powder absorptivity: Modeling and experiment
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...
2016-08-10
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Walravens, Jeroen; Brouwers, Joachim; Spriet, Isabel; Tack, Jan; Annaert, Pieter; Augustijns, Patrick
2011-11-01
Posaconazole (Noxafil®) is an extended-spectrum triazole antifungal agent for prevention and treatment of invasive fungal infections. An inadequate dietary intake and abnormal gastric pH levels are common in critically ill patients receiving antifungal treatment with posaconazole, resulting in unpredictable bioavailability and sub-therapeutic plasma concentrations. This study was carried out to elucidate the impact of pH on posaconazole absorption and to explore the underlying mechanisms of enhanced intestinal absorption when coadministering an acidic carbonated beverage. In contrast to previously published studies, in which only plasma concentrations were determined, we also explored the gastric and intestinal behaviour of posaconazole after a single oral dose. A crossover study was performed in five healthy subjects. A single dose (10 mL) of posaconazole suspension (40 mg/mL) was administered orally in four different conditions: with 330 mL of water (condition 1); with 330 mL of a cola beverage [Coca-Cola®] (condition 2); with 330 mL of water following intake of the proton pump inhibitor esomeprazole 40 mg once daily for 3 days (condition 3); or with 330 mL of Coca-Cola® following intake of esomeprazole 40 mg once daily for 3 days (condition 4). After administration, gastrointestinal fluid and plasma samples were collected at regular time points, and posaconazole concentrations were determined. Compared with administration with water, coadministration of Coca-Cola® did not alter the pH of the intraluminal environment but did significantly increase posaconazole gastric concentrations (+102%; p < 0.001) and systemic exposure (+70%; p < 0.05). This enhancement could be attributed to improved posaconazole solubility in Coca-Cola® and prolonged gastric residence. Coadministration of esomeprazole led to an increased gastric pH, which was accompanied by decreased posaconazole absorption; the mean plasma and gastric area under the concentration-time curve (AUC) values decreased by 37% and 84%, respectively. Simultaneous intake of Coca-Cola® could not completely compensate for the increase in pH induced by esomeprazole; compared with the reference condition, the mean plasma and gastric AUC values were still decreased by 19% and 73%, respectively. A good correlation between plasma and gastric posaconazole concentrations was observed (r = 0.8165; p < 0.0001), indicating that dissolution in the stomach dictates absorption of posaconazole. These results demonstrate that coadministration of Coca-Cola® has a positive effect on posaconazole bioavailability in the fasted state. However, it can only be considered a partially efficient strategy to increase absorption in patients with inadequate food intake who exhibit abnormal gastric pH levels due to coadministration of acid-suppressive agents.
Solar absorption surface panel
Santala, Teuvo J.
1978-01-01
A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.
Oh, D Alexander; Parikh, Neha; Khurana, Varun; Cognata Smith, Christina; Vetticaden, Santosh
2017-01-01
Dronabinol is a pharmaceutical tetrahydrocannabinol originally developed as an oral capsule. A dronabinol oral solution was recently approved, and the effects of food on absorption and bioavailability of the oral solution versus capsules were compared in an open-label, single-dose, 3-period crossover study. Healthy volunteers were randomized to either dronabinol oral solution 4.25 mg (fed) or dronabinol capsule 5 mg (fed or fasted). Dosing was separated by a 7-day washout period. Plasma pharmacokinetics were evaluated for dronabinol and its major metabolite, 11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-Δ9-THC). Pharmacokinetic data were available for analysis in 54 volunteers. In the fed state, initial dronabinol absorption was faster with oral solution versus capsule (mean time to the first measurable concentration, 0.15 vs 2.02 hours, respectively), with 100% and 15% of volunteers, respectively, having detectable plasma dronabinol levels 30 minutes postdose. There was less interindividual variability in plasma dronabinol concentration during early absorption with oral solution versus capsule. Compared with the fasted state, mean area under the plasma concentration–time curve from time zero to the last measurable concentration (AUC0−t) increased by 2.1- and 2.4-fold for dronabinol oral solution and capsule, respectively, when taken with food. Mean time to maximum plasma concentration was similarly delayed for dronabinol oral solution with food (7.7 hours) and capsule with food (5.6 hours) versus capsule with fasting (1.7 hours). Under fed conditions, AUC0−t and area under the plasma concentration–time curve from time zero to infinity were similar for the oral solution versus capsule based on 11-OH-Δ9-THC levels. An appreciable food effect was observed for dronabinol oral solution and capsules. Dronabinol oral solution may offer therapeutic benefit to patients, given its rapid and lower interindividual absorption variability versus dronabinol capsule. PMID:28138268
Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.
2002-01-01
Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M.G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10-8 Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust stimulant processing capabilities: heating and cooling while stirring in order to degas and remove absorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions, and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2010-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, H.; Hammer, M. U.; Reuter, S.
Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stablemore » reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.« less
NASA Astrophysics Data System (ADS)
Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric
2017-04-01
The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow like discharge, will be useful for biomedical applications on living tissues.
Novel diagnostics for direct measurements of radical densities in atmospheric pressure plasma jets
NASA Astrophysics Data System (ADS)
Wagenaars, Erik
2017-10-01
Atmospheric-pressure plasma jets (APPJs) are widely studied for potential applications in industry and healthcare, e.g. surface modification of plastics, plasma medicine and photoresist removal. These plasmas can operate in open air, remain at room temperature and still have a non-equilibrium chemistry. Even though the exact mechanisms through which APPJs affect target surfaces remain largely unknown, it is clear that reactive species play a pivotal role in the success of APPJs. Therefore, reactive species diagnostics of APPJs play an important role in further developing our understanding of the plasma chemistry and will enable increases in treatment efficacy. Two-photon Absorption Laser Induced Fluorescence (TALIF) is a well-known technique for the measurement of absolute densities of atomic radicals such as O, N and H. Unfortunately, application of this technique on APPJs that are operating under realistic conditions for applications, i.e. in open air and with complex admixtures, is not straightforward. The highly collisional environment of APPJs means that collisional quenching of the laser-excited state becomes significant and needs to be taken into account. For well-controlled atmospheres and simple admixtures the effect can be estimated using quenching coefficients, however under realistic operating conditions the identity and density of the quenching partners is unknown due to the complexity of the plasma chemistry. I will present a picosecond TALIF diagnostic which uses a sub-nanosecond laser and iCCD camera that allows the measurement of the quenching-affected fluorescence decay rate directly, enabling absolute measurements of O and N density maps in the open-air effluent of an APPJ. The author acknowledges his collaborators at UoY, A. West, J. Bredin, S. Schroeter, K. Niemi, T. Gans, J. Dedrick and D. O'Connell and support from the UK EPSRC (EP/K018388/1 & EP/H003797/1).
NASA Astrophysics Data System (ADS)
Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.; Messer, S. J.
2006-05-01
In a recently published work1 we use a simpler derivation of collisionless resistance in spherical geometry than previous authors, relying primarily on Gauss' law along with the continuity and cold fluid equations. The accompanying experimental work is based on measurements of the rf impedance characteristics of a small spherical probe immersed in a laboratory plasma. The data taken are from network analyzer measurements of the reflection coefficient obtained when applying a low level rf signal to the probe which is either near floating potential or negatively dc-biased in a low pressure plasma. The reduced density in the sheath alters the plasma impedance which becomes resistive, in spite of collisionless conditions, and hence the characterization of energy absorption as collisionless arises. Consistent with earlier work, the solutions obtained indicate that the plasma resistance is inversely proportional to the plasma density gradient evaluated at the location where the plasma frequency is equal to the applied frequency. Significant energy absorption is predicted and observed at frequencies generally near one-half the plasma frequency. *Work supported by ONR 1 Walker, D.N., R.F. Fernsler, D.D. Blackwell, W.A. Amatucci, S.J. Messer, Phys of Plasmas, To Appear 3/2006
Atomic kinetics of a neon photoionized plasma experiment at Z
NASA Astrophysics Data System (ADS)
Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration
2017-10-01
We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.
Cawello, Willi; Braun, Marina; Andreas, Jens-Otto
2018-01-13
Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.
Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei
2012-01-02
The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
NASA Astrophysics Data System (ADS)
Rukhadze, Anri A.; Tarakanov, V. P.
2006-09-01
Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations.
United States Air Force Summer Research Program -- 1993. Volume 7. Armstrong Laboratory
1993-12-01
formulation, absorption, plasma binding affinity, biomembrane barriers, and relative extraction by the specific organ of the body concerned with...simultaneously administered or a drug may "interact" with itself. The concomitant administration of phenobarbital and warfarin results in lower plasma ... plasma protein which binds to basic lipophilic drugs including propranolol, meperidine, quinidine, and chlorpromazine. If a variation in the plasma
Submillimeter Spectroscopic Diagnostics in Semiconductor Processing Plasmas
NASA Astrophysics Data System (ADS)
Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Stout, Phillip J.; Walker, Quentin; Armacost, Michael D.
