Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei
NASA Astrophysics Data System (ADS)
Dehghani, V.; Alavi, S. A.; Benam, Kh.
2018-05-01
By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.
Influence of deformed surface diffuseness on alpha decay half-lives of actinides and lanthanides
NASA Astrophysics Data System (ADS)
Dahmardeh, S.; Alavi, S. A.; Dehghani, V.
2017-07-01
By using semiclassical WKB method and taking into account the Bohr-Sommerfeld quantization condition, the alpha decay half-lives of some deformed lanthanide (with 151 ≤ A ≤ 160 and 66 ≤ Z ≤ 73) and rare-earth nuclei (with 217 ≤ A ≤ 261 and 92 ≤ Z ≤ 104) have been calculated. The effective potential has been considered as sum of deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential. The influence of deformed surface diffuseness on the potential barrier, transmission coefficient at each angle, assault frequency, and alpha decay half-lives has been investigated. Good agreement between calculated half-lives with deformed surface diffuseness and experiment is observed. Relative differences between calculated half-lives with deformed surface diffuseness and with constant surface diffuseness were significant.
Repulsive Casimir-Polder potential by a negative reflecting surface
NASA Astrophysics Data System (ADS)
Yuan, Qi-Zhang
2015-07-01
We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.
Surface alpha backgrounds from plate-out of radon progeny
NASA Astrophysics Data System (ADS)
Perumpilly, Gopakumar; Guiseppe, Vincente
2012-03-01
Low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. We have developed a model of the radon progeny implantation using Geant4 simulations based on the low energy nuclear recoil process. We explore the alpha decays from implanted progeny on a Ge crystal as potential backgrounds for a neutrinoless double-beta decay experiment. Results of the simulations validated with alpha spectrum measurement of plate-out samples will be presented.
Gut, Ian M; Bartlett, Ryan A; Yeager, John J; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul; Karaolis, David K R
2016-05-01
Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul
2016-01-01
ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis. The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. PMID:26944839
Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation
NASA Astrophysics Data System (ADS)
Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun
2017-06-01
The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.
Applications of a global nuclear-structure model to studies of the heaviest elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, P.; Nix, J.R.
1993-10-01
We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.
A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface
NASA Technical Reports Server (NTRS)
Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.
1991-01-01
The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.
Exponentially decaying interaction potential of cavity solitons
NASA Astrophysics Data System (ADS)
Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco
2018-03-01
We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.
2007-04-01
The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.
NASA Astrophysics Data System (ADS)
McAlister, J. J.; Smith, B. J.; Török, A.
Atmospheric particulates (dust) deposited on buildings are a complex chemical and mineralogical mixture including transition metal oxide matrices that act as a significant medium for further surface reactions and provide efficient sinks for pollutants, especially in urban environments. Once deposited, their transformation by reaction with specific and often highly localised environmental conditions across building facades is related to their degree of exposure to rain-wash. These transformations are central to the soiling of buildings and the availability of salts that lead to stone decay. To investigate these relationships, samples were collected at high and low elevations and under highly and moderately sheltered conditions from a building located on a busy arterial route in Budapest. Selective extraction analysis highlights the mobility/availability of Fe, Mn, Zn, Cu, Cr, Pb and Ni, plus water-soluble Ca 2+, Mg 2+, Na +, K +, Cl -, SO 42- and NO 3- and their potential to take part in surface reactions that could enhance stone decay. Concentrations of water-soluble Fe, Mn and Zn in sheltered dust reach 126 mg kg -1, 80 mg kg -1 and 220 mg kg -1 respectively and under acidic environmental conditions and high humidity, similar levels of Mn and significantly higher concentrations of Fe, Zn, Cu and Pb may be released from the exchangeable/carbonate phase making these metals potentially available to catalyse surface reactions. Sulphate and nitrate coatings plus sufficient moisture increase metal solubility and active sites may be regenerated allowing mobile transition metals to become available and possibly catalyse further surface reactions.
McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N
2018-03-30
A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2 nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
NASA Astrophysics Data System (ADS)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration
2018-03-01
A new method to tag the barium daughter in the double-beta decay of
Nonadiabatic dynamics of electron scattering from adsorbates in surface bands
NASA Astrophysics Data System (ADS)
Gumhalter, Branko; Šiber, Antonio; Buljan, Hrvoje; Fauster, Thomas
2008-10-01
We present a comparative study of nonadiabatic dynamics of electron scattering in quasi-two-dimensional surface band which is induced by the long-range component of the interactions with a random array of adsorbates. Using three complementary model descriptions of intraband spatiotemporal propagation of quasiparticles that go beyond the single-adsorbate scattering approach we are able to identify distinct subsequent regimes of evolution of an electron following its promotion into an unoccupied band state: (i) early quadratic or ballistic decay of the initial-state survival probability within the Heisenberg uncertainty window, (ii) preasymptotic exponential decay governed by the self-consistent Fermi golden rule scattering rate, and (iii) asymptotic decay described by a combined inverse power-law and logarithmic behavior. The developed models are applied to discuss the dynamics of intraband adsorbate-induced scattering of hot electrons excited into the n=1 image-potential band on Cu(100) surface during the first stage of a two-photon photoemission process. Estimates of crossovers between the distinct evolution regimes enable assessments of the lifespan of a standard quasiparticle behavior and thereby of the range of applicability of the widely used Fermi golden rule and optical Bloch equations approach for description of adsorbate-induced quasiparticle decay and dephasing in ultrafast experiments.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
NASA Astrophysics Data System (ADS)
Unger, Jakob; Lagarto, Joao; Phipps, Jennifer; Ma, Dinglong; Bec, Julien; Sorger, Jonathan; Farwell, Gregory; Bold, Richard; Marcu, Laura
2017-02-01
Multi-Spectral Time-Resolved Fluorescence Spectroscopy (ms-TRFS) can provide label-free real-time feedback on tissue composition and pathology during surgical procedures by resolving the fluorescence decay dynamics of the tissue. Recently, an ms-TRFS system has been developed in our group, allowing for either point-spectroscopy fluorescence lifetime measurements or dynamic raster tissue scanning by merging a 450 nm aiming beam with the pulsed fluorescence excitation light in a single fiber collection. In order to facilitate an augmented real-time display of fluorescence decay parameters, the lifetime values are back projected to the white light video. The goal of this study is to develop a 3D real-time surface reconstruction aiming for a comprehensive visualization of the decay parameters and providing an enhanced navigation for the surgeon. Using a stereo camera setup, we use a combination of image feature matching and aiming beam stereo segmentation to establish a 3D surface model of the decay parameters. After camera calibration, texture-related features are extracted for both camera images and matched providing a rough estimation of the surface. During the raster scanning, the rough estimation is successively refined in real-time by tracking the aiming beam positions using an advanced segmentation algorithm. The method is evaluated for excised breast tissue specimens showing a high precision and running in real-time with approximately 20 frames per second. The proposed method shows promising potential for intraoperative navigation, i.e. tumor margin assessment. Furthermore, it provides the basis for registering the fluorescence lifetime maps to the tissue surface adapting it to possible tissue deformations.
A radon daughter deposition model for low background experiments
NASA Astrophysics Data System (ADS)
Rielage, K.; Guiseppe, V. E.; Mastbaum, A.; Elliott, S. R.; Hime, A.
2009-05-01
The next generation low-background detectors operating underground, such as dark matter searches and neutrinoless double-beta decay, aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly ^222Rn) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of ^210Pb on sensitive locations of a detector. An understanding of the potential surface contamination will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of daughters onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon daughters on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model will be presented.
NASA Astrophysics Data System (ADS)
Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant
2014-10-01
Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; ...
2018-03-26
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone
Milly, Paul C.D.
1996-01-01
The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.
Long-term stability of nanostructured thin film electrodes at operating potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Rajesh K.; Peng, J. -K.; Wang, X.
Long-term stability of nanostructured thin film (NSTF) catalysts at operating potentials has been investigated. Compared to high surface area Pt/C catalysts, NSTF electrodes show 20–50x smaller F – emission rates (FER) because of their high specific activity for oxygen reduction reaction (ORR), but are susceptible to poisoning by the products of membrane degradation because of their low electrochemically active surface area (ECSA). The observed voltage degradation rates at potentials corresponding to 1–1.5 A/cm 2 current density are much higher than the allowable 13–14 μV/h. Although F – is not itself responsible for performance decay, cumulative fluoride release (CFR) is amore » good marker for catalyst surface contamination. The observed performance decay is not only due to loss of active Pt sites but also adsorbed impurities impeding ORR kinetics. There is a strong correlation between measured CFR and observed decrease in specific ORR activity and limiting current density and increase in mass transfer overpotentials. Furthermore, the correlations indicate that the target of <10% lifetime performance degradation can be achieved by restricting CFR in NSTF electrodes to 0.7 μg/cm 2, as may be possible with more stable membranes, higher surface area NSTF catalysts, and cell operation at lower temperatures and higher relative humidities.« less
Long-term stability of nanostructured thin film electrodes at operating potentials
Ahluwalia, Rajesh K.; Peng, J. -K.; Wang, X.; ...
2017-02-09
Long-term stability of nanostructured thin film (NSTF) catalysts at operating potentials has been investigated. Compared to high surface area Pt/C catalysts, NSTF electrodes show 20–50x smaller F – emission rates (FER) because of their high specific activity for oxygen reduction reaction (ORR), but are susceptible to poisoning by the products of membrane degradation because of their low electrochemically active surface area (ECSA). The observed voltage degradation rates at potentials corresponding to 1–1.5 A/cm 2 current density are much higher than the allowable 13–14 μV/h. Although F – is not itself responsible for performance decay, cumulative fluoride release (CFR) is amore » good marker for catalyst surface contamination. The observed performance decay is not only due to loss of active Pt sites but also adsorbed impurities impeding ORR kinetics. There is a strong correlation between measured CFR and observed decrease in specific ORR activity and limiting current density and increase in mass transfer overpotentials. Furthermore, the correlations indicate that the target of <10% lifetime performance degradation can be achieved by restricting CFR in NSTF electrodes to 0.7 μg/cm 2, as may be possible with more stable membranes, higher surface area NSTF catalysts, and cell operation at lower temperatures and higher relative humidities.« less
NASA Astrophysics Data System (ADS)
Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang
2017-11-01
A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.
Influence of surface potential on the adhesive force of radioactive gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida
2013-08-23
Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Marchetti, Barbara; Karsili, Tolga N V; Ashfold, Michael N R; Domcke, Wolfgang
2016-07-27
The availability of non-radiative decay mechanisms by which photoexcited molecules can revert to their ground electronic state, without experiencing potentially deleterious chemical transformation, is fundamental to molecular photostability. This Perspective Article combines results of new ab initio electronic structure calculations and prior experimental data in an effort to systematise trends in the non-radiative decay following UV excitation of selected families of heterocyclic molecules. We start with the prototypical uni- and bicyclic molecules phenol and indole, and explore the structural and photophysical consequences of incorporating progressively more nitrogen atoms within the respective ring structures en route to the DNA bases thymine, cytosine, adenine and guanine. For each of the latter, we identify low energy non-radiative decay pathways via conical intersections with the ground state potential energy surface accessed by out-of-plane ring deformations. This is followed by summary descriptions and illustrations of selected rival (electron driven H atom transfer) non-radiative excited state decay processes that demand consideration once the nucleobases are merely components in larger biomolecular systems like nucleosides, and both individual and stacked base-pairs.
Correlation potential of a test ion near a strongly charged plate.
Lu, Bing-Sui; Xing, Xiangjun
2014-03-01
We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.
A new non-destructive readout by using photo-recovered surface potential contrast
NASA Astrophysics Data System (ADS)
Wang, Le; Jin, Kui-Juan; Gu, Jun-Xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-An; Gu, Lin; He, Meng; Lu, Hui-Bin; Yang, Guo-Zhen
2014-11-01
Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.
Method of predicting mechanical properties of decayed wood
Kelley, Stephen S.
2003-07-15
A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.
USDA-ARS?s Scientific Manuscript database
Fruit microflora has been the richest source of antagonists against fruit decays and the active ingredient in all currently available commercial biocontrol products. A comprehensive evaluation of plum bacteria for biocontrol activity against Monilinia fructicola, causing brown rot of stone fruit, w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.
A new method to tag the barium daughter in the double beta decay ofmore » $$^{136}$$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$$^{++}$$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($$\\sim$$2~nm), and detected with a statistical significance of 12.9~$$\\sigma$$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.« less
The Impact of Water Loading on Estimates of Postglacial Decay Times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, H. K.; Gomez, N. A.
2016-12-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations since the Last Glacial Maximum (LGM) has been contributing to sea level changes globally throughout the Holocene, especially in regions like the Canada that were heavily glaciated during the LGM. The spatial and temporal distribution of GIA and relative sea level change are attributed to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that relative sea level curves in previously glaciated regions follow an exponential-like form, and the post glacial decay times associated with that form have weak sensitivity to the details of the ice loading history (Andrews 1970, Walcott 1980, Mitrovica & Peltier 1995). Post glacial decay time estimates may therefore be used to constrain the Earth's structure and improve GIA predictions. However, estimates of decay times in Hudson Bay in the literature differ significantly due to a number of sources of uncertainty and bias (Mitrovica et al. 2000). Previous decay time analyses have not considered the potential bias that surface loading associated with Holocene sea level changes can introduce in decay time estimates derived from nearby relative sea level observations. We explore the spatial patterns of post glacial decay time predictions in previously glaciated regions, and their sensitivity to ice and water loading history. We compute post glacial sea level changes over the last deglaciation from 21ka to the modern associated with the ICE5G (Peltier, 2004) and ICE6G (Argus et al. 2014, Peltier et al. 2015) ice history models. We fit exponential curves to the modeled relative sea level changes, and compute maps of post glacial decay time predictions across North America and the Arctic. In addition, we decompose the modeled relative sea level changes into contributions from water and ice loading effects, and compute the impact of water loading redistribution since the LGM on present day decay times. We show that Holocene water loading in the Hudson Bay may introduce significant bias in decay time estimates and we highlight locations where biases are minimized.
