Cseh, R; Benz, R
1999-01-01
Phloretin is known to adsorb to lipid surfaces and alters the dipole potential of lipid monolayers and bilayers. Its adsorption to biological and artificial membranes results in a change of the membrane permeability for a variety of charged and neutral compounds. In this respect phloretin represents a model substance to study the effect of dipole potentials on membrane permeability. In this investigation we studied the interaction of phloretin with monolayers formed of different lipids in the liquid-expanded and the condensed state. Phloretin integrated into the monolayers as a function of the aqueous concentration of its neutral form, indicated by an increase of the surface pressure in the presence of phloretin. Simultaneous recording of the surface potential of the monolayers allowed us to correlate the degree of phloretin integration and the phloretin-induced dipole potential change. Increasing the surface pressure decreased the phloretin-induced shift of the isotherms, but did not influence the phloretin-induced surface potential change. This means that phloretin adsorption to the lipid surface can occur without affecting the lipid packing. The surface potential effect of phloretin is accompanied by a change of the lipid dipole moment vector dependent on the lipid packing. This means that the relation between the surface potential change and the lipid packing cannot be described by a static model alone. Taking into account the deviations of the surface potential change versus molecular area isotherms of the experimental data to the theoretically predicted course, we propose a model that relates the area change to the dipole moment in a dynamic manner. By using this model the experimental data can be described much better than with a static model. PMID:10465758
Many empirical studies have established the significant relationship between climate and runoff: climate change may potentially increase or decrease the surface runoff. Increased surface runoff can also increase the risk of soil erosion. Land cover change can alter rainfall-runof...
The determination of Volta-potentials at the metal/solution interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, V.M.
1985-08-01
This paper discusses the effect of polar dielectric solvents on the Voltapotential component caused by the change in surface potential in sp-metals which are in contact with a solution at the point of zero charge. It is shown that this change depends relatively little on the metal and solvent. A change in potential drop occurs in the metal as a result of phase contact. This change is known to be responsible for the decrease in surface energy of the metal such as is revealed in the effect of enhanced metallic ductility during mechanical working in polar media. The conjugate effectmore » of improved wettability is seen during cathodic polarization of electrodes when the metal's surface potential also should decrease.« less
Structure-charge relationship - the case of hematite (001)
Lutzenkirchen, Johannes; Heberling, Frank; Supljika, Filip; ...
2015-01-16
We present a multidisciplinary study on the hematite (001)–aqueous solution interface, in particular the relationship between surface structure (studied via surface diffraction in a humid atmosphere) and the macroscopic charging (studied via surface- and zeta-potential measurements in electrolyte solutions as a function of pH). Upon aging in water changes in the surface structure are observed, that are accompanied by drastic changes in the zeta-potential. Surprisingly the surface potential is not accordingly affected. We interpret our results by increasing hydration of the surface with time and enhanced reactivity of singly-coordinated hydroxyl groups that cause the isoelectric point of the surface tomore » shift to values that are reminiscent of those typically reported for hematite particles. In its initial stages after preparation the hematite surface is very flat and only weakly hydrated. Our model links the entailing weak water structure with the observed low isoelectric point reminiscent of hydrophobic surfaces. The absence of an aging effect on the surface potential vs. pH curves is interpreted as domination of the surface potential by the doubly coordinated hydroxyls, which are present on both surfaces.« less
Pielke, Roger A; Marland, Gregg; Betts, Richard A; Chase, Thomas N; Eastman, Joseph L; Niles, John O; Niyogi, Dev Dutta S; Running, Steven W
2002-08-15
Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'. A new metric is needed to quantify the human disturbance of the Earth's surface-energy budget. This 'regional climate change potential' could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.
Lindström, Fredrick; Williamson, Philip T F; Gröbner, Gerhard
2005-05-11
Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.
Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce
2016-08-01
Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
NASA Astrophysics Data System (ADS)
Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.
2018-04-01
Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.
Method and apparatus for simultaneous spectroelectrochemical analysis
Chatterjee, Sayandev; Bryan, Samuel A; Schroll, Cynthia A; Heineman, William R
2013-11-19
An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.
NASA Astrophysics Data System (ADS)
Niu, Fang; Rabe, Martin; Nayak, Simantini; Erbe, Andreas
2018-06-01
The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.
NASA Astrophysics Data System (ADS)
Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.
2016-12-01
Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in order to evaluate direct and indirect impacts of climate change on nutrient transfers and potential ecosystem dysfunctioning along the land-ocean continuum.
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
40 CFR 194.25 - Future state assumptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance application, to the extent practicable, the effects of potential changes to future climate cycles... any compliance application, to the extent practicable, the effects of potential changes to... changes to geologic conditions, including, but not limited to: Dissolution; near surface geomorphic...
Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard
2011-01-01
We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.
Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S
2015-12-15
The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.
Estrada-Salas, Rubén E; Valladares, Ariel A
2009-09-24
Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.
Surface potentials measure ion concentrations near lipid bilayers during rapid solution changes.
Laver, D R; Curtis, B A
1996-01-01
We describe a puffing method for changing solutions near one surface of lipid bilayers that allows simultaneous measurement of channel activity and extent of solution change at the bilayer surface. Ion adsorption to the lipid headgroups and screening of the bilayer surface charge by mobile ions provided a convenient probe for the ionic composition of the solution at the bilayer surface. Rapid ionic changes induced a shift in bilayer surface potential that generated a capacitive transient current under voltage-clamp conditions. This depended on the ion species and bilayer composition and was accurately described by the Stern-Gouy-Chapman theory. The time course of solute concentrations during solution changes could also be modeled by an exponential exchange of bath and puffing solutions with time constants ranging from 20 to 110 ms depending on the flow pressure. During changes in [Cs+] and [Ca2+] (applied separately or together) both the mixing model and capacitive currents predicted [Cs+] and [Ca2+] transients consistent with those determined experimentally from: 1) the known Cs(+)-dependent conductance of open ryanodine receptor channels and 2) the Ca(2+)-dependent gating of ryanodine receptor Ca2+ channels from cardiac and skeletal muscle. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 8 PMID:8842210
Colour changes by laser irradiation of reddish building limestones
NASA Astrophysics Data System (ADS)
Grossi, C. M.; Benavente, D.
2016-10-01
We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.
Modeling of thin film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1982-01-01
A potential scaling Monte Carlo model of crystal growth is developed. The model is a modification of the solid-on-solid method for studying crystal growth in that potentials at surface sites are continuously updated on a time scale reflecting the surface events of migration, incorporation and evaporation. The model allows for B on A type of crystal growth and lattice disregistry by the assignment of potential values at various surface sites. The surface adatoms are periodically assigned a random energy from a Boltzmann distribution and this energy determines whether the adatoms evaporate, migrate or remain stationary during the sampling interval. For each addition or migration of an adatom, the surface potentials are adjusted to reflect the adsorption, migration or desorption potential changes.
Impacts of Land Cover Changes on Climate over China
NASA Astrophysics Data System (ADS)
Chen, L.; Frauenfeld, O. W.
2014-12-01
Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.
Surface tension, surface energy, and chemical potential due to their difference.
Hui, C-Y; Jagota, A
2013-09-10
It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven
2015-01-01
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.
Satterthwaite, Julian D; Stokes, Alastair N; Frankel, Nicholas T N
2003-06-01
The aim of this study was to assess the potential for heat production when intra-radicular posts were subjected to ultrasonic vibration. Thirty zirconium ceramic posts and thirty stainless steel posts were luted into canine roots. Ultrasonic vibration was applied to the top of each post for thirty minutes and temperature change on the root surface was measured. The mean peak temperature rise from baseline was 18.7 degrees C. Post type had no influence on peak temperature. Temperature increase on the external root surfaces increased as the thickness of dentine between post and root surface reduced.
Zhang, Yu; Yang, Mo; Park, Ji-Ho; Singelyn, Jennifer; Ma, Huiqing; Sailor, Michael J; Ruoslahti, Erkki; Ozkan, Mihrimah; Ozkan, Cengiz
2009-09-01
Surface-charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta-potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta-potential change that allows the discrimination of human normal breast epithelial cells (MCF-10A) from human cancer breast epithelial cells (MCF-7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor-homing F3 peptides, where the tumor-homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.
Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław
2017-11-08
Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.
Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces
NASA Technical Reports Server (NTRS)
Cassidy, W. A. (Editor); Whillans, I. M. (Editor)
1990-01-01
The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.
The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential
NASA Astrophysics Data System (ADS)
Zhou, Limin; Tinsley, Brian; Wang, Lin; Burns, Gary
2018-06-01
Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.
Front gardens to car parks: changes in garden permeability and effects on flood regulation.
Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D
2014-07-01
This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.
Food acid content and erosive potential of sugar-free confections.
Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C
2017-06-01
Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.
Tyrakowski, Tomasz; Hołyńska, Iga; Lampka, Magdalena; Kaczorowski, Piotr
2006-01-01
An important electrophysiological variable--the transepithelial potential difference reflects the electrogenic transepithelial ion currents, which are produced and modified by ion transport processes in polarized cells of epithelium. These processes result from coordinated function of transporters in apical and basolateral cell membranes and have been observed in all epithelial tissues studied so far. The experiments were performed on isolated specimens of snail foot. In the experiments, the baseline transepithelial electrical potential difference--PD, changes of transepithelial difference during mechanical stimulation--dPD and the transepithelial resistance were measured with an Ussing apparatus. A total of 60 samples of foot ventral surface of 28 snails were studied. The transepithelial electrical potential difference of isolated foot ranged from -6.0 to 10.0 mV under different experimental conditions. Mechanical stimulation of foot ventral surface caused changes of electrogenic ion transport, observed as transient hyperpolarization (electrical potential difference became more positive). When the transepithelial electrical potential difference decreased during stimulation, the reaction was described as depolarization. When amiloride and bumetanide were added to the stimulating fluid so that the sodium and chloride ion transport pathways were inhibited, prolonged depolarization occurred. Under the influence of different stimuli: mechanical (gentle rinsing), chemical (changes of ion concentrations) and pharmacological (application of ion inhibitors), transient changes of potential difference (dPD) were evoked, ranging from about -0.7 to almost 2.0 mV. Changes in transepithelial potential difference of the pedal surface of the snail's foot related to these physiological stimuli are probably involved in the locomotion of the animal and are under control of the part of the nervous system in which tachykinin related peptides (TRP) act as transmitters.
Microbial population and functional dynamics associated with surface potential and carbon metabolism
Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna
2014-01-01
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938
NASA Astrophysics Data System (ADS)
Dendisova-Vyskovska, Marcela; Broncova, Gabriela; Clupek, Martin; Prokopec, Vadym; Matejka, Pavel
2012-12-01
The detection of p-coumaric acid and ferulic acid using a combined in situ electrochemical and surface-enhanced Raman scattering spectroscopic technique in specially made electrode cell is described. New in situ spectroelectrochemical cell was designed as the three-electrode arrangement connected via positioning device to fiber-optic probe of Raman spectrometer Dimension P2 (excitation wavelength 785 nm). In situ SERS spectra of p-coumaric acid and ferulic acid were recorded at varying applied negative potentials to copper substrates. The spectral intensities and shapes of bands as well as spatial orientation of molecules on the surface depend significantly on varying values of the applied electrode potential. The change of electrode potential influences analyte adsorption/desorption behavior on the surface of copper substrates, affecting the reversibility of the whole process and overall spectral enhancement level. Principal component analysis is used to distinguish several stages of spectral variations on potential changes.
Owens, Barry M; Kitchens, Michael
2007-11-01
Using scanning electron and light microscopy, this study qualitatively evaluated the erosive potential of carbonated cola beverages as well as sports and high-energy drinks on enamel surface substrate. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, and tap water (control). Extracted human permanent molars free of hypocalcification and/or caries were used in this study. The coronal portion of each tooth was removed and sectioned longitudinally from the buccal to the lingual surface. The crown sections were embedded in acrylic resin, leaving the enamel surfaces exposed. Following finishing and polishing of all surfaces, one side was covered with red nail varnish while the remaining side was exposed to individual beverage immersion for 14 days, 24 hours per day, at 37 degrees C. The specimens were evaluated for enamel surface changes using scanning electron and light microscopy. Enamel specimens exhibited visual surface changes following immersion in the test beverages with Red Bull and Gatorade revealing the most striking surface morphological changes. Specimens subjected to Coca Cola Classic and Diet Coke immersion also displayed irregular post-treatment surface morphology. As verified by microscopic evaluation, all test beverages displayed enamel dissolution in the following order: Red Bull>Gatorade>Coca-Cola Classic>Diet Coke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P
2018-01-01
Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.
Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H
1997-08-01
Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.
NASA Astrophysics Data System (ADS)
Sweeney, James; Hausen, Florian; Hayes, Robert; Webber, Grant B.; Endres, Frank; Rutland, Mark W.; Bennewitz, Roland; Atkin, Rob
2012-10-01
The lubricating properties of an ionic liquid on gold surfaces can be controlled through application of an electric potential to the sliding contact. A nanotribology approach has been used to study the frictional behavior of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4]FAP) confined between silica colloid probes or sharp silica tips and a Au(111) substrate using atomic force microscopy. Friction forces vary with potential because the composition of a confined ion layer between the two surfaces changes from cation-enriched (at negative potentials) to anion-enriched (at positive potentials). This offers a new approach to tuning frictional forces reversibly at the molecular level without changing the substrates, employing a self-replenishing boundary lubricant of low vapor pressure.
Electrical response of culture media during bacterial growth on a paper-based device
NASA Astrophysics Data System (ADS)
Srimongkon, Tithimanan; Buerkle, Marius; Nakamura, Akira; Enomae, Toshiharu; Ushijima, Hirobumi; Fukuda, Nobuko
2017-05-01
In this work, we evaluated the feasibility of a paper-based bacterial detection system. The paper served as a substrate for the measurement electrodes and the culture medium. Using a printing technique, we patterned gold electrodes onto the paper substrate and applied Luria broth (LB) agar gel as a culture medium on top of the electrodes. As the first step towards the development of a bacterial detection system, we determined changes in the surface potential during bacterial growth and monitored these changes over 24 h. This allowed us to correlate changes in the surface potential with the different growth phases of the bacteria.
Manole, Claudiu Constantin; Pîrvu, C; Maury, F; Demetrescu, I
2016-06-01
In a Surface Plasmon Resonance (SPR) experiment two key parameters are classically recorded: the time and the angle of SPR reflectivity. This paper brings into focus a third key parameter: SPR reflectivity. The SPR reflectivity is proved to be related to surface roughness changes. Practical investigations on (i) gold anodizing and (ii) polypyrrole film growth in presence of oxalic acid is detailed under potentiostatic conditions. These experimental results reveal the potential of using the SPR technique to investigate real-time changes both on the gold surface, but also in the gold film itself. This extends the versatility of the technique in particular as sensitive in-situ diagnostic tool.
Regional, state, and local environmental regulatory agencies often use Eulerian meteorological and air quality models to investigate the potential impacts of climate, emissions, and land use changes on nutrient loading and air quality. The Noah land surface model in WRF could be...
The Face of Alaska: A Look at Land Cover and the Potential Drivers of Change
Jones, Benjamin M.
2008-01-01
The purpose of this report is to provide statewide baseline information on the status and potential drivers of land-cover change in Alaska. The information gathered for this report is based on a review and analysis of published literature and consists of prominent factors contributing to the current state of the land surface of Alaska as well as a synthesis of information about the status and trends of the factors affecting the land surface of Alaska. The land surface of Alaska is sparsely populated and the impacts from humans are far less extensive when compared to the contiguous United States. The changes in the population and the economy of Alaska have historically been driven by boom and bust cycles, primarily from mineral discoveries, logging, military expansion, and oil and gas development; however, the changes as a result of these factors have occurred in relatively small, localized areas. Many of the large-scale statewide changes taking place in the land surface however, are a result of natural or climate driven processes as opposed to direct anthropogenic activities. In recent times, reports such as this have become increasingly useful as a means of synthesizing information about the magnitude and frequency of changes imparted by natural and anthropogenic forces. Thus, it is essential to assess the current state of the land surface of Alaska and identify apparent trends in the surficial changes that are occurring in order to be prepared for the future.
NASA Astrophysics Data System (ADS)
Nield, Joanna; Bryant, Robert; Wiggs, Giles; King, James; Thomas, David; Eckardt, Frank; Washington, Richard
2015-04-01
Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development on part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant dust), based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. Ridge development can change surface topography as much as 30 mm/week on fresh pan areas that have recently been reset by flooding. The corresponding change aerodynamic roughness can be as much as 3 mm/week. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.
Fraser, James A; Huang, Christopher L-H; Pedersen, Thomas H
2011-07-01
Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.
Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching
NASA Astrophysics Data System (ADS)
Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.
2014-08-01
Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
NASA Astrophysics Data System (ADS)
Koleske, D. D.; Sibener, S. J.
In this paper we present temperature dependent studies of the surface phonon dispersion relations for fcc (100), (110), and (111) faces using molecular dynamics (MD) simulations and Lennard-Jones potentials. This study was conducted in order to investigate how anharmonic potential terms influence the dynamical properties of the surface. This was accomplished by examining the temperature dependence of the Q-resolved phonon spectral density function. All phonon frequencies were found to decrease linearly in T as the temperature was increased, while at low temperatures the phonon linewidths increased linearly with T. At higher temperatures, some of the phonon linewidths changed from having a linear to a quadratic dependence on T. The temperature at which this T to T2 change occurs is surface dependent and occurs at the lowest temperature on the (110) surface. The T2 dependence arises from the increasing importance of higher-order phonon-phonon scattering terms. The phonons which exhibit T2 dependence tend to be modes which propagate perpendicularly or nearly perpendicularly to the direction of maximum root-mean-squared displacement (RMSD). This is especially true for the linewidth of the S 1 mode at overlineX on the (110) surface where, at T ≈ 15-23% of the melting temperature, the RMSD perpendicular to the atomic rows become larger than the RMSD normal to the surface. Our results indicate that the dynamics on the (110) surface may be significantly influenced by anharmonic potential terms at temperatures as low as 15% of the melting temperature.
NASA Astrophysics Data System (ADS)
Bu, Caixia; Shi, Jianming; Baragiola, Raul A.
2014-11-01
Introduction: Water ice is abundant on many planetary bodies within the outer solar system. We report on the spontaneous polarization and thermal relaxation of ASW films formed at 10 - 110 K and provide evidence for the essential role of porosity [1].Experiments: Experiments were performed in an ultra-high vacuum system. ASW films were deposited from a collimated vapor beam or from a diffuse background water vapor onto a liquid-He cooled, gold-coated quartz crystal microbalance (QCM). The porosity was calculated by combining the measurements obtained from the QCM and UV reflectance [2]. The surface potential was determined using a Kelvin probe.Results: We focused on observations pertaining to the porosity: 1) the surface potential experiences an abrupt change of -0.25 V relative to the substrate during deposition of the first ~5 monolayers and subsequently increases linearly with thickness; 2) the surface potential magnitude decreases with the incidence angle; 3) the surface potential decreases with temperature after a lag of ~4 K above the deposition temperature; it decreases more slowly in films with larger incidence angle; 4) for charged films with different pre-annealing temperatures, the ratios of surface potential to fluence remain roughly constant with temperature before discharged; 5) the surface potential decreases with time at a constant annealing temperature.Conclusions: These observations suggest that the polarization is governed by the relaxation of the micropore structure rather than changes in intrinsic dielectric behavior of the water network [3]. We propose that the observed surface potential results from a fraction of aligned water dipoles on the internal surface area of the pores. Depolarization occurs during the collapse of the pores, resulting in the decrease of the surface potential. References: [1] E. Mayer et al. (1986) Nature (London) 319, 298 (1986); [2] U. Raut et al. (2007) J. Chem. Phys. 127, 204713. [3] M. J. Iedema et al. (1998) J. Chem. Phys. B 102, 9203.
Dust Grain Charge in the Lunar Environment
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek
2014-05-01
Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.
Far-infrared surface emissivity and climate.
Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong
2014-11-18
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.
Far-infrared surface emissivity and climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Daniel R.; Collins, William D.; Pincus, Robert
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less
Far-infrared surface emissivity and climate
Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong
2014-01-01
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m−2 difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m−2, and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change. PMID:25368189
Far-infrared surface emissivity and climate
Feldman, Daniel R.; Collins, William D.; Pincus, Robert; ...
2014-11-03
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj
2018-04-01
The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.
Blundell, Emma L C J; Healey, Matthew J; Holton, Elizabeth; Sivakumaran, Muttuswamy; Manstana, Sarabjit; Platt, Mark
2016-08-01
The zeta potential of the protein corona around carboxyl particles has been measured using tunable resistive pulse sensing (TRPS). A simple and rapid assay for characterising zeta potentials within buffer, serum and plasma is presented monitoring the change, magnitude and distribution of proteins on the particle surface. First, we measure the change in zeta potential of carboxyl-functionalised nanoparticles in solutions that contain biologically relevant concentrations of individual proteins, typically constituted in plasma and serum, and observe a significant difference in distributions and zeta values between room temperature and 37 °C assays. The effect is protein dependent, and the largest difference between the two temperatures is recorded for the γ-globulin protein where the mean zeta potential changes from -16.7 to -9.0 mV for 25 and 37 °C, respectively. This method is further applied to monitor particles placed into serum and/or plasma. A temperature-dependent change is again observed with serum showing a 4.9 mV difference in zeta potential between samples incubated at 25 and 37 °C; this shift was larger than that observed for samples in plasma (0.4 mV). Finally, we monitor the kinetics of the corona reorientation for particles initially placed into serum and then adding 5 % (V/V) plasma. The technology presented offers an interesting insight into protein corona structure and kinetics of formation measured in biologically relevant solutions, i.e. high protein, high salt levels, and its particle-by-particle analysis gives a measure of the distribution of particle zeta potential that may offer a better understanding of the behaviour of nanoparticles in solution. Graphical Abstract The relative velocity of a nanoparticle as it traverses a nanopore can be used to determine its zeta potential. Monitoring the changes in translocation speeds can therefore be used to follow changes to the surface chemistry/composition of 210 nm particles that were placed into protein rich solutions, serum and plasma. The particle-by-particle measurements allow the zeta potential and distribution of the particles to be characterised, illustrating the effects of protein concentration and temperature on the protein corona. When placed into a solution containing a mixture of proteins, the affinity of the protein to the particle's surface determines the corona structure, and is not dependent on the protein concentration.
NASA Technical Reports Server (NTRS)
Diak, George R.; Stewart, Tod R.
1989-01-01
A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie
2017-06-01
The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.
Arteyeva, Natalia V; Azarov, Jan E
2017-01-01
The changes in ventricular repolarization gradients lead to significant alterations of the electrocardiographic body surface T waves up to the T wave inversion. However, the contribution of a specific gradient remains to be elucidated. The objective of the present investigation was to study the role of the transmural repolarization gradient in the inversion of the body surface T wave with a mathematical model of the hypothermia-induced changes of ventricular repolarization. By means of mathematical simulation, we set the hypothermic action potential duration (APD) distribution on the rabbit ventricular epicardium as it was previously experimentally documented. Then the parameters of the body surface potential distribution were tested with the introduction of different scenarios of the endocardial and epicardial APD behavior in hypothermia resulting in the unchanged, reversed or enlarged transmural repolarization gradient. The reversal of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) caused the inversion of the T waves regardless of the direction of the transmural repolarization gradient. However, the most realistic body surface potentials were obtained when the endocardial APDs were not changed under hypothermia while the epicardial APDs prolonged. This produced the reversed and increased transmural repolarization gradient in absolute magnitude. The body surface potentials simulated under the unchanged transmural gradient were reduced in comparison to those simulated under the reversed transmural gradient. The simulations demonstrated that the transmural repolarization gradient did not play a crucial role in the cardiac electric field inversion under hypothermia, but its magnitude and direction contribute to the T wave amplitude. © 2016 Wiley Periodicals, Inc.
Miller, Kai J; Honey, Christopher J; Hermes, Dora; Rao, Rajesh PN; denNijs, Marcel; Ojemann, Jeffrey G
2013-01-01
We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naïve decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50ms, they provide a powerful and widely applicable experimental tool. PMID:24018305
Adsorbed molecules in external fields: Effect of confining potential
NASA Astrophysics Data System (ADS)
Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod
2016-12-01
We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee
Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOsmore » were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.« less
Potential impact of global climate change on benthic deep-sea microbes.
Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio
2017-12-15
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1990-01-01
Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane. PMID:2299329
Variations of algal communities cause darkening of a Greenland glacier.
Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G
2014-08-01
We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
The local work function: Concept and implications
NASA Astrophysics Data System (ADS)
Wandelt, K.
1997-02-01
The term 'local work function' is now widely applied. The present work discusses the common physical basis of 'photoemission of adsorbed xenon (PAX)' and 'two-photon photonemissionspectroscopy of image potential states' as local work function probes. New examples with bimetallic and defective surfaces are presented which demonstrate the capability of PAX measurements for the characterization of heterogeneous surfaces on an atomic scale. Finally, implications of the existence of short-range variations of the surface potential at surface steps are addressed. In particular, dynamical work function change measurements are a sensitive probe for the step-density at surfaces and, as such, a powerful in-situ method to monitor film growth.
Bexfield, Laura M.; Anderholm, Scott K.
2008-01-01
Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.
Chen, Lei; Cai, Hui; Xu, Guo-fu; Fang, Chang-yun
2006-06-01
To determine the effect of porcelain firing cycle on microstructure of 4 metal ceramic alloys, and to analyze the changes of their corrosion resistance in the artificial saliva. We simulated the process of firing and repolishing when fabricating porcelain-fused-to-metal restoration in clinic,and then observed the microstructures of Ni-Cr, Ni-Cr-Ti, Co-Cr alloys and high gold alloy by field emission scanning electron microscopy and energy dispersive spectroscopy. The electrochemical corrosion behavior of alloys in artificial saliva was analyzed by polarization curves and corrview 2 corrosion analysis software. The data of self-corrosion potential and transpassive potential were obtained and analyzed. After the porcelain firing cycle, the surface composition changed slightly, and the morphological in the 3 predominate base metal alloys also changed. The self-corrosion potential turned to more negative, and the transpassive potential declined. The procedure of porcelain firing cycle can affect the surface microstructure and increase the corrosion of 4 metal-ceramic alloys.
Surface deformation during an action potential in pearled cells
NASA Astrophysics Data System (ADS)
Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.
2017-11-01
Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.
Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space
NASA Technical Reports Server (NTRS)
Tiller, W. A.
1973-01-01
Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.
Surface patterning of soft polymer film-coated cylinders via an electric field.
Li, Bo; Li, Yue; Xu, Guang-Kui; Feng, Xi-Qiao
2009-11-04
Using the linear stability analysis method, we investigate the surface wrinkling of a thin polymer coating on a cylinder in an externally applied electric field. It is demonstrated that energy competition between surface energy, van der Waals interactive potential energy and electrostatic interaction energy may lead to ordered patterns on the film surface. The analytical solutions are derived for the critical conditions of both longitudinal and circumferential instabilities. The wavelengths of the generated surface patterns can be mediated by changing the magnitude of the electric field. Our analysis shows that the surface morphology is sensitive to the curvature radius of the fiber, especially in the micrometer and nanometer length scales. Furthermore, we suggest a potential approach for fabricating hierarchical patterns on curved surfaces.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.
2008-09-01
We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.
Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia
Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.
2015-01-01
Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.
Adsorbed molecules in external fields: Effect of confining potential.
Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod
2016-12-05
We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.
2016-12-01
Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.
Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution
Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...
2016-07-19
The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less
Gateless AlGaN/GaN HEMT response to block co-polymers
NASA Astrophysics Data System (ADS)
Kang, B. S.; Louche, G.; Duran, R. S.; Gnanou, Y.; Pearton, S. J.; Ren, F.