2014-06-01
Submillimeter absorption spectroscopy was used to study semiconductor processing plasmas. Abundances and temperatures of molecules, radicals, and ions can be determined without altering any of the properties of the plasma. The behavior of these measurements provides useful applications in monitoring process steps. A summary of such applications will be presented, including etching and cleaning endpoint detection.
Vitamin B12 absorption from eggs.
Doscherholmen, A; McMahon, J; Ripley, D
1975-09-01
The assimilation of 57Co B12 from in vivo labeled eggs was much inferior to that of a comparable amount of crystalline 57Co B12. Furthermore, the absorption varied with the form in which the eggs were served. Judged by the urinary excretion test and the plasma absorption of radioactivity the average absorption from boiled and fried eggs was more than twice that from scrambled whole eggs, but less than half that absorbed from crystalline 57Co B12.
Photothermal measurement of optical surface absorption using strain transducers
NASA Astrophysics Data System (ADS)
Leslie, D. H.; Trusty, G. L.
1981-09-01
We discuss the measurement of small optical surface absorption coefficients. A demonstration experiment was performed using a metallurgical strain gauge to measure 488 nm absorption on the surface of a glass plate. A strain of 10 to the minus 8th power resulted from absorption of 0.3 watts. The results are interpreted and the sensitivity of a proposed fiber optic strain gauge is discussed.
2013-01-01
A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment. PMID:24134646
Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor
2009-01-01
Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as well as for insulin doses up to 50 IU. Discussion The methodology to be adopted for implementing the generic absorption model within AIDA has been overviewed, and the first plasma insulin profiles based on this approach have been demonstrated. Ideas for future work and development are discussed. It is expected that an updated release of AIDA (v4.5), based on this collaborative approach, will become available for free—in due course—via the www.2aida.org Web site. Readers who wish to be informed when the new software is launched can join the very low volume AIDA announcement list by sending a blank email note to subscribe@2aida.org. PMID:20046665
NASA Astrophysics Data System (ADS)
Akazawa, Housei; Ueno, Yuko
2014-01-01
Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.
Charoenphandhu, Narattaphol; Kraidith, Kamonshanok; Lertsuwan, Kornkamon; Sripong, Chanakarn; Suntornsaratoon, Panan; Svasti, Saovaros; Krishnamra, Nateetip; Wongdee, Kannikar
2017-03-01
Recent investigation has shown that the liver-derived iron-regulating hormone, hepcidin, can potentiate intestinal calcium absorption in hemizygous β-globin knockout thalassemic (BKO) mice. Since the upregulation of Fe 2+ and H + cotransporter, divalent metal transporter (DMT)-1, has been shown to correlate with thalassemia-induced intestinal calcium absorption impairment, the inhibition of the apical Na + /H + exchanger (NHE)-3 that is essential for cytoplasmic pH regulation and transepithelial sodium absorption was hypothesized to negatively affect hepcidin action. Herein, the positive effect of hepcidin on the duodenal calcium transport was evaluated using Ussing chamber technique. The results showed that BKO mice had lower absorptive surface area and duodenal calcium transport than wild-type mice. Besides, paracellular transport of zinc in BKO mice was compromised. Hepcidin administration completely restored calcium transport. Since this hepcidin action was totally abolished by inhibitors of the basolateral calcium transporters, Na + /Ca 2+ exchanger (NCX1) and plasma membrane Ca 2+ -ATPase (PMCA 1b ), the enhanced calcium flux potentially occurred through the transcellular pathway rather than paracellular pathway. Interestingly, the selective NHE3 inhibitor, 100 nM tenapanor, markedly inhibited hepcidin-enhanced calcium transport. Accordingly, hepcidin is one of the promising therapeutic agents for calcium malabsorption in β-thalassemia. It mainly stimulates the transcellular calcium transport across the duodenal epithelium in an NHE3-dependent manner.
Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.
Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami
2017-08-20
The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.
Thermal conduction study of warm dense aluminum by proton differential heating
NASA Astrophysics Data System (ADS)
Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.
2016-10-01
A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
NASA Astrophysics Data System (ADS)
Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki
2012-12-01
A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.
Stallings, Virginia A; Schall, Joan I; Maqbool, Asim; Mascarenhas, Maria R; Alshaikh, Belal N; Dougherty, Kelly A; Hommel, Kevin; Ryan, Jamie; Elci, Okan U; Shaw, Walter A
2016-12-01
Pancreatic enzyme therapy does not normalize dietary fat absorption in patients with cystic fibrosis and pancreatic insufficiency. Efficacy of LYM-X-SORB (LXS), an easily absorbable lipid matrix that enhances fat absorption, was evaluated in a 12-month randomized, double-blinded, placebo-controlled trial with plasma fatty acids (FA) and coefficient of fat absorption (CFA) outcomes. A total of 110 subjects (age 10.4 ± 3.0 years) were randomized. Total FA increased with LXS at 3 and 12 months (+1.58, +1.14 mmol/L) and not with placebo (P = 0.046). With LXS, linoleic acid (LA) increased at 3 and 12 months (+298, +175 nmol/mL, P ≤ 0.046), with a 6% increase in CFA (P < 0.01). LA increase was significant in LXS versus placebo (445 vs 42 nmol/mL, P = 0.038). Increased FA and LA predicted increased body mass index Z scores. In summary, the LXS treatment improved dietary fat absorption compared with placebo as indicated by plasma FA and LA and was associated with better growth status.
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.
1978-01-01
High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.
NASA Astrophysics Data System (ADS)
Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.
2016-06-01
A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.
NASA Astrophysics Data System (ADS)
Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.
2012-04-01
This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.
NASA Astrophysics Data System (ADS)
Ruth, Albert A.; Dixneuf, Sophie; Orphal, Johannes
2015-06-01
The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S_1←S_0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ--band in molecular oxygen: b^1σ^+_g (ν'=2)← X^3σ^-_g (ν''=0)
NASA Technical Reports Server (NTRS)
Hofer, O. C.
1982-01-01
Closed cycle, CW waveform and short wavelength laser devices are desirable characteristics for laser propulsion. The choice of specific wavelengths for hydrogen fuel affects the operational conditions under which a laser supported absorption (LSA) wave is initiated and maintained. The mechanisms of initiating and maintaining LSA waves depend on the wavelength of the laser. Consequently, the shape and size of the hot core plasma is also dependent on wavelength and pressure. Detailed modeling of these mechanisms must be performed before their actual significance can be ascertained. Inverse bremsstrahlung absorption mechanism is the dominant mechanism for coupling energy into the plasma, but other mechanisms which are wavelength dependent can dictate the LSA wave plasma initiation and maintenance conditions. Multiphoton mechanisms become important at visible or shorter wavelengths. These are important mechanisms in creating the initial H2 gas breakdown and supplying the precursor electrons required to sustain the plasma.
Laboratory-Produced X-Ray Photoionized Plasmas for Astrophysics Exploration
NASA Astrophysics Data System (ADS)
Goyon, Clement; Le Pape, Sebastien; Liedahl, Duane; Ma, Tammy; Berzak-Hopkins, Laura; Reverdin, Charles; Rousseaux, Christophe; Renaudin, Patrick; Blancard, Christophe; Nottet, Edouard; Bidault, Niels; Mancini, Roberto; Koenig, Michel
2015-11-01
X-ray photoionized plasmas are rare in the laboratory, but of broad importance in astrophysical objects such as active galactic nuclei, x-ray binaries. Indeed, existing models are not yet able to accurately describe these plasmas where ionization is driven by radiation rather than electron collisions. Here, we describe an experiment on the LULI2000 facility whose versatility allows for measuring the X-ray absorption of the plasma while independently probing its electron density and temperature. The bright X-ray source is created by the two main beams focused inside a gold hohlraum and is used to photoionise a Neon gas jet. Then, a thin gold foil serves as a source of backlit photons for absorption spectroscopy. The transmitted spectrum through the plasma is collected by a crystal spectrometer. We will present the experimental setup used to characterize both plasma conditions and X-ray emission. Then we will show the transmitted spectra through the plasma to observe the transition from collision dominated to radiation dominated ionization and compare it to model predictions. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore Natl Lab under Contract No. DE-AC52-07NA27344.
Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions
NASA Astrophysics Data System (ADS)
Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.
2016-05-01
This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.
Observation of soliton compression in silicon photonic crystals
Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.
2014-01-01
Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977
Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rachana, E-mail: dr.rachana.gupta@gmail.com; Pandey, Nidhi; Behera, Layanta
2016-05-23
In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films.more » In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.« less
Complex (dusty) plasmas-kinetic studies of strong coupling phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.
2012-05-15
'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less
Ring and plasma - The enigmae of Enceladus
NASA Technical Reports Server (NTRS)
Haff, P. K.; Siscoe, G. L.; Eviatar, A.