Greenhouse Trace Gases in Deadwood
NASA Astrophysics Data System (ADS)
Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark
2016-04-01
Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.
Saotome, Yasuhiko; Tada, Akio; Hanada, Nobuhiro; Yoshihara, Akihiro; Uematsu, Hiroshi; Miyazaki, Hideo; Senpuku, Hidenobu
2006-12-01
The relationship of the levels of cariogenic bacterial species with periodontal status and decayed root surfaces was investigated in elderly Japanese subjects. Three hundred and sixty-eight individuals (each 75 years old) were examined for periodontal status (pocket depth, attachment loss), root surface caries and salivary levels of mutans streptococci (MS) and lactobacilli (LB). Values >4 mm of attachment loss (rAL4) and for average attachment loss (aAL) of sites measured were significantly higher in subjects with LB than those without. Multiple regression analysis also showed a correlation between aAL and rAL4 values with the presence of LB (aAL p = 0.003; rAL4 p = 0.002). Further, multiple regression analysis of interacting factors regarding decayed root surfaces showed that LB carriers had a greater incidence of decayed root surface caries (p = 0.003), while MS and LB levels were correlated to the number of decayed root surfaces (LB p = 0.010; MS p = 0.026). Our results indicate that considerable attachment loss elevates the possibility of having LB, thus increasing the risk of root surface caries. It was also found that LB and MS measurements may be useful indicators of decayed root surfaces in elderly individuals with attachment loss.
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential
NASA Astrophysics Data System (ADS)
Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin
2015-05-01
We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.
Surface-deposition and Distribution of the Radon (222Rn and 220Rn) Decay Products Indoors
NASA Astrophysics Data System (ADS)
Espinosa, G.; Tommasino, Luigi
The exposure to radon (222Rn and 220Rn) decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure, little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper.
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-09-01
Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.
NASA Astrophysics Data System (ADS)
Gruszko, J.; Majorana Collaboration
2017-09-01
The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.
Formation and decay analysis of
NASA Astrophysics Data System (ADS)
Gautam, Manjeet Singh; Kaur, Amandeep; Sharma, Manoj K.
2015-11-01
We have analyzed the fusion dynamics of Ca40
Fuerst, E Patrick; James, Matthew S; Pollard, Anne T; Okubara, Patricia A
2017-01-01
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a .1 was relatively rapid in wild oat ( Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat ( Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a .1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a .1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a .1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a .1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen.
Fuerst, E. Patrick; James, Matthew S.; Pollard, Anne T.; Okubara, Patricia A.
2018-01-01
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline “M73,” with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2–3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen. PMID:29410673
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-07-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.
Decay of postexercise augmentation in the Lambert-Eaton myasthenic syndrome: effect of cooling.
Maddison, P; Newsom-Davis, J; Mills, K R
1998-04-01
The effect of local cooling on surface recorded compound muscle action potential (CMAP) amplitude was studied in five patients with the Lambert-Eaton myasthenic syndrome (LEMS). The time course of decay of postexercise augmentation of CMAP amplitude characteristically seen in patients with LEMS was determined. We recorded the CMAP from abductor digiti minimi (ADM) in response to supramaximal stimulation of the ulnar nerve. Thirty consecutive stimuli were delivered at 1 Hz immediately after a 10-second period of maximal voluntary contraction. Skin surface temperature was recorded throughout. Initial testing at approximately 30 degrees C was repeated after cooling the hand and forearm by 6 to 12 degrees C. The effects of blood flow on temperature were counteracted by the application of a sphygmomanometer cuff, inflated above systolic blood pressure. The CMAP amplitude following contraction decayed in an exponential manner both during warm and cold conditions. The mean time constant for decay (1/b) in all patients was increased by approximately 25% after cooling. This prolongation of the period of postexercise augmentation of CMAP amplitude in LEMS after cooling concurs with patient reports of symptomatic improvement in cold weather. The mechanism for this benefit is thought to be due to reduction in the rate of removal of calcium ions from the nerve terminal following stimulation, similar to that seen in animal models of short-term synaptic enhancement.
Alpha decay studies on Po isotopes using different versions of nuclear potentials
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Sukumaran, Indu
2017-12-01
The alpha decays from 186-224Po isotopes have been studied using 25 different versions of nuclear potentials so as to select a suitable nuclear potential for alpha decay studies. The computed standard deviation of the calculated half-lives in comparison with the experimental data suggested that proximity 2003-I is the apt form of nuclear potential for alpha decay studies as it possesses the least standard deviation, σ =0.620 . Among the different proximity potentials, proximity 1966 ( σ =0.630 and proximity 1977 ( σ =0.636 , are also found to work well in alpha decay studies with low deviation. Among other versions of nuclear potentials (other than proximity potentials), Bass 1980 is suggested to be a significant form of nuclear potential because of its good predictive power. However, while the other forms of potentials are able to reproduce the experimental data to some extent, these potentials cannot be considered as apposite potentials for alpha decay studies in their present form. Since the experimental correlation of the models is noticed to be satisfying, the alpha decay half-lives of certain Po isotopes that are not detected experimentally yet have been predicted.
Fast quantitative optical detection of heat dissipation by surface plasmon polaritons.
Möller, Thomas B; Ganser, Andreas; Kratt, Martina; Dickreuter, Simon; Waitz, Reimar; Scheer, Elke; Boneberg, Johannes; Leiderer, Paul
2018-06-13
Heat management at the nanoscale is an issue of increasing importance. In optoelectronic devices the transport and decay of plasmons contribute to the dissipation of heat. By comparison of experimental data and simulations we demonstrate that it is possible to gain quantitative information about excitation, propagation and decay of surface plasmon polaritons (SPPs) in a thin gold stripe supported by a silicon membrane. The temperature-dependent optical transmissivity of the membrane is used to determine the temperature distribution around the metal stripe with high spatial and temporal resolution. This method is complementary to techniques where the propagation of SPPs is monitored optically, and provides additional information which is not readily accessible by other means. In particular, we demonstrate that the thermal conductivity of the membrane can also be derived from our analysis. The results presented here show the high potential of this tool for heat management studies in nanoscale devices.
Infrared light sensor applied to early detection of tooth decay
NASA Astrophysics Data System (ADS)
Benjumea, Eberto; Espitia, José; Díaz, Leonardo; Torres, Cesar
2017-08-01
The approach dentistry to dental care is gradually shifting to a model focused on early detection and oral-disease prevention; one of the most important methods of prevention of tooth decay is opportune diagnosis of decay and reconstruction. The present study aimed to introduce a procedure for early diagnosis of tooth decay and to compare result of experiment of this method with other common treatments. In this setup, a laser emitting infrared light is injected in core of one bifurcated fiber-optic and conduced to tooth surface and with the same bifurcated fiber the radiation reflected for the same tooth is collected and them conduced to surface of sensor that measures thermal and light frequencies to detect early signs of decay below a tooth surface, where demineralization is difficult to spot with x-ray technology. This device will can be used to diagnose tooth decay without any chemicals and rays such as high power lasers or X-rays.
Forces on nuclei moving on autoionizing molecular potential energy surfaces.
Moiseyev, Nimrod
2017-01-14
Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Materials outgassing rate decay in vacuum at isothermal conditions
NASA Astrophysics Data System (ADS)
Huang, Alvin Y.; Kastanas, George N.; Kramer, Leonard; Soares, Carlos E.; Mikatarian, Ronald R.
2016-09-01
As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for over 17 years and is planned to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modelling the outgassing rate decay over a 20 to 30 year period is challenging. Using ASTM E 1559 rate data, materials outgassing is described herein as a diffusion-reaction process with the interface playing a key role. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modelling materials outgassing. Nonrandomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A t-1/2 decay is adopted as the result of the correlation of the contaminant layer thicknesses and composition on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, the confirmation of nondepleted material after ten years in Low Earth Orbit, and a potential slowdown of long term materials outgassing kinetics due to silicone contaminants at the interface.
Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.
2016-01-01
We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.
Nonequilibrium dynamics of the phonon gas in ultrafast-excited antimony
NASA Astrophysics Data System (ADS)
Krylow, Sergej; Zijlstra, Eeuwe S.; Kabeer, Fairoja Cheenicode; Zier, Tobias; Bauerhenne, Bernd; Garcia, Martin E.
2017-12-01
The ultrafast relaxation dynamics of a nonequilibrium phonon gas towards thermal equilibrium involves many-body collisions that cannot be properly described by perturbative approaches. Here, we develop a nonperturbative method to elucidate the microscopic mechanisms underlying the decay of laser-excited coherent phonons in the presence of electron-hole pairs, which so far are not fully understood. Our theory relies on ab initio molecular dynamics simulations on laser-excited potential-energy surfaces. Those simulations are compared with runs in which the laser-excited coherent phonon is artificially deoccupied. We apply this method to antimony and show that the decay of the A1 g phonon mode at low laser fluences can be accounted mainly to three-body down-conversion processes of an A1 g phonon into acoustic phonons. For higher excitation strengths, however, we see a crossover to a four-phonon process, in which two A1 g phonons decay into two optical phonons.
Ionization imaging—A new method to search for 0- ν ββ decay
NASA Astrophysics Data System (ADS)
Chinowski, W.; Goldschmidt, A.; Nygren, D.; Bernstein, A.; Heffner, M.; Millaud, J.
2007-10-01
We present a new method to search for 0- ν ββ decay in 136Xe, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2- ν ββ decays. Scaling from ˜25 kg prototype to 1000+ kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described.
The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.
Wilson, Erica L; Kim, Younggy
2016-05-01
In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Xue, Huimin
1992-01-01
This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.
Xu, Rui; Ye, Shili; Xu, Kunqi; Lei, Le; Hussain, Sabir; Zheng, Zhiyue; Pang, Fei; Xing, Shuya; Liu, Xinmeng; Ji, Wei; Cheng, Zhihai
2018-08-31
Understanding the process of charge generation, transfer, and diffusion between two-dimensional (2D) materials and their supporting substrates is very important for potential applications of 2D materials. Compared with the systematic studies of triboelectric charging in a bulk sample, a fundamental understanding of the triboelectrification of the 2D material/insulator system is rather limited. Here, the charge transfer and diffusion of both the SiO 2 surface and MoS 2 /SiO 2 interface through contact electrification and frictional electrification are investigated systematically in situ by scanning Kelvin probe microscopy and dual-harmonic electrostatic force microscopy. Different from the simple static charge transfer between SiO 2 and the PtSi alloy atomic force microscope (AFM) tip, the charge transfer between the tip and the MoS 2 /SiO 2 system is complicated. Triboelectric charges, generated by contact or frictional electrification with the AFM tip, are trapped at the MoS 2 /SiO 2 interface and act as floating gates. The local charge discharge processes can be obtained by monitoring the surface potential. The charge decay time (τ) of the MoS 2 /SiO 2 interface is one (or two) orders of magnitude larger than the decay time τ of the SiO 2 surface. This work facilitates an understanding of the triboelectric and de-electrification of the interface between 2D materials and substrates. In addition to the charge transfer and diffusion, we demonstrate the nanopatterns of surface and interfacial charges, which have great potential for the application of self-assembly of charged nanostructures.
Shaffer, John R.; Polk, Deborah E.; Feingold, Eleanor; Wang, Xiaojing; Cuenco, Karen T.; Weeks, Daniel E.; DeSensi, Rebecca S.; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Marazita, Mary L.
2012-01-01
Objectives Dental caries of the permanent dentition is a multi-factorial disease resulting from the complex interplay of endogenous and environmental risk factors. The disease is not easily quantified due to the innumerable possible combinations of carious lesions across individual tooth surfaces of the permanent dentition. Global measures of decay, such as the DMFS index (which was developed for surveillance applications), may not be optimal for studying the epidemiology of dental caries because they ignore the distinct patterns of decay across the dentition. We hypothesize that specific risk factors may manifest their effects on specific tooth surfaces leading to patterns of decay that can be identified and studied. In this study we utilized two statistical methods of extracting patterns of decay from surface-level caries data in order to create novel phenotypes with which to study the risk factors affecting dental caries. Methods Intra-oral dental examinations were performed on 1,068 participants aged 18 to 75 years to assess dental caries. The 128 tooth surfaces of the permanent dentition were scored as carious or not and used as input for principal components analysis (PCA) and factor analysis (FA), two methods of identifying underlying patterns without a priori knowledge of the patterns. Demographic (age, sex, birth year, race/ethnicity, and educational attainment), anthropometric (height, body mass index, waist circumference), endogenous (saliva flow), and environmental (tooth brushing frequency, home water source, and home water fluoride) risk factors were tested for association with the caries patterns identified by PCA and FA, as well as DMFS, for comparison. The ten strongest patterns (i.e., those that explain the most variation in the data set) extracted by PCA and FA were considered. Results The three strongest patterns identified by PCA reflected (i) global extent of decay (i.e., comparable to DMFS index), (ii) pit and fissure surface caries, and (iii) smooth surface caries, respectively. The two strongest patterns identified by FA corresponded to (i) pit and fissure surface caries and (ii) maxillary incisor caries. Age and birth year were significantly associated with several patterns of decay, including global decay/DMFS index. Sex, race, educational attainment, and tooth brushing were each associated with specific patterns of decay, but not with global decay/DMFS index. Conclusions Taken together, these results support the notion that caries experience is separable into patterns attributable to distinct risk factors. This study demonstrates the utility of such novel caries patterns as new outcomes for exploring the complex, multifactorial nature of dental caries. PMID:23106439
Shaffer, John R; Polk, Deborah E; Feingold, Eleanor; Wang, Xiaojing; Cuenco, Karen T; Weeks, Daniel E; DeSensi, Rebecca S; Weyant, Robert J; Crout, Richard; McNeil, Daniel W; Marazita, Mary L
2013-08-01
Dental caries of the permanent dentition is a multifactorial disease resulting from the complex interplay of endogenous and environmental risk factors. The disease is not easily quantitated due to the innumerable possible combinations of carious lesions across individual tooth surfaces of the permanent dentition. Global measures of decay, such as the DMFS index (which was developed for surveillance applications), may not be optimal for studying the epidemiology of dental caries because they ignore the distinct patterns of decay across the dentition. We hypothesize that specific risk factors may manifest their effects on specific tooth surfaces leading to patterns of decay that can be identified and studied. In this study, we utilized two statistical methods of extracting patterns of decay from surface-level caries data to create novel phenotypes with which to study the risk factors affecting dental caries. Intra-oral dental examinations were performed on 1068 participants aged 18-75 years to assess dental caries. The 128 tooth surfaces of the permanent dentition were scored as carious or not and used as input for principal components analysis (PCA) and factor analysis (FA), two methods of identifying underlying patterns without a priori knowledge of the patterns. Demographic (age, sex, birth year, race/ethnicity, and educational attainment), anthropometric (height, body mass index, waist circumference), endogenous (saliva flow), and environmental (tooth brushing frequency, home water source, and home water fluoride) risk factors were tested for association with the caries patterns identified by PCA and FA, as well as DMFS, for comparison. The ten strongest patterns (i.e. those that explain the most variation in the data set) extracted by PCA and FA were considered. The three strongest patterns identified by PCA reflected (i) global extent of decay (i.e. comparable to DMFS index), (ii) pit and fissure surface caries and (iii) smooth surface caries, respectively. The two strongest patterns identified by FA corresponded to (i) pit and fissure surface caries and (ii) maxillary incisor caries. Age and birth year were significantly associated with several patterns of decay, including global decay/DMFS index. Sex, race, educational attainment, and tooth brushing were each associated with specific patterns of decay, but not with global decay/DMFS index. Taken together, these results support the notion that caries experience is separable into patterns attributable to distinct risk factors. This study demonstrates the utility of such novel caries patterns as new outcomes for exploring the complex, multifactorial nature of dental caries. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Uranium decay daughters from isolated mines: Accumulation and sources.