2004-05-01
Gateless AlGaN/GaN high electron mobility transistor (HEMT) structures exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemical gas, combustion gas, liquid and strain sensing.
Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.
Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue
2017-04-01
Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation of Phospholipase C Increases Intramembrane Electric Fields in N1E-115 Neuroblastoma Cells
Xu, Chang; Loew, Leslie M.
2003-01-01
We imaged the intramembrane potential (a combination of transmembrane, surface, and dipole potential) on N1E-115 neuroblastoma cells with a voltage-sensitive dye. After activation of the B2 bradykinin receptor, the electric field sensed by the dye increased by an amount equivalent to a depolarization of 83 mV. The increase in intramembrane potential was blocked by the phospholipase C (PLC) inhibitors U-73122 and neomycin, and was invariably accompanied by a transient rise of [Ca2+]i. A depolarized inner surface potential, as the membrane loses negative charges via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, and an increase in the dipole potential, as PIP2 is hydrolyzed to 1,2-diacylglycerol (DAG), can each account for a small portion of the change in intramembrane potential. The primary contribution to the measured change in intramembrane potential may arise from an increased dipole potential, as DAG molecules are generated from hydrolysis of other phospholipids. We found bradykinin produced an inhibition of a M-type voltage-dependent K+ current (IK(M)). This inhibition was also blocked by the PLC inhibitors and had similar kinetics as the bradykinin-induced modulation of intramembrane potential. Our results suggest that the change in the local intramembrane potential induced by bradykinin may play a role in mediating the IK(M) inhibition. PMID:12770917
Neuromuscular strategies for the transitions between level and hill surfaces during walking
Gottschall, Jinger S.; Nichols, T. Richard
2011-01-01
Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127
NASA Astrophysics Data System (ADS)
Tulbure, M. G.; Bishop-Taylor, R.; Broich, M.
2017-12-01
Land use (LU) change and hydroclimatic variability affect spatiotemporal landscape connectivity dynamics, important for species movement and dispersal. Despite the fact that LU change can strongly influence dispersal potential over time, prior research has only focused on the impacts of dynamic changes in the distribution of potential habitats. We used 8 time-steps of historical LU together with a Landsat-derived time-series of surface water habitat dynamics (1986-2011) over the Murray-Darling Basin (MDB), a region with extreme hydroclimatic variability, impacted by LU changes. To assess how changing LU and hydroclimatic variability affect landscape connectivity across time, we compared 4 scenarios, namely one where both climate and LU are dynamic over time, one where climate is kept steady (i.e. a median surface water extent layer), and two scenarios where LU is kept steady (i.e. resistance values associated with the most recent or the first LU layer). We used circuit theory to assign landscape features with `resistance' costs and graph theory network analysis, with surface water habitats as `nodes' connected by dispersal paths or `edges' Findings comparing a dry and an average season show high differences in number of nodes (14581 vs 21544) and resistance distances. The combined effect of LU change and landscape wetness was lower than expected, likely a function of the large, MDB-wide, aggregation scale. Spatially explicit analyses are expected to identify areas where the synergistic effect of LU change and landscape wetness greatly reduce or increase landscape connectivity, as well as areas where the two effects cancel each other out.
Carino, Emily V; Newman, Daniel J; Connell, Justin G; Kim, Chaerin; Brushett, Fikile R
2017-10-31
Irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li + in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF 6 ) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double-layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity in organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6× increase in roughness, in good agreement with the changes in double-layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double-layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. These results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carino, Emily V.; Newman, Daniel J.; Connell, Justin G.
In this paper, irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li + in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF 6) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double -layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity inmore » organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6X increase in roughness, in good agreement with the changes in double -layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double -layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. Lastly, these results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.« less
Cseh, R; Benz, R
1998-01-01
Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine. PMID:9512036
Ice Sheet Change Detection by Satellite Image Differencing
NASA Technical Reports Server (NTRS)
Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.
2010-01-01
Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.
Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong
2009-01-01
Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.
Laboratory-based geoelectric monitoring of water infiltration in consolidated ground
NASA Astrophysics Data System (ADS)
Yang, Lining; Sun, Qiang; Yang, Haiping
2018-04-01
Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.
NASA Astrophysics Data System (ADS)
Lague, M. M.; Swann, A. L. S.; Bonan, G. B.
2017-12-01
Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).
Potential for iron oxides to control metal releases in CO2 sequestration scenarios
Berger, P.M.; Roy, W.R.
2011-01-01
The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction configuration to match measured geochemical changes due to CO2 injection, we modeled potential changes in groundwater chemistry at the Illinois Basin - Decatur Project (IBDP) site in Decatur, Illinois, USA. At the IBDP, the MGSC will inject 1 million tonnes of CO2 over the course of three years at a depth of about 2 km below the surface into the Mt. Simon Formation. Sections of the Mt. Simon Formation contain up to 10 percent iron oxide, and therefore surface complexes on iron oxides should play a major role in controlling brine chemistry. The batch simulation of this system showed a significant decrease in pH after the injection of CO2 with corresponding changes in brine chemistry resulting from both mineral precipitation/dissolution reactions and changes in the chemistry on iron oxide surfaces. To ensure the safety of shallow drinking water sources, there are several shallow monitoring wells at the IBDP that the MGSC samples regularly to determine baseline chemical concentrations. Knowing what geochemical parameters are most sensitive to CO2 disturbances allows us to focus monitoring efforts. Modeling a major influx of CO2 into the shallow groundwater allowed us to determine that were an introduction of CO2 to occur, the only immediate effect will be dolomite dissolution and calcite precipitation. ?? 2011 Published by Elsevier Ltd.
Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.
ERIC Educational Resources Information Center
Jones, Kenneth
1979-01-01
Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)
Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder
2016-05-01
With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (p<0.001) with tooth enamel, composite and compomer (p=0.002). Coca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.
Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?
Cahon, Thomas; Caillon, Robin
2018-01-01
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342
Watanabe, Hiroaki; Saito, Kensuke; Kokubun, Katsutoshi; Sasaki, Hodaka; Yoshinari, Masao
2012-01-01
The objectives of this study were to characterize change in surface properties of tetragonal zirconia polycrystals (TZP) after hydrophilic treatment, and to determine the effect of such changes on initial attachment of osteoblast-like cells. Roughened surfaces were produced by alumina-blasting and acid-etching. Hydrophilic treatment comprised application of immediately after blasting and acid-etching (Blast/Etch), oxygen plasma (O2-Plasma), ultraviolet light (UV). Specimens stored in air were used as a control. The water contact angle was determined and surface analysis was performed using an X-ray photoelectron spectroscopy. Blast/Etch, O2-Plasma and UV specimens showed superhydrophilicity, and these hydrophilic treatments to TZP elicited a marked decrease in carbon content and an increase in hydroxyl groups. Hydrophilic treatments enhanced initial attachment of osteoblast-like cells and a change in cell morphologies. These results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.
Steyaert, Louis T.; Knox, R.G.
2008-01-01
Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.
Quantifying shallow and deep permafrost changes using radar remote sensing
NASA Astrophysics Data System (ADS)
Teshebaeva, K.; van Huissteden, K. J.
2017-12-01
Widespread thawing of permafrost in the northern Eurasian continent cause severe problems for infrastructure and global climate. Permafrost thaw by climate warming creates land surface instability, resulting in severe problems for infrastructure, and release of organic matter to the atmosphere as CO2 and CH4. Recent discoveries of CH4 seeps in lakes, in the Arctic Ocean, and CH4 emitting craters in the permafrost. These features indicate that permafrost destabilization might no longer be a surface feature only, but that also deeper layers of the permafrost, up to tens of meters, may be affected by warming. We study two potential areas in Siberian arctic; one of the test site is the Kytalyk research station near Chokurdagh town affected with a recent inundation of the Indigirka river in July 2017, which resulted in standing surface water for the period over a month. The wet soil and standing water may cause changes in active layer thickness and influence the thermal regime of the permafrost for the next decades in the region. The second test site is Yamal peninsula with recently CH4 emitting craters, which may start to contribute to emission hotspots. We hypothesize that these deeper subsurface processes also can be detected by mapping surface elevation changes using advanced SAR techniques. We test the potential of SAR imagery to enhance detection of these features, including surface movement related to permafrost active layer changes using InSAR time-series analysis. We also apply radar backscatter signal to detect seasonal changes related to the freeze-thaw cycles. The PRISM elevation data are used to estimate elevation changes in the region along with ground-based geophysical and geodetical fieldwork.
Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation
NASA Astrophysics Data System (ADS)
Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.
2001-10-01
Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant difference between the changes in hardness for the drinks at a 95% confidence level ( p=0.0000), while a Kruskal-Wallis test proved a statistically significant difference between the changes in the reduced Young's modulus at a 95% confidence level ( p=0.0000). Thus, it was possible to detect differences in demineralisation potential in an in situ study at a very early stage. Further investigations with greater subject numbers and a larger quantity of samples are necessary to fully evaluate the potential of this method.
Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.
2012-01-01
Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.
Solar variability: Implications for global change
NASA Technical Reports Server (NTRS)
Lean, Judith; Rind, David
1994-01-01
Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.
Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T
2018-05-10
The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.
A dataset mapping the potential biophysical effects of vegetation cover change
NASA Astrophysics Data System (ADS)
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-02-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
A dataset mapping the potential biophysical effects of vegetation cover change
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-01-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538
NASA Astrophysics Data System (ADS)
Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton
2018-04-01
Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion.
Estimating relative sea-level rise and submergence potential at a coastal wetland
Cahoon, Donald R.
2015-01-01
A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.
Whitbeck, David E.
2006-01-01
The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.
Löw, F; Navratil, P; Kotte, K; Schöler, H F; Bubenzer, O
2013-10-01
With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.
Winuprasith, Thunnalin; Suphantharika, Manop; McClements, David Julian; He, Lili
2014-02-15
In this work, we investigated the conformational changes of a globular protein (β-lactoglobulin, β-lg) coated on the surface of 200 nm gold nanoparticles (GNPs) using a number of analytical techniques: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); localized surface plasmon resonance (LSPR) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The β-lg (pH 3) concentration had a pronounced effect on the aggregation and surface charge of β-lg-coated GNPs. The surface charge of GNPs changed from negative to positive as increasing amounts of β-lg molecule were added, indicating that the globular protein molecules adsorbed to the surfaces of the particles. Extensive particle aggregation occurred when β-lg did not saturate the GNP surfaces, which was attributed to electrostatic bridging flocculation. Modifications in LSPR and SERS spectra after addition of β-lg to the GNP suspensions supported the adsorption of β-lg to the particle surfaces. Moreover, SERS highlighted the importance of a number of specific molecular groups in the binding interaction, and suggested conformational changes of the globular protein after adsorption. This research provides useful information for characterizing and understanding the interactions between globular proteins and colloidal particles. Copyright © 2013 Elsevier Inc. All rights reserved.
Land-use and land-cover scenarios and spatial modeling at the regional scale
Sohl, Terry L.; Sleeter, Benjamin M.
2012-01-01
Land-use and land-cover (LULC) change has altered a large part of the earth's surface. Scenarios of potential future LULC change are required in order to better manage potential impacts on biodiversity, carbon fluxes, climate change, hydrology, and many other ecological processes. The U.S. Geological Survey is analyzing potential future LULC change in the United States, using an approach based on scenario construction and spatially explicit modeling. Similar modeling techniques are being used to produce historical LULC maps from 1940 to present. With the combination of backcast and forecast LULC data, the USGS is providing consistent LULC data for historical, current, and future time frames to support a variety of research applications.
NASA Astrophysics Data System (ADS)
Taylor, P. C.
2017-12-01
Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.
Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems.
Flick, Johannes; Appel, Heiko; Ruggenthaler, Michael; Rubio, Angel
2017-04-11
In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation [ Flick et al. PNAS 2017 , 10.1073/pnas.1615509114 ] for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab initio description of matter-photon systems.
Study of the adsorbed layer on a solid electrode surface by specular reflection measurement
NASA Astrophysics Data System (ADS)
Kusu, Fumiyo; Takamura, Kiyoko
1985-07-01
Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.
Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1999-01-01
This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.
Lunar Surface Potential Changes Possible Associated with Traversals of the Bow Shock
NASA Technical Reports Server (NTRS)
Collier, M. R.; Stubbs, T. J.; Hills, H. K.
2008-01-01
We report an analysis of seven Apollo 14 Apollo Lunar Surface Experiments Package (ALSEP) Suprathermal Ion Detector Experiment (SIDE) "resonance" events from January 1972 through January 1973. The events appear to be associated with traversals of the Moon through the terrestrial bow shock.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Brain cortical characteristics of lifetime cognitive ageing.
Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J
2018-01-01
Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.
Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng
2017-10-01
As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.
Patel, Kamlesh D.
2007-11-20
A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
Vaccaro, J.J.; Kahle, S.C.; Ely, D.M.; Burns, E.R.; Snyder, D.T.; Haynes, J.V.; Olsen, T.D.; Welch, W.B.; Morgan, D.S.
2015-09-22
Changes in the system from predevelopment times. The model also is a useful tool for investigating water supply, water demand, management strategies, groundwater-surface water exchanges, and potential effects of changing climate on the hydrologic system.
Wildfire potential mapping over the state of Mississippi: A land surface modeling approach
William H. Cooke; Georgy V. Mostovoy; Valentine G. Anantharaj; W. Matt Jolly
2012-01-01
A relationship between the likelihood of wildfires and various drought metrics (soil moisture-based fire potential indices) were examined over the southern part of Mississippi. The following three indices were tested and used to simulate spatial and temporal wildfire probability changes: (1) the accumulated difference between daily precipitation and potential...
Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G
2010-11-24
Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.
Modeling of thin-film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1981-01-01
A solid Monte Carlo model is constructed for the simulation of crystal growth. The model assumes thermally accommodated adatoms impinge upon the surface during a delta time interval. The surface adatoms are assigned a random energy from a Boltzmann distribution, and this energy determines whether the adatoms evaporate, migrate, or remain stationary during the delta time interval. For each addition or migration of an adatom, potential wells are adjusted to reflect the absorption, migration, or desorption potential changes.
Carino, Emily V.; Newman, Daniel J.; Connell, Justin G.; ...
2017-09-19
In this paper, irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li + in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF 6) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double -layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity inmore » organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6X increase in roughness, in good agreement with the changes in double -layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double -layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. Lastly, these results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.« less
Ferguson, D R; Kennedy, I; Burton, T J
1997-01-01
1. The responses of rabbit urinary bladder to hydrostatic pressure changes and to electrical stimulation have been investigated using both the Ussing chamber and a superfusion apparatus. These experiments enabled us to monitor changes in both ionic transport across the tissue and cellular ATP release from it. 2. The urinary bladder of the rabbit maintains an electrical potential difference across its wall as a result largely of active sodium transport from the urinary (mucosal) to the serosal surface. 3. Small hydrostatic pressure differences produced by removal of bathing fluid from one side of the tissue caused reproducible changes in both potential difference and short-circuit current. The magnitude of these changes increases as the volume of fluid removed increases. 3. Amiloride on the mucosal (urinary), but not the serosal, surface of the membrane reduces the transepithelial potential difference and short-circuit current with an IC50 of 300 nM. Amiloride reduces the size of, but does not abolish, transepithelial potential changes caused by alterations in hydrostatic pressure. 4. Field electrical stimulation of strips of bladder tissue produces a reproducible release of ATP. Such release was demonstrated to occur largely from urothelial cells and is apparently non-vesicular as it increases in the absence of calcium and is not abolished by tetrodotoxin. 5. It is proposed that ATP is released from the urothelium as a sensory mediator for the degree of distension of the rabbit urinary bladder and other sensory modalities. PMID:9423189
Tian, Fuzhi; Li, Baoming; Kwok, Daniel Y
2005-02-01
Electroosmotic flow (EOF) is a phenomenon associated with the movement of an aqueous solution induced by the application of an electric field in microchannels. The characteristics of EOF depend on the nature of the surface potential, i.e., whether it is uniform or nonuniform. In this paper, a lattice Boltzmann model (LBM) combined with the Poisson-Boltzmann equation is used to simulate flow field in a rectangular microchannel with nonuniform (step change) surface potentials. The simulation results indicate that local circulations can occur near a heterogeneous region with nonuniform surface potentials, in agreement with those by other authors. Largest circulations, which imply a highest mixing efficiency due to convection and short-range diffusion, were found when the average surface potential is zero, regardless of whether the distribution of the heterogeneous patches is symmetric or asymmetric. In this work, we have illustrated that there is a trade-off between the mixing and liquid transport in EOF microfluidics. One should not simply focus on mixing and neglect liquid transport, as performed in the literature. Excellent mixing could lead to a poor transport of electroosmotic flow in microchannels.
The leaching of atmospherically deposited nitrogen from forested watersheds may acidify lakes and streams. he Nitrogen Bounding Study evaluates the potential range of such adverse effects. he study estimates bounds on changes in regional-scale surface water acidification that mig...
Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder
2016-01-01
Introduction With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. Aim The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Materials and Methods Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t –test. Results Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (p<0.001) with tooth enamel, composite and compomer (p=0.002). Coca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Conclusion Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks. PMID:27437343
The effect of some general anaesthetics on the surface potential of lipid monolayers
Bangham, A.D.; Mason, W.
1979-01-01
1 This study sought to investigate the report by Ginsberg (1978) that 0.7 M ethanol brought about a + 100 mV change (ΔΔV) in the surface potential of glyceryl monooleate (GMO) monolayers formed on KCl, although he predicted that a ΔΔV of -10 mV should have been found. 2 The effect of general anaesthetics such as n-alkyl alcohols and pentobarbitone on surface potential (ΔV) and surface tension (γ) of lipid monolayers formed on 145 mM KCl from either glyceryl monooleate (GMO) or phosphatidyl choline (PC) was examined with an Americium-241 air electrode assembly (ΔV) and a platinized platinum dipping plate and force balance (γ). 3 It was found that, as predicted by Ginsberg (1978), addition of 0.7 M ethanol to the aqueous phase bathing either PC or GMO monolayers brings about a negative-going change in interfacial potential (ΔΔV). 4 The magnitude of ΔΔV is dependent in a linear fashion on ethanol concentration. 5 Longer chain length alcohols up to n-decanol also bring about a negative going change in ΔΔV, and the dependence of ΔΔV on anaesthetic activity, with respect to increasing chain length of anaesthetic, is consistent with Traube's law. 6 Pentobarbitone added to the aqueous phase bathing the monolayer also elicits a negative ΔΔV, a finding which rules out the possibility of adsorption of the volatile alcohols to the measuring electrode. 7 The findings are discussed in terms of the proposition that increasing disorder in an array of fixed dipoles, such as might occur in a bilayer exposed to anaesthetic, would result in a lowering of the electrostatic barrier to the predominantly impermeable cation. PMID:465879
NASA Astrophysics Data System (ADS)
Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.
2017-12-01
We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).
Climate and the equilibrium state of land surface hydrology parameterizations
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.
Symons, J E; Hawkins, D A; Fyhrie, D P; Upadhyaya, S K; Stover, S M
2017-09-01
The metacarpophalangeal joint (fetlock) is the most commonly affected site of racehorse injury, with multiple observed pathologies consistent with extreme fetlock dorsiflexion. Race surface mechanics affect musculoskeletal structure loading and injury risk because surface forces applied to the hoof affect limb motions. Race surface mechanics are a function of controllable factors. Thus, race surface design has the potential to reduce the incidence of musculoskeletal injury through modulation of limb motions. However, the relationship between race surface mechanics and racehorse limb motions is unknown. To determine the effect of changing race surface and racehorse limb model parameters on distal limb motions. Sensitivity analysis of in silico fetlock motion to changes in race surface and racehorse limb parameters using a validated, integrated racehorse and race surface computational model. Fetlock motions were determined during gallop stance from simulations on virtual surfaces with differing average vertical stiffness, upper layer (e.g. cushion) depth and linear stiffness, horizontal friction, tendon and ligament mechanics, as well as fetlock position at heel strike. Upper layer depth produced the greatest change in fetlock motion, with lesser depths yielding greater fetlock dorsiflexion. Lesser fetlock changes were observed for changes in lower layer (e.g. base or pad) mechanics (nonlinear), as well as palmar ligament and tendon stiffness. Horizontal friction and fetlock position contributed less than 1° change in fetlock motion. Simulated fetlock motions are specific to one horse's anatomy reflected in the computational model. Anatomical differences among horses may affect the magnitude of limb flexion, but will likely have similar limb motion responses to varied surface mechanics. Race surface parameters affected by maintenance produced greater changes in fetlock motion than other parameters studied. Simulations can provide evidence to inform race surface design and management to reduce the incidence of injury. © 2017 EVJ Ltd.
Monyoncho, Evans A; Zamlynny, Vlad; Woo, Tom K; Baranova, Elena A
2018-05-29
Infrared spectroscopy is a powerful non-destructive technique for the identification and quantification of organic molecules widely used in scientific studies. For many years, efforts have been made to adopt this technique for the in situ monitoring of reactions. From these efforts, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was developed three decades ago. Unfortunately, because of the complexity of data processing and interpretation, PM-IRRAS had been avoided in lieu of the single potential alteration infrared spectroscopy (SPAIRS) and subtractively normalized interfacial Fourier transform infrared (SNIFTIR). In this work, we present a new approach for PM-IRRAS data processing and presentation, which provides more insight into in situ and surface studies besides dramatically improving the S/N. In this new approach, we recommend three complementary methods of data treatment (eqn (7), (9) and (10)) as the new protocols for presenting PM-IRRAS data. These equations are robust in visualising the surface processes at the solid-liquid and solid-gas interphases. Eqn (7) contrasts the surface adsorbed species with respect to the isotropic background with or without the influence of the applied potential. Eqn (9) highlights the surface potential-driven changes between the sample and the reference spectra. Eqn (10) focuses on the bulk-phase (solution/gas and surface species) potential-driven changes between the sample and the reference spectra, and hence it can be used to track the production of species, which desorb from the surface upon their formation. Examples of ethanol electro-oxidation reaction are provided as a test system for in situ studies and PVP deposited on glassy carbon for thin-film studies to illustrate the utility of the new PM-IRRAS data handling protocol, which is poised to improve the understanding of the chemistry and physics of surface processes.
Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barghouty, N.; Meyer, Fred W; Harris, Peter R
2011-01-01
Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ionsmore » impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.« less
Investigation of ultrahigh sensitivity in GaInAsP nanolaser biosensor
NASA Astrophysics Data System (ADS)
Saijo, Yoshito; Watanabe, Takumi; Hasegawa, Yu; Nishijima, Yoshiaki; Baba, Toshihiko
2018-02-01
We have developed GaInAsP semiconductor photonic crystal nanolaser biosensor and demonstrated the detection of ultralow-concentration (fM to aM) proteins and deoxyribonucleic acids (DNAs) adsorbed on the device surface. In general, this type of photonic sensors exploiting optical resonance has been considered to detect the refractive index of biomolecules via the wavelength shift. However, this principle cannot explain the detection of such ultralowconcentration. Therefore, we investigated another candidate principle, i.e., ion sensitivity. We consider such a process that 1) the electric charge of biomolecules changes the nanolaser's surface charge, 2) the Schottky barrier near the semiconductor surface is increased or decreased, 3) the distribution of photopumped carriers is modified by the barrier, 4) the refractive index of the semiconductor is changed by the carrier effects, and 5) the laser wavelength shifts. To confirm this process, we electrochemically measured the zeta and flatband potentials when charged electrolyte polymers were adsorbed in water. We clearly observed that these potentials temporally behaved consistently with that of the laser wavelength, which suggests that polymers significantly acted on the Schottky barrier. The same behaviors were also observed for the adsorption of 1 fM DNA. We consider that a limited number of charged DNA changed the surface functional group of the entire device surface. Such charge effects will be the key that achieves the ultrahigh sensitivity in the nanolaser biosensor.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Bryant, R. G.; Wiggs, G.; Eckardt, F. D.; Thomas, D. S.; Washington, R.
2013-12-01
Salt pans (or playas) are common in arid environments and can be major sources of windblown mineral dust, but there are uncertainties associated with their dust emission potential. These landforms typically form crusts which modify both their erosivity and erodibility by limiting sediment availability, modifying surface and aerodynamic roughness and limiting evaporation rates and sediment production. Here we show the relationship between seasonal surface moisture change and crust pattern development based on both remote-sensing and field surface and atmospheric measurements. We use high resolution (sub-cm) terrestrial laser scanning (TLS; ground-based lidar) surveys over weekly, monthly and annual timescales to accurately characterise crustal ridge thrusting and collapse. This can be as much as 2 mm/day on fresh pan areas that have recently been reset by flooding. Over a two month period, this ridge growth can change aerodynamic roughness length values by 6.5 mm. At the same time, crack densities across the surface increase and this raises the availability of erodible fluffy, low density dust source sediment stored below the crust layer. Ridge spaces are defined in the early stages of crust development, as identified by Fourier Transform analysis, but wider wavelengths become more pronounced over time. We present a conceptual model accounting for the driving forces (subsurface, surface and atmospheric moisture) and feedbacks between these and surface shape that lead to crust pattern trajectories between highly emissive degraded surfaces and less emissive ridged or continuous crusts. These findings improve our understanding of temporal changes in dust availability and supply from playa source regions.
NASA Astrophysics Data System (ADS)
Binger, D. J.; Haritashya, U. K.; Kargel, J. S.; Shugar, D. H.
2016-12-01
Glacial lake growth and associated glacier dynamics: Case study from the Himalayas, Andes, Alaska and New Zealand David J. Binger1, Umesh K. Haritashya1 and Jeffrey S. Kargel21University of Dayton, Dayton, OH 2University of Arizona, Tucson, AZ As a result of climate change most of the world's alpine glaciers are undergoing measurable retreat and dynamic changes. The result of accelerated melting has led to the formation and growth of potentially dangerous glacial lakes. In this study, alpine glaciers and associated lakes from the Himalayas, Andes, Alaska and New Zealand, showing similar geomorphological settings were analyzed to compare differences in regional proglacial lake growth and its relationship with glacier dynamics. Specifically, we analyzed the surface area growth of the lakes, retreat of glacier terminus, changes in glacier velocity, surface temperature and potential glacial lake outburst flood triggers. Using Landsat and ASTER satellite images, Cosi - Corr software, and in house thermal mapping, 10 glaciers were analyzed and compared. Results show a substantial increase in proglacial lake surface area, accelerated velocity and significant calving of the glaciers. Glacier surface temperatures varied by location, with some remaining constant and others 2°C - 4°C increases; although increased surface temperature did not always show a direct correlation with increasing retreat rate. Lakes with high rates of surface area growth paired with glaciers with increased velocity and calving could prove to be unsustainable and lead to an increased risk for glacial lake outburst floods. Overall, result show the changing dynamics of the alpine glaciers in different mountain regions and the growth of their proglacial lakes.
Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions
Wong, C.I.; Mahler, B.J.; Musgrove, M.; Banner, J.L.
2012-01-01
Understanding the sources and processes that control groundwater compositions and the timing and magnitude of groundwater vulnerability to potential surface-water contamination under varying meteorologic conditions is critical to informing groundwater protection policies and practices. This is especially true in karst terrains, where infiltrating surface water can rapidly affect groundwater quality. We analyzed the evolution of groundwater compositions (major ions and Sr isotopes) during the transition from extreme drought to wetconditions, and used inverse geochemical modeling (PHREEQC) to constrain controls on groundwater compositions during this evolution. Spring water and groundwater from two wells dominantly receiving diffuse and conduit flow (termed diffuse site and conduit site, respectively) in the Barton Springs segment of the Edwards aquifer (central Texas, USA) and surface water from losing streams that recharge the aquifer were sampled every 3–4 weeks during November 2008–March 2010. During this period, water compositions at the spring and conduit sites changed rapidly but there was no change at the diffuse site, illustrating the dual nature (i.e., diffuse vs. conduit) of flow in this karst system. Geochemical modeling demonstrated that, within a month of the onset of wetconditions, the majority of spring water and groundwater at the conduit site was composed of surface water, providing quantitative information on the timing and magnitude of the vulnerability of groundwater to potential surface-water contamination. The temporal pattern of increasing spring discharge and changing pattern of covariation between spring discharge and surface-water (steam) recharge indicates that that there were two modes of aquifer response—one with a small amount of storage and a second that accommodates more storage.