1983-01-01
The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputtering by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 x 10 to the -18th g/(sq cm sec), more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10 to the -16th g/(sq cm sec) in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than te calculated value. Small scale surface roughness may account for some of this discrepancy.
NASA Astrophysics Data System (ADS)
Li, Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.
2006-06-01
This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ˜25 μs after the discharge power termination.
Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique
NASA Astrophysics Data System (ADS)
Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan
Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.
Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy
NASA Astrophysics Data System (ADS)
Moiseev, T.; Misra, N. N.; Patil, S.; Cullen, P. J.; Bourke, P.; Keener, K. M.; Mosnier, J. P.
2014-12-01
Large gap dielectric barrier discharges (DBD) provide non-thermal, non-equilibrium plasmas that can generate specific gas chemistry with enhanced bactericidal effects when working in humid air. The present study investigates the post-discharge gas composition of such plasmas operated in humid air using UV-Vis (200-800 nm) absorption spectroscopy. Absorbance spectra have been de-convoluted using direct deconvolution and iterative methods and results are correlated to the DBD electrical parameters. The high-voltage (56 and 70 kV rms) DBD plasma generated at 50 Hz frequency in a closed container over a 20 mm gap in air with relative humidity (RH) of 5-70% has been characterized by I-V and capacitive methods. The post-discharge gas composition at each RH is assessed by UV-Vis absorption spectroscopy for plasma exposure times of 15-120 s. The concentration of ozone and nitrogen oxides (O3, NO2, NO3, N2O4) increases with plasma exposure time but a strong decrease in [O3] levels is obtained with increase in RH. The decrease in [O3] and an abundance of nitrogen oxides is ascribed to high specific power densities in the closed container and to increasing RH levels. The absorbance residual following deconvolution shows a strong band at 230-270 nm consistent with the presence of pernitric acid (HNO4) and other HNOx (x = 1, 3) species. Humid air large gap DBD plasmas in closed containers generate along with O3, high levels of nitrogen oxides and HNOx (x = 1, 4) acids leading to increased bactericidal rates.
RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT
Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.
1943-01-01
Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas saturation may take place within 1 to 2 hours. We believe this change is a part of the complex protein metabolism of the cell. PMID:19871320
Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors
NASA Astrophysics Data System (ADS)
Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.
2018-04-01
Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.
Thongon, Narongrit; Penguy, Jirawat; Kulwong, Sasikan; Khongmueang, Kanyanat; Thongma, Matthana
2016-11-01
Hypomagnesemia is the most concerned side effect of proton pump inhibitors (PPIs) in chronic users. However, the mechanism of PPIs-induced systemic Mg 2+ deficit is currently unclear. The present study aimed to elucidate the direct effect of short-term and long-term PPIs administrations on whole body Mg 2+ homeostasis and duodenal Mg 2+ absorption in rats. Mg 2+ homeostasis was studied by determining the serum Mg 2+ level, urine and fecal Mg 2+ excretions, and bone and muscle Mg 2+ contents. Duodenal Mg 2+ absorption as well as paracellular charge selectivity were studied. Our result showed that gastric and duodenal pH markedly increased in omeprazole-treated rats. Omeprazole significantly suppressed plasma Mg 2+ level, urinary Mg 2+ excretion, and bone and muscle Mg 2+ content. Thus, omeprazole induced systemic Mg 2+ deficiency. By using Ussing chamber techniques, it was shown that omeprazole markedly suppressed duodenal Mg 2+ channel-driven and Mg 2+ channel-independent Mg 2+ absorptions and cation selectivity. Inhibitors of mucosal HCO 3 - secretion significantly increased duodenal Mg 2+ absorption in omeprazole-treated rats. We therefore hypothesized that secreted HCO 3 - in duodenum decreased luminal proton, this impeded duodenal Mg 2+ absorption. Higher plasma total 25-OH vitamin D, diuresis, and urine PO 4 3- were also demonstrated in hypomagnesemic rats. As a compensatory mechanism for systemic Mg 2+ deficiency, the expressions of duodenal transient receptor potential melastatin 6 (TRPM6), cyclin M4 (CNNM4), claudin (Cldn)-2, Cldn-7, Cldn-12, and Cldn-15 proteins were enhanced in omeprazole-treated rats. Our findings support the potential role of duodenum on the regulation of Mg 2+ homeostasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veering, B.T.; Burm, A.G.; Vletter, A.A.
1991-02-01
In order to evaluate the role of the pharmacokinetics of the age-related changes in the clinical profile of spinal anesthesia with bupivacaine, we studied the influence of age on the systemic absorption and systemic disposition of bupivacaine after subarachnoid administration in 20 male patients (22-81 yr), ASA Physical Status 1 or 2, by a stable isotope method. After subarachnoid administration of 3 ml 0.5% bupivacaine in 8% glucose, a deuterium-labeled analog (13.4 mg) was administered intravenously. Blood samples were collected for 24 h. Plasma concentrations of unlabeled and deuterium-labeled bupivacaine were determined with a combination of gas chromatography and massmore » fragmentography. Biexponential functions were fitted to the plasma concentration-time data of the deuterium-labeled bupivacaine. The systemic absorption was evaluated by means of deconvolution. Mono- and biexponential functions were fitted to the data of fraction absorbed versus time. The maximal height of analgesia and the duration of analgesia at T12 increased with age (r = 0.715, P less than 0.001; r = 0.640, P less than 0.01, respectively). In 18 patients the systemic absorption of bupivacaine was best described by a biexponential equation. The half-life of the slow systemic absorption process (r = -0.478; P less than 0.05) and the mean absorption time (r = -0.551; P less than 0.02) decreased with age. The total plasma clearance decreased with age (r = -0.650, P less than 0.002), whereas the mean residence time and terminal half-life increased with age (r = 0.597, P less than 0.01; r = 0.503, P less than 0.05).« less
Alpha-lactalbumin effect on myo-inositol intestinal absorption: in vivo and in vitro.
Monastra, Giovanni; Ferruzza, Simonetta; Sambuy, Yula; Ranaldi, Giulia; Ferrari, Daniela
2018-05-08
. Myo-inositol is a natural molecule with important therapeutic applications and an impaired oral absorption may result in a reduced clinical effect. Aim of this study was to determine if the combined oral administration of α-lactalbumin and myo-inositol in healthy subjects, could increase the plasma level of myo-inositol administered alone. In vitro studies on human differentiated intestinal Caco-2 cells were also conducted to identify the mechanisms involved in myo-inositol absorption. The in vivo study was conducted on healthy volunteers in two phases. Subjects received a single oral myo-inositol dose. After 7 days washout, the same subjects were administered a single dose of myo-inositol and α-lactalbumin. Cmax, Tmax and AUC for myo-inositol in plasma were calculated from samples collected at different times. Transepithelial myo-inositol passage, with or without addition of digested α-lactalbumin, was measured in vitro in differentiated Caco-2 cells and compared to transepithelial electrical resistance and phenol red passage. The bioavailability of myo-inositol was modified by the concomitant administration of α-lactalbumin. Although peak concentration of myo-inositol at 180 min (Tmax) was similar for both treatments, administration of α-lactalbumin with myo-inositol in a single dose, significantly increased the plasma concentrations of myo-inositol compared to when administered alone. In vitro, myo-inositol absorption in Caco-2 cells was improved in the presence of digested α-lactalbumin, and this change was associated with an increase in tight junction permeability. Better myo-inositol absorption when orally administered with α-lactalbumin can be beneficial in non-responder patients. Preliminary in vitro findings suggest that peptides deriving from α-lactalbumin digestion may modulate tight junction permeability allowing increased absorption of myo-inositol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.
2017-03-01
Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.
Mejía, M I; Marín, J M; Restrepo, G; Pulgarín, C; Mielczarski, E; Mielczarski, J; Stolitchnov, I; Kiwi, J
2009-10-01
Innovative pretreatment by UVC light (185 nm) and by radio-frequency (RF) plasma at atmospheric pressure to functionalize the Nylon surface, increasing its bondability toward TiO(2), is reported in this study. In the case of UVC light pretreatment in air, the molar absorption coefficient of O(2)/N(2) at 185 nm is very low and the air in the chamber absorbs very little light from the UVC source before reaching the Nylon sample. Nylon fabrics under RF plasma were also functionalized at atmospheric pressure because of the marked heating effect introduced in the Nylon by the RF plasma. This effect leads to intermolecular bond breaking and oxygenated surface groups in the topmost Nylon layers. Both pretreatments enhanced significantly the photocatalytic discoloration of the red-wine stain in Nylon-TiO(2) compared with samples without pretreatment. The UVC and RF methods in the absence of vacuum imply a considerable cost reduction to functionalize textile surfaces, suggesting a potential industrial application. Red-wine-stain discoloration under simulated sunlight was monitored quantitatively by diffuse-reflectance spectroscopy and by CO(2) evolution. X-ray photoelectron spectroscopy (XPS) was used to monitor the changes of the C, N, and S species on the Nylon topmost layers during the discoloration process. Significant changes in the XPS spectra of Ti 2p peaks were observed during discoloration of the wine spots. Wine stains attenuated the signal of the Ti 2p (458.4 eV) peak in the Nylon-TiO(2)-stained wine sample at time zero (from now on, the time before the discoloration process). Furthermore, a decrease of the wine-related O 1s signal at 529.7 eV and N 1s signal at 399.5 eV was observed during the discoloration process, indicating an efficient catalytic decomposition of the wine pigment on Nylon-TiO(2). X-ray diffraction detected the formation of anatase on the Nylon fibers. High-resolution transmission electron microscopy shows the formation of anatase particles with sizes between 8 and 20 nm.