Cuvier, A; Panza, F; Pourcelot, L; Foissard, B; Cagnat, X; Prunier, J; van Beek, P; Souhaut, M; Le Roux, G
2015-11-01
This study combines in situ gamma spectrometry performed at different scales, in order to accurately locate the contamination pools, to identify the concerned radionuclides and to determine the distribution of the contaminants from soil to bearing phase scale. The potential mobility of several radionuclides is also evaluated using sequential extraction. Using this procedure, an accumulation area located downstream of a former French uranium mine and concentrating a significant fraction of radioactivity is highlighted. We report disequilibria in the U-decay chains, which are likely related to the processes implemented on the mining area. Coupling of mineralogical analyzes with sequential extraction allow us to highlight the presence of barium sulfate, which may be the carrier of the Ra-226 activities found in the residual phase (Ba(Ra)SO4). In contrast, uranium is essentially in the reducible fraction and potentially trapped in clay-iron coatings located on the surface of minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kamyar Aram; David M. Rizzo
2017-01-01
The prevalence of Phytophthora species in surface waters has earned increasing attention in the past decades, in great part as a result of âstream monitoringâ programs for detection and monitoring of Phytophthora ramorum and other invasive species. The potential for Phytophthora ...
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-01-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:9199767
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2018-05-01
A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.
NASA Astrophysics Data System (ADS)
de la Madrid, Rafael
2017-06-01
We express the resonant energies of the delta-shell potential in terms of the Lambert W function, and we calculate their decay widths and decay constants. The ensuing numerical results strengthen the interpretation of such decay widths and constants as a way to quantify the coupling between a resonance and the continuum. We calculate explicitly the decay energy spectrum of the resonances of the delta-shell potential, and we show numerically that the lineshape of such spectrum is not the same as, and can be very different from, the Breit-Wigner (Lorentzian) distribution. We argue that the standard Golden Rule cannot describe the interference of two resonances, and we show how to describe such interference by way of the decay energy spectrum of two resonant states.
Surface physicochemical properties and decay of the low-lying isomer in the 229Th nucleus
NASA Astrophysics Data System (ADS)
Borisyuk, P. V.; Kurel'chuk, U. N.; Vasil'ev, O. S.; Troyan, V. I.; Lebedinskii, Yu Yu; Tkalya, E. V.
2018-05-01
The effect of the 229Th nucleus proximity to the CsI surface on the decay probability of its anomalously low lying isomeric level is studied. Results of experimental and theoretical studies show that the CsI surface does not produce chemical bonding with Th and does not noticeably change its valence shells. Hence, it is an optimal substrate for measuring the probability of the 229Th isomer state decay via internal electron conversion. The half-life of the 229Thm isomer in the thorium atom is calculated for neutral chemical environment.
Detection of white spot lesions by segmenting laser speckle images using computer vision methods.
Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M
2018-05-05
This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.
Shaffer, John R; Feingold, Eleanor; Wang, Xiaojing; Tcuenco, Karen T; Weeks, Daniel E; DeSensi, Rebecca S; Polk, Deborah E; Wendell, Steve; Weyant, Robert J; Crout, Richard; McNeil, Daniel W; Marazita, Mary L
2012-03-09
Dental caries is the result of a complex interplay among environmental, behavioral, and genetic factors, with distinct patterns of decay likely due to specific etiologies. Therefore, global measures of decay, such as the DMFS index, may not be optimal for identifying risk factors that manifest as specific decay patterns, especially if the risk factors such as genetic susceptibility loci have small individual effects. We used two methods to extract patterns of decay from surface-level caries data in order to generate novel phenotypes with which to explore the genetic regulation of caries. The 128 tooth surfaces of the permanent dentition were scored as carious or not by intra-oral examination for 1,068 participants aged 18 to 75 years from 664 biological families. Principal components analysis (PCA) and factor analysis (FA), two methods of identifying underlying patterns without a priori surface classifications, were applied to our data. The three strongest caries patterns identified by PCA recaptured variation represented by DMFS index (correlation, r = 0.97), pit and fissure surface caries (r = 0.95), and smooth surface caries (r = 0.89). However, together, these three patterns explained only 37% of the variability in the data, indicating that a priori caries measures are insufficient for fully quantifying caries variation. In comparison, the first pattern identified by FA was strongly correlated with pit and fissure surface caries (r = 0.81), but other identified patterns, including a second pattern representing caries of the maxillary incisors, were not representative of any previously defined caries indices. Some patterns identified by PCA and FA were heritable (h(2) = 30-65%, p = 0.043-0.006), whereas other patterns were not, indicating both genetic and non-genetic etiologies of individual decay patterns. This study demonstrates the use of decay patterns as novel phenotypes to assist in understanding the multifactorial nature of dental caries.
Dental caries among disadvantaged 3- to 4-year-old children in northern Manhattan.
Albert, David A; Park, Katherine; Findley, Sally; Mitchell, Dennis A; McManus, Joseph M
2002-01-01
The study was conducted to determine the prevalence of early childhood caries (ECC), untreated caries, and the ratio of posterior to anterior caries in a disadvantaged predominantly Hispanic or African-American urban population. Data are compared to NHANES III to assess the caries burden in our cohort. Comparisons are made to the aggregate and to minorities within the national database. A retrospective chart review was conducted for children enrolled in a Head Start or day care program in the communities of Washington-Heights and Central and East Harlem and seen on the community organization's mobile dental van between 1995 and 1997. The study included only children 3 to 4 years of age at the initial examination (n=1,605). A single examiner provided all the examinations. The mean number of decayed and filled surfaces (dfs), decayed surfaces (ds) and filled surfaces (fs), the percentage of decayed of total decayed and filled surfaces (%d/dfs), decayed and filled teeth (dft), decayed teeth (dt) and filled teeth (ft), and the percentage of decayed of total decayed and filled teeth (%d/dft) were calculated. Posterior vs anterior d, f, dft, dfs and d-anterior/total d, and d-posterior/total d were tabulated. Northern Manhattan data was tabulated and compared to NHANES III (1988-1994) in the aggregate and for subpopulations categorized by gender and ethnicity. All results are also reported for children with at least one decayed or filled tooth. T-tests were used to assess for significant differences. There was even representation of males (50%) and females (50%). Mean dft was 1.08 overall, and 3.14 for children with dft>0. The level of untreated decay, %d/ dft, was 91%, significantly higher than the US national population which is 76% overall, and 76% for African Americans and Mexican Americans within the US national population. The children in this population have higher caries prevalence and a higher level of untreated caries than the national means as reported in NHANES III. The high level of untreated decay found in this particularly disadvantaged community suggests that enhanced dental services targeting the very young are needed in these communities.
Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-04-01
Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.
Direct observation of slow intersystem crossing in an aromatic ketone, fluorenone.
Soep, Benoît; Mestdagh, Jean-Michel; Briant, Marc; Gaveau, Marc-André; Poisson, Lionel
2016-08-17
Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.
Dynamics of phase separation of binary fluids
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Maritan, Amos; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The results of molecular-dynamics studies of surface-tension-dominated spinodal decomposition of initially well-mixed binary fluids in the absence and presence of gravity are presented. The growth exponent for the domain size and the decay exponent of the potential energy of interaction between the two species with time are found to be 0.6 +/- 0.1, inconsistent with scaling arguments based on dimensional analysis.
Excitonic mechanism of the photoinduced surface restructuring of copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotskii, Michel
An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Stetcu, Ionel; Talou, Patrick; Schmitt, Christelle
2018-03-01
We implement fission fragment yields, calculated using Brownian shape-motion on a macroscopic-microscopic potential energy surface in six dimensions, into the Hauser-Feshbach statistical decay code CGMF. This combination allows us to test the impact of utilizing theoretically-calculated fission fragment yields on the subsequent prompt neutron and γ-ray emission. We draw connections between the fragment yields and the total kinetic energy TKE of the fission fragments and demonstrate that the use of calculated yields can introduce a difference in the 〈TKE〉 and, thus, the prompt neutron multiplicity
Saltiel, J; Dmitrenko, O; Pillai, Z S; Klima, R; Wang, S; Wharton, T; Huang, Z-N; van de Burgt, L J; Arranz, J
2008-05-01
Relative energies of the ground state isomers of 1,4-diphenyl-1,3-butadiene (DPB) are determined from the temperature dependence of equilibrium isomer compositions obtained with the use of diphenyl diselenide as catalyst. Temperature and concentration effects on photostationary states and isomerization quantum yields with biacetyl or fluorenone as triplet sensitizers with or without the presence of O(2), lead to significant modification of the proposed DPB triplet potential energy surface. Quantum yields for ct-DPB formation from tt-DPB increase with [tt-DPB] revealing a quantum chain process in the tt --> ct direction, as had been observed for the ct --> tt direction, and suggesting an energy minimum at the (3)ct* geometry. They confirm the presence of planar and twisted isomeric triplets in equilibrium (K), with energy transfer from planar or quasi-planar geometries (quantum chain events from tt and ct triplets) and unimolecular decay (k(d)) from twisted geometries. Starting from cc-DPB, varphi(cc-->tt) increases with increasing [cc-DPB] whereas varphi(cc-->ct) is relatively insensitive to concentration changes. The concentration and temperature dependencies of the decay rate constants of DPB triplets in cyclohexane are consistent with the mechanism deduced from the photoisomerization quantum yields. The experimental DeltaH between (3)tt-DPB* and (3)tp-DPB*, 2.7 kcal mol(-1), is compared with the calculated energy difference [DFT with B3LYP/6-31+G(d,p) basis set]. Use of the calculated DeltaS = 4.04 eu between the two triplets gives k(d) = (2.4-6.4) x 10(7) s(-1), close to 1.70 x 10(7) s(-1), the value for twisted stilbene triplet decay. Experimental and calculated relative energies of DPB isomers on the ground and triplet state surfaces agree and theory is relied upon to deduce structural characteristics of the equilibrated conformers in the DPB triplet state.
NASA Astrophysics Data System (ADS)
Filley, Timothy R.; McCormick, Melissa K.; Crow, Susan E.; Szlavecz, Katalin; Whigham, Dennis F.; Johnston, Cliff T.; van den Heuvel, Ronald N.
2008-03-01
To investigate the control of earthworm populations on leaf litter biopolymer decay dynamics, we analyzed the residues of Liriodendron tulipifera L. (tulip poplar) leaves after six months of decay, comparing open surface litter and litter bag experiments among forests with different native and invasive earthworm abundances. Six plots were established in successional tulip poplar forests where sites varied in earthworm density and biomass, roughly 4-10 fold, of nonnative lumbricid species. Analysis of residues by diffuse reflectance Fourier transform infrared spectroscopy and alkaline CuO extraction indicated that open decay in sites with abundant earthworms resulted in residues depleted in cuticular aliphatic and polysaccharide components and enriched in ether-linked lignin relative to open decay in low earthworm abundance plots. Decay within earthworm-excluding litter bags resulted in an increase in aliphatic components relative to initial amendment and similar chemical trajectory to low earthworm open decay experiments. All litter exhibited a decline in cinnamyl-based lignin and an increase in nitrogen content. The influence of earthworm density on the chemical trajectory of litter decay was primarily a manifestation of the physical separation and concentration of lignin-rich and cutin-poor petioles with additional changes promoted by either microorganisms and/or mesofauna resulting in nitrogen addition and polysaccharide loss. These results illustrate how projected increases in invasive earthworm activity in northern North American forests could alter the chemical composition of organic matter in litter residues and potentially organic matter reaching the soil which may result in shifts in the aromatic and aliphatic composition of soils in different systems.
Laser Photonic Propulsion Force for Station-Keeping Applications
NASA Technical Reports Server (NTRS)
Perez, Andres Dono; Yang, Fan Yang; Foster, Cyrus; Faber, Nicolas; Jonsson, Jonas; Stupl, Jan
2014-01-01
Small satellites, e.g. cubesats, do not tend to incorporate propulsion subsystems that can compensate for perturbation forces, which causes orbital decay. Cubesats are especially susceptible to the phenomenon of orbital decay, which limits their potential performance, since these effects are more noticeable in Low Earth Orbit (LEO). We postulate that a network of ground-based lasers could extend the operational lifetimes of these satellites by applying a photonic force onto their surfaces. This boosting force would help to counteract the degrading force, which is mainly produced by the drag of the atmosphere. This solution may present an advantage for low cost missions, in that it would enable longer mission durations without the need to incorporate a propulsion system, which comprises a large part of the mass budget and the power constraints of a satellite. This poster presents an analysis of the trade space for both the required network of laser ground stations and the satellite orbits. The analysis is based on simulations of the orbital decay of model satellites.