Janusek, D; Svehlikova, J; Zelinka, J; Weigl, W; Zaczek, R; Opolski, G; Tysler, M; Maniewski, R
2018-05-08
The occurrence of T-wave alternans in electrocardiographic signals was recently linked to susceptibility to ventricular arrhythmias and sudden cardiac death. Thus, by detecting and comprehending the origins of T-wave alternans, it might be possible to prevent such events. Here, we simulated T-wave alternans in a computer-generated human heart model by modulating the action potential duration and amplitude during the first part of the repolarization phase. We hypothesized that changes in the intracardiac alternans patterns of action potential properties would differentially influence T-wave alternans measurements at the body surface. Specifically, changes were simulated globally in the whole left and right ventricles to simulate concordant T-wave alternans, and locally in selected regions to simulate discordant and regional discordant, hereinafter referred to as "regional", T-wave alternans. Body surface potential maps and 12-lead electrocardiographic signals were then computed. In depth discrimination, the influence of epicardial layers on T-wave alternans development was significantly higher than that of mid-myocardial cells. Meanwhile, spatial discrimination revealed that discordant and regional action potential property changes had a higher influence on T-wave alternans amplitude than concordant changes. Notably, varying T-wave alternans sources yielded distinct body surface potential map patterns for T-wave alternans amplitude, which can be used for location of regions within hearts exhibiting impaired repolarization. The highest ability for T-wave alternans detection was achieved in lead V1. Ultimately, we proposed new parameters Vector Magnitude Alternans and Vector Angle Alternans, with higher ability for T-wave alternans detection when using multi-lead electrocardiographic signals processing than for single leads. Finally, QT alternans was found to be associated with the process of T-wave alternans generation. The distributions of the body surface T-wave alternans amplitude have been shown to have unique patterns depending on the type of alternans (concordant, discordant or regional) and the location of the disturbance in the heart. The influence of epicardial cells on T-wave alternans development is significantly higher than that of mid-myocardial cells, among which the sub-endocardial layer exerted the highest influence. QT interval alternans is identified as a phenomenon that correlate with T-wave alternans.
NASA Astrophysics Data System (ADS)
Smith, C. I.; Bowfield, A.; Almond, N. J.; Mansley, C. P.; Convery, J. H.; Weightman, P.
2010-10-01
It is demonstrated that the (1 × 1) structure and the (1 × 2) and (1 × 3) surface reconstructions that occur at Au(110)/electrolyte interfaces have unique optical fingerprints. The optical fingerprints are potential, pH and anion dependent and have potential for use in monitoring dynamic changes at this interface. We also observe a specific reflection anisotropy spectroscopy signature that may arise from anions adsorbed on the (1 × 1) structure of Au(110).
1981-06-01
film recrystal- lization and the changing of their optical properties. The data of ther- mal treatment of the Zinc Sulphide and Magnium films in...11. J. KtEUZt 2:00 Surface Potentials of Benzene Derivative Monolayers and Submono- layers at the Mercury /Nitrogen Interface. B. J. KINZIG 2:20 Alkoxy...Potentials of Benzene Derivative Monolayers and Submonolayers at the Mercury /Nitrogen Interface by • B. J. Kinzig Naval Research Laboratory Optical
A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction
Dickey, Michael D.
2016-01-01
Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude (~500 mN/m to near zero). Furthermore, this method requires only a very modest potential (< 1 V) applied relative to a counter electrode. The resulting change in tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests. PMID:26863045
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
NASA Astrophysics Data System (ADS)
Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.
2004-10-01
In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.
NASA Astrophysics Data System (ADS)
Choi, Woo Young; Woo, Dong-Soo; Choi, Byung Yong; Lee, Jong Duk; Park, Byung-Gook
2004-04-01
We proposed a stable extraction algorithm for threshold voltage using transconductance change method by optimizing node interval. With the algorithm, noise-free gm2 (=dgm/dVGS) profiles can be extracted within one-percent error, which leads to more physically-meaningful threshold voltage calculation by the transconductance change method. The extracted threshold voltage predicts the gate-to-source voltage at which the surface potential is within kT/q of φs=2φf+VSB. Our algorithm makes the transconductance change method more practical by overcoming noise problem. This threshold voltage extraction algorithm yields the threshold roll-off behavior of nanoscale metal oxide semiconductor field effect transistor (MOSFETs) accurately and makes it possible to calculate the surface potential φs at any other point on the drain-to-source current (IDS) versus gate-to-source voltage (VGS) curve. It will provide us with a useful analysis tool in the field of device modeling, simulation and characterization.
Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...
2014-11-03
We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10 –5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g –1) had a positive rise potential of 59 ± 4 mVmore » in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g –1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less
Alterations to groundwater recharge due to anthropogenic landscape change
NASA Astrophysics Data System (ADS)
Han, Dongmei; Currell, Matthew J.; Cao, Guoliang; Hall, Benjamin
2017-11-01
The impacts of anthropogenic modifications to the landscape on groundwater recharge rates, locations, and mechanisms are reviewed. The two major categories of change examined are conversion of land for agriculture and urbanization, both of which have significant effects on groundwater recharge. Techniques for identifying and quantifying the changes in recharge due to these impacts are discussed. Land-clearing for agriculture and surface water transfer for irrigation have resulted in order of magnitude increases in recharge rates in many semi-arid regions worldwide, causing ongoing land and water salinization and water-logging problems. While increased recharge by irrigation return flow may alleviate shallow groundwater depletion in some settings, this is complicated by the effect of unsaturated zone thickening, which reduces the fraction of potential recharge becoming actual recharge, and may result in new water quality risks such as nitrate contamination. Expansion of urban and peri-urban land and their associated surface and sub-surface infrastructure results in complex water balance changes that re-distribute groundwater recharge locations, modify recharge mechanism(s) and result in variable impacts on recharge rates (e.g., overall net decrease, increase or minimal change) and quality. While changes to groundwater recharge resulting from conversion of land for agriculture are relatively well understood, less is documented about the changes resulting from urbanization, due to a paucity of data from field-based studies. Two case studies from Beijing, China and Melbourne Australia are examined, which highlight these impacts and demonstrate some potential methodological techniques for this topic.
Measuring ground movement in geothermal areas of Imperial Valley, California
NASA Technical Reports Server (NTRS)
Lofgren, B. E.
1974-01-01
Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.
NASA Astrophysics Data System (ADS)
Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah
2016-09-01
Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.
Anticipating land surface change
Streeter, Richard; Dugmore, Andrew J.
2013-01-01
The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230
Markewich, H.W.; Buell, G.R.
2001-01-01
Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.
NASA Astrophysics Data System (ADS)
Gao, Junxiang; Gu, Huaimin; Liu, Fangfang; Dong, Xiao; Xie, Min; Hu, Yongjun
2011-07-01
In this report, Raman and surface-enhanced Raman scattering (SERS) spectra of captopril are studied in detail. Herein, the Raman bands are assigned by the density functional theory (DFT) calculations and potential energy distributions (PED) based on internal coordinates of the molecule, which are found to be in good agree with the experimental values. Furthermore, the concentration and pH dependence of the SERS intensity of the molecule is discussed. By analyzing the intensities variation of SERS bands of the different concentrations of captopril solution, it can be concluded that the molecules orientation adsorbed on the silver nanoparticles surface change with the change of the concentrations. The variation of SERS spectra of captopril with the change of pH suggests that the interaction among the adsorbates with Ag cluster depend on the protonated state of the adsorbate and the aggregation of silver nanoparticles.
Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent
NASA Astrophysics Data System (ADS)
Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy
2017-03-01
A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.
NASA Astrophysics Data System (ADS)
Shaikh, Shazia; Singh, Deepti; Subramanian, Mahesh; Kedia, Sunita; Singh, Anil Kumar; Singh, Kulwant; Gupta, Nidhi; Sinha, Sucharita
2018-02-01
Bacterial attachment and biofilm formation on implant surface has been a major concern in hospital and industrial environment. Prevention of bacterial infections of implant surface through surface treatment could be a potential solution and hence this has become a key area of research. In the present study, the antibacterial and biocompatible properties of femtosecond laser surface treated 45S5 bioactive glass (BG) have been investigated. Adhesion and sustainability of both gram positive S. aureus and gram negative P.aeruginosa and E. coli nosocomial bacteria on untreated and laser treated BG samples has been explored. An imprint method has been used to visualize the growth of bacteria on the sample surface. We observed complete bacterial rejection potentially reducing risk of biofilm formation on laser treated surface. This was correlated with surface roughness, wettability and change in surface chemical composition of the samples before and after laser treatment. Biocompatibility of the laser treated BG was demonstrated by studying the anchoring and growth of human cervix cell line INT407. Our results demonstrate that, laser surface modification of BG enables enhanced bacterial rejection without affecting its biocompatibility towards growth of human cells on it. These results open a significantly potential approach towards use of laser in successfully imparting desirable characteristics to BG based bio-implants and devices.
AFM Study of Charge Transfer Between Metals Due to the Oxygen Redox Couple in Water
NASA Astrophysics Data System (ADS)
Trombley, Jeremy; Panthani, Tessie; Sankaran, Mohan; Angus, John; Kash, Kathleen
2010-03-01
The oxygen redox couple in an adsorbed water film can pin the Fermi level at the surfaces of diamond, GaN and ZnO.footnotetextV. Chakrapani, C. Pendyala, K. Kash, A. B. Anderson, M. K. Sunkara and J. C. Angus, J. Am. Chem. Soc. 130 (2008) 12944-12952, and ref. 6 therein. We report here preliminary observations of the same phenomenon at metal surfaces. A Pt-coated atomic force microscope (AFM) tip was used to take force-distance measurements on Au, Ag, and Pt surfaces placed in pH-controlled water. The work functions of these surfaces vary over ˜2eV and span the electrochemical potential range of the oxygen redox couple, which varies with pH according to the Nernst equation. Adjusting the pH of the water from 4 to 12 allowed us to change the redox potential energy from -5.42eV to -4.95eV, changing the surface charge and the associated screening charge and modulating the pull-off force. This work has relevance to AFM of many materials in air, and to contact electrification, mechanical friction, and nanoscale corona discharges.
Fredrickson, Kurt D.; Anasori, Babak; Seh, Zhi Wei; ...
2016-12-09
Here, two-dimensional transition metal carbides and nitrides, also known as MXenes, represent an attractive class of materials for a multitude of electrochemical and other applications. While single sheets of MXenes have been widely studied theoretically, there have been much fewer studies on layered bulk MXenes, which are more representative of multi- or few-layer MXenes used in actual applications. Herein, we investigate the structural and electronic effects of water intercalation, multiple functional groups and applied potential on layered bulk Ti 2C and Mo 2C MXenes using density functional theory. The out-of plane lattice parameter, c, was found to vary significantly withmore » the functional group, and is greatly increased upon intercalation of water. Experimental results confirm the change in lattice constant due to addition or removal of intercalated water. Under zero applied potential, both Ti 2C and Mo 2C were found to be functionalized by one monolayer of O; bare MXenes were never found to be stable, regardless of the applied potential. Applying a potential changed the adsorbate coverage, changing the systems from O covered to H covered at negative potentials and, in some cases, giving rise to a metal–insulator transition. Understanding of the effects of surface functionalization and water intercalation of MXenes provides a better insight of their use for catalytic and electronic applications.« less
USDA-ARS?s Scientific Manuscript database
Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...
Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (U...
Thermal sensation, rate of temperature change, and the heat dissipation design for tablet computers.
Zhang, Han; Hedge, Alan; Cosley, Daniel
2017-07-01
Past research has shown that the rate of change of skin surface temperature can affect thermal sensation. This study investigated users' thermal responses to a tablet heating surface with different heat pads and different temperature change rates. The test conditions included: A. keeping the surface at a constant 42 °C, B. increasing the surface temperature from 38 °C to 42 °C at a rate of 0.02 °C/s in progressive intervals, C. increasing the temperature at 0.15 °C/s in progressive intervals, and D. Heating two left and right side pads alternately from 38 °C to 42 °C at 0.15 °C/s in progressive intervals. Overall results showed the lowest temperature change rate of 0.02 °C/s was most preferred in terms of thermal comfort. The findings suggest a potential to improve user thermal experience by dissipating tablet computer heat at a lower temperature change rate, or by alternating the dissipation areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bedini, Rossella; Pecci, Raffaella; Notarangelo, Gianluca; Zuppante, Francesca; Persico, Salvatore; Di Carlo, Fabio
2012-01-01
In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
Methods for monitoring erosion using optical coherence tomography
NASA Astrophysics Data System (ADS)
Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel
Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.
Recovery of GaN surface after reactive ion etching
NASA Astrophysics Data System (ADS)
Fan, Qian; Chevtchenko, S.; Ni, Xianfeng; Cho, Sang-Jun; Morko, Hadis
2006-02-01
Surface properties of GaN subjected to reactive ion etching and the impact on device performance have been investigated by surface potential, optical and electrical measurements. Different etching conditions were studied and essentially high power levels and low chamber pressures resulted in higher etch rates accompanying with the roughening of the surface morphology. Surface potential for the as-grown c-plane GaN was found to be in the range of 0.5~0.7 V using Scanning Kevin Probe Microscopy. However, after reactive ion etching at a power level of 300 W, it decreased to 0.1~0.2 V. A nearly linear reduction was observed on c-plane GaN with increasing power. The nonpolar a-plane GaN samples also showed large surface band bending before and after etching. Additionally, the intensity of the near band-edge photoluminescence decreased and the free carrier density increased after etching. These results suggest that the changes in the surface potential may originate from the formation of possible nitrogen vacancies and other surface oriented defects and adsorbates. To recover the etched surface, N II plasma, rapid thermal annealing, and etching in wet KOH were performed. For each of these methods, the surface potential was found to increase by 0.1~0.3 V, also the reverse leakage current in Schottky diodes fabricated on treated samples was reduced considerably compared with as-etched samples, which implies a partial-to-complete recovery from the plasma-induced damage.
Integrating stand density management with fuel reduction
Joseph W. Sherlock
2007-01-01
The widespread effort to reduce fuel hazards in western forested ecosystems places significant emphasis on surface and small ladder fuels. Changes in canopy density, for purposes of either reducing potential crown fire impacts or insect/pathogen-related mortality, are less frequently considered. Providing a sound basis for treating more than surface and small ladder...
NASA Astrophysics Data System (ADS)
Ostle, C.; Landschutzer, P.; Johnson, M.; Schuster, U.; Watson, A. J.; Edwards, M.; Robinson, C.
2016-02-01
The North Atlantic Ocean is a globally important sink of carbon dioxide (CO2). However, the strength of the sink varies temporally and regionally. This study uses a neural network method to map the surface ocean pCO2 (partial pressure of CO2) and flux of CO2from the atmosphere to the ocean alongside measurements of plankton abundance collected from the Continuous Plankton Recorder (CPR) survey to determine the relationship between regional changes in phytoplankton community structure and regional differences in carbon flux. Despite increasing sea surface temperatures, the Grand Banks of Newfoundland show a decrease in sea surface pCO2 of -2 µatm yr-1 from 1993 to 2011. The carbon flux in the North Sea is variable over the same period. This is in contrast to most of the open ocean within the North Atlantic, where increases in sea surface pCO2 follow the trend of increasing CO2 in the atmosphere, i.e. the flux or sink remains constant. The increasing CO2 sink in the Grand Banks of Newfoundland and the variable sink in the North Sea correlate with changes in phytoplankton community composition. This study investigates the biogeochemical and oceanographic mechanisms potentially linking increasing sea surface temperature, changes in phytoplankton community structure and the changing carbon sink in these two important regions of the Atlantic Ocean. The use of volunteer ships to concurrently collect these datasets demonstrates the potential to investigate relationships between plankton community structure and carbon flux in a cost-effective way. These results not only have implications for plankton-dynamic biogeochemical models, but also likely influence carbon export, as different phytoplankton communities have different carbon export efficiencies. Extending and maintaining such datasets is critical to improving our understanding of and monitoring carbon cycling in the surface ocean and improving climate model accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.; Cole, C.R.; Arnett, R.C.
The Hanford Pathline Calculational Program (HPCP) is a numerical model developed to predict the movement of fluid particles from one location to another within the Hanford or similar groundwater systems. As such it can be considered a simple transport model wherein only advective changes are considered. Application of the numerical HPCP to test cases for which semianalytical results are obtainable showed that with reasonable time steps and the grid spacing requirements HPCP give good agreement with the semianalytical solution. The accuracy of the HPCP results is most sensitive in areas near steep or rapidly changing potential gradients and may requiremore » finer grid spacing in those areas than for the groundwater system as a whole. Initial applications of HPCP to the Hanford groundwater flow regime show that significant differences (improvements) in the predictions of fluid particle movement are obtainable with the pathline approach (changing groundwater potential or water table surface) as opposed to the streamline approach (unchanging potential or water table surface) used in past Hanford groundwater analyses. This report documents capability developed for estimating groundwater travel times from the Hanford high-level waste areas to the Columbia River at different water table levels.« less
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2018-06-01
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Miller, Kai J.; Schalk, Gerwin; Hermes, Dora; Ojemann, Jeffrey G.; Rao, Rajesh P. N.
2016-01-01
The link between object perception and neural activity in visual cortical areas is a problem of fundamental importance in neuroscience. Here we show that electrical potentials from the ventral temporal cortical surface in humans contain sufficient information for spontaneous and near-instantaneous identification of a subject’s perceptual state. Electrocorticographic (ECoG) arrays were placed on the subtemporal cortical surface of seven epilepsy patients. Grayscale images of faces and houses were displayed rapidly in random sequence. We developed a template projection approach to decode the continuous ECoG data stream spontaneously, predicting the occurrence, timing and type of visual stimulus. In this setting, we evaluated the independent and joint use of two well-studied features of brain signals, broadband changes in the frequency power spectrum of the potential and deflections in the raw potential trace (event-related potential; ERP). Our ability to predict both the timing of stimulus onset and the type of image was best when we used a combination of both the broadband response and ERP, suggesting that they capture different and complementary aspects of the subject’s perceptual state. Specifically, we were able to predict the timing and type of 96% of all stimuli, with less than 5% false positive rate and a ~20ms error in timing. PMID:26820899
Extensibility of the fission surface power (FSP) system from the moon to Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David Irvin
2011-01-28
Fission reactors have great near-term potential to power human and robotic missions/outposts on the surface of the Moon and Mars (and potentially other planets, moons, and asteroids). The ability to provide a power-rich environment that is independent of solar intensity, nights, dust storms, etc., is of significant (perhaps enabling) importance to the further expansion of humans into our solar system. NASA's Reference Fission Surface Power (FSP) System is a 40 kWe system that has been primarily designed for lunar applications. This paper examines the extensibility of the FSP design and technology for potential missions on Mars. Possible impacts include themore » effects of changes in heat sink, gravity, day-night cycles, mission transit time, communication delay, and the chemistry of the regolith and atmosphere. One of the biggest impacts might be differences in the potential utilization of in-situ materials for shielding. Another major factor is that different missions will likely require different performance requirements, e.g. power, lifetime and mass. This paper concludes that the environmental differences between potential mission locations will not require significant changes in design and technologies, unless performance requirements for a specific mission are substantially different than those adopted for the FSP The primary basis for this conclusion is that the FSP has been designed with robust materials and design margins.« less
NASA Astrophysics Data System (ADS)
Cescatti, A.; Duveiller, G.; Hooker, J.
2017-12-01
Changing vegetation cover not only affects the atmospheric concentration of greenhouse gases but also alters the radiative and non-radiative properties of the surface. The result of competing biophysical processes on Earth's surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate. To date these effects are not accounted for in land-based climate policies because of the complexity of the phenomena, contrasting model predictions and the lack of global data-driven assessments. To overcome the limitations of available observation-based diagnostics and of the on-going model inter-comparison, here we present a new benchmarking dataset derived from satellite remote sensing. This global dataset provides the potential changes induced by multiple vegetation transitions on the single terms of the surface energy balance. We used this dataset for two major goals: 1) Quantify the impact of actual vegetation changes that occurred during the decade 2000-2010, showing the overwhelming role of tropical deforestation in warming the surface by reducing evapotranspiration despite the concurrent brightening of the Earth. 2) Benchmark a series of ESMs against data-driven metrics of the land cover change impacts on the various terms of the surface energy budget and on the surface temperature. We anticipate that the dataset could be also used to evaluate future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin
2015-05-13
Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.
Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface
NASA Astrophysics Data System (ADS)
Bai, Y. J.; Liu, W. Z.; Chen, A.; Shi, L.; Liu, X. H.; Zi, J.
2018-05-01
It is well known that surface-plasmon enhanced photo-electrochemical effect or photo-thermal effect of metallic particles on a semiconductor substrate or in a suspension may result in color changes. Such character could be potentially applicable to colorimetric sensors, optical filters, and data storage devices. However, usually the response time for color changes is too long to be practically applied. In this letter, we found that the response rate of color changes could be controlled by the annealing condition of the semiconductor substrate, and changes larger than 10% in spectra were observed after only 1-min exposure to light. Furthermore, such fast response was applied to realize wavelength-dependent "write" and "read" applications with high spatial resolution.
An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA
NASA Astrophysics Data System (ADS)
Samson, J.; Stone, M. C.
2013-12-01
The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.
Levings, G.W.
1982-01-01
The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)
NASA Astrophysics Data System (ADS)
Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.
2015-12-01
The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.
Impact of climate change on future concentrated solar power (CSP) production
NASA Astrophysics Data System (ADS)
Wild, Martin; Folini, Doris; Henschel, Florian
2017-02-01
Traditionally, for the planning and assessment of solar power plants, the amount of solar radiation incident on the Earth's surface is assumed to be invariable over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering several decades indeed confirm long-term changes in this quantity. In a previous study (Wild et al. 2015, Solar Energy)1 we examined how the latest generation of climate models (CMIP5) projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, future power output from photovoltaic (PV) systems. In the present complementary study, we use the CMIP5 model projections to estimate possible future changes in power output from Concentrated Solar Power (CSP) systems due to changing climate and air pollution levels up to the mid-21th century. The results indicate a potential for future increases in CSP production in many parts of the globe, with few exceptions such as the North of India and the irrelevant polar areas. Compared to the changes in PV production, the estimated future production changes by CSP are larger by a factor of 4.
Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces
NASA Astrophysics Data System (ADS)
Grass, Stefan; Treuel, Lennart
2014-02-01
In biological fluids, an adsorption layer of proteins, a "protein corona" forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein's secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.
Channel sialic acids limit hERG channel activity during the ventricular action potential.
Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S
2013-02-01
Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.
Seasonal temperature responses to land-use change in the western United States
Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.
2008-01-01
In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
Thermal regimes of Rocky Mountain lakes warm with climate change.
Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
NASA Astrophysics Data System (ADS)
Berg, Alexis
2017-04-01
In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.
Applications of the SWOT Mission to Reservoirs in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Bonnema, M.; Hossain, F.
2017-12-01
The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.
NASA Astrophysics Data System (ADS)
Suherman, A.; Rahman, M. Z. A.; Busu, I.
2014-02-01
The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.
No Future in the Past? The role of initial topography on landform evolution model predictions
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Coulthard, T. J.; Lowry, J.
2014-12-01
Our understanding of earth surface processes is based on long-term empirical understandings, short-term field measurements as well as numerical models. In particular, numerical landscape evolution models (LEMs) have been developed which have the capability to capture a range of both surface (erosion and deposition), tectonics, as well as near surface or critical zone processes (i.e. pedogenesis). These models have a range of applications for understanding both surface and whole of landscape dynamics through to more applied situations such as degraded site rehabilitation. LEMs are now at the stage of development where if calibrated, can provide some level of reliability. However, these models are largely calibrated based on parameters determined from present surface conditions which are the product of much longer-term geology-soil-climate-vegetation interactions. Here, we assess the effect of the initial landscape dimensions and associated error as well as parameterisation for a potential post-mining landform design. The results demonstrate that subtle surface changes in the initial DEM as well as parameterisation can have a large impact on landscape behaviour, erosion depth and sediment discharge. For example, the predicted sediment output from LEM's is shown to be highly variable even with very subtle changes in initial surface conditions. This has two important implications in that decadal time scale field data is needed to (a) better parameterise models and (b) evaluate their predictions. We question how a LEM using parameters derived from field plots can firstly be employed to examine long-term landscape evolution. Secondly, the potential range of outcomes is examined based on estimated temporal parameter change and thirdly, the need for more detailed and rigorous field data for calibration and validation of these models is discussed.
NASA Astrophysics Data System (ADS)
Maksimowicz, M.; Masarik, M. T.; Brandt, J.; Flores, A. N.
2016-12-01
Land use/land cover (LULC) change directly impacts the partitioning of surface mass and energy fluxes. Regional-scale weather and climate are potentially altered by LULC if the resultant changes in partitioning of surface energy fluxes are extensive enough. Dynamics of land use, particularly those related to the social dimensions of the Earth System, are often simplified or not represented in regional land-atmosphere models. This study explores the role of LULC change on a regional hydroclimate system, focusing on potential hydroclimate changes arising from an extended civil conflict in Mozambique. Civil war from 1977-1992 in Mozambique led to land use change at a regional scale as a result of the collapse of large herbivore populations due to poaching. Since the war ended, farming has increased, poaching was curtailed, and animal populations were reintroduced. In this study LULC in a region encompassing Gorongosa is classified at three instances between 1977 to 2015 using Landsat imagery. We use these derived LULC datasets to inform lower boundary conditions in the Weather Research and Forecasting (WRF) model. To quantify potential hydrometeorological changes arising from conflict-driven land use change, we performed a factorial-like experiment by mixing input LULC maps and atmospheric forcing data from before, during, and after the civil war. Analysis of the Landsat data shows measurable land cover change from 1977-present as tree cover encroached into grasslands. Initial tests show corresponding sensitivities to different LULC schemes within the WRF model. Preliminary results suggest that the war did indeed impact regional hydroclimate in a significant way via its direct and indirect impacts on land-atmosphere interactions. Results of this study suggest that LULC change arising from regional conflicts are a potentially understudied, yet important human process to capture in both regional reanalyses and climate change projections.
Process for control of cell division
NASA Technical Reports Server (NTRS)
Cone, C. D., Jr. (Inventor)
1977-01-01
A method of controlling mitosis of biological cells was developed, which involved inducing a change in the intracellular ionic hierarchy accompanying the cellular electrical transmembrane potential difference (Esubm) of the cells. The ionic hierarchy may be varied by imposing changes on the relative concentrations of Na(+), K(+) and Cl(-), or by directly imposing changes in the physical Esubm level across the cell surface.
Preferential cooling of hot extremes from cropland albedo management
Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao
2014-01-01
Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872
John L. Campbell; Charles T. Driscoll; Afshin Pourmokhtarian; Katharine Hayhoe
2011-01-01
Climate change has the potential to alter streamflow regimes, having ecological, economic, and societal implications. In the northeastern United States, it is unclear how climate change may affect surface water supply, which is of critical importance in this densely populated region. The objective of this study was to evaluate the impact of climate change on the timing...
Controlled mechnical modification of manganite surface with nanoscale resolution
Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...
2014-11-07
We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less
Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.
Gallo, Richard L
2017-06-01
Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Work Function Variations in Twisted Graphene Layers
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...