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-01-01
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between tig−0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate. PMID:28773940
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-10-05
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between t ig -0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate.
Damage-free polymer surface modification employing inward-type plasma
NASA Astrophysics Data System (ADS)
Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo
2017-08-01
Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.
High Bioavailability of Bisphenol A from Sublingual Exposure
Gayrard, Véronique; Lacroix, Marlène Z.; Collet, Séverine H.; Viguié, Catherine; Bousquet-Melou, Alain; Picard-Hagen, Nicole
2013-01-01
Background: Bisphenol A (BPA) risk assessment is currently hindered by the rejection of reported higher-than-expected plasma BPA concentrations in humans after oral ingestion. These are deemed incompatible with the almost complete hepatic first-pass metabolism of BPA into its inactive glucurono-conjugated form, BPA glucuronide (BPAG). Objectives: Using dogs as a valid model, we compared plasma concentrations of BPA over a 24-hr period after intravenous, orogastric, and sublingual administration in order to establish the absolute bioavailability of BPA administered sublingually and to compare it with oral bioavailability. Methods: Six dogs were sublingually administered BPA at 0.05 mg/kg and 5 mg/kg. We compared the time course of plasma BPA concentrations with that obtained in the same dogs after intravenous administration of the same BPA doses and after a 20-mg/kg BPA dose administrated by orogastric gavage. Results: The data indicated that the systemic bioavailability of BPA deposited sublingually was high (70–90%) and that BPA transmucosal absorption from the oral cavity led to much higher BPA internal exposure than obtained for BPA absorption from the gastrointestinal tract. The concentration ratio of BPAG to BPA in plasma was approximately 100-fold lower following sublingual administration than after orogastric dosing, distinguishing the two pathways of absorption. Conclusions: Our findings demonstrate that BPA can be efficiently and very rapidly absorbed through the oral mucosa after sublingual exposure. This efficient systemic entry route of BPA may lead to far higher BPA internal exposures than known for BPA absorption from the gastrointestinal tract. PMID:23761051
Evidence of Plume on Europa from Galileo Magnetic and Plasma Density Signatures
NASA Astrophysics Data System (ADS)
Jia, X.; Kivelson, M.; Khurana, K. K.; Kurth, W. S.
2017-12-01
The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean [Khurana et al., 1998; Kivelson et al., 2000]. Water plumes rising 200 kilometers above the disk of the solid body in some Hubble Space Telescope images have been identified through emission spectra of hydrogen and oxygen [Roth et al., 2016] and through absorption in the far ultraviolet of sunlight reflected off of Jupiter [Sparks et al., 2016, 2017]. Plume activity appears to be intermittent, although Sparks et al. [2017] identified a plume at a location where one had been detected in an earlier study. While the detections appear to be valid within statistical uncertainty, they are all close to the limit of detection, making it desirable to find other evidence of the presence of localized vapor above Europa's surface. In this presentation, we examine magnetometer and electromagnetic wave data acquired by the Galileo spacecraft on a close encounter with Europa on December 16, 1997. We identify distinct features in the data that have the characteristics expected if the spacecraft went through magnetic flux tubes that pass around a plume, close to the location proposed for one of the plumes observed by Sparks et al. [2016]. 3D magnetohydrodynamic simulations have been conducted to model the interaction of plume with Europa's plasma and magnetic environment. Our simulations confirm that the magnetic and plasma signatures identified in the Galileo data are consistent with perturbations associated with a localized plume source.
NASA Astrophysics Data System (ADS)
Grunwald, John J.; Spencer, Allen C.
1986-07-01
The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.
Modeling Broadband X-Ray Absorption of Massive Star Winds
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John
2010-01-01
We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.
Rapid absorption of diclofenac and acetaminophen after their oral administration to cattle.
Sawaguchi, Akiyo; Sasaki, Kazuaki; Miyanaga, Keisuke; Nakayama, Mitsuhiro; Nagasue, Masato; Shimoda, Minoru
2016-10-01
The oral pharmacokinetics of diclofenac (DF) were evaluated in cattle by analyzing plasma concentration-time data after its intravenous and oral administration in order to propose the oral administration of DF as effective route to avoid long withdraw period. DF was intravenously and orally administered at 1 mg/kg to cattle using a crossover design with a 4-week washout period. Plasma concentrations of DF were determined by a HPLC analysis. The mean absorption time (MAT) and absorption half-life (t 1/2ka ) were 1.61 ± 0.61 and 1.51 ± 0.38 hr, respectively, and bioavailability was nearly 100%. The oral pharmacokinetics of acetaminophen (AAP) were also evaluated in cattle. Plasma concentrations of AAP were determined by a HPLC analysis. MAT and t 1/2ka were 2.85 ± 0.93 and 1.53 ± 0.28 hr, respectively, and bioavailability was approximately 70%. In conclusion, the results of the present study indicate that DF and AAP are rapidly absorbed from the forestomach of cattle. Therefore, the appropriate efficacies of these drugs may be achieved via their oral administration, even in cattle.
Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.
Baziramakenga, R; Leroux, G D; Simard, R R
1995-09-01
Benzoic (BEN) and cinnamic (CIN) acids are commonly found in soils and are considered as strong allelochemicals. Published information suggest that BEN and CIN and other phenolic acids decrease plant growth in part by suppressing nutrient absorption. However, studies on the mechanism of action were not conclusive. We examined the effects of BEN and CIN on the cell plasma membrane in intact soybean (Glycine max L. cv. Maple Bell) seedlings. Treating intact root systems with BEN or CIN rapidly increased electrolyte leakage and ultraviolet absorption of materials into the surrounding solution. After 12 hr of treatment, BEN and CIN lowered the extracellular sulfhydryl group content in roots. The two allelochemicals induced lipid peroxidation, which resulted from free radical formation in plasma membranes, inhibition of catalase and peroxidase activities, and sulfhydryl group depletion. Oxidation or cross-linking of plasma membrane sulfhydryl groups is the first mode of action of both compounds. The BEN- and CIN-induced decrease in soybean nutrient absorption may be a consequence of damage to cell membrane integrity caused by a decrease in sulfhydryl groups followed by lipid peroxidation.
Castel-Branco, M M; Figueiredo, I V; Falcão, A C; Macedo, T R A; Caramona, M M
2002-10-01
Given that administration vehicles and drug formulations can affect drug bioavailability, their influence on the pharmacokinetic profile of lamotrigine (LTG), a new-generation anti-epileptic drug, was studied in rats. Three different formulations administered intraperitoneally at a dose of 10 mg/kg were used: (1) LTG suspended in a 0.25% methylcelulose solution, (2) LTG dissolved in a 50% propylene glycol solution, and (3) LTG isethionate dissolved in distilled water. Plasma and brain homogenate levels were determined in order to evaluate vehicle-dependent drug absorption. The results demonstrated rapid absorption of LTG when it was administered as an aqueous solution, in contrast to a slower and more erratic absorption after the injection of either the lipophilic solution or the suspension. A plasma peak was achieved 15 min post-dose with the aqueous solution, with a brain peak being achieved 15 min later, while with the other formulations both plasma and brain homogenate peaks were reached 2 h after LTG administration. This study suggests that LTG isethionate dissolved in distilled water is the most suitable formulation for successful LTG pharmacokinetic studies in rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.