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
Calculations on the half-lives of Cluster decay in two-potential approach
NASA Astrophysics Data System (ADS)
Soylu, A.
The half-lives of the cluster decay (CD) from the isotopes having the known experimental values, the half-lives of the α-decay (AD) of same nuclei and also the branching ratios are obtained, within the framework of two-potential approach with cosh potential including with and without the isospin effects. Using two-potential approach and taking into account the isospin effects in the calculations decrease the rms values and they improve the results. The obtained branching ratios are in good agreement with the experimental ones for some isotopes. It is obtained that the isospin-dependent potentials have an influence on the half-lives of the cluster decays of nuclei. Present calculations would be important for predicting the experimental half-lives and branching ratios for the cluster decays of different types of isotopes.
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
NASA Astrophysics Data System (ADS)
Kjellander, Roland; Forsberg, Björn
2005-06-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.
Electrostatic testing of thin plastic materials
NASA Technical Reports Server (NTRS)
Skinner, S. Ballou
1988-01-01
Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.
Correlation of gravestone decay and air quality 1960-2010
NASA Astrophysics Data System (ADS)
Mooers, H. D.; Carlson, M. J.; Harrison, R. M.; Inkpen, R. J.; Loeffler, S.
2017-03-01
Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is closely related to local land use and air quality. Correlation of stone decay, land use, and air quality for the period after 1960 when reliable estimates of atmospheric pollution are available is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using deterministic and geostatistical techniques. A general lack of spatial correlation was identified and therefore a land-use-based technique for correlation of stone decay and air quality is employed. Decadally averaged stone decay is highly correlated with land use averaged spatially over an optimum radius of ≈7 km even though air quality, determined by records from the UK monitoring network, is not highly correlated with gravestone decay. The relationships among stone decay, air-quality, and land use is complicated by the relatively low spatial density of both gravestone decay and air quality data and the fact that air quality data is available only as annual averages and therefore seasonal dependence cannot be evaluated. However, acid deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly related to reactions with ammonia.
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Böyükata, Mahmut
2016-03-01
We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.
Topological surface state of α -Sn on InSb(001) as studied by photoemission
NASA Astrophysics Data System (ADS)
Scholz, M. R.; Rogalev, V. A.; Dudy, L.; Reis, F.; Adler, F.; Aulbach, J.; Collins-McIntyre, L. J.; Duffy, L. B.; Yang, H. F.; Chen, Y. L.; Hesjedal, T.; Liu, Z. K.; Hoesch, M.; Muff, S.; Dil, J. H.; Schäfer, J.; Claessen, R.
2018-02-01
We report on the electronic structure of the elemental topological semimetal α -Sn on InSb(001). High-resolution angle-resolved photoemission data allow us to observe the topological surface state (TSS) that is degenerate with the bulk band structure and show that the former is unaffected by different surface reconstructions. An unintentional p -type doping of the as-grown films was compensated by deposition of potassium or tellurium after the growth, thereby shifting the Dirac point of the surface state below the Fermi level. We show that, while having the potential to break time-reversal symmetry, iron impurities with a coverage of up to 0.25 monolayers do not have any further impact on the surface state beyond that of K or Te. Furthermore, we have measured the spin-momentum locking of electrons from the TSS by means of spin-resolved photoemission. Our results show that the spin vector lies fully in-plane, but it also has a finite radial component. Finally, we analyze the decay of photoholes introduced in the photoemission process, and by this gain insight into the many-body interactions in the system. Surprisingly, we extract quasiparticle lifetimes comparable to other topological materials where the TSS is located within a bulk band gap. We argue that the main decay of photoholes is caused by intraband scattering, while scattering into bulk states is suppressed due to different orbital symmetries of bulk and surface states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Dipak; Vijaya, R.; Centre for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur 208016
Well-ordered opaline photonic crystals are grown by inward growing self-assembly method from Rhodamine B dye-doped polystyrene colloids. Subsequent to self-assembly, the crystals are infiltrated with gold nanoparticles of 40 nm diameter. Measurements of the stopband features and photoluminescence intensity from these crystals are supplemented by fluorescence decay time analysis. The fluorescence decay times from the dye-doped photonic crystals before and after the infiltration are dramatically different from each other. A lowered fluorescence decay time was observed for the case of gold infiltrated crystal along with an enhanced emission intensity. Double-exponential decay nature of the fluorescence from the dye-doped crystal gets convertedmore » into single-exponential decay upon the infiltration of gold nanoparticles due to the resonant radiative process resulting from the overlap of the surface plasmon resonance with the emission spectrum. The influence of localized surface plasmon due to gold nanoparticles on the increase in emission intensity and decrease in decay time of the emitters is established.« less
A surface wave elastography technique for measuring tissue viscoelastic properties.
Zhang, Xiaoming
2017-04-01
A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
A method for Removing Surface Contamination on Ultra-pure Copper Spectrometer Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, Eric W.; Seifert, Allen; Aalseth, Craig E.
Spectrometers for the lowest-level radiometric measurements require materials of extreme radiopurity. Measurements of rare nuclear decays, e.g. neutrinoless double-beta decay, can require construction and shielding materials with bulk radiopurity reaching one micro-Becquerel per kilogram or less. When such extreme material purity is achieved, surface contamination, particularly solid daughters in the natural radon decay chains, can become the limiting background. High-purity copper is an important material for ultra-low-background spectrometers and thus is the focus of this work. A method for removing surface contamination at very low levels without attacking the bulk material is described. An assay method using a low-background proportionalmore » counter made of the material under examination is employed, and the resulting preliminary result of achievable surface contamination levels is presented.« less
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
Surface-potential decay of biased-probe contact-charged amorphous polymer films
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Nelles, Gabriele
2010-03-01
We have investigated the decay of scanning Kelvin probe force microscopy (KPFM) and electric force microscopy (EFM) signals from biased-probe contact-charged films of three different amorphous polymers representing wide-ranging water absorption capabilities. The surface-potential decay (SPD) has been measured by repeatedly scanning the charge pattern as a function of dissipation time t while varying the relative humidity (RH), the film thickness d, the temperature, the charging voltage, and the load on the scanning probe. Whereas increases in KPFM and EFM peak widths are appreciable only in the long run, the decay in the peak heights is rapid at the beginning and then strongly slowing down with time. Peak heights can be approximated for t <1 hour by power laws of negative exponents (-β), with 0<β<0.5 in dry conditions. β increases for thinner films and when scanning with higher probe loads. Raising the humidity or heating to temperatures well below the glass transition temperature of the polymer considerably increases β, with much stronger impacts for polymers with a higher water uptake capability. From the findings, we conclude that ionic charge carriers are trapped by the charge injection process in the volume of the polymers at low depths. A main contribution to SPD is by drift of the ions in their own space-charge field, mutually repelling each other and being attracted by their mirror charge in the grounded back electrode. Lateral drifts for small t are not resolved, increases in peak widths for t ≫1 h are predominantly due to increased probe—charge carrier distances. We interpret the power law approximation in terms of dispersive transport theory. We approximate trap-controlled apparent mobilities μ from isothermal KPFM peak height data, taken within a few minutes after charging, by a linear and a hyperbolic SPD model. Both models yield μ ≈10-14 cm2/(V s) for thin films (d ≈50 nm) in dry conditions. For mobilities derived similarly from isohumid measurements series, we find an exponential increase as a function of RH%. We furthermore suggest that two more mechanisms contributing to SPD are: first, by potential shielding of charge carriers by water dipoles, and second, in an indirect manner, by diffusion of injected water.
Instability and sound emission from a flow over a curved surface
NASA Technical Reports Server (NTRS)
Maestrello, L.; Parikh, P.; Bayliss, A.
1988-01-01
The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.
Piezoelectric modulation of surface voltage in GaN and AlGaN/GaN: charge screening effects and 2DEG
NASA Astrophysics Data System (ADS)
Wilson, Marshall; Schrayer, Bret; Savtchouk, Alexandre; Hillard, Bob; Lagowski, Jacek
2017-02-01
Surface voltage response to pulses of piezoelectric polarization is measured with a Kelvin-probe providing a unique means for investigation of the dynamics of polarization induced sheet charge and 2DEG. Combined with biasing of the surface with a corona-deposited charge from accumulation to deep depletion and corresponding non-contact C-V type characterization, the technique identifies surface band bending and interface traps as key factors that affect the magnitude and time decay of piezoelectric polarization. For 2DEG structures, surface potential pinning is observed when the 2DEG is fully populated. Pinning is released by negative corona charging to fully deplete the 2DEG. These results are consistent with the role of surface states. Presently demonstrated polarization modulation and wafer scale measurements shall impact the in-depth characterization and fundamental understanding of AlGaN/GaN 2DEG structures.
Λ N → NN EFT potentials and hypertriton non-mesonic weak decay
NASA Astrophysics Data System (ADS)
Pérez-Obiol, Axel; Entem, David R.; Nogga, Andreas
2018-05-01
The potential for the Λ N → NN weak transition, the main responsible for the non-mesonic weak decay of hypernuclei, has been developed within the framework of effective field theory (EFT) up to next-to-leading order (NLO). The leading order (LO) and NLO contributions have been calculated in both momentum and coordinate space, and have been organised into the different operators which mediate the N → NN transition. We compare the ranges of the one-meson and two-pion exchanges for each operator. The non-mesonic weak decay of the hypertriton has been computed within the plane-wave approximation using the LO weak potential and modern strong EFT NN potentials. Formally, two methods to calculate the final state interactions among the decay products are presented. We briefly comment on the calculation of the {}{{Λ }}{}3H{\\to }3 He+{π }- mesonic weak decay.
NASA Astrophysics Data System (ADS)
Kolczewski, Ch.; Fink, K.; Staemmler, V.; Neitsch, L.
1997-05-01
Quantum chemical ab initio calculations at the complete active space SCF level and with inclusion of correlation effects have been performed for the potential energy surfaces of PH in its X 3Σ- ground state and its first excited triplet state, A 3Π, colliding with He atoms. The PH distance was fixed at its experimental value (of the A 3Π state), the PH-He distance and the HePH angle were varied. All three potential energy surfaces [1 3A'' for PH(X)-He and 1 3A,2 3A'' for the two components of PH(A)-He] are purely repulsive, except for very shallow van der Waals minima with well depths of about 15-40 cm-1. The interaction potentials decay approximately exponentially with increasing PH-He distance and show large angular anisotropies. Legendre expansions for the angular dependence of the potential surfaces converge slowly for V(1 3A'') and the sum potential 1/2[V(2 3A'')+V(1 3A)], but rapidly for the corresponding difference potential 1/2[V(2 3A'')-V(1 3A)]. The present PH(A)-He potentials have been used in the companion paper by Neitsch et al. [J. Chem. Phys. 106, 7642 (1997)], for the calculation of thermal state-to-state rate constants for inelastic PH(A)-He collisions.
Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths
NASA Astrophysics Data System (ADS)
Sharma, Kanishka; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
2018-04-01
Based on the collective clusterization approach, we have extended our earlier study on α-decay, exotic cluster-decay, and heavy particle radioactivity, to the phenomenon of spontaneous fission (SF) in the ground-state (g.s.) decays of even mass 234-246Pu parents. The calculations for the SF half-lives of these Pu-isotopes have been made within the framework of preformed cluster model (PCM), both for spherical as well as β2-deformed choices of shapes, and a comparison is made with the relevant available experimental data, which prefer spherical shapes. The importance of the orientation degree of freedom (hot compact or cold elongated configurations) is also explored. Next, in order to look for the exclusive role of heavy-ion induced fission, the dynamics of 6He + 238U reaction forming 244Pu* is studied over the center of mass energy range of E c . m . = 15.0- 28.8MeV, using the dynamical cluster-decay model (DCM), an extension of the PCM with temperature T- and angular momentum ℓ-effects included. The β2-deformed fragments of 244Pu* in the mass range A2 = 106- 113 (plus their complementary heavy fragments), corresponding to asymmetric fission peaks, are found contributing towards the fission cross-section. Finally, the potential energy surfaces and barrier modification effects are presented for the relative comparison of spontaneous and the heavy-ion induced fission processes. Both are found to behave similar with respect to the probable emission of fragments and hence point out to the shell closure property of the decay fragments.
NASA Astrophysics Data System (ADS)
Xie, Y.; Zhang, S.
2011-12-01
The observed correlations, between the characteristic ages and dipole surface magnetic field strengths of all pulsars, can be well explained by magnetic field decay with core temperatures of 2×108 K, ˜2×107 K, and ˜105 K, for magnetars, normal radio pulsars, and millisecond pulsars, respectively; assuming that their characteristic ages are about two orders of magnitude larger than their true ages, the required core temperatures may be reduced by about a factor of 10. The magnetic decay follows a power-law and is dominated by the solenoidal component of the ambipolar diffusion mode. In this model, all NSs are assumed to have the same initial magnetic field strength, but different core temperature which does not change as the magnetic field decays. This suggests that the key distinguishing property between magnetars and normal pulsars is that magnetars were born much hotter than normal pulsars, and thus have much longer magnetic field decay time scales, resulting in higher surface magnetic field strength even with the same ages of normal pulsars. The above conclusion agrees well with the observed correlations between the surface temperatures of magnetars and other young NSs, which do not agree with the cooling dominated evolution of neutron stars. This suggests a possible scenario that heating, perhaps due to magnetic field decay, balances neutron star cooling for observed pulsars.