2018-01-31
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
Work Function Variations in Twisted Graphene Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Jeremy T.; Culbertson, James; Berg, Morgann
By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less
NASA Astrophysics Data System (ADS)
Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.
2015-12-01
Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.
Effects of fire and fuels management on water quality in eastern North America
R. K. Kolka
2012-01-01
Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...
Near-surface remote sensing of spatial and temporal variation in canopy phenology
Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Julian P. Jenkins; Scott V. Ollinger
2009-01-01
There is a need to document how plant phenology is responding to global change factors, particularly warming trends. "Near-surface" remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and...
NASA Astrophysics Data System (ADS)
Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.
2018-01-01
We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.
Gait Characteristics When Walking on Different Slippery Walkways.
Whitmore, Mariah W; Hargrove, Levi J; Perreault, Eric J
2016-01-01
This study sought to determine the changes in muscle activity about the ankle, knee, and hip in able-bodied people walking at steady state on surfaces with different degrees of slipperiness. Muscle activity was measured through electromyographic signals from selected lower limb muscles and quantified to directly compare changes across surface conditions. Our results showed distinct changes in the patterns of muscle activity controlling each joint. Muscles controlling the ankle showed a significant reduction in activity as the surface became more slippery, presumably resulting in a compliant distal joint to facilitate full contact with the surface. Select muscles about the knee and hip showed a significant increase in activity as the surface became more slippery. This resulted in increased knee and hip flexion likely contributing to a lowering of the body's center of mass and stabilization of the proximal leg and trunk. These findings suggest a proximal-distal gradient in the control of muscle activity that could inform the future design of adaptable prosthetic controllers. Walking on a slippery surface is extremely difficult, especially for individuals with lower limb amputations because current prostheses do not allow the compensatory changes in lower limb dynamics that occur involuntarily in unimpaired subjects. With recent advances in prosthetic control, there is the potential to provide some of these compensatory changes; however, we first need to understand how able-bodied individuals modulate their gait under these challenging conditions.
NASA Astrophysics Data System (ADS)
Todoroki, Akira; Omagari, Kazuomi
Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.
NASA Technical Reports Server (NTRS)
Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.
2008-01-01
Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water-saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem-Atmosphere Feedback (LEAF-2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present-day maximum and minimum temperatures in the eastern United States to warm by about 0.3 C and 0.4 C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1 C when compared to 1920. Little change in precipitation was found.
Strack, John E.; Pielke, Roger A.; Steyaert, Louis T.; Knox, Robert G.
2008-01-01
Land cover changes alter the near surface weather and climate. Changes in land surface properties such as albedo, roughness length, stomatal resistance, and leaf area index alter the surface energy balance, leading to differences in near surface temperatures. This study utilized a newly developed land cover data set for the eastern United States to examine the influence of historical land cover change on June temperatures and precipitation. The new data set contains representations of the land cover and associated biophysical parameters for 1650, 1850, 1920, and 1992, capturing the clearing of the forest and the expansion of agriculture over the eastern United States from 1650 to the early twentieth century and the subsequent forest regrowth. The data set also includes the inferred distribution of potentially water‐saturated soils at each time slice for use in the sensitivity tests. The Regional Atmospheric Modeling System, equipped with the Land Ecosystem‐Atmosphere Feedback (LEAF‐2) land surface parameterization, was used to simulate the weather of June 1996 using the 1992, 1920, 1850, and 1650 land cover representations. The results suggest that changes in surface roughness and stomatal resistance have caused present‐day maximum and minimum temperatures in the eastern United States to warm by about 0.3°C and 0.4°C, respectively, when compared to values in 1650. In contrast, the maximum temperatures have remained about the same, while the minimums have cooled by about 0.1°C when compared to 1920. Little change in precipitation was found.
Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman
2017-09-01
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.
Optical differential reflectance spectroscopy for photochromic molecules on solid surfaces
NASA Astrophysics Data System (ADS)
Nickel, Fabian; Bernien, Matthias; Lipowski, Uwe; Kuch, Wolfgang
2018-03-01
Optical reflectance of thin adsorbates on solid surfaces is able to reveal fundamental changes of molecular properties compared to bulk systems. The detection of very small changes in the optical reflectance required several technical improvements in the past decades. We present an experimental setup that is capable of high-quality measurements of submonolayers and ultrathin layers of photochromic molecules on surfaces as well as quantifying their isomerization kinetics. By using photomultipliers as detectors, an enhancement of the signal-to-noise ratio by a factor of three with a total reduction of light exposure on the sample by at least four orders of magnitude is achieved. The potential of the experimental setup is demonstrated by a characterization of the photoswitching and thermal switching of a spirooxazine derivate on a bismuth surface.
Axelrod's model with surface tension
NASA Astrophysics Data System (ADS)
Pace, Bruno; Prado, Carmen P. C.
2014-06-01
In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.
Global Assessment of Exploitable Surface Reservoir Storage under Climate Change
NASA Astrophysics Data System (ADS)
Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.
2016-12-01
Surface water reservoirs provide us with reliable water supply systems, hydropower generation, flood control, and recreation services. Reliable reservoirs can be robust measures for water security and can help smooth out challenging seasonal variability of river flows. Yet, reservoirs also cause flow fragmentation in rivers and can lead to flooding of upstream areas, thereby displacing existing land-uses and ecosystems. The anticipated population growth, land use and climate change in many regions globally suggest a critical need to assess the potential for appropriate reservoir capacity that can balance rising demands with long-term water security. In this research, we assessed exploitable reservoir potential under climate change and human development constraints by deriving storage-yield relationships for 235 river basins globally. The storage-yield relationships map the amount of storage capacity required to meet a given water demand based on a 30-year inflow sequence. Runoff data is simulated with an ensemble of Global Hydrological Models (GHMs) for each of five bias-corrected general circulation models (GCMs) under four climate change pathways. These data are used to define future 30-year inflows in each river basin for time period between 2010 and 2080. The calculated capacity is then combined with geographical information of environmental and human development exclusion zones to further limit the storage capacity expansion potential in each basin. We investigated the reliability of reservoir potentials across different climate change scenarios and Shared Socioeconomic Pathways (SSPs) to identify river basins where reservoir expansion will be particularly challenging. Preliminary results suggest large disparities in reservoir potential across basins: some basins have already approached exploitable reserves, while some others display abundant potential. Exclusions zones pose significant impact on the amount of actual exploitable storage and firm yields worldwide: 30% of reservoir potential would be unavailable because of land occupation by environmental and human development. Results from this study will help decision makers to understand the reliability of infrastructure systems particularly sensitive to future water availability.
Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila
NASA Astrophysics Data System (ADS)
Nappi, Anthony J.; Silvers, Michael
1984-09-01
In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.
Bioremediation of weathered-building stone surfaces.
Webster, Alison; May, Eric
2006-06-01
Atmospheric pollution and weathering of stone surfaces in urban historic buildings frequently results in disfigurement or damage by salt crust formation (often gypsum), presenting opportunities for bioremediation using microorganisms. Conventional techniques for the removal of these salt crusts from stone have several disadvantages: they can cause colour changes; adversely affect the movement of salts within the stone structure; or remove excessive amounts of the original surface. Although microorganisms are commonly associated with detrimental effects to the integrity of stone structures, there is growing evidence that they can be used to treat this type of stone deterioration in objects of historical and cultural significance. In particular, the ability and potential of different microorganisms to either remove sulfate crusts or form sacrificial layers of calcite that consolidate mineral surfaces have been demonstrated. Current research suggests that bioremediation has the potential to offer an additional technology to conservators working to restore stone surfaces in heritage buildings.
Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber
NASA Astrophysics Data System (ADS)
Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.
2018-03-01
We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.
Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.
Andersen, O S; Feldberg, S; Nakadomari, H; Levy, S; McLaughlin, S
1978-01-01
We have shown that the absorption of tetraphenylborate into black lipid membranes formed from either bacterial phosphatidylethanolamine or glycerolmonooleate produces concentration-dependent changes in the electrostatic potential between the membrane interior and the bulk aqueous phases. These potential changes were studied by a variety of techniques: voltage clamp, charge pulse, and "probe" measurements on black lipid membranes; electrophroetic mobility measurements on phospholipid vesicles; and surface potential measurements on phospholipid monolayers. The magnitude of the potential changes indicates that tetraphenylborate absorbs into a region of the membrane with a low dielectric constant, where it produces substantial boundary potentials, as first suggested by Markin et al. (1971). Many features of our data can be explained by a simple three-capacitor model, which we develop in a self-consistent manner. Some discrepancies between our data and the simple model suggest that discrete charge phenomena may be important within these thin membranes. PMID:620077
Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
Wilson, Robert J; Banas, Neil S; Heath, Michael R; Speirs, Douglas C
2016-10-01
Diapause plays a key role in the life cycle of high latitude zooplankton. During diapause, animals avoid starving in winter by living in deep waters where metabolism is lower and met by lipid reserves. Global warming is therefore expected to shorten the maximum potential diapause duration by increasing metabolic rates and by reducing body size and lipid reserves. This will alter the phenology of zooplankton, impact higher trophic levels and disrupt biological carbon pumps. Here, we project the impacts of climate change on the key North Atlantic copepod Calanus finmarchicus under IPCC RCP 8.5. Potential diapause duration is modelled in relation to body size and overwintering temperature. The projections show pronounced geographic variations. Potential diapause duration reduces by more than 30% in the Western Atlantic, whereas in the key overwintering centre of the Norwegian Sea it changes only marginally. Surface temperature rises, which reduce body size and lipid reserves, will have a similar impact to deep-water changes on diapause in many regions. Because deep-water warming lags that at the surface, animals in the Labrador Sea could offset warming impacts by diapausing in deeper waters. However, the ability to control diapause depth may be limited. © 2016 John Wiley & Sons Ltd.
La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A
2018-01-01
In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
Cahoon, D.R.; Reed, D.J.; Day, J.W.
1995-01-01
Simultaneous measurements of vertical accretion and change in surface elevation relative to a shallow (3-5 m) subsurface datum were made in selected coastal salt marshes of Louisiana, Florida, and North Carolina to quantitatively test Kaye and Barghoorn's contention that vertical accretion is not a good surrogate for surface elevation change because of autocompaction of the substrate. Rates of subsidence of the upper 3-5 m of marsh substrate were calculated for each marsh as the difference between vertical accretion and elevation change measured with feldspar marker horizons and a sedimentation-erosion table. Surface elevation change was significantly lower than vertical accretion at each site after 2 years, indicating a significant amount of shallow subsidence had occurred, ranging from 0.45 to 4.90 cm. The highest rate of shallow subsidence occurred in the Mississippi delta. Results confirm Kaye and Barghoorn's contention that vertical accretion is not generally a good surrogate for elevation change because of processes occurring in the upper few meters of the substrate, including not only compaction but also apparently shrink-swell from water storage and/or plant production--decomposition at some sites. Indeed, surface elevation change was completely decoupled from vertical accretion at the Florida site. The assumption of a 1:1 relationship between accretionary and substrate processes. Consequently, the potential for coastal marsh submergence should be expressed as an elevation deficit based on direct measures of surface elevation change rather than accretion deficits. These findings also indicate the need for greater understanding of the influence of subsurface and small-scale hydrologic processes on marsh surface elevation.
ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor
NASA Astrophysics Data System (ADS)
Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun
2017-10-01
Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.
Long-Term Planetary Habitability and the Carbonate-Silicate Cycle
NASA Astrophysics Data System (ADS)
Rushby, Andrew J.; Johnson, Martin; Mills, Benjamin J. W.; Watson, Andrew J.; Claire, Mark W.
2018-05-01
The potential habitability of an exoplanet is traditionally assessed by determining if its orbit falls within the circumstellar `habitable zone' of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long term concentration controlled by the balance between volcanic outgassing and the sequestration of CO2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation and biological (microbial) productivity. We develop a model incorporating key aspects of Earth's short and long-term biogeochemical carbon cycle to explore the potential changes in the CO2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets results in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 to 2 R_earth the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability.
Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides
NASA Astrophysics Data System (ADS)
Stepanov, V. P.
2018-03-01
Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.
On physical changes on surface of human cervical epithelial cells during cancer transformations
NASA Astrophysics Data System (ADS)
Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Woodworth, Craig
2013-03-01
Physical changes of the cell surface of cells during transformation from normal to cancerous state are rather poorly studied. Here we describe our recent studies of such changes done on human cervical epithelial cells during their transformation from normal through infected with human papillomavirus type-16 (HPV-16), immortalized (precancerous), to cancerous cells. The changes were studied with the help of atomic force microscopy (AFM) and through the measurement of physical adhesion of fluorescent silica beads to the cell surface. Based on the adhesion experiments, we clearly see the difference in nonspecific adhesion which occurs at the stage of immortalization of cells, precancerous cells. The analysis done with the help of AFM shows that the difference observed comes presumably from the alteration of the cellular ``brush,'' a layer that surrounds cells and which consists of mostly microvilli, microridges, and glycocalyx. Further AFM analysis reveals the emergence of fractal scaling behavior on the surface of cells when normal cells turn into cancerous. The possible causes and potential significance of these observations will be discussed.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-13
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-01
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Cavalieri, Donald J.; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.
NASA Astrophysics Data System (ADS)
Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry
2014-07-01
Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.
NASA Technical Reports Server (NTRS)
Weaver, C.; Kiemle, C.; Kawa, S. R.; Aalto, T.; Necki, J.; Steinbacher, M.; Arduini, J.; Apadula, F.; Berkhout, H.; Hatakka, J.
2014-01-01
We investigate the sensitivity of future spaceborne lidar measurements to changes in surface methane emissions. We use surface methane observations from nine European ground stations and a Lagrangian transport model to infer surface methane emissions for 2010. Our inversion shows the strongest emissions from the Netherlands, the coal mines in Upper Silesia, Poland, and wetlands in southern Finland. The simulated methane surface concentrations capture at least half of the daily variability in the observations, suggesting that the transport model is correctly simulating the regional transport pathways over Europe. With this tool we can test whether proposed methane lidar instruments will be sensitive to changes in surface emissions. We show that future lidar instruments should be able to detect a 50% reduction in methane emissions from the Netherlands and Germany, at least during summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg; Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007; Yan, Jie
2014-07-14
Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlativemore » with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.« less
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
NASA Astrophysics Data System (ADS)
Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.
2017-12-01
In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.
Skin friction related behaviour of artificial turf systems.
Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph
2017-08-01
The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.
Understanding the science of climate change: Talking points - Impacts to the Gulf Coast
Rachel Loehman; Greer Anderson
2010-01-01
Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...
Soil organic carbon stability across a Mediterranean oak agroecosystem
Leslie M. Roche; James F. Chang; Johan Six; Anthony T. O' Geen; Kenneth W. Tate
2015-01-01
Rangelands are estimated to cover 30 to 50 percent of the world's land surface and have significant belowground carbon (C) storage potential. Given their geographical extent, many have suggested that even modest changes in C storage via management practices could alter the global C cycle, creating climate change mitigation opportunities. Our objective was to...
The potential for agricultural land use change to reduce flood risk in a large watershed
USDA-ARS?s Scientific Manuscript database
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...
Lin, Haixin; Li, Zhenxing; Lin, Hong; Song, Yongna; Lv, Liangtao; Hao, Zina
2015-12-01
The aim of the present study was to assess pH-induced changes in conformational structures and potential allergenicity of tropomyosin from short-neck clams. As defined with circular dichroism (CD), an unfolded structure was found at pH values ranging from 2.0 to 5.0, followed by the loss of secondary structure at pH of 1.0. Correspondingly, surface hydrophobicity was reduced by 97.7% when pH was reduced from 7.0 to 1.0. Further indirect ELISA and dot-blot results of pH shifted tropomyosin showed that potential allergenicity correlated well with structural changes, as well as with SGF digestibility. Allergenicity decreased significantly with unfolding of the protein and was stable when surface hydrophobicity recovered back to neutral conditions. These results showed that conformational changes in tropomyosin induced by pH shifting significantly influenced the allergenicity of tropomyosin, and that the resulting changes occurred predominately in the acidic pH range. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Altabey, Wael A.; Noori, Mohammed
2017-05-01
Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.
NASA Astrophysics Data System (ADS)
Aarva, Anja; Laurila, Tomi; Caro, Miguel A.
2017-06-01
In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation/reduction of these biomolecules.
NASA Technical Reports Server (NTRS)
Zhen, Li; Adamec, David
2009-01-01
A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.
Yongqiang Liu; L.B. Zhang; L. Hao; Ge Sun; S.-C. Liu
2016-01-01
An afforestation project was initiated in the western plain of Taiwan to convert abandoned farming lands into forests to improve the ecological and environmental conditions. This study was conducted to understand the potential impacts of this land cover change on evapotranspiration (ET) and other land surface processes and the...
Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Wang, L.; Sadeke, M.
2017-12-01
Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.
Wetting characteristics of 3-dimensional nanostructured fractal surfaces
NASA Astrophysics Data System (ADS)
Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy
2017-01-01
This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.
Climate-driven reduction in soil loss due to the dynamic role of vegetation
NASA Astrophysics Data System (ADS)
Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.
2016-12-01
Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
NASA Technical Reports Server (NTRS)
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
NASA Astrophysics Data System (ADS)
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J
2018-03-01
With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.
National housing and impervious surface scenarios for integrated climate impact assessments
Bierwagen, Britta G.; Theobald, David M.; Pyke, Christopher R.; Choate, Anne; Groth, Philip; Thomas, John V.; Morefield, Philip
2010-01-01
Understanding the impacts of climate change on people and the environment requires an understanding of the dynamics of both climate and land use/land cover changes. A range of future climate scenarios is available for the conterminous United States that have been developed based on widely used international greenhouse gas emissions storylines. Climate scenarios derived from these emissions storylines have not been matched with logically consistent land use/cover maps for the United States. This gap is a critical barrier to conducting effective integrated assessments. This study develops novel national scenarios of housing density and impervious surface cover that are logically consistent with emissions storylines. Analysis of these scenarios suggests that combinations of climate and land use/cover can be important in determining environmental conditions regulated under the Clean Air and Clean Water Acts. We found significant differences in patterns of habitat loss and the distribution of potentially impaired watersheds among scenarios, indicating that compact development patterns can reduce habitat loss and the number of impaired watersheds. These scenarios are also associated with lower global greenhouse gas emissions and, consequently, the potential to reduce both the drivers of anthropogenic climate change and the impacts of changing conditions. The residential housing and impervious surface datasets provide a substantial first step toward comprehensive national land use/land cover scenarios, which have broad applicability for integrated assessments as these data and tools are publicly available. PMID:21078956
Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.
2016-01-01
Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.
Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.
2016-01-01
The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178
NASA Astrophysics Data System (ADS)
Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.
2018-02-01
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D
2018-02-21
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation
NASA Astrophysics Data System (ADS)
Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko
2018-06-01
This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelken, R.D.
1987-04-01
The quasi-rest potential (QRP) has been proposed as a key quantity in characterizing compound semiconductor (e.g. CdTe) electrodeposition. This article expands the modeling/simulation representative of Cd/sub x/Te in chemical equilibrium to calculate two ''QRP's'': E/sub M/1/sub /, the mixed potential occurring immediately after current interruption and before any relaxation in double layer ion concentration and significant ion exchange/surface stoichiometry change occur, and E/sub M/2/sub /, another mixed potential occurring after the double layer ion concentrations have relaxed to their bulk values but still before any significant surface composition change occurs. Significant predictions include existence of a dramatic negative transition inmore » QRP, with negative-going deposition potential, centered on the potential of perfect stoichiometry (PPS), inequality, in general, between the PPS and E/sub M/1/sub / unless the deposit remains in equilibrium with the electrolyte (no ion exchange at open circuit), negligible sensitivity of QRP-E curves to the activity coefficient parameter implying the importance of the PPS in characterizing compound deposition, and disappearance of the transition structure for sufficiently positive Gibbs free energies.« less
Response of Groundwater Recharge to Potential Future Climate Change in the Grand River Watershed
NASA Astrophysics Data System (ADS)
Jyrkama, M. I.; Sykes, J. F.
2004-05-01
The Grand River watershed is situated in south-western Ontario, draining an area of nearly 7000 square kilometres into Lake Erie. Approximately eighty percent of the population in the watershed derive their drinking water from groundwater sources. Quantifying the recharge input to the groundwater system and the impact of climate variability due to climate change is, therefore, essential for ensuring the quantity and sustainability of the watershed's drinking water resources in the future. The primary goal of this study is to investigate the impact of potential future climate changes on groundwater recharge in the Grand River watershed. The physically based hydrologic model HELP3 is used in conjunction with GIS to simulate the past conditions and future changes in evapotranspiration, potential surface runoff, and groundwater recharge rates as a result of projected changes in the regions climate. The climate change projections are based on the general predictions reported by the Intergovernmental Panel on Climate Change (IPCC) in 2001. Forty years of daily historical weather data are used as the reference condition. The impact of climate change on the hydrologic cycle over a forty year study period is modelled by perturbing the HELP3 model input parameters using predicted future changes in precipitation, temperature, and solar radiation. The changes in land use and vegetation cover over time were not considered in the study. The results of the study indicate that the overall simulated rate of groundwater recharge is predicted to increase in the watershed as a result of the projected future climate change. Warmer winter temperatures will reduce the extent and duration of ground frost and shift the springmelt from spring toward winter months, allowing more water to infiltrate into the ground. This results in decreased surface runoff, higher infiltration, and subsequently increased groundwater recharge. The predicted higher intensity and frequency of future precipitation will not only contribute significantly to increased surface runoff, but also results in higher evapotranspiration and groundwater recharge rates due to increased amounts of available water. Changes in the incoming solar radiation have a minimal impact on the simulated hydrologic processes. The overall simulated average annual recharge in the watershed is predicted to increase by approximately 100 mm/year over the next forty years from 189 mm/year to 289 mm/year.
Gui, Alicia L; Yau, Hon Man; Thomas, Donald S; Chockalingam, Muthukumar; Harper, Jason B; Gooding, J Justin
2013-04-16
Supramolecular interactions between two surface modification species are explored to control the ratio and distribution of these species on the resultant surface. A binary mixture of aryl diazonium salts bearing oppositely charged para-substituents (either -SO3(-) or -N(+)(Me)3), which also reduce at different potentials, has been examined on glassy carbon surfaces using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Striking features were observed: (1) the two aryl diazonium salts in the mixed solution undergo reductive adsorption at the same potential which is distinctively less negative than the potential required for the reduction of either of the two aryl diazonium salts alone; (2) the surface ratio of the two phenyl derivatives is consistently 1:1 regardless of the ratio of the two aryl diazonium salts in the modification solutions. Homogeneous distribution of the two oppositely charged phenyl species on the modified surface has also been suggested by XPS survey spectra. Diffusion coefficient measurements by DOSY NMR and DFT based computation have indicated the association of the two aryl diazonium species in the solution, which has led to changes in the molecular orbital energies of the two species. This study highlights the potential of using intermolecular interactions to control the assembly of multicomponent thin layers.
Comprehensive data set of global land cover change for land surface model applications
NASA Astrophysics Data System (ADS)
Sterling, Shannon; Ducharne, AgnèS.
2008-09-01
To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.
Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan
2009-01-01
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.
Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan
2009-01-01
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.
Coulomb stress change of crustal faults in Japan for 21 years, estimated from GNSS displacement
NASA Astrophysics Data System (ADS)
Nishimura, T.
2017-12-01
Coulomb stress is one of the simplest index to show how the fault is close to a brittle failure (e.g., earthquake). Many previous studies used the Coulomb stress change (ΔCFS) to evaluate whether the fault approaches failure and successfully explained an earthquake triggered by previous earthquakes and volcanic sources. Most studies use a model of a half-space medium with given rheological properties, boundary conditions, dislocation, etc. to calculate ΔCFS. However, Ueda and Takahashi (2005) proposed to calculate DCFS directly from surface displacement observed by GNSS. There are 6 independent components of stress tensor in an isotropic elastic medium. On the surface of the half-space medium, 3 components should be zero because of no traction on the surface. This means the stress change on the surface is calculated from the surface strain change using Hooke's law. Although an earthquake does not occur on surface, the stress change on the surface may approximate that at a depth of a shallow crustal earthquake (e.g., 10 km) if the source is far from the point at which we calculate the stress change. We tested it by comparing ΔCFS from the surface displacement and that from elastic fault models for past earthquakes. We first estimate a strain change with a method of Shen et al.(1996 JGR) from surface displacement and then calculate ΔCFS for a targeted focal mechanism. Although ΔCFS in the vicinity of the source fault cannot be reproduced from the surface displacement, surface displacement gives a good approximation of ΔCFS in a region 50 km away from the source if the target mechanism is a vertical strike-slip fault. It suggests that GNSS observation can give useful information on a recent change of earthquake potential. We, therefore, calculate the temporal evolution of ΔCFS on active faults in southwest Japan from April 1996 using surface displacement at GNSS stations. We used parameters for the active faults used for evaluation of strong motion by the Earthquake Research Committee. When we use 0.4 for an effective frictional coefficient, ΔCFS increased at most active faults in the Kyushu region by up to 50 KPa for 21 years. On the other hand, ΔCFS did not always increase at active faults in the Kinki region.
Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state
NASA Astrophysics Data System (ADS)
Teufel, Bernardo; Sushama, Laxmi; Arora, Vivek K.; Verseghy, Diana
2018-03-01
The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961-2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.
NASA Astrophysics Data System (ADS)
Günther, F.; Grosse, G.; Ulrich, M.; Nitze, I.; Sachs, T.; Jones, B. M.
2017-12-01
The unique feature of permafrost in the Arctic is the presence of a large amount of ice below the earth surface. Thermal degradation and subsequent permafrost destabilization causes thaw subsidence and thermokarst development. Because these processes are difficult to detect due to the lack of timely and accurate elevation datasets they have received not much attention, despite their potentially global significance through the permafrost carbon feedback. Thanks to remote sensing pioneering works in Alaska and Siberia, widespread thaw subsidence has been documented and is increasingly perceived as a potentially widespread permafrost landscape response to contemporary climate change. Clearly, however, detailed local inventories are required to calibrate regional long and short-term assessments for measuring surface deformation due to permafrost thaw. The objective of our study is to analyze time series of repeat terrestrial, air-, and space borne laser scanning (rLiDAR) for quantification of land surface lowering due to permafrost thaw, which is poorly resolved in terms of recent landscape development in the Arctic. Our work aims at finding commonalities and differences of change or no change on ground-ice-rich primary surfaces that are preserved as uplands, which cover 15 to 20% of the Teshekpuk Lake Special Area on the Arctic Coastal Plain of northern Alaska. Our approach focuses on quantifying modern thaw subsidence and thermokarst rates with high spatial resolution data over several decades as well as high temporal resolution data of inter-annual intervals. Multi-annual measurements of rLiDAR over Arctic Alaska have been made by aircraft in 2016 and in 2015+2017 through on-site surveys during field expeditions. These in situ data serve as a basis for large scale surface change assessments using time series of photogrammetrically derived elevation data from very high resolution historical aerial photographs and modern satellite imagery. The synergistic data fusion approach enhances permafrost degradation monitoring and better resolves surface deformation associated with thaw subsidence. The novel datasets also provide insights into previously unrecognized patterns of rapid permafrost thaw and related interconnections.
NASA Technical Reports Server (NTRS)
Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.;
2013-01-01
Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate
NASA Astrophysics Data System (ADS)
Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an
2018-06-01
In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.
NASA Astrophysics Data System (ADS)
Tonkin, T. N.; Midgley, N. G.; Cook, S. J.; Graham, D. J.