2014-10-07
We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less
Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption
Attili-Qadri, Suha; Karra, Nour; Nemirovski, Alina; Schwob, Ouri; Talmon, Yeshayahu; Nassar, Taher; Benita, Simon
2013-01-01
An original oral formulation of docetaxel nanocapsules (NCs) embedded in microparticles elicited in rats a higher bioavailability compared with the i.v. administration of the commercial docetaxel solution, Taxotere. In the present study, various animal studies were designed to elucidate the absorption process of docetaxel from such a delivery system. Again, the docetaxel NC formulation elicited a marked enhanced absorption compared with oral Taxotere in minipigs, resulting in relative bioavailability and Cmax values 10- and 8.4-fold higher, respectively, confirming the previous rat study results. It was revealed that orally absorbed NCs altered the elimination and distribution of docetaxel, as shown in the organ biodistribution rat study, due to their reinforced coating, while transiting through the enterocytes by surface adsorption of apoproteins and phospholipids. These findings were demonstrated by the cryogenic-temperature transmission electron microscopy results and confirmed by the use of a chylomicron flow blocker, cycloheximide, that prevented the oral absorption of docetaxel from the NC formulation in an independent pharmacokinetic study. The lipoproteinated NCs reduced the docetaxel release in plasma and its distribution among the organs. The improved anticancer activity compared with i.v. Taxotere, observed in the metastatic lung cancer model in Severe Combined Immune Deficiency-beige (SCID-bg) mice, should be attributed to the extravasation effect, leading to the lipoproteinated NC accumulation in lung tumors, where they exert a significant therapeutic action. To the best of our knowledge, no study has reported that the absorption of NCs was mediated by a lymphatic process and reinforced during their transit. PMID:24101508
Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han
2015-01-01
Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.
Straughn, Arthur B.; Reeves, Owen T.; Bernstein, Hilary; Bell, Guinevere H.; Anderson, Erica R.; Malcolm, Robert J.
2013-01-01
Enantioselective hydrolysis of oral racemic methylphenidate (dl-MPH) by carboxylesterase 1 (CES1) limits the absolute bioavailability of the pharmacologically active d-MPH isomer to approximately 30% and that of the inactive l-MPH to only 1–2%. Coadministration of dl-MPH with ethanol results in elevated d-MPH plasma concentrations accompanied by CES1-mediated enantioselective transesterification of l-MPH to l-ethylphenidate (EPH). The present study tested the hypothesis that administration of the pure isomer dexmethylphenidate (d-MPH) will overcome the influence of ethanol on d-MPH absorption by eliminating competitive CES1-mediated presystemic metabolism of l-MPH to l-EPH. Twenty-four healthy volunteers received dl-MPH (0.3 mg/kg) or d-MPH (0.15 mg/kg), with or without ethanol (0.6 g/kg). During the absorption phase of dl-MPH, concomitant ethanol significantly elevated d-MPH plasma concentrations (44–99%; P < 0.005). Furthermore, immediately following the ethanol drink the subjective effects of “high,” “good,” “like,” “stimulated,” and overall “effect” were significantly potentiated (P ≤ 0.01). Plasma l-EPH concentrations exceeded those of l-MPH. Ethanol combined with pure d-MPH did not elevate plasma d-MPH concentrations during the absorption phase, and the ethanol-induced potentiation of subjective effects was delayed relative to dl-MPH-ethanol. These findings are consistent with l-MPH competitively inhibiting presystemic CES1 metabolism of d-MPH. Ethanol increased the d-MPH area under the curve (AUC)0-inf by 21% following dl-MPH (P < 0.001) and 14% for d-MPH (P = 0.001). In men receiving d-MPH-ethanol, the d-MPH absorption partial AUC0.5–2 hours was 2.1 times greater and the time to maximum concentration (Tmax) occurred 1.1 hours earlier than in women, consistent with an increased rate of d-MPH absorption reducing hepatic extraction. More rapid absorption of d-MPH carries implications for increased abuse liability. PMID:23104969
New Developments of Broadband Cavity Enhanced Spectroscopic Techniques
NASA Astrophysics Data System (ADS)
Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.
2013-06-01
In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao, H. Linnartz Appl. Phys. Lett. {101}(9), 091111 2012.
Bioavailability of metronidazole in rabbits after administration of a rectal suppository.
Ofoefule, Sabinus I; Ibezim, Emmanuel C; Esimone, Okechukwu C; Pepple, Miriam N; Njoku, Chinedu N; Orisakwe, Ebere O
2004-01-01
The bioavailability of metronidazole in rabbits was studied using plasma concentration measurements after the administration of the drug in a hydrophilic (glycerogelatin) suppository form. The peak in the plasma concentration time curve occurred about 1 hour after administration, indicating that the rate of absorption is fast and equivalent to that observed in humans after oral administration. There was rapid elimination of the drug, as indicated by a relatively high elimination rate constant and low plasma half-life. The in vitro dissolution profile of the suppositories further confirms rapid absorption of the drug from the suppositories in the rectum. The presence of Tween 80 enhanced the in vitro release of metronidazole, but the presence of a hydrogenated vegetable oil lubricant (Lubritab) caused retardation in the drug release from the suppositories.
Free-free absorption coefficients and Gaunt factors for dense hydrogen-like stellar plasma
NASA Astrophysics Data System (ADS)
Srećković, V. A.; Sakan, N.; Šulić, D.; Jevremović, D.; Ignjatović, Lj M.; Dimitrijević, M. S.
2018-03-01
In this work, we present a study dedicated to determination of the inverse bremsstrahlung absorption coefficients and the corresponding Gaunt factor of dense hydrogen-like stellar-atmosphere plasmas where electron density and temperature change in a wide range. A method suitable for this wide range is suggested and applied to the inner layers of the solar atmosphere, as well as the plasmas of partially ionized layers of some other stellar atmospheres (for example, some DA and DB white dwarfs) where the electron densities vary from 1014 cm-3 to 1020 cm-3 and temperatures from 6000 K to 300 000 K in the wavelength region of 10 nm ≤ λ ≤ 3000 nm. The results of the calculations are illustrated by the corresponding figures and tables.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
NASA Astrophysics Data System (ADS)
Gautam, Ghaneshwar; Surmick, David M.; Parigger, Christian G.
2015-07-01
In this letter, we present a brief comment regarding the recently published paper by Ivković et al., J Quant Spectrosc Radiat Transf 2015;154:1-8. Reference is made to previous experimental results to indicate that self absorption must have occurred; however, when carefully considering error propagation, both widths and peak-separation predict electron densities within the error margins. Yet the diagnosis method and the presented details on the use of the hydrogen beta peak separation are viewed as a welcomed contribution in studies of laser-induced plasma.
NASA Astrophysics Data System (ADS)
Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.
2011-04-01
In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.
A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources
NASA Astrophysics Data System (ADS)
Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.
2017-10-01
Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating
NASA Astrophysics Data System (ADS)
Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; Rosmej, F.; Silvert, V.; Soullié, G.; Villette, B.
2015-12-01
X-ray transmission spectra of copper, nickel and aluminum laser produced plasmas were measured at the LULI2000 laser facility with an improved target design of indirect heating. Measurements were performed in plasmas close to local thermodynamic equilibrium at temperatures around 25 eV and densities between 10-3g/cm3 and 10-2 g/cm3. This improved design provides several advantages, which are discussed in this paper. The sample is a thin foil of mid-Z material inserted between two gold cavities heated by two 300J, 2ω, nanosecond laser beams. A third laser beam irradiates a gold foil to create a spectrally continuous X-ray source (backlight) used to probe the sample. We investigate 2p-3d absorption structures in Ni and Cu plasmas as well as 1s-2p transitions in an additional Al plasma layer to infer the in-situ plasma temperature. Geometric and hydrodynamic calculations indicate that the improved geometry reduces spatial gradients during the transmission measurements. Experimental absorption spectra are in good agreement with calculations from the hybrid atomic physics code SCO-RCG.
Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction
NASA Astrophysics Data System (ADS)
Bonelli, Thiago Scremin; Pereyra, Inés
2018-06-01
Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.
Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal
2012-10-01
Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.
Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation
NASA Astrophysics Data System (ADS)
Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut
2017-10-01
The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.
NASA Astrophysics Data System (ADS)
Triebel, W.; Mühlig, C.; Kufert, S.
2005-10-01
Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.
Son, Yu-Ra; Park, Tae-Sik; Shim, Soon-Mi
2016-02-01
This study aimed to test whether green tea formulated with vitamin C and xylitol (GTVX) could improve absorption of flavanols and total antioxidant activity (TAC) of plasma compared with green tea only (GT) in healthy subjects. The total radical-trapping antioxidant parameter method was used to measure the TAC of plasma. Cmax, Tmax, and area under the curve (AUC) of flavanols in plasma after consumption of GTVX were 5980.58 μg/mL, 2.14 h, and 18,915.56 h·μg/mL, respectively, indicating that GTVX showed significantly higher AUC than GT (13,855.43 μg/mL). The peak TACs occurred at 3 and 0.5 h after intake of GT and GTVX, respectively. The TAC of plasma was found to be significantly higher in GTVX than in GT at each time point. This study suggests that formulating green tea with vitamin C and xylitol could increase the absorption of flavanols in green tea, enhancing cellular antioxidative effects.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Peng-Fei; Ding, Shi-Jin; Wang, Ji-Tao; William, Wei Lee
2002-06-01
The influence of N2 plasma annealing on the properties of fluorine doped silicon oxide (SiOF) films is investigated. The stability of the dielectric constant of SiOF film is remarkably improved by the N2 plasma annealing. After enduring a moisture absorption test for six hours in a chamber with 60% humidity at 50°C, the dielectric constant variation of the annealed SiOF films is only 1.5%, while the variation for those SiOF films without annealing is 15.5%. Fourier transform infrared spectroscopic results show that the absorption peaks of Si-OH and H-OH of SiOF films are reduced after the N2 plasma annealing because the annealing can wipe off some unstable Si-F2 bonds in SiOF films. These unstable Si-F2 bonds are suitable to react with water, resulting in the degradation of SiOF film properties. Therefore, the N2 plasma annealing meliorates the properties of SiOF films with low dielectric constant.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Tavassoli, Seyed Hassan
2016-11-01
In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
2015-01-01
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. A detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges are presented. Application of the plasma-processed paper sensors in DNA detection is also demonstrated. PMID:25423585
Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; ...