NASA Astrophysics Data System (ADS)
Savkina, Rada; Smirnov, Aleksey; Kirilova, Svitlana; Shmid, Volodymyr; Podolian, Artem; Nadtochiy, Andriy; Odarych, Volodymyr; Korotchenkov, Oleg
2018-04-01
We present systematic studies of charge-carrier relaxation processes in sonochemically nanostructured silicon wafers. Impedance spectroscopy and transient photovoltage techniques are employed. It is found that interface potential in Si wafers remarkably increases upon their exposure to sonochemical treatments in Ca-rich environments. In contrast, the density of fast interface electron states remains almost unchanged. It is found that the initial photovoltage decay, taken before ultrasonic treatments, exhibits the involvement of shorter- and longer time recombination and trapping centers. The decay speeds up remarkably due to cavitation treatments, which is accompanied by a substantial quenching of the photovoltage magnitude. It is also found that, before the treatments, the photovoltage magnitude is markedly non-uniform over the wafer surface, implying the existence of distributed sites affecting distribution of photoexcited carriers. The treatments cause an overall broadening of the photovoltage distribution. Furthermore, impedance measurements monitor the progress in surface structuring relevant to several relaxation processes. We believe that sonochemical nanostructuring of silicon wafers with dendronized CaSiO3 may enable new promising avenue towards low-cost solar energy efficiency multilayered solar cell device structures.
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
NASA Astrophysics Data System (ADS)
Kawauchi, Satoko; Matsuyama, Hiroko; Obara, Minoru; Ishihara, Miya; Arai, Tsunenori; Kikuchi, Makoto; Katoh, Masayoshi
1997-05-01
We developed novel monitoring methodology for corneal surface hydration during photorefractive keratectomy (PRK) in order to solve undercorrection issue at the central part of cornea (Central island). We employed pulsed photothermal radiometry to monitor corneal surface hydration. We performed two experiments; gelatin gel experiments and porcine cornea experiments in vitro. In the case of the gelatin gel experiments, the e-folding decay time of transient infrared radiation waveform from the ArF laser irradiated surface was prolonged from 420 microsecond(s) to 30 ms with decreasing gelatin density from 15% to 0.15%. These measured e-folding decay times were good agreements with theoretical calculations. Using porcine cornea, we observed the e-folding decay time increase during the series of ArF excimer laser irradiations. Our method may be available to know ablation efficiency change to improve the controllability of refractive correction on the PRK.
Dynamics of 28,30S i* compound nuclei formed at sub-barrier energies
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Singh, Bir Bikram; Kaur, Sarbjeet
2018-05-01
The decay of 28S i* and 30S i* compound nuclei (CN) formed at sub-barrier energies, in the reactions induced by stable projectile 16O and exotic projectile 18O, respectively, has been investigated within the quantum mechanical fragmentation theory based dynamical cluster-decay model (DCM). The collective potential energy surface shows that xα-type (x is an integer) clusters are minimized in the decay of 28S i* while in case of 30S i* in addition to xα-type clusters, np-xα (n, p are neutron and proton, respectively) type clusters are also minimized. These minimized fragments have more preformation probability P0, which is an important factor through which nuclear structure effects of decaying CN are probed, within DCM. The results show that light particles (LPs) are contributing mostly in the fusion cross-section, σfusion. In case of 30S i*, the contribution of 1n is highest and more compared to 4He in case of 28S i*, which seems to play an important role in fusion enhancement. The DCM calculated σfusion for both the CN formed with same Ec.m. = 7.0 MeV gives more value for σfusion of 30S i*, in agreement with the experimental data.
Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-02-01
The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential falls off as -1 /z , where z is the distance to the surface of a slab parallel to the x y plane. The Slater potential thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1 /z for large z , at least in general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone integration, depending on the band structure of the slab. In all standard situations, including such prominent cases as graphene and Si(111) slabs, however, a 1 /z dependence of the orbital-shift potential is obtained to leading order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX potential.
10 CFR 35.92 - Decay-in-storage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... days for decay-in-storage before disposal without regard to its radioactivity if it— (1) Monitors byproduct material at the surface before disposal and determines that its radioactivity cannot be...
Strahinic, I; Busarcevic, M; Pavlica, D; Milasin, J; Golic, N; Topisirovic, L
2007-04-01
The objective of this study was to characterize the lactobacilli from the human oral cavity as a potential source of probiotic strains. Samples were collected from four different locations within the oral cavity: surface of healthy tooth, oral mucous membrane, surface of tooth decay and deep tooth decay. On the basis of morphological and biochemical properties eight categories were formed and 26 isolates were selected for further characterization. The isolates were determined as Lactobacillus sp. using primers specific for 16S rDNA. Sequencing of 16S rDNA genes and repetitive sequence-based polymerase chain reactions were used for determination to species and subspecies levels. Predominant species were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivarius and Lactobacillus paracasei subsp. paracasei, while Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus delbrueckii subsp. lactis and Lactobacillus gasseri were also present. The isolates Lactobacillus salivarius BGHO1, Lactobacillus fermentum BGHO36 and BGHO64, Lactobacillus gasseri BGHO89 and Lactobacillus delbrueckii subsp. lactis BGHO99 exhibited antagonistic action on the growth of Staphylococcus aureus, Enterococcus faecalis, Micrococcus flavus, Salmonella enteritidis, Streptococcus pneumoniae and Streptococcus mutans, but not on growth of Candida albicans. Moreover, the isolates L. salivarius BGHO1 and L. gasseri BGHO89 were tolerant to low pH and high concentration of bile salts. Taken together, these findings imply that L. salivarius BGHO1 and L. gasseri BGHO89 might be subjects for additional investigation as potential probiotic strains.
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.
2015-01-01
Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.
Alphas and surface backgrounds in liquid argon dark matter detectors
NASA Astrophysics Data System (ADS)
Stanford, Christopher J.
Current observations from astrophysics indicate the presence of dark matter, an invisible form of matter that makes up a large part of the mass of the universe. One of the leading theories for dark matter is that it is made up of Weakly Interacting Massive Particles (WIMPs). One of the ways we try to discover WIMPs is by directly detecting their interaction with regular matter. This can be done using a scintillator such as liquid argon, which gives off light when a particle interacts with it. Liquid argon (LAr) is a favorable means of detecting WIMPs because it has an inherent property that enables a technique called pulse-shape discrimination (PSD). PSD can distinguish a WIMP signal from the constant background of electromagnetic signals from other sources, like gamma rays. However, there are other background signals that PSD is not as capable of rejecting, such as those caused by alpha decays on the interior surfaces of the detector. Radioactive elements that undergo alpha decay are introduced to detector surfaces during construction by radon gas that is naturally present in the air, as well as other means. When these surface isotopes undergo alpha decay, they can produce WIMP-like signals in the detector. We present here two LAr experiments. The first (RaDOSE) discovered a property of an organic compound that led to a technique for rejecting surface alpha decays in LAr detectors with high efficiency. The second (DarkSide-50) is a dark matter experiment operated at LNGS in Italy and is the work of an international collaboration. A detailed look is given into alpha decays and surface backgrounds present in the detector, and projections are made of alpha-related backgrounds for 500 live days of data. The technique developed with RaDOSE is applied to DarkSide-50 to determine its effectiveness in practice. It is projected to suppress the surface background in DarkSide-50 by more than a factor of 1000.
Theoretical investigation of rotationally inelastic collisions of CH(X2Π) with hydrogen atoms
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2017-06-01
We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2Π) + H(2S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2. Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.
Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I
2016-07-26
Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.
MODELING TIME DISPERSION DUE TO OPTICAL PATH LENGTH DIFFERENCES IN SCINTILLATION DETECTORS*
Moses, W.W.; Choong, W.-S.; Derenzo, S.E.
2015-01-01
We characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal with 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments. PMID:25729464
Modeling Time Dispersion Due to Optical Path Length Differences in Scintillation Detectors
Moses, W. W.; Choong, W. -S.; Derenzo, S. E.
2014-08-20
In this paper, we characterize the nature of the time dispersion in scintillation detectors caused by path length differences of the scintillation photons as they travel from their generation point to the photodetector. Using Monte Carlo simulation, we find that the initial portion of the distribution (which is the only portion that affects the timing resolution) can usually be modeled by an exponential decay. The peak amplitude and decay time depend both on the geometry of the crystal, the position within the crystal that the scintillation light originates from, and the surface finish. In a rectangular parallelpiped LSO crystal withmore » 3 mm × 3 mm cross section and polished surfaces, the decay time ranges from 10 ps (for interactions 1 mm from the photodetector) up to 80 ps (for interactions 50 mm from the photodetector). Over that same range of distances, the peak amplitude ranges from 100% (defined as the peak amplitude for interactions 1 mm from the photodetector) down to 4% for interactions 50 mm from the photodetector. Higher values for the decay time are obtained for rough surfaces, but the exact value depends on the simulation details. Finally, estimates for the decay time and peak amplitude can be made for different cross section sizes via simple scaling arguments.« less
A radon progeny deposition model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, Keith; Elliott, Steven R; Hime, Andrew
2010-12-01
The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly {sup 222}Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of {sup 210}Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean roommore » environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.« less
Stability of superheavy nuclei
NASA Astrophysics Data System (ADS)
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.
Ding, Kai; Byrnes, Cory; Bridge, Jarrod; Grannas, Amanda; Xu, Wenqing
2018-04-01
This study investigates the fate of sorbed nitroaromatics on the surface of pyrogenic carbonaceous matter (PCM) to assess the feasibility of a PCM-promoted hydrolysis. The degradation of two nitroaromatic compounds, 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole, was observed at pH 7 in the presence of graphite powder, a model PCM. By contrast, no decay occurred without graphite. Using TNT as a model compound, our results suggest that TNT decay demonstrated a strong pH dependence, with no reaction at pH 3-5 but rapid degradation at pH 6-10. Moreover, by fitting TNT decay at different pH conditions along with its sorption kinetics to the Langmuir Kinetic Model, our results suggest that the base-catalyzed hydrolysis was important. The activation energy for TNT decay was obtained by measuring reaction rates at different temperatures with or without graphite and no significant difference was observed. However, the addition of tetramethylammonium cation was able to promote TNT decay possibly due to its ability to attract more OH - from the aqueous solution, leading to an increase in the sorbed OH - concentrations. Nitrite and a Meisenheimer complex were identified as degradation products for TNT. Other PCM, such as biochar, also demonstrated a comparable ability in promoting TNT decay at pH 7. Furthermore, a rapid degradation of TNT at pH 7 was observed when biochar was used as a soil amendment (4% by weight). Our results suggest that PCM can facilitate TNT and 2,4-dinitroanisole decay via a surface-promoted hydrolysis at neutral pH conditions, suggesting a promising alternative for in situ soil remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo
2018-05-01
Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.
Asymptotic decay and non-rupture of viscous sheets
NASA Astrophysics Data System (ADS)
Fontelos, Marco A.; Kitavtsev, Georgy; Taranets, Roman M.
2018-06-01
For a nonlinear system of coupled PDEs, that describes evolution of a viscous thin liquid sheet and takes account of surface tension at the free surface, we show exponential (H^1, L^2) asymptotic decay to the flat profile of its solutions considered with general initial data. Additionally, by transforming the system to Lagrangian coordinates we show that the minimal thickness of the sheet stays positive for all times. This result proves the conjecture formally accepted in the physical literature (cf. Eggers and Fontelos in Singularities: formation, structure, and propagation. Cambridge Texts in Applied Mathematics, Cambridge, 2015), that a viscous sheet cannot rupture in finite time in the absence of external forcing. Moreover, in the absence of surface tension we find a special class of initial data for which the Lagrangian solution exhibits L^2-exponential decay to the flat profile.
Xing-xia Ma; Grant T. Kirker; Ming-liang Jiang; Yu-zhang Wu
2016-01-01
Surface coatings of melamine-modified urea-formaldehyde resins (MUFs) containing ammonium polyphosphate (APP) have been shown to significantly improve the fire retardancy of wood by prolonging the ignition time and reducing the heat release rate, total heat released, and mass loss rate. Dual protection of wood against both decay and fire has been proposed for remedial...
The oral health of upper income Americans.
Bailit, Howard; Lim, Sungwoo; Ismail, Amid
2016-06-01
Limited information is available on the oral health status of upper income Americans (>400 percent of the FPL). They constitute 33 percent of the population and account for 53 percent of dental expenditures. Using 1999-2004 NHANES data, we examined differences in the mean number and percentage of decayed and filled permanent surfaces and missing teeth among age and family income groups. For upper income Americans, across age groups, the mean number of untreated decayed surfaces and missing teeth ranged from 0.2 to 0.5 and 2.6 to 3.3, respectively. The mean number of restored surfaces was low in children but extensive in adults. Income disparities increased with increasing age. Overall, upper income Americans have good oral health. Relatively few have untreated decayed surfaces or missing teeth. The reasons for the large number of restored surfaces in upper income adults require further research. Most upper income Americans are in good oral health, especially the 12-18 year cohort. As this group ages, the oral health of upper income adults is expected to improve. © 2015 American Association of Public Health Dentistry.
NASA Astrophysics Data System (ADS)
Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.
2010-11-01
An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.
NASA Astrophysics Data System (ADS)
Giacometti, José A.
2018-05-01
This work describes an enhanced corona triode with constant current adapted to characterize the electrical properties of thin dielectric films used in organic electronic devices. A metallic grid with a high ionic transparency is employed to charge thin films (100 s of nm thick) with a large enough charging current. The determination of the surface potential is based on the grid voltage measurement, but using a more sophisticated procedure than the previous corona triode. Controlling the charging current to zero, which is the open-circuit condition, the potential decay can be measured without using a vibrating grid. In addition, the electric capacitance and the characteristic curves of current versus the stationary surface potential can also be determined. To demonstrate the use of the constant current corona triode, we have characterized poly(methyl methacrylate) thin films with films with thicknesses in the range from 300 to 500 nm, frequently used as gate dielectric in organic field-effect transistors.