2016-04-01
Ice-cored lateral-frontal moraines are common at the margins of receding high-Arctic valley glaciers, but the preservation potential of these features within the landform record is unclear. Recent climatic amelioration provides an opportunity to study the morphological evolution of these landforms as they de-ice. This is important because high-Arctic glacial landsystems have been used as analogues for formerly glaciated areas in the mid-latitudes. This study uses SfM (Structure-from-Motion) photogrammetry and a combination of archive aerial and UAV (unmanned aerial vehicle) derived imagery to investigate the degradation of an ice-cored lateral-frontal moraine at Austre Lovénbreen, Svalbard. Across the study area as a whole, over an 11-year period, the average depth of surface lowering was - 1.75 ± 0.89 m. The frontal sections of the moraine showed low or undetectable rates of change. Spatially variable rates of surface lowering are associated with differences in the quantity of buried ice within the structure of the moraine. Morphological change was dominated by surface lowering, with limited field evidence of degradation via back-wastage. This permits the moraine a greater degree of stability than previously observed at other sites in Svalbard. It is unclear whether the end point will be a fully stabilised ice-cored moraine, in equilibrium with its environment, or an ice-free lateral-frontal moraine complex. Controls on geomorphological change (e.g. topography and climate) and the preservation potential of the lateral-frontal moraine are discussed. The methods used by this research also demonstrate the potential value of SfM photogrammetry and unmanned aerial vehicles for monitoring environmental change and are likely to have wider applications in other geoscientific sub-disciplines.
NASA Astrophysics Data System (ADS)
Tedesco, M.; Alexander, P.; Porter, D. F.; Fettweis, X.; Luthcke, S. B.; Mote, T. L.; Rennermalm, A.; Hanna, E.
2017-12-01
Despite recent changes in Greenland surface mass losses and atmospheric circulation over the Arctic, little attention has been given to the potential role of large-scale atmospheric processes on the spatial and temporal variability of mass loss and partitioning of the GrIS mass loss. Using a combination of satellite gravimetry measurements, outputs of the MAR regional climate model and reanalysis data, we show that changes in atmospheric patterns since 2013 over the North Atlantic region of the Arctic (NAA) modulate total mass loss trends over Greenland together with the spatial and temporal distribution of mass loss partitioning. For example, during the 2002 - 2012 period, melting persistently increased, especially along the west coast, as a consequence of increased insulation and negative NAO conditions characterizing that period. Starting in 2013, runoff along the west coast decreased while snowfall increased substantially, when NAO turned to a more neutral/positive state. Modeled surface mass balance terms since 1950 indicate that part of the GRACE-period, specifically the period between 2002 and 2012, was exceptional in terms of snowfall over the east and northeast regions. During that period snowfall trend decreased to almost 0 Gt/yr from a long-term increasing trend, which presumed again in 2013. To identify the potential impact of atmospheric patterns on mass balance and its partitioning, we studied the spatial and temporal correlations between NAO and snowfall/runoff. Our results indicate that the correlation between summer snowfall and NAO is not stable during the 1950 - 2015 period. We further looked at changes in patterns of circulation using self organizing maps (SOMs) to identify the atmospheric patterns characterizing snowfall during different periods. We discuss potential implications for past changes and future GCM and RCM simulations.
Conformational changes of a calix[8]arene derivative at the air-water interface.
de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis
2005-03-10
The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.
NASA Technical Reports Server (NTRS)
Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)
1992-01-01
The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.
Fabrication of photocatalytically active vanadium oxide nanostructures via plasma route
NASA Astrophysics Data System (ADS)
Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ichino, Yusuke; Yoshida, Naoaki
2018-05-01
Plasma irradiation was used to create nanostructured vanadium oxide with potential commercial and industrial applications. Morphology changes were induced at the nano- and micro-meter scale, accompanied by the growth of helium nanobubbles. Micrometer-sized pillars, cube-shaped nanostructures, and fuzzy fiberform nanostructures were grown on the surface; the necessary conditions in terms of the incident ion energy and the surface temperature for those morphology changes were revealed. Hydrogen production experiments using a photocatalytic reaction with aqueous methanol solution were conducted on the fabricated samples. Enhanced H2 production was confirmed with the plasma irradiated nanostructured sample that had been oxidized in air atmosphere. Photocatalytically inactive vanadium oxide exhibited a high photocatalytic activity after nanostructurization of the surface by helium plasma irradiation.
Tapered optical fiber sensor based on localized surface plasmon resonance.
Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen
2012-09-10
A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
..., gasoline and propane. The NPDES permit will be for surface water discharges associated with the operation.... Since the FEIS was issued, the MHA Nation decided to change the refinery feedstock from synthetic crude oil to the Bakken formation crude. As a result of the feedstock change, EPA evaluated the potential...
Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo
2012-11-13
The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.
Milly, Paul C.D.; Dunne, Krista A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Case, Jonathan L.; Hain, Christopher R.; White, Kristopher; Wachter, J. Brent; Nauslar, Nicholas; MacNamara, Brittany
2018-01-01
Lightning initiated wildfires are only 16% of the total number of wildfires within the United States, but account for 56% of the acreage burned. One of the challenges with lightning-initiated wildfires is their ability to "holdover" which means smolder for up to 2+ weeks before breaking out into a full fledged fire. This work helps characterize the percentage of holdover events due to lightning, and helps quantify changes in the land surface characteristics to help understand trends in soil moisture and vegetation stress that potentially contribute to the fire breaking out into a full wildfire.
Decoding spoken words using local field potentials recorded from the cortical surface
NASA Astrophysics Data System (ADS)
Kellis, Spencer; Miller, Kai; Thomson, Kyle; Brown, Richard; House, Paul; Greger, Bradley
2010-10-01
Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave patients severely paralyzed but fully aware, in a condition known as 'locked-in syndrome'. Communication in this state is often reduced to selecting individual letters or words by arduous residual movements. More intuitive and rapid communication may be restored by directly interfacing with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke's area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing neural signals from independent neural processing assemblies. These results further support using cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas can be used to classify speech-related cortical rhythms and potentially restore communication to locked-in patients.
NASA Astrophysics Data System (ADS)
Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju
2016-09-01
Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.
Gaseous mercury fluxes in peatlands and the potential influence of climate change
NASA Astrophysics Data System (ADS)
Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.
2017-04-01
Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.
NASA Astrophysics Data System (ADS)
Sicard, Pierre; Anav, Alessandro; De Marco, Alessandra; Paoletti, Elena
2017-10-01
The impact of ground-level ozone (O3) on vegetation is largely under-investigated at the global scale despite large areas worldwide that are exposed to high surface O3 levels. To explore future potential impacts of O3 on vegetation, we compared historical and projected surface O3 concentrations simulated by six global atmospheric chemistry transport models on the basis of three representative concentration pathways emission scenarios (i.e. RCP2.6, 4.5, 8.5). To assess changes in the potential surface O3 threat to vegetation at the global scale, we used the AOT40 metric. Results point out a significant exceedance of AOT40 in comparison with the recommendations of UNECE for the protection of vegetation. In fact, many areas of the Northern Hemisphere show that AOT40-based critical levels will be exceeded by a factor of at least 10 under RCP8.5. Changes in surface O3 by 2100 worldwide range from about +4-5 ppb in the RCP8.5 scenario to reductions of about 2-10 ppb in the most optimistic scenario, RCP2.6. The risk of O3 injury for vegetation, through the potential O3 impact on photosynthetic assimilation, decreased by 61 and 47 % under RCP2.6 and RCP4.5, respectively, and increased by 70 % under RCP8.5. Key biodiversity areas in southern and northern Asia, central Africa and North America were identified as being at risk from high O3 concentrations.
Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming
2015-09-01
The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p < 0.0001). Significant hardness reduction was observed in the positive control and DIY group (p < 0.0001). Mean surface roughness changes (ΔRa) were significantly different among the groups (Kruskal-Wallis test, p < 0.0001). Surface roughness increased in the OTC group (p = 0.03) and in the positive control (p < 0.0001). The four whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.
NASA Astrophysics Data System (ADS)
Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.
2012-04-01
Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks
Restructuring of an Ir(210) electrode surface by potential cycling
Soliman, Khaled A; Kolb, Dieter M; Jacob, Timo
2014-01-01
Summary This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s−1 between −0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation. PMID:25247118
Restructuring of an Ir(210) electrode surface by potential cycling.
Soliman, Khaled A; Kolb, Dieter M; Kibler, Ludwig A; Jacob, Timo
2014-01-01
This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s(-1) between -0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation.
NASA Astrophysics Data System (ADS)
Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.
2018-05-01
Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.
NASA Astrophysics Data System (ADS)
Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.
2008-12-01
While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is exploring climate change projections and methods to assess potential impacts over the project's expected life. Following an initial qualitative risk assessment, quantitative climate scenarios were developed based on multiple coupled atmosphere-ocean general circulation model (AOGCM) simulations under a range of global emission scenarios. Projected temperature and precipitation changes were evaluated from 112 downscaled AOGCM projections. A Four scenarios were selected for detailed hydrologic evaluations using the Variable Infiltration Capacity (VIC) macroscale model. A quantile mapping procedure was applied to map future climatological period change statistics onto the long-term natural climate variability in the observed record. Simulated changes in runoff, river flow, evaporation, and evapotranspiration are used to generate adjustments to historical hydrology for assessment of potential changes to surface water availability, river water quality, riverine habitat, and Bay health. Projected temperature, precipitation, and atmospheric CO2 concentrations are used to estimate changes in agricultural demand. Sea level rise scenarios that include trends in Gulf Coast shelf subsidence are combined with changes in inflows to evaluate increased coastal erosion, upland migration of the estuary, and changes to the salinity regime. Results of the scenario-based analyses are being considered in the development of adaptive management strategies for future operations of the system and the proposed project.
NASA Astrophysics Data System (ADS)
Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping
2017-04-01
We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.
Long-Term Planetary Habitability and the Carbonate-Silicate Cycle.
Rushby, Andrew J; Johnson, Martin; Mills, Benjamin J W; Watson, Andrew J; Claire, Mark W
2018-05-01
The potential habitability of an exoplanet is traditionally assessed by determining whether its orbit falls within the circumstellar "habitable zone" of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013 ). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long-term concentration controlled by the balance between volcanic outgassing and the sequestration of CO 2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation, and biological (microbial) productivity. We developed a model that incorporates key aspects of Earth's short- and long-term biogeochemical carbon cycle to explore the potential changes in the CO 2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets result in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 and 2 R ⊕ , the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability. Key Words: Planets-Atmospheres-Carbon dioxide-Biogeochemistry. Astrobiology 18, 469-480.
NASA Technical Reports Server (NTRS)
Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.
1992-01-01
The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen; ...
2017-11-17
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Quantitative study of protein-protein interactions by quartz nanopipettes
NASA Astrophysics Data System (ADS)
Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin
2014-08-01
In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions. Electronic supplementary information (ESI) available: Determination of nanopipette diameter; surface modification scheme; numerical simulation; noise analysis; SPR experiments. See DOI: 10.1039/c4nr02964j
NASA Astrophysics Data System (ADS)
Rombouts, Isabelle; Beaugrand, Grégory; Dauvin, Jean-Claude
2012-03-01
Climate-induced changes in the distribution of species are likely to affect the functioning and diversity of marine ecosystems. Therefore, in economic and ecological important areas, such as the English Channel, projections of the future distributions of key species under changing environmental conditions are urgently needed. Ecological Niche Models (ENMs) have been applied successfully to determine potential distributions of species based on the information of the environmental niche of a species (sensu Hutchinson). In this study, the niches of two commercially exploited benthic species, Pecten maximus and Glycymeris glycymeris, and two ecologically important species, Abra alba and Ophelia borealis were derived using four contemporary hydrographic variables, i.e. sea surface temperature, sea surface salinity, water depth and sediment type. Consequently, using these ecological envelopes, the Non-Parametric Probalistic Ecological Niche model (NPPEN) was applied to calculate contemporary probabilities of occurrence for each species in the North East Atlantic and to predict potential re-distributions under the climate change scenario A2 for two time periods 2050-2059 and 2090-2099. Results show general northern displacements of the four benthic species from the English Channel into the North Sea and southern Norwegian coast. The projections mostly indicate a reduction of suitable habitat for benthic species with a notable disappearance of their distributions in the English Channel, except for A. alba. However, interpretations should be treated with caution since many uncertainties and assumptions are attached to ecological niche models in general. Furthermore, opening up potential habitats for benthic species does not necessarily imply that the species will actually occupy these sites in the future. The displacement and colonisation success of species are a function of many other non-climatic factors such as species life histories, dispersal abilities, adaptability and community interactions.
Application of MODFLOW’s farm process to California’s Central Valley
Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth
2008-01-01
landscape processes. The FMP provides coupled simulation of the ground-water and surface-water components of the hydrologic cycle for irrigated and non-irrigated areas. A dynamic allocation of ground-water recharge and ground-water pumping is simulated on the basis of residual crop-water demand after surface-water deliveries and root uptake from shallow ground water. The FMP links with the Streamflow Routing Package SFR1) to facilitate the simulated conveyance of surface-water deliveries. Ground-water Pumpage through both single-aquifer and multi-node wells, irrigation return flow, and variable irrigation efficiencies also are simulated by the FMP. The simulated deliveries and ground-water pumpage in the updated model reflect climatic differences, differences among defined water-balance regions, and changes in the waterdelivery system, during the 1961–2003 simulation period. The model is designed to accept forecasts from Global Climate Models (GCMs) to simulate the potential effects on surface-water delivery, ground-water pumpage, and ground-water storage in response to climate change. The model provides a detailed transient analysis of changes in ground-water availability in relation to climatic variability, urbanization, and changes in irrigated agriculture.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.
Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C
2017-03-10
Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
NASA Astrophysics Data System (ADS)
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.
2017-03-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Albedo feedbacks to future climate via climate change impacts on dryland biocrusts
Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.
2017-01-01
Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.
Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C
2011-05-01
Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.
Charge heterogeneity of surfaces: mapping and effects on surface forces.
Drelich, Jaroslaw; Wang, Yu U
2011-07-11
The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations
NASA Astrophysics Data System (ADS)
Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico
2015-12-01
Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.
Mesoporous Silicate Materials in Sensing
Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.
2008-01-01
Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810
Epitaxial graphene on SiC(0001): functional electrical microscopy studies and effect of atmosphere.
Kazakova, O; Burnett, T L; Patten, J; Yang, L; Yakimova, R
2013-05-31
Surface potential distribution, V(CPD), and evolution of atmospheric adsorbates on few and multiple layers (FLG and MLG) of graphene grown on SiC(0001) substrate have been investigated by electrostatic and Kelvin force microscopy techniques at T = 20-120 °C. The change of the surface potential distribution, ΔV(CPD), between FLG and MLG is shown to be temperature dependent. The enhanced ΔV(CPD) value at 120 °C is associated with desorption of adsorbates at high temperatures and the corresponding change of the carrier balance. The nature of the adsorbates and their evolution with temperature are considered to be related to the process of adsorption and desorption of the atmospheric water on MLG domains. We demonstrate that both the nano- and microscale wettability of the material are strongly dependent on the number of graphene layers.
Monitoring of rock glacier dynamics by multi-temporal UAV images
NASA Astrophysics Data System (ADS)
Morra di Cella, Umberto; Pogliotti, Paolo; Diotri, Fabrizio; Cremonese, Edoardo; Filippa, Gianluca; Galvagno, Marta
2015-04-01
During the last years several steps forward have been made in the comprehension of rock glaciers dynamics mainly for their potential evolution into rapid mass movements phenomena. Monitoring the surface movement of creeping mountain permafrost is important for understanding the potential effect of ongoing climate change on such a landforms. This study presents the reconstruction of two years of surface movements and DEM changes obtained by multi-temporal analysis of UAV images (provided by SenseFly Swinglet CAM drone). The movement rate obtained by photogrammetry are compared to those obtained by differential GNSS repeated campaigns on almost fifty points distributed on the rock glacier. Results reveals a very good agreements between both rates velocities obtained by the two methods and vertical displacements on fixed points. Strengths, weaknesses and shrewdness of this methods will be discussed. Such a method is very promising mainly for remote regions with difficult access.
Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.
2000-01-01
Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.
Biological soil crusts: Diminutive communities of potential global importance
Ferrenberg, Scott; Tucker, Colin; Reed, Sasha C.
2017-01-01
Biological soil crusts (biocrusts) are widespread, diverse communities of cyanobacteria, fungi, lichens, and mosses living on soil surfaces, primarily in drylands. Biocrusts can locally govern primary production, soil fertility, hydrology, and surface energy balance, with considerable variation in these functions across alternate community states. Further, these communities have been implicated in Earth system functioning via potential influences on global biogeochemistry and climate. Biocrusts are easily destroyed by disturbances and appear to be exceptionally vulnerable to warming temperatures and altered precipitation inputs, signaling possible losses of dryland functions with global change. Despite these concerns, we lack sufficient spatiotemporal data on biocrust function, cover, and community structure to confidently assess their ecological roles across the extensive dryland biome. Here, we present the case for cross-scale research and restoration efforts coupled with remote-sensing and modeling approaches that improve our collective understanding of biocrust responses to global change and the ecological roles of these diminutive communities at global scales.
Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F
2018-05-01
The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Janusek, D; Kania, M; Zaczek, R; Zavala-Fernandez, H; Maniewski, R
2014-04-01
The presence of T wave alternans (TWA) in the surface ECG signals has been recognized as a marker of electrical instability, and is hypothesized to be related to patients at increased risk for ventricular arrhythmias. In this paper we present a TWA simulation study. The TWA phenomenon was simulated by changing the duration of the ventricular heart cells action potential. The magnitude was calculated in the surface ECG with the use of the time domain method. The spatially concordant TWA, where during one heart beat all ventricular cells display a short-duration action potential and during the next beat they exhibit a long-duration action potential, as well as the discordant TWA, where at least one region is out of phase, was simulated. The vectocardiographic representation was employed. The obtained results showed a high level of T-loop pattern and location disturbances connected to the discordant TWA simulation in contrast to the concordant one. This result may be explained by the spatial heterogeneity of the ventricular repolarization process, which could be higher for the discordant TWA than for the concordant TWA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.
Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji
2011-01-01
Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.
Brown, David Wayne; Hem, John David
1984-01-01
Adsorption of solutes by solid mineral surfaces commonly influences the dissolved ionic composition of natural waters. A model based on electrical double-layer theory has been developed which appears to be capable of characterizing the surface chemical behavior of a natural fine-grained sediment containing mostly quartz and feldspar. This variable surface charge-variable surface potential (VSC-VSP) model differs from others in being capable of evaluating more closely the effect of total metal ion activity on the pH-dependent change in electrical potential at the solid surface. The model was tested using 10-4 molar solutions of lead and a silt-size fraction of sediment from the bed of Colma Creek, a small stream in urban northern San Mateo County, California. The average deviation of measured percent adsorption and values calculated from the model was 6.6 adsorption percent from pH 2.0 to pH 7.0.
Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role
Ruairuen, Watcharee
2015-01-01
As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/R net (67%), G/R net (6%), H/R net (27%) where LE is latent heat flux, R net is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123
Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.
Ruairuen, Watcharee; Fochesatto, Gilberto J; Sparrow, Elena B; Schnabel, William; Zhang, Mingchu; Kim, Yongwon
2015-01-01
As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems.
Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D
2015-12-02
We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.
Li, Jian-Hao; Zuehlsdorff, T J; Payne, M C; Hine, N D M
2015-05-14
We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a wide range of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.
NASA Astrophysics Data System (ADS)
Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.
2014-01-01
Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.
NASA Astrophysics Data System (ADS)
Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.
2013-01-01
We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.
Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M
2013-01-01
We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.
Huntington, Justin L.; Niswonger, Richard G.
2012-01-01
Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic models in climate change studies.
Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian
2003-01-01
We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.
Global dimming and brightening: A review
NASA Astrophysics Data System (ADS)
Wild, Martin
2009-05-01
There is increasing evidence that the amount of solar radiation incident at the Earth's surface is not stable over the years but undergoes significant decadal variations. Here I review the evidence for these changes, their magnitude, their possible causes, their representation in climate models, and their potential implications for climate change. The various studies analyzing long-term records of surface radiation measurements suggest a widespread decrease in surface solar radiation between the 1950s and 1980s ("global dimming"), with a partial recovery more recently at many locations ("brightening"). There are also some indications for an "early brightening" in the first part of the 20th century. These variations are in line with independent long-term observations of sunshine duration, diurnal temperature range, pan evaporation, and, more recently, satellite-derived estimates, which add credibility to the existence of these changes and their larger-scale significance. Current climate models, in general, tend to simulate these decadal variations to a much lesser degree. The origins of these variations are internal to the Earth's atmosphere and not externally forced by the Sun. Variations are not only found under cloudy but also under cloud-free atmospheres, indicative of an anthropogenic contribution through changes in aerosol emissions governed by economic developments and air pollution regulations. The relative importance of aerosols, clouds, and aerosol-cloud interactions may differ depending on region and pollution level. Highlighted are further potential implications of dimming and brightening for climate change, which may affect global warming, the components and intensity of the hydrological cycle, the carbon cycle, and the cryosphere among other climate elements.
Swenson, Darrell J.; Geneser, Sarah E.; Stinstra, Jeroen G.; Kirby, Robert M.; MacLeod, Rob S.
2012-01-01
The electrocardiogram (ECG) is ubiquitously employed as a diagnostic and monitoring tool for patients experiencing cardiac distress and/or disease. It is widely known that changes in heart position resulting from, for example, posture of the patient (sitting, standing, lying) and respiration significantly affect the body-surface potentials; however, few studies have quantitatively and systematically evaluated the effects of heart displacement on the ECG. The goal of this study was to evaluate the impact of positional changes of the heart on the ECG in the specific clinical setting of myocardial ischemia. To carry out the necessary comprehensive sensitivity analysis, we applied a relatively novel and highly efficient statistical approach, the generalized polynomial chaos-stochastic collocation method, to a boundary element formulation of the electrocardiographic forward problem, and we drove these simulations with measured epicardial potentials from whole-heart experiments. Results of the analysis identified regions on the body-surface where the potentials were especially sensitive to realistic heart motion. The standard deviation (STD) of ST-segment voltage changes caused by the apex of a normal heart, swinging forward and backward or side-to-side was approximately 0.2 mV. Variations were even larger, 0.3 mV, for a heart exhibiting elevated ischemic potentials. These variations could be large enough to mask or to mimic signs of ischemia in the ECG. Our results suggest possible modifications to ECG protocols that could reduce the diagnostic error related to postural changes in patients possibly suffering from myocardial ischemia. PMID:21909818
Land use and surface process domains on alpine hillslopes
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias
2015-04-01
Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental quality, services and hazards.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.
2017-12-01
Land grabbing, the acquisition of large areas of land by external entities, results from interactions of complex global economic, social, and political processes. These transactions are controversial because they can result in large-scale disruptions to historical land uses, including increased intensity of agricultural practices and significant conversions in land cover. These large-scale disruptions have the potential to impact surface water and energy balance because vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Because large-scale land acquisitions can impact local ecosystem services, it is important to document changes in terrestrial vegetation associated with these acquisitions to support the assessment of associated impacts on regional surface water and energy balance, spatiotemporal scales of those changes, and interactions and feedbacks with other processes, particularly in the atmosphere. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique during periods that bracket periods associated with significant. The Advanced very High Resolution Radiometer (AVHRR) sensor provides long-term continuous data that can document historical seasonal cycles of vegetation greenness. These data are augmented with analyses from Landsat multispectral data, which provides significantly higher spatial resolution. Here we quantify spatiotemporal changes in vegetation are associated with periods of significant land acquisitions in Mozambique. This analysis complements a suite of land-atmosphere modeling experiments designed to deduce potential changes in land surface water and energy budgets associated with these acquisitions. This work advance understanding of how telecouplings between global economic and political forcings and regional hydrology and climate.
Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.
Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan
2017-08-01
Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water storage capacities. The performance of both types stays limited to a maximum reduction of 2.4% compared to the baseline scenario, unless the coverage of vegetation and permeable surfaces is significantly increased as a 14.8% reduction is achieved by greening all roof surfaces. We conclude that the study provides empirical support for the effectiveness of urban green infrastructure as nature-based solution to stormwater regulation and assists planners and operators of sewage systems in selecting the most effective measures for implementation and estimation of their effects. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola
2018-02-01
In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Miao; Wang, Guiling; Chen, Haishan
Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less
Yu, Miao; Wang, Guiling; Chen, Haishan
2016-03-01
Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less
Probing surface charge potentials of clay basal planes and edges by direct force measurements.
Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe
2008-11-18
The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the surface element integrated DLVO model. The point of zero charge of the muscovite edge surface was estimated to be pH 7-8.
Recent Advances in the Sciences of Electrocatalysis.
1980-11-01
without substantial restructuring of the surface as well as chemical changes and contamination . Several research groups (30-35) have carried out... contamination . In the USA these include A. Hubbard (71,72) at the University of California at Santa Barbara, J.A. Joebstl (73,74) at Fort Belvoir, P... contamination ; and intro- duction of the Pt single crystal surfaces into the electrolyte at controlled potentials in the hydrogen adsorption region. In
Zhang, Jian; Kong, Ni; Niu, Jialin; Shi, Yongjuan; Li, Haiyan; Zhou, Yue; Yuan, Guangyin
2014-03-01
Fluoride treatment is a commonly used technique or pre-treatment to optimize the degradation kinetic and improve the biocompatibility of magnesium-based implant. The influence of changed surface properties and degradation kinetics on subsequent protein adsorption and cytocompatibility is critical to understand the biocompatibility of the implant. In this study, a patent magnesium alloy Mg-Nd-Zn-Zr alloy (JDBM) designed for cardiovascular stent application was treated by immersion in hydrofluoric acid. A 1.5 μm thick MgF2 layer was prepared. The surface roughness was increased slightly while the surface zeta potential was changed to a much more negative value after the treatment. Static contact angle test was performed, showing an increase in hydrophilicity and surface energy after the treatment. The MgF2 layer slowed down in vitro degradation rate, but lost the protection effect after 10 days. The treatment enhanced human albumin adsorption while no difference of human fibrinogen adsorption amount was observed. Direct cell adhesion test showed many more live HUVECs retained than bare magnesium alloy. Both treated and untreated JDBM showed no adverse effect on HUVEC viability and spreading morphology. The relationship between changed surface characteristics, degradation rate and protein adsorption, cytocompatibility was also discussed.
NASA Astrophysics Data System (ADS)
Hafen, K.; Wheaton, J. M.; Macfarlane, W.
2016-12-01
Damming of streams by North American Beaver (Castor canadensis) has been shown to provide a host of potentially desirable hydraulic and hydrologic impacts. Notably, increases in surface water storage and groundwater storage may alter the timing and delivery of water around individual dams and dam complexes. Anecdotal evidence suggests these changes may be important for increasing and maintaining baseflow and even helping some intermittent streams flow perennially. In the arid west, these impacts could be particularly salient in the face of climate change. However, few studies have examined the hydrologic impacts of beaver dams at scales large enough to provide insight for water management, in part because understanding or modeling these impacts at large spatial scales has been precluded by uncertainty concerning the number of beaver dams a drainage network can support. Using the recently developed Beaver Restoration Assessment Tool (BRAT) to identify possible densities and spatial configurations of beaver dams, we developed a model that predicts the area and volume of surface water storage associated with dams of various sizes, and applied this model at different dam densities across multiple watersheds (HUC12) in northern Utah. We then used model results as inputs to the MODFLOW groundwater model to identify the subsequent changes to shallow groundwater storage. The spatially explicit water storage estimates produced by our approach will be useful in evaluating potential beaver restoration and conservation, and will also provide necessary information for developing hydrologic models to specifically identify the effects beaver dams may have on water delivery and timing.
Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.
Wang, Jun; Chen, Zaiming; Chen, Baoliang
2014-05-06
The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.
Wichansky, P.S.; Steyaert, L.T.; Walko, R.L.; Waever, C.P.
2008-01-01
The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6??C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0??C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3-0.6??C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. Copyright 2008 by the American Geophysical Union.
Reduced arctic tundra productivity linked with landform and climate change interactions
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David
2018-01-01
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
Reduced arctic tundra productivity linked with landform and climate change interactions.
Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David
2018-02-05
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.
2018-04-01
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.
Preferred orientation of albumin adsorption on a hydrophilic surface from molecular simulation.
Hsu, Hao-Jen; Sheu, Sheh-Yi; Tsay, Ruey-Yug
2008-12-01
In general, non-specific protein adsorption follows a two-step procedure, i.e. first adsorption onto a surface in native form, and a subsequent conformational change on the surface. In order to predict the subsequent conformational change, it is important to determine the preferred orientation of an adsorbed protein in the first step of the adsorption. In this work, a method based on finding the global minimum of the interaction potential energy of an adsorbed protein has been developed to delineate the preferred orientations for the adsorption of human serum albumin (HSA) on a model surface with a hydrophilic self-assembled monolayer (SAM). For computational efficiency, solvation effects were greatly simplified by only including the dampening of electrostatic effects while neglecting contributions due to the competition of water molecules for the functional groups on the surface. A contour map obtained by systematic rotation of a molecule in conjunction with perpendicular motion to the surface gives the minimum interaction energy of the adsorbed molecule at various adsorption orientations. Simulation results show that for an -OH terminated SAM surface, a "back-on" orientation of HSA is the preferred orientation. The projection area of this adsorption orientation corresponds with the "triangular-side-on" adsorption of a heart shaped HSA molecule. The method proposed herein is able to provide results which are consistent with those predicted by Monte Carlo (MC) simulations with a substantially less computing cost. The high computing efficiency of the current method makes it possible to be implemented as a design tool for the control of protein adsorption on surfaces; however, before this can be fully realized, these methods must be further developed to enable interaction free energy to be calculated in place of potential energy, along with a more realistic representation of solvation effects.
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
NASA Astrophysics Data System (ADS)
Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru
2017-10-01
For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.
NASA Astrophysics Data System (ADS)
Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin
2018-06-01
The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.
Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas
2015-06-19
In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less
Surface potential extraction from electrostatic and Kelvin-probe force microscopy images
NASA Astrophysics Data System (ADS)
Xu, Jie; Chen, Deyuan; Li, Wei; Xu, Jun
2018-05-01
A comprehensive comparison study of electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) is conducted in this manuscript. First, it is theoretically demonstrated that for metallic or semiconductor samples, both the EFM and KPFM signals are a convolution of the sample surface potential with their respective transfer functions. Then, an equivalent point-mass model describing cantilever deflection under distributed loads is developed to reevaluate the cantilever influence on detection signals, and it is shown that the cantilever has no influence on the EFM signal, while it will affect the KPFM signal intensity but not change the resolution. Finally, EFM and KPFM experiments are carried out, and the surface potential is extracted from the EFM and KPFM images by deconvolution processing, respectively. The extracted potential intensity is well consistent with each other and the detection resolution also complies with the theoretical analysis. Our work is helpful to perform a quantitative analysis of EFM and KPFM signals, and the developed point-mass model can also be used for other cantilever beam deflection problems.
Arinaga, K; Rant, U; Tornow, M; Fujita, S; Abstreiter, G; Yokoyama, N
2006-06-20
We study the coadsorption of mercaptohexanol onto preimmobilized oligonucleotide layers on gold. Monitoring the position of the DNA relative to the surface by optical means directly shows the mercaptohexanol-induced desorption of DNA and the reorientation of surface-tethered strands in situ and in real time. By simultaneously recording the electrochemical electrode potential, we are able to demonstrate that changes in the layer conformation are predominantly of electrostatic origin and can be reversed by applying external bias to the substrate.
Di Rocco, Giulia; Ranieri, Antonio; Bortolotti, Carlo Augusto; Battistuzzi, Gianantonio; Bonifacio, Alois; Sergo, Valter; Borsari, Marco; Sola, Marco
2013-08-28
A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.
Swaminathan Iyer, K; Gaikwad, R M; Woodworth, C D; Volkov, D O; Sokolov, Igor
2012-06-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.
Iyer, K. Swaminathan; Gaikwad, R. M.; Woodworth, C. D.; Volkov, D. O.
2013-01-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p <0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, pre-malignant cells. PMID:22351422
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.
Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn
2017-10-01
Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
Wan, Ling-Shu; Xu, Zhi-Kang
2009-04-01
Fibrous membranes (nonwoven meshes) prepared via electrospinning technique have great potential in tissue engineering. This work is the first study on the behaviors of blood platelets at the nanostructured surface generated by electrospinning. Poly[acrylonitrile-co-(N-vinyl-2-pyrrolidone)] (PANCNVP) that shows excellent antiplatelet adhesion ability was directly electrospun onto its dense membrane surface. Polyacrylonitrile (PAN) samples were used as controls. The depth as well as the density of the nanofibers can be easily controlled. The results showed that the PANCNVP dense membrane certainly suppressed the activation and adhesion of platelets. However, whether the nanofibers and underlying membranes were composed of PAN or PANCNVP, the nanostructured surfaces promoted the activation, adhesion, and orientation of platelets. It was also found that, if the space between fibers was too large or the depth of fibers was too small, the nanostructured surface did not change the property of antiplatelet adhesion of PANCNVP. The promotion of activation and adhesion of platelets was obviously due to the presence of nanofibers, which induced the changes of surface topography and charge. Copyright 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Donovan, David; Buchenauer, Dean; Whaley, Josh; Friddle, Raymond; Wright, Graham
2014-10-01
Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We are exploring the potential for using a compact ECR plasma in situ with scanning tunneling microscopy (STM) to investigate the early stages of helium induced tungsten migration. Here we report on characterization of the plasma source for helium plasmas with a desired ion flux of ~1 × 1019 ions m-2 s-1 and the surface morphology changes seen on the exposed tungsten surfaces. Exposures of polished tungsten discs have been performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons are made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity; Reardon, Patrick N.; Chacon, Stephany S.
Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na+-montmorillonite (001), Ca2+-montmorillonite (001), goethite (100), and Na+-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, four-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvatedmore » structure without these mineral surfaces present. Over the Na+-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.« less
NASA Astrophysics Data System (ADS)
Jang, W.; Engel, B.; Chaubey, I.
2015-12-01
Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is hypothesized that: 1) long-term future hydrology and water quality in surface and subsurface drainage areas will be influenced by LULC and climate change, and 2) this approach will be useful to identify specific areas contributing the most pollutants to aquifers due to LULC and climate change.
Associations between motor unit action potential parameters and surface EMG features.
Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario
2017-10-01
The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.
Stratospheric aerosol modification by supersonic transport operations with climate implications
NASA Technical Reports Server (NTRS)
Toon, O. B.; Turco, R. P.; Pollack, J. B.; Whitten, R. C.; Poppoff, I. G.; Hamill, P.
1980-01-01
The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K.
NASA Astrophysics Data System (ADS)
Maksimowicz, M.; Masarik, M. T.; Brandt, J.; Flores, A. N.
2017-12-01
Land use/land cover (LULC) change directly impacts the partitioning of surface mass and energy fluxes. Regional-scale weather and climate are potentially altered by LULC if the resultant changes in partitioning of surface energy fluxes are significant enough to induce changes in the evolution of the planetary boundary layer and its interaction with the atmosphere above. Dynamics of land use, particularly those related to the social dimensions of the Earth System, are often simplified or not represented in regional land-atmosphere models or Earth System Models. This study explores the role of LULC change on a regional hydroclimate system, focusing on potential hydroclimate changes arising from timber harvesting due to a land grab boom in Mozambique. We also focus more narrowly at quantifying regional impacts on Gorongosa National Park, a nationally important economic and biodiversity resource in southeastern Africa. After nationalizing all land in 1975 after Mozambique gained independence, complex social processes, including an extended low intensity conflict civil war and economic hardships, led to an escalation of land use rights grants to foreign governments. Between 2004 and 2009, large tracts of land were requested for timber. Here we use existing tree cover loss datasets to more accurately represent land cover within a regional weather model. LULC in a region encompassing Gorongosa is updated at three instances between 2001 and 2014 using a tree cover loss dataset. We use these derived LULC datasets to inform lower boundary conditions in the Weather Research and Forecasting (WRF) model. To quantify potential hydrometeorological changes arising from land use change, we performed a factorial-like experiment by mixing input LULC maps and atmospheric forcing data from before, during, and after the land grab. Results suggest that the land grab has impacted microclimate parameters in a significant way via direct and indirect impacts on land-atmosphere interactions. Results of this study suggest that LULC change arising from regional social dynamics are a potentially understudied, yet important human process to capture in both regional reanalyses and climate change projections.
An adapted yield criterion for the evolution of subsequent yield surfaces
NASA Astrophysics Data System (ADS)
Küsters, N.; Brosius, A.
2017-09-01
In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.
NASA Astrophysics Data System (ADS)
Banzon, P. V. F.; Liu, G.; Forney, K.; Becker, E.; Arzayus, K. M.; Sun, L.
2016-02-01
The NOAA ¼° daily Optimum Interpolation (OI) Sea Surface temperature (SST), an in situ and satellite-based climate data record of SST available from 1981, was used to examine potential impacts of long-term temperature change on marine ecosystems. As a benthic example, historical heat stress in key tropical coral reef regions was calculated from the daily temperature data, using the NOAA Coral Reef Watch methodology. The regions with long-term ocean warming trend and experiencing more frequent thermal stress are identified as the regions with high vulnerability. While corals may be able to adapt to slow changes, no systematic adaptation has been reported with temperature increase over the past few decades. In contrast to the attached corals, marine mammals respond to changes in their environment by changing their distributions, often over large geographic areas. Habitat-based species distribution models can be developed to predict changes in the spatial distribution and abundance of marine mammals. OISST is a good predictor of the distribution of some marine mammal species, including Bryde's whales, false killer whales, and striped dolphins, and SST-based distribution models provide a foundation for projecting potential impacts of future temperature changes on marine mammals. Preliminary results from some of our research activities will be presented.
NASA Astrophysics Data System (ADS)
Ji, J.
2014-07-01
Primitive asteroids are remnant building blocks in the Solar System formation. They provide key clues for us to reach in-depth understanding of the process of planetary formation, the complex environment of early Solar nebula, and even the occurrence of life on the Earth. On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid (4179) Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root with a smaller lobe (head) and a larger lobe (body). Such bifurcated configuration is indicative of a contact binary origin for Toutatis. In addition, the images with a 3-m resolution or higher provide a number of new discoveries about this asteroid, such as an 800-meter basin at the end of the large lobe, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, indicating that Toutatis is probably a rubble-pile asteroid. The Chang'e-2 observations have provided significant new insights into the geological features and the formation and evolution of this asteroid. Moreover, a conceptual introduction to future Chinese missions to asteroids, such as the major scientific objectives, scientific payloads, and potential targets, will be briefly given. The proposed mission will benefit a lot from potential international collaboration in the future.
NASA Technical Reports Server (NTRS)
Kitabatake, M.; Fons, P.; Greene, J. E.
1991-01-01
The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.
Surface energy exchanges along a tundra-forest transition and feedbacks to climate
Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.
2005-01-01
Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All rights reserved.
Potential techniques for non-destructive evaluation of cable materials
NASA Astrophysics Data System (ADS)
Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik
This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.
A transonic-small-disturbance wing design methodology
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.; Campbell, Richard L.
1988-01-01
An automated transonic design code has been developed which modifies an initial airfoil or wing in order to generate a specified pressure distribution. The design method uses an iterative approach that alternates between a potential-flow analysis and a design algorithm that relates changes in surface pressure to changes in geometry. The analysis code solves an extended small-disturbance potential-flow equation and can model a fuselage, pylons, nacelles, and a winglet in addition to the wing. A two-dimensional option is available for airfoil analysis and design. Several two- and three-dimensional test cases illustrate the capabilities of the design code.
Michoński, Jakub; Walesiak, Katarzyna; Pakuła, Anna; Glinkowski, Wojciech; Sitnik, Robert
2016-01-01
Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST), systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI) was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %). This case study presents that surface topography may be suitable for monitoring of spinal curvature and posture change in pregnant women. The ionizing radiation studies are contraindicated during pregnancy. Surface topography data connected with information from pain level questionnaires allows to investigate the connection between changes in posture and back pain.
How does the Redi parameter for mesoscale mixing impact global climate in an Earth System Model?
NASA Astrophysics Data System (ADS)
Pradal, Marie-Aude; Gnanadesikan, Anand
2014-09-01
A coupled climate model is used to examine the impact of an increase in the mixing due to mesoscale eddies on the global climate system. A sixfold increase in the Redi mixing coefficient ARedi, which is within the admissible range of variation, has the overall effect of warming the global-mean surface air and sea surface temperatures by more than 1°C. Locally, sea surface temperatures increase by up to 7°C in the North Pacific and by up to 4°C in the Southern Ocean, with corresponding impacts on the ice concentration and ice extent in polar regions. However, it is not clear that the changes in heat transport from tropics to poles associated with changing this coefficient are primarily responsible for these changes. We found that the changes in the transport of heat are often much smaller than changes in long-wave trapping and short-wave absorption. Additionally, changes in the advective and diffusive transport of heat toward the poles often oppose each other. However, we note that the poleward transport of salt increases near the surface as ARedi increases. We suggest a causal chain in which enhanced eddy stirring leads to increased high-latitude surface salinity reducing salt stratification and water column stability and enhancing convection, triggering two feedback loops. In one, deeper convection prevents sea ice formation, which decreases albedo, which increases SW absorption, further increasing SST and decreasing sea ice formation. In the other, increased SST and reduced sea ice allow for more water vapor in the atmosphere, trapping long-wave radiation. Destratifying the polar regions is thus a potential way in which changes in ocean circulation might warm the planet.
NASA Astrophysics Data System (ADS)
Yao, J.; Tian, D.; Sun, L.; Wen, L.
2017-12-01
Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that the observed temporal changes of the inner core phases are caused by temporal changes of inner core surface. The temporal changes of inner core surface are found to occur in some localized regions within a short time scale (years to months), a phenomenon that should provide important clues to a potentially fundamental change of our understanding of core dynamics.
Conservation of myeloid surface antigens on primate granulocytes.
Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D
1983-02-01
Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.
Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2√3 ×2√3 ) surface
NASA Astrophysics Data System (ADS)
Wang, L. L.; Ma, X. C.; Ning, Y. X.; Ji, S. H.; Fu, Y. S.; Jia, J. F.; Kelly, K. F.; Xue, Q. K.
2009-04-01
Surface structure of the Sn islands 5 ML high, prepared on Si(111)-(2√3 ×2√3 )-Sn substrate, is investigated by low temperature scanning tunneling microscopy/spectroscopy. Due to the elastic strain relaxation in the islands, the in-plane unit cell structure distorts and the apparent height of the surface atoms varies regularly to form an overall modulated strip structure. The quantum well states are observed to depend on the relative position within this structure, which implies the change of the surface chemical potential induced by the elastic strain relaxation as well.
Simultaneous detection of refractive index and surface charges in nanolaser biosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Keisuke; Kishi, Yoji; Hachuda, Shoji
2015-01-12
The emission intensity of a GaInAsP photonic crystal nanolaser is affected by the pH of the solution, in which the nanolaser is immersed. This phenomenon can be explained by the change in the redox potential, which modifies the filling of electrons at surface states of the semiconductor and hence the nonradiative surface recombination. This phenomenon allows the nanolaser to simultaneously and independently detect the refractive index and electric charges near the surface on the basis of the variation in emission wavelength and intensity, respectively. This paper demonstrates this function through alternate deposition of charged polyelectrolytes and hybridization of deoxyribonucleic acids.
Ground-based optical atomic clocks as a tool to monitor vertical surface motion
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai
2015-09-01
According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.
NASA Astrophysics Data System (ADS)
Mohamadi, B.; Balz, T.
2018-04-01
Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.
Technical geothermal potential of urban subsurface influenced by land surface effects
NASA Astrophysics Data System (ADS)
Rivera, Jaime A.; Blum, Philipp; Bayer, Peter
2016-04-01
Changes in land use are probably one of the most notorious anthropogenic perturbations in urban environments. They significantly change the coupled thermal regime at the ground surface leading in most cases to increased ground surface temperatures (GST). The associated elevated vertical heat fluxes act at different scales and can influence the thermal conditions in several tens of meters in the subsurface. Urban subsurface thus often stores a higher amount of heat than less affected rural surroundings. The stored heat is regarded as a potential source of low-enthalpy geothermal energy to supply the heating energy demands in urban areas. In this work, we explore the technical geothermal potential of urban subsurface via ground coupled heat pumps with borehole heat exchangers (BHE). This is tackled by semi-analytical line-source equations. The commonly used response factors or g-functions are modified to include transient land surface effects. By including this additional source of heat, the new formulation allows to analyse the effect of pre-existing urban warming as well as different exploitation schemes fulfilling standard renewable and sustainable criteria. In our generalized reference scenario, it is demonstrated that energy gains for a single BHE may be up to 40 % when compared to non-urbanized conditions. For a scenario including the interaction of multiple BHEs, results indicate that it would be possible to supply between 6 % and 27 % of the heating demands in Central European urban settlements in a renewable way. The methodology is also applied to a study case of the city of Zurich, Switzerland, where the detailed evolution of land use is available.
Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane.
Sokolov, V S; Gavrilchik, A N; Kulagina, A O; Meshkov, I N; Pohl, P; Gorbunova, Yu G
2016-08-01
Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pivovarov, P. A.; Frolov, V. D.; Zavedeev, E. V.; Konov, V. I.
2017-12-01
We have studied the effect that the substitution of an organic substance (ethanol) for water adsorbate on a CVD graphene-SiO2/Si interface has on the laser-induced modification of graphene and graphene structures on the SiO2 film. Scanning probe microscopy has been used to analyse changes in the electronic properties of graphene structures on a hydrophilic substrate in the presence of ethanol and as a result of a laser-induced spatial redistribution of a water-alcohol adsorbate on the interface. It has been demonstrated experimentally that ethanol substitution for water adsorbate leads to an increase in the surface potential of the graphene, which is equivalent to a reduction in its work function with respect to the original level under normal conditions at a relative humidity of air from 30% to 60%. In the laser irradiation zone, we observe an additional increase in surface potential by 30-50 mV. Thus, ethanol makes it possible to tune the laser-induced electronic properties of graphene on a substrate. In addition, it has been shown that the intercalation of ethanol molecules leads to severe temporal instability of the physical properties of graphene structures produced by local laser irradiation. We have demonstrated the possibility of information ‘rewriting’ by low-intensity laser pulses in microregions with a changed surface potential in the presence of ethanol.
Ma, Zhao; Liu, Juan; Dick, Richard P; Li, Hui; Shen, Di; Gao, Yanzheng; Waigi, Michael Gatheru; Ling, Wanting
2018-05-08
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L -1 ) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L -1 ) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L -1 ) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Joseph L. Ganey; Scott C. Vojta
2012-01-01
Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...
Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Peng; Zhao, Liangyu; Wang, Wenxin; Leng, Jinsong; Jin, Peng
2015-04-01
This study demonstrates an easy way to change surface characteristics, the water contact angle on styrene based shape memory polymer (SMP) surface alters before and after cracking formation and recovery. The contact angle of water on the original SMP surface is about 85 degree, after coating with Al and then kneading from side face at glass transition temperature Tg, cracking appeared both on Al film and SMP; cooling down and removing the Al film, cracks remain on SMP surface while the contact angle reduced to about 25 degree. When reheated above Tg, the cracks disappeared, and the contact angle go back to about 85 degree. The thin Al film bonded on SMP surface was coated by spurting, that constrains the deformation of SMP. Heating above Tg, there are complex interactions between soft SMP and hard metal film under kneading. The thin metal film cracked first with the considerable deformation of soft polymer, whereafter, the polymer was ripped by the metal cracks thus polymer cracked as well. Cracks on SMP can be fixed cooling down Tg, while reheated, cracks shrinking and the SMP recovers to its original smooth surface. Surface topography changed dramatically while chemical composition showed no change during the deformation and recovery cycle, as presented by SEM and EDS. Furthermore, the wetting cycle is repeatable. This facile method can be easily extended to the hydropobicity/hydrophilicity modification of other stimuli-responsive polymers and put forward many potential applications, such as microfluidic switching and molecule capture and release.
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-01-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562
NASA Astrophysics Data System (ADS)
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-04-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.
Laser surface structuring of AZ31 Mg alloy for controlled wettability.
Gökhan Demir, Ali; Furlan, Valentina; Lecis, Nora; Previtali, Barbara
2014-06-01
Structured surfaces exhibit functional properties that can enhance the performance of a bioimplant in terms of biocompatibility, adhesion, or corrosion behavior. In order to tailor the surface property, chemical and physical methods can be used in a sequence of many steps. On the other hand, laser surface processing can provide a single step solution to achieve the designated surface function with the use of simpler equipment and high repeatability. This work provides the details on the surface structuring of AZ31, a biocompatible and biodegradable Mg alloy, by a single-step laser surface structuring based on remelting. The surfaces are characterized in terms of topography, chemistry, and physical integrity, as well as the effective change in the surface wetting behavior is demonstrated. The results imply a great potential in local or complete surface structuring of medical implants for functionalization by the flexible positioning of the laser beam.
Monitoring underground migration of sequestered CO2 using self-potential methods
NASA Astrophysics Data System (ADS)
Ishido, T.; Pritchett, J.; Tosha, T.; Nishi, Y.; Nakanishi, S.
2013-12-01
An appropriate monitoring program is indispensable for an individual geologic storage project to aid in answering various operational questions by detecting changes within the reservoir and to provide early warning of potential CO2 leakage through the caprock. Such a program is also essential to reduce uncertainties associated with reservoir parameters and to improve the predictive capability of reservoir models. Repeat geophysical measurements performed at the earth surface show particular promise for monitoring large subsurface volumes. To appraise the utility of geophysical techniques, Ishido et al. carried out numerical simulations of an aquifer system underlying a portion of Tokyo Bay and calculated the temporal changes in geophysical observables caused by changing underground conditions as computed by reservoir simulation (Energy Procedia, 2011). They used 'geophysical postprocessors' to calculate the resulting temporal changes in the earth-surface distributions of microgravity, self-potential (SP), apparent resistivity (from MT surveys) and seismic observables. The applicability of any particular method is likely to be highly site-specific, but these calculations indicate that none of these techniques should be ruled out altogether. Some survey techniques (gravity, MT resistivity) appear to be suitable for characterizing long-term changes, whereas others (seismic reflection, SP) are quite responsive to short term disturbances. The self-potential postprocessor calculates changes in subsurface electrical potential induced by pressure disturbances through electrokinetic coupling (Ishido & Pritchett, JGR 1999). In addition to electrokinetic coupling, SP anomalies may be generated by various other mechanisms such as thermoelectric coupling, electrochemical diffusion potential, etc. In particular, SP anomalies of negative polarity, which are frequently observed near wells, appear to be caused by an underground electrochemical mechanism similar to a galvanic cell known as a 'geobattery' (e.g. Sato & Mooney, Geophysics 1960; Bigalke & Grabner, Electrochimica Acta 1997): the metallic well casing acts as a vertical electronic conductor connecting regions of differing redox potential. Electrons flow upward though the casing from a deeper reducing environment to a shallower oxidizing environment, and simultaneously a compensating vertical flow of ions is induced in the surrounding formation to maintain charge neutrality. If the redox potential in the deeper region is then increased by injecting an oxidizing substance, the difference in redox potential between the shallower and deeper regions will be reduced, resulting in an SP increase near the wellhead. We will report the results of SP measurements during gas (CO2 or air) injection tests at various sites and numerical simulations carried out using the extended SP postprocessor, which incorporates the above 'geobattery' mechanism in addition to electrokinetic coupling, and discuss the possibility mentioned above more quantitatively.
Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam
Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.
2010-01-01
Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, H.
2017-12-01
The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.
Physical Mechanisms of Rapid Lake Warming
NASA Astrophysics Data System (ADS)
Lenters, J. D.
2016-12-01
Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.
Milly, P.C.D.; Dunne, K.A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.
NASA Astrophysics Data System (ADS)
Nagai, H.; Ohki, M.; Abe, T.
2017-12-01
Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.
Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.
1996-01-01
Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.
NASA Astrophysics Data System (ADS)
Lin, Bing; Stackhouse, Paul, Jr.; Sun, Wenbo; Hu, Yongxiang; Liu, Zhaoyan; Fan, Tai-Fang (Alice)
2013-06-01
Land surface hydrology is important to regional climate, ecosystem, agriculture, and even human activities. Changes in soil moisture can produce considerable impacts on socioeconomics. Analysis of assimilation model results, especially those from the Community Land Model, shows that soil moisture over Oklahoma region is continuously reduced from 1980 to 2009. The potential drying trend in the Oklahoma region is evaluated by observations taken during last three decades in this study. Satellite data from Global Precipitation Climatology Project exhibit a clear precipitation decrease in the Oklahoma region during the last decade or so compared with those of two or three decades ago. Accompanying with the precipitation variation, land surface net radiation and temperature over the region are found increases by satellite and/or in-situ measurements. These changes in regional climate conditions also likely result in reduction of regional evaporation and enhancement of sensible heat transport from land surface into the atmosphere as indicated in assimilated data. These observed and modeled evidences of the changes in regional water and energy cycles lead us to conclude that the soil moisture over the Oklahoma region was reduced during the last decade. This soil moisture drop could increase a risk in water shortage for agriculture in the Oklahoma state if the dry period continues. Further investigations on the drying in the Oklahoma State or even entire Southern Great Plains are needed to mitigate potential droughts, reductions in vegetation products, and other socioeconomic impacts.
Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E
2017-04-21
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.
2017-01-01
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
NASA Astrophysics Data System (ADS)
McCarter, R.; Kohfeld, K. E.; Schepanski, K.; Gill, T. E.
2016-12-01
In 2011 the Mid-Continental United States of America experienced its worst drought since the 1930s `Dust Bowl` and subsequent 1950s Southwest drought. Both the 1950s and 2010s droughts have had negative ecological and economic impacts the Mid-Continental US (i.e. crops, livestock, fuel, and transportation). Drought distribution, severity, and duration in North America are influenced by large-scale ocean-atmosphere climate variability as well as mesoscale land-surface forcing. Intense surface heating during a drought's summer months promotes dry convection and convergence thereby indirectly increasing dust emissions through increased surface-winds. Thus, drought years are frequently linked with increased dust storms and overall dust production that can affect visibility, crop production, and human health. Another important aspect that influences dust production is the potential change in behavior of surface winds during different drought and non-drought regimes over the past 60 years. This investigation compares historic and modern surface winds to determine if the wind-driven drought and dust producing conditions have changed. We examine hourly wind speed data from 79 meteorological stations distributed over the mid-continental USA (25° to 49°N,-116° to -93°W) for two drought periods (1954-1956, 2011-2013), and two relatively wet time periods (1983-1987, 1992-1998), as determined using the Palmer-Drought Severity Index. Our preliminary examination of annual and seasonal distributions of wind speed and show that wind speeds were statistically higher during the 1950s compared with the 2010s drought and wind speeds were also greater during the spring months compared to other seasons. Characterizing these winds is a first step in identifying if these changes are a result of land surface changes, general circulation changes associated with atmospheric anomalies, and/or climate change.
Stabilization of MgAl 2O 4 spinel surfaces via doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
Stabilization of MgAl2O4 spinel surfaces via doping
NASA Astrophysics Data System (ADS)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.
2016-07-01
Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.
Stabilization of MgAl 2O 4 spinel surfaces via doping
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...
2016-02-06
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
The influence of surface type on the absorbed radiation by a human under hot, dry conditions
NASA Astrophysics Data System (ADS)
Hardin, A. W.; Vanos, J. K.
2018-01-01
Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.
Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Minnus, Patrick
2006-01-01
Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of surface data, we observed the increasing trend of insolation from 1997 to 2000, but detected a significant decrease from 2001 to 2004. The variation of cloud fraction mirrors that of insolation with an overall increase of 1 percent per year. Under clear-sky conditions, water vapor changes have a greater impact on longwave flux than on insolation.