2016-06-30
There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper + species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper + is key for lowering the onset potential and enhancing ethylene selectivity.« less
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
Gandhiraman, Ram P.; Nordlund, Dennis; Jayan, Vivek; ...
2014-11-25
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. We presentmore » a detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges. Lastly, application of the plasma-processed paper sensors in DNA detection is also demonstrated.« less
Fractality and growth of He bubbles in metals
NASA Astrophysics Data System (ADS)
Kajita, Shin; Ito, Atsushi M.; Ohno, Noriyasu
2017-08-01
Pinholes are formed on surfaces of metals by the exposure to helium plasmas, and they are regarded as the initial process of the growth of fuzzy nanostructures. In this study, number density of the pinholes is investigated in detail from the scanning electron microscope (SEM) micrographs of tungsten and tantalum exposed to the helium plasmas. A power law relation was identified between the number density and the size of pinholes. From the slope and the region where the power law was satisfied, the fractal dimension D and smin, which characterize the SEM images, are deduced. Parametric dependences and material dependence of D and smin are revealed. To explain the fractality, simple Monte-Carlo simulations including random walks of He atoms and absorption on bubble was introduced. It is shown that the initial position of the random walk is one of the key factors to deduce the fractality. The results indicated that new nucleations of bubbles are necessary to reproduce the number-density distribution of bubbles.
Plant nutrition: root transporters on the move.
Zelazny, Enric; Vert, Grégory
2014-10-01
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.
Marshall, F J; Radha, P B
2014-11-01
A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.
Overtone spectroscopy of N2H+ molecular ions—application of cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Kálosi, Á.; Dohnal, P.; Shapko, D.; Roučka, Š.; Plašil, R.; Johnsen, R.; Glosík, J.
2017-10-01
A stationary afterglow apparatus in conjunction with a laser absorption cavity ring-down spectrometer has been employed to observe absorption lines in the P- and R-branches of the (200) <-- (000) and (2110) <-- (0110) vibrational bands of the N2H+ molecular ion as a part of an ongoing study of the electron-ion recombination of N2H+ in afterglow plasmas. The probed absorption lines lie in the near-infrared spectral region around 1580 nm. The observed transition wavenumbers were fitted to experimental accuracy and improved molecular constants for the (200) vibrational state were obtained. The employed experimental technique enables probing of the translational, rotational and vibrational temperature of the studied ions as well as the determination of the number densities of different quantum states of the ion in discharge and afterglow plasma.
O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...
2017-02-17
The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il
The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less
Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.
Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander
2014-03-04
We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.
Surface modification of a polyethylene film for anticoagulant and anti-microbial catheter
Zheng, Yingying; Miao, Jianjun; Zhang, Fuming; Cai, Chao; Koh, Amanda; Simmons, Trevor J.; Mousa, Shaker A.; Linhardt, Robert J.
2016-01-01
A functional anticoagulant and anti-bacterial coating for polyethylene (PE) films is described. The stepwise preparation of this nanocomposite surface coating involves O2 plasma etching of PE film, carbodiimide coupling of cysteamine to the etched PE film, binding of Ag to sulfhydryl groups of cysteamine, and assembly of heparin capped AgNPs on the PE film. The nanocomposite film and its components were characterized by 1H-nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and field emission-scanning electron microscopy. The resulting PE films demonstrate anticoagulant activity using a hemoglobin whole blood clotting assay, and anti-bacterial activity against Bacillus cereus 3551 (Gram-positive) and Escherichia coli BL21 (Gram-negative) bacteria. The hydrophilicity of the heparin coated PE was determined by contact angle measurements; and the stability of the nanocomposite film, with respect to Ag leaching, was assessed by atomic absorption spectroscopy. PMID:26900340
Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grojo, David, E-mail: grojo@lp3.univ-mrs.fr; Mouskeftaras, Alexandros; Delaporte, Philippe
We produce and characterize high-angle femtosecond Bessel beams at 1300-nm wavelength leading to nonlinearly ionized plasma micro-channels in both glass and silicon. With microjoule pulse energy, we demonstrate controlled through-modifications in 150-μm glass substrates. In silicon, strong two-photon absorption leads to larger damages at the front surface but also a clamping of the intensity inside the bulk at a level of ≈4 × 10{sup 11 }W cm{sup −2} which is below the threshold for volume and rear surface modification. We show that the intensity clamping is associated with a strong degradation of the Bessel-like profile. The observations highlight that the inherent limitation tomore » ultrafast energy deposition inside semiconductors with Gaussian focusing [Mouskeftaras et al., Appl. Phys. Lett. 105, 191103 (2014)] applies also for high-angle Bessel beams.« less
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Solar-wind proton access deep into the near-Moon wake
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Fujimoto, M.; Maezawa, K.; Saito, Y.; Yokota, S.; Asamura, K.; Tanaka, T.; Tsunakawa, H.; Matsushima, M.; Takahashi, F.; Terasawa, T.; Shibuya, H.; Shimizu, H.
2009-08-01
We study solar wind (SW) entry deep into the near-Moon wake using SELENE (KAGUYA) data. It has been known that SW protons flowing around the Moon access the central region of the distant lunar wake, while their intrusion deep into the near-Moon wake has never been expected. We show that SW protons sneak into the deepest lunar wake (anti-subsolar region at ˜100 km altitude), and that the entry yields strong asymmetry of the near-Moon wake environment. Particle trajectory calculations demonstrate that these SW protons are once scattered at the lunar dayside surface, picked-up by the SW motional electric field, and finally sneak into the deepest wake. Our results mean that the SW protons scattered at the lunar dayside surface and coming into the night side region are crucial for plasma environment in the wake, suggesting absorption of ambient SW electrons into the wake to maintain quasi-neutrality.
Diagnostics of Plasma Propulsion Devices
NASA Astrophysics Data System (ADS)
Cappelli, Mark A.
1998-11-01
Plasma rockets are rapidly emerging as critical technologies in future space flight. These devices take on various forms, ranging from electro-thermal to electromagnetic accelerators, generally categorized by the method in which electrical energy is converted to thrust. As is the case in many plasma devices, non-intrusive optical (emission, or laser-based) diagnostics is an essential element in the characterization of these plasma sources, as access to the discharges in these plasma engines is often limited. Furthermore, laser-based diagnostics offer additional benefits, including improved spatial resolution, and can provide state-specific measurements of species densities, velocities and energy distributions. In recent years, we have developed and applied a variety of emission and laser-based diagnostics strategies to the characterization of arcjet plasma and closed-drift xenon Hall plasma accelerators. Both of these types of plasma propulsion devices are of immediate interest to the space propulsion community, and are under varying stages of development. Arcjet thrusters have unique properties, with strong plasma density, temperature and velocity gradients, which enhance the coupling between the gasdynamic and plasma physics. Closed-drift Hall plasma thrusters are low density electrostatic devices that are inherently turbulent, and exhibit varying degrees of anomalous cross-field electron transport. Our most extensive, collective effort has been to apply laser-induced fluorescence, Doppler-free laser absorption, and Raman scattering to the characterization of hydrogen and helium arcjet flows. Detailed measurements of velocity, temperatures, and electron densities are compared to the results of magneto-hydrodynamic flowfield simulations. The results show that while the simulations capture many aspects of the flow, there are still some unresolved discrepancies. The database established for Hall thrusters is less extensive, as the laser absorption spectroscopy of xenon is somewhat more complicated due to the hyperfine and isotopic structure of electronic transitions. With an understanding of the spectroscopic absorption lineshape for two select transitions in neutral and ionized xenon, we have successfully mapped out the neutral and singly ionized xenon velocities in the acceleration zone of Hall thrusters. These results indicate that the acceleration zone in a short-channel thruster is outside of the device, consistent with the measurements of plasma potential using more conventional Langmuir electrostatic probes. The spectroscopic data has also been used to identify limitations in ground-test facilities.
Towards higher stability of resonant absorption measurements in pulsed plasmas.
Britun, Nikolay; Michiels, Matthieu; Snyders, Rony
2015-12-01
Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.