Gnilitskyi, Iaroslav; Derrien, Thibault J-Y; Levy, Yoann; Bulgakova, Nadezhda M; Mocek, Tomáš; Orazi, Leonardo
2017-08-16
Highly regular laser-induced periodic surface structures (HR-LIPSS) have been fabricated on surfaces of Mo, steel alloy and Ti at a record processing speed on large areas and with a record regularity in the obtained sub-wavelength structures. The physical mechanisms governing LIPSS regularity are identified and linked with the decay length (i.e. the mean free path) of the excited surface electromagnetic waves (SEWs). The dispersion of the LIPSS orientation angle well correlates with the SEWs decay length: the shorter this length, the more regular are the LIPSS. A material dependent criterion for obtaining HR-LIPSS is proposed for a large variety of metallic materials. It has been found that decreasing the spot size close to the SEW decay length is a key for covering several cm 2 of material surface by HR-LIPSS in a few seconds. Theoretical predictions suggest that reducing the laser wavelength can provide the possibility of HR-LIPSS production on principally any metal. This new achievement in the unprecedented level of control over the laser-induced periodic structure formation makes this laser-writing technology to be flexible, robust and, hence, highly competitive for advanced industrial applications based on surface nanostructuring.
Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture
Lucas, Henry
1990-01-01
A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.
Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest
Romero, L.M.; Smith, T. J.; Fourqurean, J.W.
2005-01-01
1 Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2 Wood disks (8-10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3 A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4 Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ?? 2% of dry weight), while Laguncularia racemosa had the lowest (10 ?? 2%). Labile components decayed at rates of 0.37-23.71% month -1, while refractory components decayed at rates of 0.001-0.033% month-1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5 Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6 Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7 As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests. ?? 2005 British Ecological Society.
Visualizing spatial population structure with estimated effective migration surfaces
Petkova, Desislava; Novembre, John; Stephens, Matthew
2015-01-01
Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242
Pixel detectors in double beta decay experiments, a new approach for background reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, J. M.; Čermák, P.; Štekl, I.
Double beta decay (ββ) experiments are challenging frontiers in contemporary physics. These experiments have the potential to investigate more about neutrinos (eg. nature and mass). The main challenge for these experiments is the reduction of background. The group at IEAP, CTU in Prague is investigating a new approach using pixel detectors Timepix. Pixel detector offer background reduction capabilities with its ability to identify the particle interaction (from the 2D signature it generates). However, use of pixel detectors has some challenges such as the presence of readout electronics near the sensing medium and heat dissipation. Different aspects of pixel setup (identificationmore » of radio-impurities, selection of radio-pure materials) and proposed experimental setup are presented. Also, results of preliminary background measurements (performed on the surface and in the underground laboratories) using the prototype setups are presented.« less
NASA Astrophysics Data System (ADS)
Künstler, A.; Carroll, T. A.; Strassmeier, K. G.
2015-06-01
Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and predict a magnetic activity cycle of ≈26 ± 6 yr. Finally, we present a short movie of the spatially resolved surface of XX Tri. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC.Appendices and the movie are available in electronic form at http://www.aanda.org
Effects of fluoridated drinking water on dental caries in Australian adults.
Slade, G D; Sanders, A E; Do, L; Roberts-Thomson, K; Spencer, A J
2013-04-01
Systematic reviews produce conflicting conclusions regarding dental caries-preventive effects of water fluoridation in adults. The authors investigated the relationship using data from the nationally representative 2004-2006 Australian National Survey of Adult Oral Health. Effects were compared between the pre-fluoridation cohort born before 1960 (n = 2,270) and the cohort born between 1960 and 1990 (n = 1,509), when widespread implementation of fluoridation increased population coverage from < 1% to 67%. Residential history questionnaires determined the percentage of each person's lifetime exposed to fluoridated water. Examiners recorded decayed, missing, and filled teeth (DMF-Teeth) and decayed and filled tooth surfaces (DF-Surfaces). Socio-demographic and preventive dental behaviors were included in multivariable least-squares regression models adjusted for potential confounding. In fully adjusted models, > 75% of lifetime exposure to fluoridation relative to < 25% of lifetime exposure was associated with 11% and 10% fewer DMF-Teeth in the pre-1960 (p < .0001) and 1960-1990 cohorts (p = .018), respectively. Corresponding reductions in DF-Surfaces were 30% (p < .001) and 21% (p < .001). Findings for intermediate fluoridation exposure suggested a dose-response relationship. Results were consistent in sensitivity analyses accounting for missing data. In this nationally representative sample of Australian adults, caries-preventive effects of water fluoridation were at least as great in adults born before widespread implementation of fluoridation as after widespread implementation of fluoridation.
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Feng, Xin; Wang, Xuelong
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
Liu, Shuai; Feng, Xin; Wang, Xuelong; ...
2018-02-12
The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered materialmore » is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li 1.2Mo 0.6Fe 0.2O 2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mössbauer spectroscopy clarify its charge compensation mechanism. In conclusion, this new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.« less
Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2018-05-01
The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.
The impact of water loading on postglacial decay times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, Holly Kyeore; Gomez, Natalya
2018-05-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data sets) may reflect this water loading signal.
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2006-04-01
It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.
Atmospheric interaction with nanosatellites from observed orbital decay
NASA Astrophysics Data System (ADS)
Macario-Rojas, A.; Smith, K. L.; Crisp, N. H.; Roberts, P. C. E.
2018-06-01
Nanosatellites have gained considerable presence in low Earth orbits wherein the atmospheric interaction with exposed surfaces plays a fundamental role in the evolution of motion. These aspects become relevant with the increasing applicability of nanosatellites to a broader range of missions objectives. This investigation sets out to determine distinctive drag coefficient development and attributes of atmospheric gas-surface interactions in nanosatellites in the common form of standard 3U CubeSats from observed orbital decay. As orbital decay can be measured with relative accuracy, and its mechanism broken down into its constituent sources, the value of drag-related coefficients can be inferred by fitting modelled orbit predictions to observed data wherein the coefficient of interest is the adjusted parameter. The analysis uses the data of ten historical missions with documented passive attitude stabilisation strategies to reduce uncertainties. Findings indicate that it is possible to estimate fitted drag coefficients in CubeSats with physical representativeness. Assessment of atomic oxygen surface coverage derived from the fitted drag coefficients is broadly consistent with theoretical trends. The proposed methodology opens the possibility to assess atmospheric interaction characteristics by using the unprecedented opportunity arising from the numerous observed orbital decay of nanosatellites.
NASA Technical Reports Server (NTRS)
Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.
1985-01-01
Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.
NASA Astrophysics Data System (ADS)
Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.
2014-12-01
Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient simulations we diagnose decreasing tropospheric N2O concentrations, increased transport of N2O from the troposphere to the stratosphere, and increasing stratospheric decay of N2O leading to a reduction in atmospheric lifetime of N2O, in dependency to climate change evolution.
On the structure of the turbulent vortex
NASA Technical Reports Server (NTRS)
Roberts, L.
1985-01-01
The trailing vortex generated by a lifting surface, the structure of its turbulent core and the influence of axial flow within the vortex on its initial persistence and on its subsequent decay are described. Similarity solutions of the turbulent diffusion equation are given in closed form and results are expressed in sufficiently simple terms that the influence of the lifting surface parameters on the length of persistence and the rate of decay of the vortex can be evaluated.
Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus
Romberg, Carola; Raffel, Joel; Martin, Lucy; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M; Paulsen, Ole
2009-01-01
Long-term potentiation (LTP) at hippocampal CA3–CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit (Gria1−/− mice) to investigate GluA1-independent mechanisms of LTP at CA3–CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3–CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC. PMID:19302150
On the Numerical Analysis of Decay Rate Enhancement in Metallic Environment
NASA Astrophysics Data System (ADS)
Mehedinteanu, S.
2007-10-01
Motivated on the very recent experiments to determine the acceleration of the alpha decay of meta-stable radionuclides in metallic environment some work has been done to strengthten the importance in the process of electrons screening in metals. Thus, by combining the Gamow decay theory with electrostatic screening in Debye-Hückel approximation (jellium model) a formula for ``the shift'' in screening energy which enters in the decay enhancement factor expression that copes well with these experiments has been derived. It was established that to simulate the poly-atoms system containing decaying isotopes in QM&MD codes calculations, and to include ``the screening energy shift'' of protons, decay alpha, beta+ particles due to all surrounding interacting effects, it is sufficiently only to substitute the code ruly pseudo-potential input for hydrogen-like atoms (including alpha) by a screened Coulomb potential as from the well-known Gamow alpha decay theory. For demonstration is used the QM&MD code package which usually performs density-functional theory (DFT) total-energy calculations for materials ranging from insulators to transition metals. This package employs first-principles pseudo-potentials and a plane-wave basis-set, and it was used to do a special calculus for some metal environments (Pd) where protons-deuterons are implanted or when it is alloyed with a radionuclide-like isotopes (174Hf72), the results compare well with the existing experiments on the decay enhancement. These works give further arguments for a cheap solution to remove the transuranic waste (involving all alpha-decay) of used-up rods of fission reactors in a time period of a few years.
Rare decays in quark flavour physics
NASA Astrophysics Data System (ADS)
Albrecht, Johannes; LHCb Collaboration
2016-04-01
Rare heavy-flavour decays are an ideal place to search for the effects of potential new particles that modify the decay rates or the Lorentz structure of the decay vertices. Recent results on Flavour Changing Neutral Current decays from the LHC are reviewed. An emphasis is put on the very rare decay Bs0 →μ+μ-, which was recently observed by the CMS and LHCb experiments, on a recent test of lepton universality in loop processes and on the analysis of the angular distributions of the B0 →K*0μ+μ- decays, both by the LHCb collaboration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, J.; Beseler, S.; Sterflinger, K.
2007-11-15
Sterzing marble, a crystalline white marble used in the late-Baroque garden sculptures of Schoenbrunn Palace in Vienna, was studied by means of thin-section and scanning electron microscopy in order to obtain a better understanding of its surface decay caused by atmospheric weathering. Following the classification of distinct phenomena of deterioration by visual on-site inspection, the microstructural features including surface erosion, micro-cracking, soiling, black crust formation, and microbiological infestation are exemplified by microscopical images and are briefly discussed. The results proved useful for evaluating and understanding the various types of marble decay for creating a safer basis for establishing the proceduralmore » principles aimed at conservation and maintenance of the sculptures.« less
NASA Astrophysics Data System (ADS)
Camaiti, Mara; Benvenuti, Marco; Costagliola, Pilar; Di Benedetto, Francesco; Del Ventisette, Chiara; Garfagnoli, Francesca; Lombardi, Luca; Moretti, Sandro; Pecchioni, Elena; Vettori, Silvia
2013-04-01
A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously and rapidly acquires punctual reflectance spectra in the 350-2500 nm spectral range, has been recently proposed as non-destructive and non-invasive technology for detecting gypsum and other materials (inorganic as well as organic) on surfaces of historical buildings [1,2,3]. The instrument, which is also capable to quantitatively assess physical changes of the surfaces (i. e. color changes), has the potentialities to be used for monitoring the state of conservation of stone surfaces through the monitoring of the relative abundance of some components considered precursor symptoms of decay. The increase of gypsum or the decrease of the relative abundance of organic materials used as protective materials allows, in fact, to control and detect the chemical attack of carbonate surfaces, as well as the efficacy and durability of protective treatments. Although the relative abundance of any compound is theoretically related to the signal intensities of its spectral signature, a quantitative analysis is often compromised by some factors such as the grain dimension of crystals [2 4]. However the monitoring of critical areas may give useful information on the progression of decay provided that the same areas are investigated. The spectroradiometer can operate both in natural light conditions and by a contact probe with fixed illumination and geometry of shot; in this study the second condition was preferred since the same operative conditions can be maintained for all the measurements during the monitoring. Aim of this work was to find an easy to use and accurate system for repositioning the spectroradiometer probe in the same small areas of interest during the long-term monitoring. Two systems (theodolite and distance measuring laser) have been tested and their accuracy has been evaluated on some Florentine historical buildings (Cathedral of Santa Maria del Fiore and Basilica of San Miniato al Monte), selected as case study. Both systems showed good accuracy, within the experimental errors of the spectroradiometer, but the possibility of geo-referencing any small area of the building surface makes the theodolite the better system for monitoring different critical areas of historical stone surfaces. [1] S. Vettori, M. Benvenuti, M. Camaiti, L. Chiarantini, P. Costagliola, S. Moretti, E. Pecchioni, 2008, "Assessment of the deterioration status of historical buildings by Hyperspectral Imaging techniques", in Proceedings of the "In situ monitoring of monumental surfaces - SMS/08" Congress, Edifir-Edizioni Firenze, 2008, 55-64. [2] M. Camaiti, S. Vettori, M. Benvenuti, L. Chiarantini, P. Costagliola, F. Di Benedetto, S. Moretti, F. Paba, E. Pecchioni, 2011, "Hyperspectral sensor for gypsum detection on monumental buildings", Journal of Geophysics and Engineering, 8, 126-131. [3] L. Alparone, M. Benvenuti, M. Camaiti, L. Chiarantini, P. Costagliola, F. Garfagnoli, S. Moretti, E. Pecchioni, S. Vettori, 2011, "Hyperspectral Instruments as Potential Tools for Monitoring Decay Processes of Historical Building Surfaces", in Proceedings COST 2011, Florence 2011, 192-194. [4] R.N. Clark , 1995, " ", Rock Physics and Phase Relations - Handbook of Physical Constants, (Washington, DC: American Geophysical Union), 178-88.
Capillary waves and the decay of density correlations at liquid surfaces
NASA Astrophysics Data System (ADS)
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Modeling surface backgrounds from radon progeny plate-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumpilly, G.; Guiseppe, V. E.; Snyder, N.