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy
Barhoumi, Aoune; Halas, Naomi J.
2013-01-01
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.
Barhoumi, Aoune; Halas, Naomi J
2011-12-15
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
Water adsorption on the P-rich GaP(100) surface: optical spectroscopy from first principles
NASA Astrophysics Data System (ADS)
May, Matthias M.; Sprik, Michiel
2018-03-01
The contact of water with semiconductors typically changes its surface electronic structure by oxidation or corrosion processes. A detailed knowledge—or even control of—the surface structure is highly desirable, as it impacts the performance of opto-electronic devices from gas-sensing to energy conversion applications. It is also a prerequisite for density functional theory-based modelling of the electronic structure in contact with an electrolyte. The P-rich GaP(100) surface is extraordinary with respect to its contact with gas-phase water, as it undergoes a surface reordering, but does not oxidise. We investigate the underlying changes of the surface in contact with water by means of theoretically derived reflection anisotropy spectroscopy (RAS). A comparison of our results with experiment reveals that a water-induced hydrogen-rich phase on the surface is compatible with the boundary conditions from experiment, reproducing the optical spectra. We discuss potential reaction paths that comprise a water-enhanced hydrogen mobility on the surface. Our results also show that computational RAS—required for the interpretation of experimental signatures—is feasible for GaP in contact with water double layers. Here, RAS is sensitive to surface electric fields, which are an important ingredient of the Helmholtz-layer. This paves the way for future investigations of RAS at the semiconductor–electrolyte interface.
NASA Astrophysics Data System (ADS)
Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia
2016-04-01
We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.
NASA Astrophysics Data System (ADS)
Jones, Morgan T.; Gislason, Sigurður R.
2008-08-01
Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.
Sunde, Michael G; He, Hong S; Hubbart, Jason A; Urban, Michael A
2018-08-15
Future urban development and climatic changes are likely to affect hydrologic regimes in many watersheds. Quantifying potential water regime changes caused by these stressors is therefore crucial for enabling decision makers to develop viable environmental management strategies. This study presents an approach that integrates mid-21st century impervious surface growth estimates derived from the Imperviousness Change Analysis Tool with downscaled climate model projections and a hydrologic model Soil and Water Assessment Tool to characterize potential water regime changes in a mixed-use watershed in central Missouri, USA. Results for the climate change only scenario showed annual streamflow and runoff decreases (-10.7% and -9.2%) and evapotranspiration increases (+6.8%), while results from the urbanization only scenario showed streamflow and runoff increases (+3.8% and +9.3%) and evapotranspiration decreases (-2.4%). Results for the combined impacts scenario suggested that climatic changes could have a larger impact than urbanization on annual streamflow, (overall decrease of -6.1%), and could largely negate surface runoff increases caused by urbanization. For the same scenario, climatic changes exerted a stronger influence on annual evapotranspiration than urbanization (+3.9%). Seasonal results indicated that the relative influences of urbanization and climatic changes vary seasonally. Climatic changes most greatly influenced streamflow and runoff during winter and summer, and evapotranspiration during summer. During some seasons the directional change for hydrologic processes matched for both stressors. This work presented a practicable approach for investigating the relative influences of mid-21st century urbanization and climatic changes on the hydrology of a representative mixed-use watershed, adding to a limited body of research on this topic. This was done using a transferrable approach that can be adapted for watersheds in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ye, Shuji; Li, Hongchun; Wei, Feng; Jasensky, Joshua; Boughton, Andrew P; Yang, Pei; Chen, Zhan
2012-04-11
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staten, Paul; Reichler, Thomas; Lu, Jian
Tropospheric circulation shifts have strong potential to impact surface climate. But the magnitude of these shifts in a changing climate, and the attending regional hydrological changes, are difficult to project. Part of this difficulty arises from our lack of understanding of the physical mechanisms behind the circulation shifts themselves. In order to better delineate circulation shifts and their respective causes, we decompose the circulation response into (1) the "direct" response to radiative forcings themselves, and (2) the "indirect" response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations,more » stratospheric ozone concentrations, and sea surface temperatures, we document the direct and indirect transient responses of the zonal mean general circulation, and investigate the roles of previously proposed mechanisms in shifting the midlatitude jet. We find that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward shifting jet, although we see some evidence for increasing equatorward wave reflection over the southern hemisphere in response to sea surface warming. Mechanisms for the northern hemisphere jet shift are less clear.« less
A method for examining temporal changes in cyanobacterial ...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here
Trends in entropy production during ecosystem development in the Amazon Basin.
Holdaway, Robert J; Sparrow, Ashley D; Coomes, David A
2010-05-12
Understanding successional trends in energy and matter exchange across the ecosystem-atmosphere boundary layer is an essential focus in ecological research; however, a general theory describing the observed pattern remains elusive. This paper examines whether the principle of maximum entropy production could provide the solution. A general framework is developed for calculating entropy production using data from terrestrial eddy covariance and micrometeorological studies. We apply this framework to data from eight tropical forest and pasture flux sites in the Amazon Basin and show that forest sites had consistently higher entropy production rates than pasture sites (0.461 versus 0.422 W m(-2) K(-1), respectively). It is suggested that during development, changes in canopy structure minimize surface albedo, and development of deeper root systems optimizes access to soil water and thus potential transpiration, resulting in lower surface temperatures and increased entropy production. We discuss our results in the context of a theoretical model of entropy production versus ecosystem developmental stage. We conclude that, although further work is required, entropy production could potentially provide a much-needed theoretical basis for understanding the effects of deforestation and land-use change on the land-surface energy balance.
Potential impacts of global warming on water resources in southern California.
Beuhler, M
2003-01-01
Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.
Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics
NASA Astrophysics Data System (ADS)
Chen, Y.; Veraverbeke, S.; Randerson, J. T.
2017-12-01
Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.
Use of EO-1 Hyperion Data for Inter-Sensor Calibration of Vegetation Indices
NASA Technical Reports Server (NTRS)
Huete, Alfredo; Miura, Tomoaki; Kim, HoJin; Yoshioka, Hiroki
2004-01-01
Numerous satellite sensor systems useful in terrestrial Earth observation and monitoring have recently been launched and their derived products are increasingly being used in regional and global vegetation studies. The increasing availability of multiple sensors offer much opportunity for vegetation studies aimed at understanding the terrestrial carbon cycle, climate change, and land cover conversions. Potential applications include improved multiresolution characterization of the surface (scaling); improved optical-geometric characterization of vegetation canopies; improved assessments of surface phenology and ecosystem seasonal dynamics; and improved maintenance of long-term, inter-annual, time series data records. The Landsat series of sensors represent one group of sensors that have produced a long-term, archived data set of the Earth s surface, at fine resolution and since 1972, capable of being processed into useful information for global change studies (Hall et al., 1991).
NASA Astrophysics Data System (ADS)
Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili
2016-04-01
This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.
Anthropogenic biomes: a key contribution to earth-system science
Lilian Alessa; F. Stuart Chapin
2008-01-01
Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.
Satellite mapping of crop water demand in California
USDA-ARS?s Scientific Manuscript database
Surface delivery of irrigation water in the San Joaquin Valley is becoming increasingly restricted due to urbanization and environmental regulation, and the strain is projected to worsen under most climate change scenarios. Remote sensing technology offers the potential to monitor crop evapotranspi...
US FRESHWATER RESOURCES IN THE COMING DECADES: AN INTEGRATED CLIMATE-HYDROLOGIC MODELING STUDY
The outcome is a dynamically and nationally consistent assessment of the range of potential changes in the hydrologic states (snow, soil moisture, groundwater level, river flow, wetland extent) and fluxes (precipitation, evapotranspiration, surface runoff, water table recha...
Graessel, Anke; Hauck, Stefanie M.; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B.; Suttner, Kathrin
2015-01-01
Naive CD4+ T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. PMID:25991687
NASA Astrophysics Data System (ADS)
Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.
2015-12-01
Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.
Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum
2017-07-01
The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.
Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa
2016-07-01
Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.
NASA Astrophysics Data System (ADS)
Boumenou, C. Kameni; Urgessa, Z. N.; Djiokap, S. R. Tankio; Botha, J. R.; Nel, J.
2018-04-01
In this study, cross-sectional surface potential imaging of n+/semi-insulating GaAs junctions is investigated by using amplitude mode kelvin probe force microscopy. The measurements have shown two different potential profiles, related to the difference in surface potential between the semi-insulating (SI) substrate and the epilayers. It is shown that the contact potential difference (CPD) between the tip and the sample is higher on the semi-insulating substrate side than on the n-type epilayer side. This change in CPD across the interface has been explained by means of energy band diagrams indicating the relative Fermi level positions. In addition, it has also been found that the CPD values across the interface are much smaller than the calculated values (on average about 25% of the theoretical values) and increase with the electron density. Therefore, the results presented in study are only in qualitative agreement with the theory.
Climate-induced tree mortality: Earth system consequences
Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.
2010-01-01
One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).
Study of Surface States at the Semiconductor/electrolyte Interface of Liquid-Junction Solar Cells.
NASA Astrophysics Data System (ADS)
Siripala, Withana P.
The existence of surface states at the semiconductor electrolyte interface of photoelectrochemical (PEC) cells plays a major role in determining the performance of the device in regard to the potential distribution and transport mechanisms of photogenerated carriers at the interface. We have investigated the n-TiO(,2)/electrolyte interface using three experimental techniques: relaxation spectrum analysis, photocurrent spectroscopy, and electrolyte electroreflectance (EER) spectroscopy. The effect of Fermi level pinning at the CdIn(,2)SE(,4)/aqueous-polysulfide interface was also studied using EER. Three distinct surface states were observed at the n-TiO(,2)/aqueous-electrolyte interface. The dominant state, which tails from the conduction band edge, is primarily responsible for the surface recombination of photocarriers at the interface. The second surface state, observed at 0.8 eV below the conduction band of TiO(,2), originates in the dark charge transfer intermediates (TiO(,2)-H). It is proposed that the sub-bandgap (SBG) photocurrent-potential behavior is a result of the mechanism of dynamic formation and annihilation of these surface states. The third surface state was at 1.3 eV below the conduction band of TiO(,2), and the SBG EER measurements show this state is "intrinsic" to the surface. These states were detected with SBG EER and impedance measurements in the presence of electrolytes that can adsorb on the surface of TiO(,2). Surface concentration of these states was evaluated with impedance measurements. EER measurements on a CdIn(,2)Se(,4)/polysulfide system have shown that the EER spectrum is sensitive to the surface preparation of the sample. The EER signal was quenched as the surface was driven to strong depletion, owing to Fermi level pinning at the interface in the presence of a high density of surface states. The full analysis of this effect enables us to measure the change in the flatband potential, as a function of the electrode potential, and also the energy distribution of these states.
Study of the tritium behavior on the surface of Li 2O by means of work function measurement
NASA Astrophysics Data System (ADS)
Yokota, Toshihiko; Suzuki, Atsushi; Yamaguchi, Kenji; Terai, Takayuki; Yamawaki, Michio
2000-12-01
In the present study, the work function change of Li 2O due to change of oxygen potential of sweep gas was investigated by measuring the contact potential difference (CPD) between Li 2O and Pt electrodes with a so-called `high temperature Kelvin probe'. The CPD change for Li 2O was generally insensitive to the oxygen partial pressure in the sweep gas. A similar insensitivity was also observed for LiAlO 2. Although the CPD change of Li 2O was about 200 mV when the oxygen partial pressure was changed by as much as 15 orders of magnitude, such was not the case for LiAlO 2. By comparing with the results obtained for other Li-bearing ceramics, it was estimated to be caused by the adsorption/desorption processes of water vapor contained in the sweep gas.
Dertli, Enes; Mayer, Melinda J; Narbad, Arjan
2015-02-04
The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens. Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses. This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.
Carreon, H; Barriuso, S; Lieblich, M; González-Carrasco, J L; Jimenez, J A; Caballero, F G
2013-04-01
Grit blasting is a surface plastic deformation technique aimed to increase the surface area available for bone/implant apposition, which contributes to improve fixation and mechanical stability of Ti-6Al-4V implants. Besides roughening, grit blasting also causes surface contamination with embedded grit particles and subtle subsurface microstructural changes that, although does not challenge their biocompatibility, might influence other surface dominated properties like corrosion and ion release. Additional benefits are expected due to the induced compressive residual stresses, hence enhancing fatigue strength. The net effect depends on the type of particles used for blasting, but also on the amount of the subsurface cold work associated to the severe surface plastic deformation. In this work we study the potential of the non-contacting and contacting thermoelectric power (TEP) measurements in the analysis of the global changes induced in the Ti6Al4V when blasting the alloy with Al2O3 or ZrO2 particles, which yields a coarse and a fine rough surface, respectively. To reveal the effect of residual stresses, a set of specimens were thermally treated. The study proves that the non-contacting technique is more sensitive to the presence of residual stresses, whereas the contact technique is strongly influenced by the grain size refinements, work hardening and changes in solute. Copyright © 2012 Elsevier B.V. All rights reserved.
Monitoring Seasonal Changes in Winery-Resident Microbiota.
Bokulich, Nicholas A; Ohta, Moe; Richardson, Paul M; Mills, David A
2013-01-01
During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions.
Monitoring Seasonal Changes in Winery-Resident Microbiota
Bokulich, Nicholas A.; Ohta, Moe; Richardson, Paul M.; Mills, David A.
2013-01-01
During the transformation of grapes to wine, wine fermentations are exposed to a large area of specialized equipment surfaces within wineries, which may serve as important reservoirs for two-way transfer of microbes between fermentations. However, the role of winery environments in shaping the microbiota of wine fermentations and vectoring wine spoilage organisms is poorly understood at the systems level. Microbial communities inhabiting all major equipment and surfaces in a pilot-scale winery were surveyed over the course of a single harvest to track the appearance of equipment microbiota before, during, and after grape harvest. Results demonstrate that under normal cleaning conditions winery surfaces harbor seasonally fluctuating populations of bacteria and fungi. Surface microbial communities were dependent on the production context at each site, shaped by technological practices, processing stage, and season. During harvest, grape- and fermentation-associated organisms populated most winery surfaces, acting as potential reservoirs for microbial transfer between fermentations. These surfaces harbored large populations of Saccharomyces cerevisiae and other yeasts prior to harvest, potentially serving as an important vector of these yeasts in wine fermentations. However, the majority of the surface communities before and after harvest comprised organisms with no known link to wine fermentations and a near-absence of spoilage-related organisms, suggesting that winery surfaces do not overtly vector wine spoilage microbes under normal operating conditions. PMID:23840468
The Central Valley Hydrologic Model
NASA Astrophysics Data System (ADS)
Faunt, C.; Belitz, K.; Hanson, R. T.
2009-12-01
Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial and temporal variability in climate, land-use changes, and available surface-water deliveries. For example, the droughts of 1976-77 and 1987-92 led to reduced streamflow and surface-water deliveries and increased evapotranspiration and groundwater pumpage throughout most of the valley, resulting in a decrease in groundwater storage. Since the mid-1990s, annual surface-water deliveries generally have exceeded groundwater pumpage, resulting in an increase or no change in groundwater storage throughout most of the valley. However, groundwater is still being removed from storage during most years in the southern part of the Central Valley. The CVHM is designed to be coupled with Global Climate Models to forecast the potential supply of surface-water deliveries, demand for groundwater pumpage, potential subsidence, and changes in groundwater storage in response to different climate-change scenarios. The detailed database on texture properties coupled with CVHM's ability to simulate the combined effects of recharge and discharge make CVHM particularly useful for assessing water-management plans, such as conjunctive water use, conservation of agriculture land, and land-use change. In the future, the CVHM could be used in conjunction with optimization models to help evaluate water-management alternatives to effectively utilize the available water resources.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe
2016-09-08
The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.
2014-01-01
New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.
Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions.
Saitakis, Michael; Gizeli, Electra
2012-02-01
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Bacterial Phosphating of Mild (Unalloyed) Steel
Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.
2000-01-01
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888
NASA Astrophysics Data System (ADS)
Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.
2016-12-01
Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.
NASA Astrophysics Data System (ADS)
Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern
2018-07-01
Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.
Santos-Cancel, Mirelis; Lazenby, Robert A; White, Ryan J
2018-06-22
In this manuscript, we employ the technique intermittent pulse amperometry (IPA) to interrogate equilibrium and kinetic target binding to the surface of electrochemical, aptamer-based (E-AB) sensors, achieving as fast as 2 ms time resolution. E-AB sensors comprise an electrode surface modified with a flexible nucleic acid aptamer tethered at the 3'-terminus with a redox-active molecule. The introduction of a target changes the conformation and flexibility of the nucleic acid, which alters the charge transfer rate of the appended redox molecule. Typically, changes in charge transfer rate within this class of sensor are monitored via voltammetric methods. Here, we demonstrate that the use of IPA enables the detection of changes in charge transfer rates (i.e., current) at times <100 μs after the application of a potential pulse. Changes in sensor current are quantitatively related to target analyte concentration and can be used to create binding isotherms. Furthermore, the application of IPA enables rapid probing of the electrochemical surface with a time resolution equivalent to as low as twice the applied potential pulse width, not previously demonstrated with traditional voltammetric techniques employed with E-AB sensors (alternating current, square wave, cyclic). To visualize binding, we developed false-color plots analogous to those used in the field of fast-scan cyclic voltammetry. The use of IPA is universal, as demonstrated with two representative small molecule E-AB sensors directed against the aminoglycoside antibiotic tobramycin and adenosine triphosphate (ATP). Intermittent pulse amperometry exhibits an unprecedented sub-microsecond temporal response and is a general method for measuring rapid sensor performance.
Harada, Yuhei; Noda, Junpei; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi
2016-01-01
A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA) measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG) solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning. PMID:26891299
Adamczyk, Andrew J.; Cao, Jie; Kamerlin, Shina C. L.; Warshel, Arieh
2011-01-01
The proposal that enzymatic catalysis is due to conformational fluctuations has been previously promoted by means of indirect considerations. However, recent works have focused on cases where the relevant motions have components toward distinct conformational regions, whose population could be manipulated by mutations. In particular, a recent work has claimed to provide direct experimental evidence for a dynamical contribution to catalysis in dihydrofolate reductase, where blocking a relevant conformational coordinate was related to the suppression of the motion toward the occluded conformation. The present work utilizes computer simulations to elucidate the true molecular basis for the experimentally observed effect. We start by reproducing the trend in the measured change in catalysis upon mutations (which was assumed to arise as a result of a “dynamical knockout” caused by the mutations). This analysis is performed by calculating the change in the corresponding activation barriers without the need to invoke dynamical effects. We then generate the catalytic landscape of the enzyme and demonstrate that motions in the conformational space do not help drive catalysis. We also discuss the role of flexibility and conformational dynamics in catalysis, once again demonstrating that their role is negligible and that the largest contribution to catalysis arises from electrostatic preorganization. Finally, we point out that the changes in the reaction potential surface modify the reorganization free energy (which includes entropic effects), and such changes in the surface also alter the corresponding motion. However, this motion is never the reason for catalysis, but rather simply a reflection of the shape of the reaction potential surface. PMID:21831831
NASA Astrophysics Data System (ADS)
Behling, Robert; Milewski, Robert; Chabrillat, Sabine; Völkel, Jörg
2016-04-01
The remote sensing analyses in the BMBF-SPACES collaborative project Geoarchives - Signals of Climate and Landscape Change preserved in Southern African Geoarchives - focuses on the use of recent and upcoming Earth Observation Tools for the study of climate and land use changes and its impact on the ecosystem. It aims at demonstrating the potential of recently available advanced optical remote sensing imagery with its extended spectral coverage and temporal resolution for the identification and mapping of sediment features associated with paleo-environmental archives as well as their recent dynamic. In this study we focus on the analyses of two ecosystems of major interest, the Kalahari salt pans as well as the lagoons at Namibia's west coast, that present high dynamic caused by combined hydrological and surface processes linked to climatic events. Multitemporal remote sensing techniques allow us to derive the recent surface dynamic of the salt pans and also provide opportunities to get a detailed understanding of the spatiotemporal development of the coastal lagoons. Furthermore spaceborne hyperspectral analysis can give insight to the current surface mineralogy of the salt pans on a physical basis and provide the intra pan distribution of evaporites. The soils and sediments of the Kalahari salt pans such as the Omongwa pan are a potentially significant storage of global carbon and also function as an important terrestrial climate archive. Thus far the surface distribution of evaporites have been only assessed mono-temporally and on a coarse regional scale, but the dynamic of the salt pans, especially the formation of evaporites, is still uncertain and poorly understood. For the salt pan analyses a change detection is applied using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) method to identify and investigate surface changes based on a Landsat time-series covering the period 1984-2015. Furthermore the current spatial distribution of evaporites is obtained using of EO-1 Hyperion hyperspectral imagery linked with geochemical field data. Results reveal a highly heterogeneous dynamic of the pan surface, which seems to be associated with varying surface crust types, halite or gypsum dominated. The lagoons at Namibia's west coast such as of Sandwich Harbour and Walvis Bay, are important habitats and also serve as a natural barrier to protect shipping and ports on an otherwise inhospitable coastline. Several studies have shown that these lagoons are highly dynamic and are known to have altered their shape in historical time. These changes occur due to sediment transport forced by aeolian processes or either by longshore or cross-shore drifts. A profound understanding of the spatiotemporal variations in the sand spits is of high relevance. In the lagoon environment the Landsat time-series is used to separate sand spits from open water. This way, changes in morphology of the sand spit are identified over time. The results reveal the presence of long-term and short-term changes as well as the presence of stable parts in the sand spits. These findings are linked to temporal patterns of forcing processes such as wind, tidal and ocean current data.
NASA Astrophysics Data System (ADS)
Shen, Q.; Cong, Z.; Lei, H.
2017-12-01
Climate change and underlying surface change are two main factors affecting the hydrological cycle. In respect of climate change, precipitation alters not only in magnitude, but also in intensity, which can be represented by the precipitation depth. To further understand the spatial variation of the impact of precipitation, potential evapotranspiration, precipitation depth as well as the water storage capacity, in this paper 224 catchments across China were analyzed applying the Choudhury-Porporato equation based on the Budyko hypothesis. The catchments distribute in 9 major basins in China and the study period is from 1960 to 2010. The results show that underlying surface is the major driving force of the change in runoff in the Songhua Basin, the Liaohe Basin and the Haihe Basin, while climate change dominates runoff change in other basins. Climate change causes runoff increase in most catchments, except for some catchments in the Yellow River Basin and the Yangtze River Basin. Specifically, change in precipitation depth induces runoff increase in almost each catchment and shows a remarkable contribution rate (14.8% on average, larger than 20% in 32% catchments). The contribution of precipitation depth has little correlation with the aridity index, while positively correlates to the significance of trend in precipitation depth. This study suggests that precipitation depth is an important aspect that should be taken into consideration in attribution of runoff change. The results can give a sight for future researches in attribution analysis within the Budyko framework.
Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve
2013-01-01
Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period 2010–2100 showed increases in maximum and minimum temperature over the scenario period. Scenarios of future precipitation did not show a monotonic trend like temperature. Uncertainty in the climate drivers increased over time for both temperature and precipitation. Separate calibration of the uncoupled groundwater and surface-water models did not provide a representative initial parameter set for coupled model calibration. A sequentially linked calibration, in which the uncoupled models were linked by means of utility software, provided a starting parameter set suitable for coupled model calibration. Even with sequentially linked calibration, however, transmissivity of the lower part of the aquifer required further adjustment during coupled model calibration to attain reasonable parameter values for evaporation rates off a small seepage lake (a lake with no appreciable surface-water outlets) with a long history of study. The resulting coupled model was well calibrated to most types of observed time-series data used for calibration. Daily stream temperatures measured during 2002 were successfully simulated with SNTEMP; the model fit was acceptable for a range of groundwater inflow rates into the streams. Forecasts of potential climate change scenarios showed growing season length increasing by weeks, and both potential and actual evapotranspiration rates increasing appreciably, in response to increasing air temperature. Simulated actual evapotranspiration rates increased less than simulated potential evapotranspiration rates as a result of water limitation in the root zone during the summer high-evapotranspiration period. The hydrologic-system response to climate change was characterized by a reduction in the importance of the snow-melt pulse and an increase in the importance of fall and winter groundwater recharge. The less dynamic hydrologic regime is likely to result in drier soil conditions in rainfed wetlands and uplands, in contrast to less drying in groundwater-fed systems. Seepage lakes showed larger forecast stage declines related to climate change than did drainage lakes (lakes with outlet streams). Seepage lakes higher in the watershed (nearer to groundwater divides) had less groundwater inflow and thus had larger forecast declines in lake stage; however, ground-water inflow to seepage lakes in general tended to increase as a fraction of the lake budgets with lake-stage decline because inward hydraulic gradients increased. Drainage lakes were characterized by less simulated stage decline as reductions in outlet streamflow of set losses to other water flows. Net groundwater inflow tended to decrease in drainage lakes over the scenario period. Simulated stream temperatures increased appreciably with climate change. The estimated increase in annual average temperature ranged from approximately 1 to 2 degrees Celsius by 2100 in the stream characterized by a high groundwater inflow rate and 2 to 3 degrees Celsius in the stream with a lower rate. The climate drivers used for the climate-change scenarios had appreciable variation between the General Circulation Model and emission scenario selected; this uncertainty was reflected in hydrologic flow and temperature model results. Thus, as with all forecasts of this type, the results are best considered to approximate potential outcomes of climate change.
NASA Astrophysics Data System (ADS)
Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.
2017-12-01
Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.
NASA Astrophysics Data System (ADS)
ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem
2017-07-01
Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.
Acousto-optical Transducer with Surface Plasmons
NASA Astrophysics Data System (ADS)
Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.
2018-04-01
The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.
Evaporation of tiny water aggregation on solid surfaces with different wetting properties.
Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping
2012-11-29
The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.
Time-lapse photogrammetry in geomorphic studies
NASA Astrophysics Data System (ADS)
Eltner, Anette; Kaiser, Andreas
2017-04-01
Image based approaches to reconstruct the earth surface (Structure from Motion - SfM) are establishing as a standard technology for high resolution topographic data. This is amongst other advantages due to the comparatively ease of use and flexibility of data generation. Furthermore, the increased spatial resolution led to its implementation at a vast range of applications from sub-mm to tens-of-km scale. Almost fully automatic calculation of referenced digital elevation models allows for a significant increase of temporal resolution, as well, potentially up to sub-second scales. Thereby, the setup of a time-lapse multi-camera system is necessary and different aspects need to be considered: The camera array has to be temporary stable or potential movements need to be compensated by temporary stable reference targets/areas. The stability of the internal camera geometry has to be considered due to a usually significantly lower amount of images of the scene, and thus redundancy for parameter estimation, compared to more common SfM applications. Depending on the speed of surface change, synchronisation has to be very accurate. Due to the usual application in the field, changing environmental conditions important for lighting and visual range are also crucial factors to keep in mind. Besides these important considerations much potential is comprised by time-lapse photogrammetry. The integration of multi-sensor systems, e.g. using thermal cameras, enables the potential detection of other processes not visible with RGB-images solely. Furthermore, the implementation of low-cost sensors allows for a significant increase of areal coverage and their setup at locations, where a loss of the system cannot be ruled out. The usage of micro-computers offers smart camera triggering, e.g. acquiring images with increased frequency controlled by a rainfall-triggered sensor. In addition these micro-computers can enable on-site data processing, e.g. recognition of increased surface movement, and thus might be used as warning system in the case of natural hazards. A large variety of applications are suitable with time-lapse photogrammetry, i.e. change detection of all sorts; e.g. volumetric alterations, movement tracking or roughness changes. The multi-camera systems can be used for slope investigations, soil studies, glacier observation, snow cover measurement, volcanic surveillance or plant growth monitoring. A conceptual workflow is introduced highlighting the limits and potentials of time-lapse photogrammetry.