On the application of cw external cavity quantum cascade infrared lasers for plasma diagnostics
NASA Astrophysics Data System (ADS)
Lopatik, D.; Lang, N.; Macherius, U.; Zimmermann, H.; Röpcke, J.
2012-11-01
Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm-1 (4.42-7.66 µm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH4, C2H2, HCN and H2O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 1011-1014 molecules cm-3. In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature Tg has been calculated in dependence on the discharge power. Tg increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10-5. The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10-19 and 10-22 cm molecule-1.
USDA-ARS?s Scientific Manuscript database
We measured plasma markers of cholesterol synthesis (lathosterol) and absorption (campesterol, sitosterol, and cholestanol) in order to compare the effects of maximal doses of rosuvastatin with atorvastatin and investigate the basis for the significant individual variation in lipid lowering response...
Sound absorption of low-temperature reusable surface insulation candidate materials
NASA Technical Reports Server (NTRS)
Johnston, J. D.
1974-01-01
Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.
Shen, Yang; Wang, Guixue; Chen, Liang; Li, Hao; Yu, Ping; Bai, Mengjun; Zhang, Qin; Lee, James; Yu, Qingsong
2009-11-01
Plasma nanocoated films with trimethylsilane-oxygen monomers showed outstanding biocompatibility in our previous studies. In this study, endothelialization on biomedical nitinol alloy surfaces was systematically investigated. Our study focuses on elucidating the effects of surface micropatternings with micropores and microgrooves combined with plasma nanocoating. Plasma nanocoatings with controlled thickness between 40 and 50 nm were deposited onto micropatterned nitinol surface in a direct current plasma reactor. Bovine aortic endothelial cells were cultured in vitro on these nitinol samples for 1, 3 and 5 days. It was found that rougher surfaces could enhance cell adhesion compared with the smoother surfaces; the surfaces patterned with micropores showed much more endothelialization than microgrooved surface after a 3 days culture. The cell culture results also showed that plasma nanocoatings significantly further increased cell proliferation and cell adhesion on the micropatterned nitinol surfaces, as compared with non-plasma nanocoated surface of nitinol samples. The surface micropatternings combined with plasma nanocoatings could improve the cell adhesion and accelerate surface endothelialization after implantation of intravascular stents, which is expected to reduce in-stent restenosis.
Numerical study of surface plasmon enhanced nonlinear absorption and refraction.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2008-07-07
Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.
Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.
Pipino, Andrew C. R.
2003-02-04
A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.
NASA Astrophysics Data System (ADS)
Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali
2017-06-01
The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.
Meyer, R A; Meyer, M H; Gray, R W; Bruns, M E
1987-02-01
X-linked hypophosphatemic (Hyp) mice are a model for human sex-linked vitamin D-resistant rickets. We have reported intestinal malabsorption of calcium in young Hyp mice, and in this report we have explored the mechanism for it. To test for resistance of the intestine to 1,25(OH)2 vitamin D3, this hormone was continually infused via osmotic minipumps into 4-week-old normal and Hyp mice at 0, 17, 50 or 150 ng/kg/day. After 3 days, 45Ca and inorganic 32P were administered by gavage, and the mice were sacrificed on the fifth day. The Hyp mice showed responses to the hormone equivalent to the normal mice in terms of increased intestinal absorption of both 45Ca and 32P, increased plasma isotope levels, increased femoral isotope content, and increased duodenal and renal 9 kD vitamin D-dependent calcium-binding protein (calbindin-D9K; CaBP). Plasma 1,25(OH)2D was measured in these mice. There were significant correlations of plasma 1,25(OH)2D to the intestinal absorption of 45Ca and 32P and to duodenal and renal CaBP. Plasma 1,25(OH)2D was also measured in stock normal and Hyp mice and was found to be lower in 4-week-old Hyp mice than in 4-week-old normal mice (113 +/- 10 pM (n = 18) vs. 67 +/- 10 (n = 20), normal vs. Hyp, p less than .01), but unchanged at 13 weeks of age (77 +/- 13 (n = 13) vs. 70 +/- 15 (n = 15), NS). This observed difference in plasma 1,25(OH)2D between normal and Hyp mice at 4 weeks of age was sufficient to explain the observed normal-to-Hyp differences in intestinal absorption of 45Ca and duodenal and renal CaBP. It also explained 72 +/- 18% of the observed difference in 32P absorption. We conclude that Hyp mouse intestine is not resistant to 1,25(OH)2D and that the lower plasma 1,25(OH)2D of 4-week-old Hyp mice causes intestinal malabsorption of calcium and phosphate.
Pan, Xiaoyue; Munshi, Mohamed Khalid; Iqbal, Jahangir; Queiroz, Joyce; Sirwi, Alaa Ahmed; Shah, Shrenik; Younus, Abdullah; Hussain, M Mahmood
2013-07-12
We have shown previously that Clock, microsomal triglyceride transfer protein (MTP), and nocturnin are involved in the circadian regulation of intestinal lipid absorption. Here, we clarified the role of apolipoprotein AIV (apoAIV) in the diurnal regulation of plasma lipids and intestinal lipid absorption in mice. Plasma triglyceride in apoAIV(-/-) mice showed diurnal variations similar to apoAIV(+/+) mice; however, the increases in plasma triglyceride at night were significantly lower in these mice. ApoAIV(-/-) mice absorbed fewer lipids at night and showed blunted response to daytime feeding. To explain reasons for these lower responses, we measured MTP expression; intestinal MTP was low at night, and its induction after food entrainment was less in apoAIV(-/-) mice. Conversely, apoAIV overexpression increased MTP mRNA in hepatoma cells, indicating transcriptional regulation. Mechanistic studies revealed that sequences between -204/-775 bp in the MTP promoter respond to apoAIV and that apoAIV enhances expression of FoxA2 and FoxO1 transcription factors and their binding to the identified cis elements in the MTP promoter at night. Knockdown of FoxA2 and FoxO1 abolished apoAIV-mediated MTP induction. Similarly, knockdown of apoAIV in differentiated Caco-2 cells reduced MTP, FoxA2, and FoxO1 mRNA levels, cellular MTP activity, and media apoB. Moreover, FoxA2 and FoxO1 expression showed diurnal variations, and their expression was significantly lower in apoAIV(-/-) mice. These data indicate that apoAIV modulates diurnal changes in lipid absorption by regulating forkhead transcription factors and MTP and that inhibition of apoAIV expression might reduce plasma lipids.
TRANSIT OF EXOMOON PLASMA TORI: NEW DIAGNOSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Jaffel, Lotfi; Ballester, Gilda E., E-mail: bjaffel@iap.fr, E-mail: gilda@pirl.lpl.arizona.edu
2014-04-20
In the solar system, moons largely exceed planets in number. The Kepler database has been shown to be sensitive to exomoon detection down to the mass of Mars, but the first search has been unsuccessful. Here, we use a particles-in-cell code to predict the transit of the plasma torus produced by a satellite. Despite the small size of a moon, the spatial extent of its plasma torus can be large enough to produce substantial transit absorptions. The model is used for the interpretation of Hubble Space Telescope early ingress absorptions apparently observed during the WASP-12 b and HD 189733 bmore » UV transits for which no consistent explanation exists. For HD 189733 b an exomoon transiting ∼16 R{sub p} ahead of the planet and loading ∼10{sup 29} C II ions s{sup –1} into space is required to explain the tentative early ingress absorption observed for C II. For WASP-12b, a moon transiting ∼6 R{sub p} ahead from the planet and ejecting ∼10{sup 28} Mg II ions per second is required to explain the NUV early ingress absorption feature. Interestingly, both HD 189733 b and WASP-12b predicted satellites are outside the Hill sphere of their planets, an indication that the moons, if present, were not formed in situ but probably captured later. Finally, our simulations show a strong electromagnetic coupling between the polar regions of planets and the orbital position of the moons, an expected outcome of the unipolar induction DC circuit model. Future observations should test our predictions with a potential opportunity to unambiguously detect the first exomoon plasma torus.« less
Jang, Dong-Jin; Sim, Taeyong; Oh, Euichaul
2013-07-01
To enhance the oral absorption of photosensitive amlodipine free base, which exhibits a slow dissolution rate and low permeability characteristics, an amorphous solid dispersion system was formulated and characterized. The solid dispersion was prepared by dispersing the amlodipine free base in excess dextrin (1:10 by weight) using a spray-drying technique in the presence of a minimum amount (0.9% w/w) of SLS as an absorption enhancer. The dextrin-based solid dispersion of amlodipine (Amlo-SD) was evaluated in term of formulation, characterization and in vivo absorption study, as well as the spray-drying process was also optimized. The Amlo-SD particles were spherical with a smooth surface and an average particle size of 12.9 μm. Amlodipine was dispersed in an amorphous state and its content remained uniform in the Amlo-SD. The physicochemical stability of the Amlo-SD was maintained at room temperature for 6 months and the photostability was considerably improved. The dissolution of the Amlo-SD was much faster than that of amlodipine at pH 1.2 and 6.8. Amlo-SD produced significantly higher plasma concentrations of amlodipine in rats than amlodipine alone. Amlo-SD with and without SLS provided 2.8- and 2.0-fold increase in AUC, respectively: the difference seems to be attributed to a permeability enhancement effect by SLS. The Amlo-SD with SLS system is a potential formulation option for amlodipine.