2013-08-08
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. Wemore » look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured α spectra are presented.« less
Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications
NASA Astrophysics Data System (ADS)
Sobhani Khakestar, Heidar
Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high energy carrier rather than radiation. Photons coupled into metallic nanoantenna excite resonant plasmons, which can decay into energetic, hot electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. We design a device which the range of its potential applications is extremely diverse. As silicon based detector capable of detecting sub-band gap photons, this device could be used in photovoltaic devices to harvest solar energy. Plasmon generated hot electrons can be used in photocatalytic dissociation of H2 molecules at the room temperature as well. The hot electrons in their higher energy states can populate the antibonding orbital of H2 molecules adsorbed on the metal surface and thus trigger the H2 molecule dissociation. The goal is to demonstrate the high efficiency of metallic photocatalytic systems by detecting the formation of HD molecules from the individual dissociation of two isotopes, H2 and D2. At the end we introduce lightning rod effect in metallic nanostructures and investigated the relation between the geometry properties of micrometer rod antennas and the electromagnetic field enhancement induced due to the lightning rod effect. At long wavelength, metals behave like perfect equipotential conductors and all the field enhancement results from the drop of potentials across the junctions between individual nanoparticles. This phenomenon is called lightning rod effect. By designing proper geometry we were able to utilize this effect to obtain enough electromagnetic enhancements in MIR region of spectrum to observe SEIRA signals from few hemoglobin molecules. Our simulation shows that the field enhancement obtained from this antenna does not depend sensitively on wavelength which is another advantage for SEIRA spectroscopy. We offered an analytical model to explore the coupling between the hemoglobin molecules and the Efield. We used this model to study the location effect of the molecule on the reflection signal. This technique allows us to detect the vibrational mode of molecules such as Hemoglobin in the real time and study their changes when the molecules are exposed to different environmental circumstances.
Bacteria-Phagocyte Interactions: Emerging Tactics in an Ancient Rivalry
1990-01-01
afhitan. mechanisms by which microbes cvade the deposi- Mimicry of decay -accelerating factor aExample. T ’ruzi tion of immunogiobulin and complement on...their , Possible Isis of decay accelerating factor on host cell, surfaces have been well-studied (Table 2). For Example. Bacterial phospholipase example...activators of protein that mimics the action of decay accelerat- the alternate complement pathway 1171. ing factor (DAF) [261. This protein is part of a
Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2018-01-01
The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.
Butt rot defect and potential hazard in lodgepole pine on selected California recreational areas
Lee A. Paine
1966-01-01
Within the area sampled, potentially hazardous lodgepole pine were common on recreational sites. The incidence of decayed and mechanically weak trees was correlated with fire damage. Two-thirds of fire-scarred trees were decayed; one-third were rated potentially hazardous. Fire scars occurred roughly in proportion to level of plot recreational use.
Inhibitory effect of essential oils on decay fungi and mold growth on wood
Vina W. Yang; Carol A. Clausen
2007-01-01
Structural damage and potential health risks caused by wood decay and mold fungi in residential structures have been a major concern for homeowners, building contractors and insurance companies alike. The combined damage from decay fungi and mold claims exceeds several billion US dollars annually. Protection against decay and mold growth on wood is a critical economic...
1978-06-01
HDL). The locus of electrical centers of hydrated ions in contact with the electrode surface is known as the outer Helmholtz plane ( OHP ) while the...and then a more Crdual exponential decay in the diffuse double layer. The difference in potential between the OHP and the bulk electrolyte, i.e., the...rnntribution of the diffuse double layer, is called the electrokinetic or iC 275 (a) Wc IHP OHP GCL- BULK + + ELECTRO YTE + + + + +G+ + eS+ J f -A -A
Recombination of H(3+) and D(3+) ions with electrons
NASA Technical Reports Server (NTRS)
Johnsen, R.; Gougousi, T.; Golde, M. F.
1994-01-01
Flowing-afterglow measurements in decaying H3(+) or D3(+) plasmas suggest that de-ionization does not occur by simple binary recombination of a single ion species. We find that vibrational excitation of the ions fails to provide an explanation for the effect, contrary to an earlier suggestion. Instead, we suggest that collisional stabilization of H3** Rydberg molecules by ambient electrons introduces an additional dependence on electron density. The proposed mechanism would permit plasma de-ionization to occur without the need for dissociative recombination by the mechanism of potential-surface crossings.
Photonic surface waves on metamaterial interfaces
NASA Astrophysics Data System (ADS)
Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.
2017-11-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Cavalieri, Donald J.; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.
The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.
Non-Classical Smoothening of Nano-Scale Surface Corrugations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Michael J.; Chason, Eric; Erlebacher, Jonah
1999-05-20
We report the first experimental observation of non-classical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(OO1) by sputter rippling and then annealed at 650 - 750 °C. In contrast to the classical exponential decay with time, the ripple amplitude, A {lambda}(t), followed an inverse linear decay, A {lambda}(t)= A {lambda}(0)/(1 +k {lambda}t), agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6±0.2 eV, consistent with an interpretation that dimers mediate transport.
Non-Destructive Approaches for the Validation of Visually Observed Spatial Patterns of Decay
NASA Astrophysics Data System (ADS)
Johnston, Brian; McKinley, Jennifer; Warke, Patricia; Ruffell, Alastair
2017-04-01
Historical structures are regarded as a built legacy that is passed down through the generations and as such the conservation and restoration of these buildings is of great importance to governmental, religious and charitable organisations. As these groups play the role of custodians of this built heritage, they are therefore keen that the approaches employed in these studies of stone condition are non-destructive in nature. Determining sections of facades requiring repair work is often achieved through a visual conditional inspection of the stonework by a specialist. However, these reports focus upon the need to identify blocks requiring restorative action rather than the determination of spatial trends that lead to the identification of causes. This fixation on decay occurring at the block scale results in the spatial distribution of weathering present at the larger 'wall' scale appearing to have developed chaotically. Recent work has shown the importance of adopting a geomorphological focus when undertaking visual inspection of the facades of historical buildings to overcome this issue. Once trends have been ascertained, they can be used to bolster remedial strategies that target the sources of decay rather than just undertaking an aesthetic treatment of symptoms. Visual inspection of the study site, Fitzroy Presbyterian Church in Belfast, using the geomorphologically driven approach revealed three features suggestive of decay extending beyond the block scale. Firstly, the influence of architectural features on the susceptibility of blocks to decay. Secondly, the impact of the fluctuation in groundwater rise over the seasons and the influence of aspect upon this process. And finally, the interconnectivity of blocks, due to deteriorating mortar and poor repointing, providing conduits for the passage of moisture. Once these patterns were identified, it has proven necessary to validate the outcome of the visual inspection using other techniques. In this study, three complimentary approaches were employed, ground penetrating radar (GPR), probe permeametry and 3D modelling. Each of these strategies were selected as they were both capable of substantiating the suggested causes of visible decay trends and non-destructive in nature. GPR was employed to detect variations in the wall corresponding to the presence of hollows or moisture within the wall sections. The returns support the conclusions that empty spaces, created through the deterioration of mortar exist within the wall, allowing the passage of moisture. Using probe permeametry, the surface permeability of the wall surface was measured, analysis of which was carried out using kriging. The variograms created for this purpose suggest a significant directional element. 3D Models created by scanning the wall sections was used to calculate a measurement of roughness for the surfaces of the study area. Due to the stonework at the church being hammer dressed, the effectiveness of the determination of changing roughness was restricted, however some variation was identified. Through the combined use of these techniques, the wall scale trends suggested by the results of the visual inspection were validated. Thus, the apparent potential of these techniques, in particular the use of GPR, in supporting future studies of decay is promising.
Underscreening in concentrated electrolytes.
Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan
2017-07-01
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
NASA Astrophysics Data System (ADS)
Hemdeep, Chopra, Sahila; Kaur, Arshdeep; Kaushal, Pooja; Gupta, Raj K.
2018-04-01
Background: The formation and decay of the *220Th compound nucleus (CN) formed via some entrance channels (16O+204Pb,40Ar+180Hf,48Ca+172Yb,82Se+138Ba ) at near barrier energies has been studied within the dynamical cluster-decay model (DCM) [Hemdeep et al. Phys. Rev. C 95, 014609 (2017), 10.1103/PhysRevC.95.044603], for quadrupole deformations (β2 i) and "optimum" orientations (θopt) of the two nuclei or decay fragments lying in the same plane (coplanar nuclei, Φ =0∘ ). Purpose: We aim to investigate the role of higher-multipole deformations, the octupole (β3 i) and hexadecupole (β4 i), and "compact" orientations (θc i) together with the noncoplanarity degree of freedom (Φc) in the noncompound nucleus (nCN) cross section, already observed in the above mentioned study with quadrupole deformations (β2 i) alone, the Φ =0∘ case. Methods: The dynamical cluster-decay model (DCM), based on the quantum mechanical fragmentation theory (QMFT), is used to analyze the decay channel cross sections σx n for various experimentally studied entrance channels. The parameter Ra (equivalently, the neck length Δ R in Ra=R1+R2+Δ R ), which fixes both the preformation and penetration paths, is used to best fit both unobserved (1 n ,2 n ) and observed (3 n -5 n ) decay channel cross sections, keeping the root-mean-square (r.m.s) deviation to the minimum, which allows us to predict the nCN effects, if any, and fusion-fission (ff) cross sections in various reactions at different CN excitation energies E*. Results: For the decay of CN *220Th, the mass fragmentation potential V (Ai ) and preformation yields P0( Ai ) show an asymmetric fission mass distribution, in agreement with one observed in experiments, independent of adding or not adding (β3 i,β4 i ), and irrespective of large changes (by 36° and 34°), respectively, in "compact" orientations θc i and noncoplanarity Φc, and also in the potential energy surface V (Ai ) in light mass (1 n -5 n ) decays. Whereas the 3 n - and 5 n -decay channels fit nearly exactly, i.e., they are always the pure CN decays, the 4 n -decay channel shows the presence of large (˜95 % ) nCN content whose magnitude in every case remains the same within <1 % and hence does not get modified, in contrast to our earlier studies of other CN. Also, the near constancy of best fitted Ra(≡Δ R ) with E*, and with an upper limiting value for reactions with magic nuclei as reaction partner(s), independent of the entrance channel nuclei, allows us to predict the decay channel cross sections σx n,x =3 -5 for 16O+204Pb reaction, whose sum (=∑35σx n ) fits the observed σER data nicely. Also, the variations of CN fusion/formation probability PC N and survival probability Psurv follow the required systematic behavior, giving credence to our DCM analysis. Conclusions: With the inclusion of higher-multipole deformations and "compact" noncoplanarity degree of freedom (Φc≠0 ), the results of our above-mentioned earlier study, using quadrupole deformation (β2 i) alone for coplanar (Φc=0 ) nuclei, remain the same; i.e., of the measured 3 n -5 n decay channels of CN *220Th, the 3 n and 5 n decays are always pure CN decays and the 4 n decay is mainly of nCN content σn CN, whose magnitude also remains constant (within <1 % ) under all approximations. Furthermore, the upper limiting value of the linear dependence of first turning point Ra on E* is shown to be a better choice for predicting the decay channel cross sections σx n for reactions like 16O+204Pb using magic nuclei, whose experimental determination will be a good test of our model.
Decay assessment through thermographic analysis in architectural and archaeological heritage
NASA Astrophysics Data System (ADS)
Gomez-Heras, Miguel; Martinez-Perez, Laura; Fort, Rafael; Alvarez de Buergo, Monica
2010-05-01
Any exposed stone-built structure is subject to thermal variations due to daily, seasonal and secular environmental temperature changes. Surface temperature is a function of air temperature (due to convective heat transfer) and of infrared radiation received through insolation. While convective heat transfer homogenizes surface temperature, stone response to insolation is much more complex and the temporal and spatial temperature differences across structures are enhanced. Surface temperature in stone-built structures will be affected by orientation, sunlight inclination and the complex patterns of light and shadows generated by the often intricate morphology of historical artefacts and structures. Surface temperature will also be affected by different material properties, such as albedo, thermal conductivity, transparency and absorbance to infrared radiation of minerals and rocks. Moisture and the occurrence of salts will also be a factor affecting surface temperatures. Surface temperatures may as well be affected by physical disruptions of rocks due to differences in thermal inertia generated by cracks and other discontinuities. Thermography is a non-invasive, non-destructive technique that measures temperature variations on the surface of a material. With this technique, surface temperature rates of change and their spatial variations can be analysed. This analysis may be used not only to evaluate the incidence of thermal decay as a factor that generates or enhances stone decay, but also to detect and evaluate other factors that affect the state of conservation of architectural and archaeological heritage, as for example moisture, salts or mechanical disruptions.
Radiative Transfer Model for Contaminated Rough Surfaces
2013-02-01
grey). Right: reconstructed 3D BRDF . ........................................................ 14 Figure 6. Results of fitting the decay model to...in Section 3.2.5 and 4.2.2 that the decay model can allow the use of auxiliary H0 measurements. 2.2 RESULTS 2.2.1 BRDF FOR GOLD AND ALUMINUM Our...Reflectance Angle () R ef le ct an ce Meas. BRDF Lambertian 15 Figure 6. Results of fitting the decay model to angular reflectance for rough aluminum
Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.
1999-01-01
Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.
Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms.
Wilhelm, Richard A; Gruber, Elisabeth; Schwestka, Janine; Kozubek, Roland; Madeira, Teresa I; Marques, José P; Kobus, Jacek; Krasheninnikov, Arkady V; Schleberger, Marika; Aumayr, Friedrich
2017-09-08
The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.
Theoretical/experimental comparison of deep tunneling decay of quasi-bound H(D)OCO to H(D) + CO₂.
Wagner, Albert F; Dawes, Richard; Continetti, Robert E; Guo, Hua
2014-08-07
The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence experiments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D) + CO2 on several recent ab initio potential energy surfaces for the HOCO system. The tunneling calculations involve effective one-dimensional barriers based on steepest descent paths computed on each potential energy surface. The resulting tunneling probabilities are converted into H(D)OCO survival fractions using a model developed by the Continetti group in which every oscillation of the H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are examined with the best qualitative agreement with experiment occurring for the PIP-NN surface based on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical shape along their reaction paths. The PIP surface is a less accurate fit to a smaller ab initio data set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN. The LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible with experiment. This surface also has a small discontinuity that is easily repaired. On each surface, four different approximate tunneling methods are compared but only the small curvature tunneling method and the improved semiclassical transition state method produce useful results on all four surfaces. The results of these two methods are generally comparable and in qualitative agreement with experiment on the PIP-NN and CASPT2 surfaces. The original semiclassical transition state theory method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. The Eckart tunneling method uses the least amount of information about the reaction path and produces too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half their measured values.