Semiconductor nanocrystal-based phagokinetic tracking
Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne
2014-11-18
Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.
1983-05-20
an impurity-mobility reduction factor of about 100. We finally note that there is no indication of an emitter-base noise source due to oxide surface...in N2 + 1% 02, at 11000C, for 3 hrs. Different phosphorus surface concentrations have been realized using different in situ oxidation times (prior to...depletion change per unit area at the surface potential Ts = 1.5 OF , Cox and C are the oxide and the depletion capacitances per unit area
Impacts of climate variability and future climate change on harmful algal blooms and human health.
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-11-07
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.
Impacts of climate variability and future climate change on harmful algal blooms and human health
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-01-01
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675
NASA Astrophysics Data System (ADS)
Weller, Robert
2014-05-01
Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.
Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data
NASA Technical Reports Server (NTRS)
Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin
2004-01-01
We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.
Jenkins, K; Surminski, S; Hall, J; Crick, F
2017-10-01
Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of Land Use Land Cover Change on East Asian monsoon
NASA Astrophysics Data System (ADS)
Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.
2017-12-01
Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon regions. The LULCC caused reduction in water released into the atmosphere from the surface through a reduction in transpiration and canopy evaporation, and changes in magnitude and pattern of moisture flux convergence, resulting in precipitation changes, and reduced evaporation lead to warm surface temperature during the summer season.
Past epochs of significantly higher pressure atmospheres on Pluto
NASA Astrophysics Data System (ADS)
Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams
2017-05-01
Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.
Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli
2013-01-01
Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.
NASA Technical Reports Server (NTRS)
1994-01-01
With the growing awareness and debate over the potential changes associated with global climate change, the polar regions are receiving increased attention. Global cloud distributions can be expected to be altered by increased greenhouse forcing. Owing to the similarity of cloud and snow-ice spectral signatures in both the visible and infrared wavelengths, it is difficult to distinguish clouds from surface features in the polar regions. This work is directed towards the development of algorithms for the ASTER and HIRIS science/instrument teams. Special emphasis is placed on a wide variety of cloud optical property retrievals, and especially retrievals of cloud and surface properties in the polar regions.
NASA Astrophysics Data System (ADS)
Wang, YUAN; Hejuan, LIANG; Ping, HUANG; Xiaoqiang, AN; Jian, JIANG; Lili, CUI
2018-05-01
In the present study, the electret 5-fluorouracil patch was developed, the effective surface potential, piezoelectric coefficient d 33, open-circuit thermally stimulated discharge (TSD) current spectra and shear adhesion of the patch were measured. The drug release profile of the patch was determined by using high performance liquid chromatography method. A stable potential difference which was positively dependent on the surface potential of the electret was generated on two sides of the patch. The measurements of d 33 coefficient, TSD current spectra and adhesion performance showed that the electrostatic field of the electret could cause polarization and cohesive strength decreasing of the matrix molecules, change the distribution and interaction of the drug molecules in patch, therefore to increase the release of drug from the transdermal patch.
Electrochemical determination of the onset of bacterial surface adhesion
NASA Astrophysics Data System (ADS)
Jones, Akhenaton-Andrew; Buie, Cullen
2017-11-01
Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.
Testing the effect of water in crevasses on a physically based calving model
Cook, S.; Zwinger, T.; Rutt, I.C.; O’Neel, S.; Murray, T.
2012-01-01
A new implementation of a calving model, using the finite-element code Elmer, is presented and used to investigate the effects of surface water within crevasses on calving rate. For this work, we use a two-dimensional flowline model of Columbia Glacier, Alaska. Using the glacier's 1993 geometry as a starting point, we apply a crevasse-depth calving criterion, which predicts calving at the location where surface crevasses cross the waterline. Crevasse depth is calculated using the Nye formulation. We find that calving rate in such a regime is highly dependent on the depth of water in surface crevasses, with a change of just a few meters in water depth causing the glacier to change from advancing at a rate of 3.5 km a-1 to retreating at a rate of 1.9 km a-1. These results highlight the potential for atmospheric warming and surface meltwater to trigger glacier retreat, but also the difficulty of modeling calving rates, as crevasse water depth is difficult to determine either by measurement in situ or surface mass-balance modelling.
Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan
2018-02-22
We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.
Thomas, Brian C; Neale, Patrick J; Snyder, Brock R
2015-03-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.
Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre
2015-03-10
Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Xianglin; Li, Ting
2018-02-01
Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.
Dry Eye Syndrome in Menopause and Perimenopausal Age Group.
Peck, Travis; Olsakovsky, Leslie; Aggarwal, Shruti
2017-01-01
Dry eye disease (DED) is a multifactorial ocular surface disease that causes symptoms of ocular pain, discomfort, and decreased visual acuity. It significantly affects quality of life of patients. It is more prevalent in the females and is being specifically in the menopausal and postmenopausal age group. This is believed to be due to the changes in balance of sex hormones. Sex hormones - estrogens and androgens - influence production of all components of the tear film including aqueous layer, lipid, and mucin. Various mechanisms such as decrease in hormonal levels, shift in feedback mechanisms, and changes in receptor receptivity interplay to alter the ocular surface homeostasis and subsequently result in DED. Several studies have suggested potential role of hormone replacement therapy in menopause-associated dry eye symptoms. The purpose of this review is to help the non ophthalmic physicians about DED encountered commonly in menopausal age group. It is important for primary care physicians to understand DED due to its high prevalence, often debilitating symptoms and the potentially preventable and treatable nature of the condition.
Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears
NASA Astrophysics Data System (ADS)
Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming
2013-10-01
The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul
2011-01-01
City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.
Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotty, R.M.; Bauman, H.; Bennett, L.L.
1976-05-01
Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makesmore » an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected.« less
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi
2015-06-01
The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.
Lam, Billy; Zhang, Jihua; Guo, Chunlei
2017-08-01
In this study, we develop a simple but highly effective technique that generates a continuously varying polarization within a laser beam. This is achieved by having orthogonal linear polarizations on each side of the beam. By simply focusing such a laser beam, we can attain a gradually and continuously changing polarization within the entire Rayleigh range due to diffraction. To demonstrate this polarization distribution, we apply this laser beam onto a metal surface and create a continuously rotating laser induced periodic surface structure pattern. This technique provides a very effective way to produce complex surface structures that may potentially find applications, such as polarization modulators and metasurfaces.
Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Pokhrel, Y. N.
2017-12-01
The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.
A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants
NASA Astrophysics Data System (ADS)
George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.
2017-07-01
Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.
On the theory of electric double layer with explicit account of a polarizable co-solvent.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.
Human impacts on terrestrial hydrology: climate change versus pumping and irrigation
NASA Astrophysics Data System (ADS)
Ferguson, Ian M.; Maxwell, Reed M.
2012-12-01
Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.
NASA Astrophysics Data System (ADS)
Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.
2015-10-01
The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.
NASA Technical Reports Server (NTRS)
Ermakov, Y. A.; Averbakh, A. Z.; Yusipovich, A. I.; Sukharev, S.
2001-01-01
The dipole component of the membrane boundary potential, phi(d), is an integral parameter that may report on the conformational state of the lipid headgroups and their hydration. In this work, we describe an experimental approach to measurements of the dipole potential changes, Deltaphi(d), and apply it in studies of Be(2+) and Gd(3+) interactions with membranes composed of phosphatidylserine (PS), phosphatidylcholine (PC), and their mixtures. Deltaphi(d) is determined as the difference between the changes of the total boundary potential, phi(b), measured by the IFC method in planar lipid membranes and the surface potential, phi(s), determined from the electrophoretic mobility of liposomes. The Gouy-Chapman-Stern formalism, combined with the condition of mass balance, well describes the ion equilibria for these high-affinity cations. For the adsorption of Be(2+) and Gd(3+) to PC membranes, and of Mg(2+) to PS membranes, the values of Deltaphi(b) and Deltaphi(s) are the same, indicative of no change of phi(d). Binding of Gd(3+) to PS-containing membranes induces changes of phi(d) of opposite signs depending on the density of ionized PS headgroups in the bilayer. At low density, the induced Deltaphi(d) is negative (-30 mV), consistent with the effect of dehydration of the surface. At maximal density (pure PS, neutral pH), adsorption of Be(2+) or Gd(3+) induces an increase of phi(d) of 35 or 140 mV, respectively. The onset of the strong positive dipole effect on PS membranes with Gd(3+) is observed near the zero charge point and correlates with a six-fold increase of membrane tension. The observed phenomena may reflect concerted reorientation of dipole moments of PS headgroups as a result of ion adsorption and lipid condensation. Their possible implications to in-vivo effects of these high-affinity ions are discussed.
Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing
2015-11-01
Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.
NASA Astrophysics Data System (ADS)
Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.
2016-12-01
The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.
Jumper, Chanelle C; Arpin, Paul C; Turner, Daniel B; McClure, Scott D; Rafiq, Shahnawaz; Dean, Jacob C; Cina, Jeffrey A; Kovac, Philip A; Mirkovic, Tihana; Scholes, Gregory D
2016-11-17
In this work, we demonstrate the use of broad-band pump-probe spectroscopy to measure femtosecond solvation dynamics. We report studies of a rhodamine dye in methanol and cryptophyte algae light-harvesting proteins in aqueous suspension. Broad-band impulsive excitation generates a vibrational wavepacket that oscillates on the excited-state potential energy surface, destructively interfering with itself at the minimum of the surface. This destructive interference gives rise to a node at a certain probe wavelength that varies with time. This reveals the Gibbs free-energy changes of the excited-state potential energy surface, which equates to the solvation time correlation function. This method captures the inertial solvent response of water (∼40 fs) and the bimodal inertial response of methanol (∼40 and ∼150 fs) and reveals how protein-buried chromophores are sensitive to the solvent dynamics inside and outside of the protein environment.
NASA Astrophysics Data System (ADS)
Beers, A.
2016-12-01
As a response to ongoing climate change, many species have started to shift their ranges poleward and toward higher elevations and mountain environments are predicted to experience especially rapid climatic changes. Because of this, there is likely a greater risk of habitat loss and local extinctions for species at high elevations compared to species at lower elevations. Among those potentially threatened habitat specialists is the American pika (Ochotona princeps), a climate sensitive indicator of climate change effects which may already be experiencing climate driven extirpations. Pikas are considered sentinels, indicators of greater ecosystem change. Changes in their distribution speaks to changes in availability of resources they require and shifts in the environment. Pika presence is closely tied to sub-surface ice features that act as a temperature buffer and water source. Those sub-surface ice features are critical in water cycling and long-term water storage and drive downstream hydrological and ecological processes. Understanding how this species responds to climate change therefore provides a model to inform landscape level conservation and management decisions. Pikas may be particularly vulnerable in parts of Colorado, including Rocky Mountain National Park (ROMO) and the Niwot Ridge LTER (NWT), where they may face population collapse as habitat suitability and connectivity both decline in response to various possible climate change scenarios, in large part because of cold stress and declining functional connectivity. Because of their potential role as an ecosystem indicator, their risk for decline, and how limitations to their survival likely vary across their range, management groups can use place based models of habitat suitability for pikas or other sentinel species in designing long term monitoring protocols to detect ecosystem responses to climate change. In this project we used remotely sensed data, occupancy surveys, and a random tessellation stratification to design a protocol for ROMO and NWT that best suits those environments. We also demonstrate the efficacy of habitat models based on remote sensing and their potential application toward tracking ecosystem change and species range shifts.
NASA Astrophysics Data System (ADS)
Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.
2014-12-01
The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that <15% of the glaciers in Bhutan account for >90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that, despite the complex glacier heterogeneity in the region, the regional meltwater resources are controlled by a very small percentage of the glaciers, and that these glaciers are particularly vulnerable to changes in temperature.
Time variable eddy mixing in the global Sea Surface Salinity maxima
NASA Astrophysics Data System (ADS)
Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.
2016-12-01
Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.
Synchronous NDVI and Surface Air Temperature Trends in Newfoundland: 1982 to 2003
NASA Technical Reports Server (NTRS)
Neigh, C. S. R.; Tucker, C. J.; Townshend, J. R. G.
2007-01-01
The northern regions of the earth are currently experiencing rapid change in temperature and precipitation. This region contains -40% of carbon stored in the world's soil which has accumulated from the last ice age (over 10,000 years ago). The carbon has remained to this point due to reduced decomposition from the short growing seasons and subfreezing temperatures. The influence of climate upon plant growth can have significant consequences to the carbon cycle balance in this region and could potentially alter and release this long term store of carbon to the atmosphere, resulting in a negative feedback enhancing climate warming. These changes have the potential to alter ecosystems processes, which impact human well being. This paper investigated a global satellite record of increases in vegetation growth from 1982 to 2003 developed at GSFC. It was found that, Newfoundland's vegetation growth during the 1990s exceeded global measurements. A number of potential causes were investigated to understand the mechanistic environmental drivers that could alter the productivity of this ecosystem. Possible drivers of change included: human influence of land use change on vegetation cover; changes in precipitation; temperature; cloud cover; snow cover; and growing season length. We found that humans had a minimal influence on vegetation growth in Newfoundland. Less than 6% of the island was logged during the investigation. We found a strong correlation of vegetation growth to a lengthening of the growing season of -9 and -17 days from 1982-1990 and 1991-1999. A distinct drop in plant growth and air temperature was found in 1990 to 1991 from the volcanic eruption of Mt. Pinatubo that reduced global surface air temperatures. These results document the influences of air temperature upon northern forest plant growth and the cooling effects of major volcanic eruptions in this ecological system.
NASA Astrophysics Data System (ADS)
Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.
2016-02-01
"Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.
Microbiota fingerprints lose individually identifying features over time.
Wilkins, David; Leung, Marcus H Y; Lee, Patrick K H
2017-01-09
Humans host individually unique skin microbiota, suggesting that microbiota traces transferred from skin to surfaces could serve as forensic markers analogous to fingerprints. While it is known that individuals leave identifiable microbiota traces on surfaces, it is not clear for how long these traces persist. Moreover, as skin and surface microbiota change with time, even persistent traces may lose their forensic potential as they would cease to resemble the microbiota of the person who left them. We followed skin and surface microbiota within households for four seasons to determine whether accurate microbiota-based matching of individuals to their households could be achieved across long time delays. While household surface microbiota traces could be matched to the correct occupant or occupants with 67% accuracy, accuracy decreased substantially when skin and surface samples were collected in different seasons, and particularly when surface samples were collected long after skin samples. Most OTUs persisted on skin or surfaces for less than one season, indicating that OTU loss was the major cause of decreased matching accuracy. OTUs that were more useful for individual identification persisted for less time and were less likely to be deposited from skin to surface, suggesting a trade-off between the longevity and identifying value of microbiota traces. While microbiota traces have potential forensic value, unlike fingerprints they are not static and may degrade in a way that preferentially erases features useful in identifying individuals.
Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone
Milly, Paul C.D.
1996-01-01
The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.
The Redox Potentials of n-type Colloidal Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Carroll, Gerard Michael
This thesis presents investigations for two related fields of semiconductor electrochemistry: redox potential determination of colloidal semiconductor nanocrystals, and mechanistic analysis of photoelectrochemical water oxidation with electrocatalyst modified mesostructured hematite photoanodes. Adapting electrochemical techniques to colloidal semiconductor nanocrystals (SC NC) is a long-standing challenge for this class of materials. Subject to a variety of complications, standard voltammetric techniques are not as straight forward for SC NCs as they are for small molecules. As a result, researchers have developed creative ways to side step these complications by coupling electrochemistry with NC spectroscopy. Chapter 1 discusses the fundamental electronic and spectroscopic properties of SC NCs at different redox states. We present a brief review of some of the notable studies employing SC NC spectroelectrochemistry that provide the theoretical and experimental context for the following chapters. Chapter 2 presents an investigation on NC redox potentials of photochemically reduced colloidal ZnO NCs using a solvated redox-indicator method. In the one electron limit, conduction band electrons show evidence of quantum confinement, but at higher electron concentrations, the NC Fermi-level becomes dependent on the electron density across all NC sizes. Chapter 3 outlines a poteniometric method for monitoring the NC redox potentials in situ. NC redox potentials for ZnO and CdSe are measured, and as predicted from these measurements, spontaneous electron transfer from CdSe to ZnO is demonstrated. Chapter 4 details the impact of the surface of CdSe NCs on the NC redox potentials. We find that the ratio of Cd2+:Se2- on the surface of CdSe NCs changes both the NC band edge potentials, as well as the maximum electron density achievable by photochemical reduction. These changes are proposed to arise from interfacial dipoles when CdSe has a Se2-rich surface. Chapters 5 and 6 examine the mechanistic pathways of solar water oxidation on Co-Pi modified alpha-Fe2O3 photoanodes. A rate constant analysis of water oxidation and electron-hole recombination paired with the identification of surface-morphology-dependent current-voltage characteristics reveal new insights into the role of the semiconductor/electrocatalyst interface on the overall solar water oxidation efficiency. These findings reconcile disparate observations from previous studies.
Designed Proteins as Optimized Oxygen Carriers for Artificial Blood
2013-02-01
to the lower energy for electron transfer when coupled to a proton transfer from water (3). Thus we set out to compare the rate of solvent...binding affinities and reduction potentials are the sole result of differences in internal electric fields in these proteins wrought by the surface...serving as the source of potential energy for the hexa- to penta-coordinate conformational change, and one in which the b-position glutamates from
Minimizing soil impacts from forest operations
Emily A. Carter
2011-01-01
Several studies were conducted by Forest Service researchers and University and Industrial collaborators that investigated the potential for lessening soil surface disturbances and compaction in forest operations through modifications of machine components or harvest systems. Specific machine modifications included change in tire size, use of dual tire systems,...
Previous studies have found the significant role of impurities (i.e., silicon, phosphorus) in the aggregation and sedimentation of TiO2 nanoparticles in water environment. However, it is not understood whether dissolution of the impurities potentially impacts the environment or t...
Charge optimized many body (COMB) potentials for Pt and Au.
Antony, A C; Akhade, S A; Lu, Z; Liang, T; Janik, M J; Phillpot, S R; Sinnott, S B
2017-06-07
Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1}〈1 [Formula: see text] 0〉 are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of [Formula: see text] eV for Pt and [Formula: see text] eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping
2015-01-01
Background: In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2 emission (DOE/EIA "Annual Energy Outlook 2013"). Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climate zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE. Establishing the current variability and potential changes to future building climate zones is very important for increasing the energy efficiency of buildings and reducing energy costs and emissions in the future. Objectives: This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the DOE/ASHRAE building climate zone maps and then using MERRA to define the last 30 years of variability in climate zones for the Continental US. An atmospheric assimilation is a global atmospheric model optimized to satellite, atmospheric and surface in situ measurements. Using MERRA as a baseline, we then evaluate the latest Climate Model Inter-comparison Project (CMIP) climate model Version 5 runs to assess potential variability in future climate zones under various assumptions. Methods: We derive DOE/ASHRAE building climate zones using surface and temperature data products from MERRA. We assess these zones using the uncertainties derived by comparison to surface measurements. Using statistical tests, we evaluate variability of the climate zones in time and assess areas in the continental US for statistically significant trends by region. CMIP 5 produced a data base of over two dozen detailed climate model runs under various greenhouse gas forcing assumptions. We evaluate the variation in building climate zones for 3 different decades using an ensemble and quartile statistics to provide an assessment of potential building climate zone changes relative to the uncertainties demonstrated using MERRA. Findings and Conclusions: These results show that there is a statistically significant increase in the area covered by warmer climate zones and a tendency for a reduction of area in colder climate zones in some limited regions. The CMIP analysis shows that models vary from relatively little building climate zone change for the least sensitive and conservation assumptions to a warming of at most 3 zones for certain areas, particularly the north central US by the end of the 21st century.
Tanhehco, Yvette C.; Cuker, Adam; Rudnick, Michael; Sachais, Bruce S.
2015-01-01
BACKGROUND Heparin-induced thrombocytopenia (HIT) develops as a result of platelet (PLT) activation by anti-platelet factor 4 (PF4)/heparin complex antibodies. Despite repeated exposure to heparin, patients undergoing chronic intermittent hemodialysis (HD) rarely develop HIT. We investigated the possibility that HD decreases/removes PF4 from PLT surfaces and/or plasma, thereby disfavoring immune complex formation as a mechanism of protection against HIT. MATERIALS AND METHODS We enrolled 20 patients undergoing chronic HD at the Penn Presbyterian Medical Center. Blood samples were drawn before, during and after treatment in the presence and absence of heparin. PF4, PF4/heparin antibody, heparin, and P-selectin levels were measured. RESULTS No patients demonstrated clinical symptoms of HIT. PLT surface PF4 levels decreased and plasma PF4 levels increased concurrently with increase in plasma heparin concentration. In the absence of heparin, PLT surface and plasma PF4 levels were unchanged. Anti-PF4/heparin antibodies, which were non-functional by the serotonin release assay, were detectable in 8 patients. PLT surface P-selectin levels did not change during treatment. CONCLUSIONS Removal of PLT surface and/or plasma PF4 as a mechanism of protection against HIT in patients undergoing HD is not supported by the results of our study, although the transient decrease in PLT surface PF4 in the presence of large amounts of heparin remains a candidate mechanism. The small sample size, single type of dialyzer membrane, and early sampling time points may have led to the inability to detect changes in PF4 levels. Future studies should explore other potential protective mechanisms. PMID:23305841
Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)
NASA Astrophysics Data System (ADS)
Gonzalez, P. J.
2015-12-01
New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to engineering and meteorological monitoring problems.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; ...
2015-09-28
Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OH ad and alkali metal cations (AMC n+), we were able to gain deep insights into the multiple roles that OH ad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OH ad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OH ad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formationmore » of a “true oxide” layer at higher electrode potentials. Although OH ad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li +) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na +, without changing the product distribution for the reaction. This cation effect suggests that OH ad—Li +(H 2O) x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Finally, our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.« less
LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaverka, J.; Richterová, I.; Pavlu, J.
2016-07-10
Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itselfmore » and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.« less
Nguyen, Tinh; Petersen, Elijah J.; Pellegrin, Bastien; Gorham, Justin M.; Lam, Thomas; Zhao, Minhua; Sung, Lipiin
2017-01-01
Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed. PMID:28603293
NASA Astrophysics Data System (ADS)
MicicBatka, Vesna; Schmid, Doris; Marko, Florian; Velimirovic, Milica; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo
2015-04-01
Successful emplacement of nanoscale zero-valent iron (nZVI) within the contaminated source zone is a prerequisite for the use of nZVI technology in groundwater remediation. Emplacement of nZVI is influenced i.e., by the injection technique and the injection velocity applied, as well as by the mobility of nZVI in the subsurface. Whereas processes linked to the injection can be controlled by the remediation practitioners, the mobility of nZVI in the subsurface remains limited. Even though mobility of nZVI is somewhat improved by surface coating with polyelectrolytes, it is still greatly affected by the groundwater composition and physical and chemical heterogeneities of aquifer grains. In order to promote mobility of nZVI it is needed to alter the surface charge heterogeneities of aquifer grains. Modifying the aquifer grain's surfaces by means of polyelectrolyte coating is an approach proposed to increase the overall negative surface charge of the aquifer grain surfaces, hinder deposition of nZVI onto aquifer grains, and finally promote nZVI mobility. In this study the effect of different polyelectrolytes on the nZVI mobility is tested in natural sands deriving from real brownfield sites that are proposed to be remediated using the nZVI technology. Sands collected from brownfield sites were characterized in terms of grain size distribution, mineralogical and chemical composition, and organic carbon content. Furthermore, surface charge of these sands was determined in both, low- and high ionic strength background solutions. Finally, changes of the sand's surface charges were examined after addition of the proposed aquifer modifiers, lignin sulfonate and humic acid. Surface charge of brownfield sands in low ionic strength background solution is more negative compared to that in high ionic strength background solution. An increase in negative surface potential of brownfield sand was recorded when aquifer modifiers were applied in a background solution with low ionic strength, indicating their potential to improve nZVI mobility under comparable environmental conditions. In contrast, no significant change of the surface potential of brownfield sand was observed when aquifer modifiers were applied in a background solution with high ionic strength. The potential of the aquifer modifiers to promote the mobility of nZVI was furthermore tested in flow-through columns, starting with the one filled with natural quartz sand with rough surface, low ionic strength background solutions and pre-injecting lignin sulfonate in concentration of 50 mg/L. The preliminary results showed that the pre-injection of lignin sulfonate does increase mobility of nZVI under this experimental condition. Further mobility tests will be carried out in order to elucidate the potential of the aquifer modifiers to promote the mobility of nZVI in sands with a complex mineralogy and in the background solutions with varying ionic strength, in order to account for the condition that resemble those at polluted sites. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517.
López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L
2006-06-20
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.
Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Leland Timothy
2003-06-01
The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.
Viszwapriya, Dharmaprakash; Prithika, Udayakumar; Deebika, Sundaresan; Balamurugan, Krishnaswamy; Pandian, Shunmugiah Karutha
2016-10-01
Biofilm formation of Group A Streptococcus (GAS) is recognized as an important virulent determinant. The present study reports the antibiofilm potential of seaweed (Gracilaria gracilis) surface associated Bacillus subtilis against GAS. Purification revealed 2,4-Di-tert-butyl-phenol (DTBP) as the active principle. DTBP exhibited a dose dependent antibiofilm activity against GAS (SF370 & six different clinical M serotypes). Microscopic analysis revealed changes in cell surface architecture and reduced thickness upon DTBP treatment. Results of extracellular polymeric substance quantification, microbial adhesion to hydrocarbon assay and fourier transform infrared spectroscopic analysis suggested that DTBP probably interferes with the initial adhesion stage of biofilm formation cascade. Reduction in hyaluronic acid synthesis goes in unison with blood survival assay wherein, increased susceptibility to phagocytosis was observed. In vivo studies using Caenorhabditis elegans manifested the reduction in adherence and virulence, which prompts further investigation of the potential of DTBP for the treatment of GAS infections. Copyright © 2016 Elsevier GmbH. All rights reserved.
Regional Climate Implications of Large-scale Cultivation of Biofuel Crops
NASA Astrophysics Data System (ADS)
Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.
2008-12-01
Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.
Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes
NASA Astrophysics Data System (ADS)
Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.
2008-12-01
Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.
Modeling grain size adjustments in the downstream reach following run-of-river development
NASA Astrophysics Data System (ADS)
Fuller, Theodore K.; Venditti, Jeremy G.; Nelson, Peter A.; Palen, Wendy J.
2016-04-01
Disruptions to sediment supply continuity caused by run-of-river (RoR) hydropower development have the potential to cause downstream changes in surface sediment grain size which can influence the productivity of salmon habitat. The most common approach to understanding the impacts of RoR hydropower is to study channel changes in the years following project development, but by then, any impacts are manifest and difficult to reverse. Here we use a more proactive approach, focused on predicting impacts in the project planning stage. We use a one-dimensional morphodynamic model to test the hypothesis that the greatest risk of geomorphic change and impact to salmon habitat from a temporary sediment supply disruption exists where predevelopment sediment supply is high and project design creates substantial sediment storage volume. We focus on the potential impacts in the reach downstream of a powerhouse for a range of development scenarios that are typical of projects developed in the Pacific Northwest and British Columbia. Results indicate that increases in the median bed surface size (D50) are minor if development occurs on low sediment supply streams (<1 mm for supply rates 1 × 10-5 m2 s-1 or lower), and substantial for development on high sediment supply streams (8-30 mm for supply rates between 5.5 × 10-4 and 1 × 10-3 m2 s-1). However, high sediment supply streams recover rapidly to the predevelopment surface D50 (˜1 year) if sediment supply can be reestablished.
Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods
NASA Technical Reports Server (NTRS)
Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.
2015-01-01
While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.