Zhang, Hui; Li, Yuqi; Xu, Yaoguang; Lu, Zexiang; Chen, Lihui; Huang, Liulian; Fan, Mizi
2016-10-12
To deal with marine oil spillage and chemical leakage issues, a highly efficient absorbent (cellulose based aerogel) with a low density (ρ < 0.034 g cm -3 , φ > 98.5%) and high mechanical strength was fabricated via a novel physical-chemical foaming method, plasma treatment and subsequent silane modification process. This aerogel has a perfect 3D skeleton and interconnected pores similar to honeycomb, which are favorable to oil adsorption and storage. More importantly, without introducing additional micro/nanoparticles, the rough micro/nano structure of the surface was directly constructed using plasma irradiation in this study. The low surface energy substrate was further introduced using a simple physical-soaking method and the resulting aerogel exhibited excellent superhydrophobicity (WCA > 156°) and superoleophilicity (OCA = 0°), which can selectively and efficiently absorb various oils or organic solvents from polluted water. In addition, this aerogel has a high storage capacity and absorption capacity (up to 4300% and 99% of its weight and volume, respectively). More interestingly, this aerogel exhibits excellent mechanical abrasion resistance and corrosion resistance even in strong acid, alkali solution and salt marine environment. The aerogel could be reused more than 30 times after removal of the absorbed oil by rinsing with ethanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S. K.
2010-11-23
In this paper we show that identical collision terms are known by different names in gaseous plasmas and solids. Method used by plasma physicists and the one used by solid state physicists to solve Kinetic equation are also exactly same but they are also known by different names. In fact the physical explanation of damping of plasma Waves given by plasma physicists is quite similar to that given by solid state physicists to explain the absorption of acoustic waves in solids.
NASA Astrophysics Data System (ADS)
Blechle, Joshua M.
Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides unparalleled insight into the chemistry of these plasma systems. Part II of this work is focused on understanding the efficacy of a general chemistry recitation program. Such programs can be an valuable tool for improving students' problem solving skills and understanding using methods that are difficult to implement in large lecture settings. Here, general chemistry students at Colorado State University participated in a variety of recitation activities throughout the first semester of a 2-semester general chemistry sequence, including peer-led exercises, games, and scaffolded worksheets. Through weekly surveys, students were asked to evaluate and assess recitation activities for both interest and effectiveness as part of their course homework. Also included in these survey assignments were content questions relevant to the weekly themes, providing a measure of student learning of recitation topics. Student opinions were correlated with content retention, and these data were compared against student responses to a pre-survey administered before the first recitation session. This analysis allows for monitoring students' expectations of recitation courses and how well those expectations are met through the various types of activities employed. Ultimately, this work has found that students have positive feeling with respect to individual assignments, but that perspectives on chemistry and the course in general decrease dramatically from the beginning to the end of the semester. Thus, this work can serve as a significant starting points for future efforts to monitor and record student perceptions in the general chemistry recitation classroom, leading to further investigation into the source of changing attitudes and the role that week-to-week activities have on global course attitudes.
Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangla, O., E-mail: onkarmangla@gmail.com; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.
2016-05-23
In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles ismore » found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.« less
On improved understanding of plasma-chemical processes in complex low-temperature plasmas
NASA Astrophysics Data System (ADS)
Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger
2018-05-01
Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Near-infrared spectra of the Martian surface: Reading between the lines
NASA Technical Reports Server (NTRS)
Crisp, D.; Bell, J. F., III
1993-01-01
Moderate-resolution near-infrared (NIR) spectra of Mars have been widely used in studies of the Martian surface because many candidate surface materials have distinctive absorption features at these wavelengths. Recent advances in NIR detector technology and instrumentation have also encouraged studies in this spectral region. The use of moderate spectral resolution has often been justified for NIR surface observations because the spectral features produced by most surface materials are relatively broad, and easily discriminated at this resolution. In spite of this, NIR spectra of Mars are usually very difficult to interpret quantitatively. One problem is that NIR surface absorption features are often only a few percent deep, requiring observations with great signal-to-noise ratios. A more significant problem is that gases in the Martian atmosphere contribute numerous absorption features at these wavelengths. Ground-based observers must also contend with variable absorption by several gases in the Earth's atmosphere (H2O, CO2, O3, N2O, CH4, O2). The strong CO2 bands near 1.4, 1.6, 2.0, 2.7, 4.3, and 4.8 micrometers largely preclude the analysis of surface spectral features at these wavelengths. Martian atmospheric water vapor also contributes significant absorption near 1.33, 1.88, and 2.7 micrometers, but water vapor in the Earth's atmosphere poses a much larger problem to ground-based studies of these spectral regions. The third most important NIR absorber in the Martian atmosphere is CO. This gas absorbs most strongly in the relatively-transparent spectral windows near 4.6 and 2.3 micrometers. It also produces 1-10 percent absorption in the solar spectrum at these NIR wavelengths. This solar CO absorption cannot be adequately removed by dividing the Martian spectrum by that of a star, as is commonly done to calibrate ground-based spectroscopic observations, because most stars do not have identical amounts of CO absorption in their spectra. Here, we describe tow effective methods for eliminating contamination of Martian surface spectra by absorption in the solar, terrestrial, and Martian atmospheres. Both methods involve the use of very-high-resolution spectra that completely resolve the narrow atmospheric absorption lines.
Quasi-linear modeling of lower hybrid current drive in ITER and DEMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.
2015-12-10
First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to themore » very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.« less
2014-01-01
Introduction Pulmonary hypertension is a progressive disease of diverse origin with devastating consequences in adults as well as in children. The phosphodiesterase 5 inhibitor sildenafil successfully lowers pulmonary vascular resistance. However, because of its poor enteral absorption, resulting in ineffective plasma concentrations, responses in infants and children are often erratic. Case presentations We report the cases of two Caucasian boys, one born at term (case 1) and one aged 2.5 years (case 2), who had structural cardiac and pulmonary defects accompanied by symptomatic pulmonary hypertension. They received sildenafil enterally and sublingually and also intravenously in one of them. Plasma samples were taken at various time points to determine the plasma concentrations of sildenafil and its partially active metabolite. Sildenafil and N-desmethyl sildenafil were quantified using a validated liquid chromatography/mass spectrometry method. Oxygen partial pressure was determined from routine arterial blood gas samples. Conclusion In agreement with previous observations in adults, we found that sublingual sildenafil was more extensively absorbed in our two pediatric patients. After sublingual administration, sildenafil plasma concentrations increased by 314% to 361% compared to enteral dosing. Concurrently, the metabolic ratio increased, suggesting not only that the overall absorption was enhanced but also that first-pass metabolism was partially bypassed. In case 2, the free fraction of sildenafil was 0.9%, which is considerably less than in adults (4%), suggesting that, in case 2, higher plasma concentration would have been needed to achieve effects similar to those in adults. Sublingual sildenafil appears to be a promising alternative route of administration in children with poor enteral absorption. PMID:24885923
Remote plasma enhanced chemical deposition of non-crystalline GeO2 on Ge and Si substrates.
Lucovsky, Gerald; Zeller, Daniel
2011-09-01
Non-crystalline GeO2 films remote were plasma deposited at 300 degrees C onto Ge substrates after a final rinse in NH4OH. The reactant precursors gas were: (i) down-stream injected 2% GeH4 in He as the Ge precursor, and (ii) up-stream, plasma excited O2-He mixtures as the O precursor. Films annealed at 400 degrees C displayed no evidence for loss of O resulting in Ge sub-oxide formation, and for a 5-6 eV mid-gap absorption associated with formation of GeOx suboxide bonding, x < 2. These films were stable in normal laboratory ambients with no evidence for reaction with atmospheric water. Films deposited on Ge and annealed at 600 degrees C and 700 degrees C display spectra indicative of loss of O-atoms, accompanied with a 5.5 eV absorption. X-ray absorption spectroscopy and many-electron theory are combined to describe symmetries and degeneracies for O-vacancy bonding defects. These include comparisons with remote plasma-deposited non-crystalline SiO2 on Si substrates with SiON interfacial layers. Three different properties of remote plasma GeO2 films are addressed comparisons between (i) conduction band and band edge states of GeO2 and SiO2, and (ii) electronic structure of O-atom vacancy defects in GeO2 and SiO2, and differences between (iii) annealing of GeO2 films on Ge substrates, and Si substrates passivated with SiON interfacial transition regions important for device applications.