Fast-neutron-induced potential background near the Q value of neutrinoless double-β decay of 76Ge
NASA Astrophysics Data System (ADS)
Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan
2016-01-01
The 76Ge (n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.89-keV state of 76Ge , which decays by the emission of a 2040.70-keV γ ray. Using high-purity germanium detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrinoless double-β decay of 76Ge with its Q value of 2039.0 keV. At 20-MeV neutron energy the production cross section of the 2040.70-keV γ ray is approximately 0.1 mb.
NASA Astrophysics Data System (ADS)
Royer, Guy; Zhang, Hongfei
The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.
Role of shell corrections in the phenomenon of cluster radioactivity
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Singh, Bir Bikram; Sharma, Manoj K.
2018-05-01
The detailed investigation has been carried out to explore the role of shell corrections in the decay of various radioactive parent nuclei in trans-lead region, specifically, which lead to doubly magic 208Pb daughter nucleus through emission of clusters such as 14C, 18,20O, 22,24,26Ne, 28,30 Mg and 34S i. The fragmentation potential comprises of binding energies (BE), Coulomb potential (Vc) and nuclear or proximity potential (VP) of the decaying fragments (or clusters). It is relevant to mention here that the contributions of VLDM (T=0) and δU (T=0) in the BE have been analysed within the Strutinsky renormanlization procedure. In the framework of quantum mechanical fragmentation theory (QMFT), we have investigated the above mentioned cluster decays with and without inclusion of shell corrections in the fragmentation potential for spherical as well as non-compact oriented nuclei. We find that the experimentally observed clusters 14C, 18,20O, 22,24,26 Ne, 28,30 Mg and 34Si having doubly magic 208 Pb daughter nucleus are not strongly minimized, they do so only after the inclusion of shell corrections in the fragmentation potential. The nuclear structure information carried by the shell corrections have been explored via these calculations, within the collective clusterisation process of QMFT, in the study of ground state decay of radioactive nuclei. The role of different parts of fragmentation potentials such as VLDM, δU, Vc and Vp is dually analysed for better understanding of radioactive cluster decay.
NASA Astrophysics Data System (ADS)
Ghosh, Soumen
This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2 state is accompanied by the formation of an ICT character and dynamic exciton localization, which controls the mechanism of excitation energy transfer to chlorophyll a acceptors in the peridinin-chlorophyll a protein.
Beck, James D; Youngblood, Marston; Atkinson, Jane C; Mauriello, Sally; Kaste, Linda M; Badner, Victor M; Beaver, Shirley; Becerra, Karen; Singer, Richard
2014-06-01
The Hispanic and Latino population is projected to increase from 16.7 percent to 30.0 percent by 2050. Previous U.S. national surveys had minimal representation of Hispanic and Latino participants other than Mexicans, despite evidence suggesting that Hispanic or Latino country of origin and degree of acculturation influence health outcomes in this population. In this article, the authors describe the prevalence and mean number of cavitated, decayed and filled surfaces, missing teeth and edentulism among Hispanics and Latinos of different national origins. Investigators in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)-a multicenter epidemiologic study funded by the National Heart, Lung, and Blood Institute with funds transferred from six other institutes, including the National Institute of Dental and Craniofacial Research-conducted in-person examinations and interviews with more than 16,000 participants aged 18 to 74 years in four U.S. cities between March 2008 and June 2011. The investigators identified missing, filled and decayed teeth according to a modified version of methods used in the National Health and Nutrition Examination Survey. The authors computed prevalence estimates (weighted percentages), weighted means and standard errors for measures. The prevalence of decayed surfaces ranged from 20.2 percent to 35.5 percent, depending on Hispanic or Latino background, whereas the prevalence of decayed and filled surfaces ranged from 82.7 percent to 87.0 percent, indicating substantial amounts of dental treatment. The prevalence of missing teeth ranged from 49.8 percent to 63.8 percent and differed according to Hispanic or Latino background. Significant differences in the mean number of decayed surfaces, decayed or filled surfaces and missing teeth according to Hispanic and Latino background existed within each of the age groups and between women and men. Oral health status differs according to Hispanic or Latino background, even with adjustment for age, sex and other characteristics. These data indicate that Hispanics and Latinos in the United States receive restorative dental treatment and that practitioners should consider the association between Hispanic or Latino origin and oral health status. This could mean that dental practices in areas dominated by patients from a single Hispanic or Latino background can anticipate a practice based on a specific pattern of treatment needs.
Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...
NASA Astrophysics Data System (ADS)
Gruszko, Julieta
Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery (DCR) effect, allowing for the efficient rejection of passivated surface alpha events in analysis. Using a dedicated test-stand called the TUM Upside-down BEGe (TUBE) scanner, we have characterized the response of a P-PC detector like those used in the DEMONSTRATOR to alphas incident on the sensitive surfaces, developing a model for the radial dependence of the energy loss to charge trapping and determining the dominant mechanism behind the delayed charge effect. We have also used these measurements to demonstrate the complementarity of the DCR analysis with the drift-time analysis that is used to identify alpha background candidate events in the GERDA detectors. Using these two methods, we demonstrate the ability to effectively reject all alpha events (to within statistical uncertainty) with only 0.2% bulk event sacrifice. Applying the DCR analysis to the events observed in the MAJORANA DEMONSTRATOR, we find that it reduces the backgrounds in the 0nBB region-of-interest by a factor of 29, increasing the expected experimental sensitivity by a factor of 3 over the lifetime of the DEMONSTRATOR. The results of the dedicated measurements in the TUBE scanner can be used to build a background model for alpha decays in the DEMONSTRATOR; here, we examine two simplified geometric models for the alpha source distribution and find that the observed spectral shape is consistent with alpha events originating in the plastics of the detector units.
Development of infrared thermal imager for dry eye diagnosis
NASA Astrophysics Data System (ADS)
Chiang, Huihua Kenny; Chen, Chih Yen; Cheng, Hung You; Chen, Ko-Hua; Chang, David O.
2006-08-01
This study aims at the development of non-contact dry eye diagnosis based on an infrared thermal imager system, which was used to measure the cooling of the ocular surface temperature of normal and dry eye patients. A total of 108 subjects were measured, including 26 normal and 82 dry eye patients. We have observed that the dry eye patients have a fast cooling of the ocular surface temperature than the normal control group. We have developed a simplified algorithm for calculating the temperature decay constant of the ocular surface for discriminating between normal and dry eye. This study shows the diagnostic of dry eye syndrome by the infrared thermal imager system has reached a sensitivity of 79.3%, a specificity of 75%, and the area under the ROC curve 0.841. The infrared thermal imager system has a great potential to be developed for dry eye screening with the advantages of non-contact, fast, and convenient implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jingke; Stanford, Chris; Westerdale, Shawn
Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less
Application of sound and temperature to control boundary-layer transition
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.
1987-01-01
The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.
ERIC Educational Resources Information Center
Futurist, 1984
1984-01-01
Five areas that have great potential for becoming crises in the future are described: a warming of the earth's climate, changing weather patterns and growing seasons; water shortage; the decay of the physical infrastructure, e.g., decay of roads, bridges; breakdown of the international monetary and trading system; and nuclear warfare. (Author/RM)
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.
2011-01-01
Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Swarnendu, E-mail: swarnendu.bhattacharyya@ch.tum.de; Domcke, Wolfgang, E-mail: wolfgang.domcke@ch.tum.de; Dai, Zuyang
A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have beenmore » computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.« less
Radial overlap correction to superallowed 0+→0+ β decay reexamined
NASA Astrophysics Data System (ADS)
Xayavong, L.; Smirnova, N. A.
2018-02-01
Within the nuclear shell model, we investigate the correction δR O to the Fermi matrix element due to a mismatch between proton and neutron single-particle radial wave functions. Eight superallowed 0+→0+ β decays in the s d shell, comprising 22Mg, Alm26, 26Si, 30S, 34Cl, 34Ar, Km38, and 38Ca, are reexamined. The radial wave functions are obtained from a spherical Woods-Saxon potential whose parametrizations are optimized in a consistent adjustment of the depth and the length parameters to relevant experimental observables, such as nucleon separation energies and charge radii, respectively. The chosen fit strategy eliminates the strong dependence of the radial mismatch correction to a specific parametrization, except for calculations with an additional surface-peaked term. As an improvement, our model proposes a new way to calculate the charge radii, based on a parentage expansion which accounts for correlations beyond the extreme independent-particle model. Apart from the calculations with a surface-peak term and the cases where we used a different model space, the new sets of δR O are in general agreement with the earlier result of Towner and Hardy [Phys. Rev. C 66, 035501 (2002), 10.1103/PhysRevC.66.035501]. Small differences of the corrected average F t ¯ value are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grand, D.; Hautecloque, S.
1990-01-25
Electron-transfer reaction between N,N,N{prime},N{prime}-tetramethylbenzidine cation (TMB{sup +}) and neutral nucleophiles, pyridine (Py) and triethylamine (Et{sub 3}N), is studied in NaLS micellar media. A biphasic decay of TMB{sup +} follows the laser-induced TMB photoionization. The very fast decay is attributed to an electron transfer between reactants located in the core of the micelle. The slow decay would correspond to an electron transfer from the nucleophile solubilized in the aqueous phase to TMB{sup +} embedded in the lipidic phase. The role of the electrical interfacial potential {Delta}{psi} is evidenced. The rate constant of the TMB{sup +} slow decay displays an exponential functionmore » of {Delta}{psi}. The effect of the localization and distance of the reactants is emphasized.« less
The impact of the postharvest environment on the viability and virulence of decay fungi
USDA-ARS?s Scientific Manuscript database
Postharvest decay of fruits, vegetables, and grains by fungal pathogens causes significant economic losses. Infected produce presents a potential health risk since some decay fungi produce mycotoxins that are hazardous to human health. Infections are the result of the interplay between host resist...
Field testing model predictions of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.
2012-12-01
Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.
NASA Astrophysics Data System (ADS)
Tschiersch, R.; Bogaczyk, M.; Wagner, H.-E.
2014-09-01
As a logical extension to previous investigations of the barrier discharge (BD) in helium and nitrogen, the present work reports on the operation in any mixtures of both pure gases. Using a well-established plane-parallel discharge cell configuration allows to study the influence of the He/N2 mixing ratio on the formation of different discharge modes. Their characterization was made by measuring the discharge emission development together with the formation and decay of surface charges on a bismuth silicon oxide (Bi12SiO20, BSO) crystal. This was realized by the simultaneous application of the spatio-temporally resolved optical emission spectroscopy, and the electro-optic Pockels effect in combination with a CCD high speed camera. The existence diagram for diffuse and filamentary BDs was determined by varying the amplitude and shape of the applied voltage. Over the entire range of the He/N2 ratio, the diffuse mode can be operated at moderate voltage amplitudes whereas filamentation occurs at significant overvoltage and is favoured by a high voltage slew rate. Irrespective of the discharge mode, the overall charge transfer during a discharge breakdown is found to be in excellent agreement with the amount of accumulated surface charges. An exponential decay of the surface charge deposited on the BSO crystal is induced by LED illumination beyond a typical discharge cycle. During the decay process, a broadening of the radial profiles of positive as well as negative surface charge spots originating from previous microdischarges is observed. The investigations contribute to a better understanding of the charge accumulation at a dielectric.
Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes
NASA Astrophysics Data System (ADS)
Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice
2014-03-01
A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.
Wilt, F M; Miller, G C; Everett, R L; Hackett, M
1993-02-01
Senescent foliage from pines is potentially a large contributor to the total monoterpene content of the litter layer, and the availability of these compounds as phytotoxins may result from release of these compounds into the vapor phase. In order to determine the fate of several monoterpene hydrocarbons in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 32 single-leaf pinyon pine (Pinus monophylla Torr. & Frem.: Pinaceae) trees growing at two different locations. Total monoterpene content was highest in the fresh needles (mean=5.6 ± 2.2 mg/g extracted air dry weight), but also remained relatively high in senescent needles (mean=3.6 ±1.8 mg/g extracted air dry weight), either still attached to the tree or forming the freshest layer of understory litter. Decaying needles within a dark decomposing layer of litter material 5-20 cm from the surface were found to contain much lower amounts of total monoterpenes (average: =0.12 ±0.06 mg/g extracted air dry weight). Further investigation of the fate of these compounds in the pinyon understory is required to determine if these hydrocarbons are indeed exerting phytotoxic characteristics.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.
2015-12-01
This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.
First measurement of surface nuclear recoil background for argon dark matter searches
Xu, Jingke; Stanford, Chris; Westerdale, Shawn; ...
2017-09-19
Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less
Neutrons on a surface of liquid helium
NASA Astrophysics Data System (ADS)
Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.
2016-08-01
We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.
Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David
2015-02-11
Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.
Effective conductivity of wire mesh reflectors for space deployable antenna systems
NASA Technical Reports Server (NTRS)
Davis, William A.
1994-01-01
This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.
Pandya, Darpan N.; Hantgan, Roy; Budzevich, Mikalai M.; Kock, Nancy D.; Morse, David L.; Batista, Izadora; Mintz, Akiva; Li, King C.; Wadas, Thaddeus J.
2016-01-01
The theranostic potential of 225Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of 225Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La3+ ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare 225Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other 225Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3+ tumors in live animals using the daughter products derived from 225Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy. PMID:27022417
Pandya, Darpan N; Hantgan, Roy; Budzevich, Mikalai M; Kock, Nancy D; Morse, David L; Batista, Izadora; Mintz, Akiva; Li, King C; Wadas, Thaddeus J
2016-01-01
The theranostic potential of (225)Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of (225)Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La(3+) ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare (225)Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other (225)Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3 (+) tumors in live animals using the daughter products derived from (225)Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy.
On high b diffusion imaging in the human brain: ruminations and experimental insights.
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2009-10-01
Interest in the manner in which brain tissue signal decays with b factor in diffusion imaging schemes has grown in recent years following the observation that the decay curves depart from purely monoexponential decay behavior. Regardless of the model or fitting function proposed for characterizing sufficiently sampled decay curves (vide infra), the departure from monoexponentiality spells increased tissue characterization potential. The degree to which this potential can be harnessed to improve specificity, sensitivity and spatial localization of diseases in brain, and other tissues, largely remains to be explored. Furthermore, the degree to which currently popular diffusion tensor imaging methods, including visually impressive white matter fiber "tractography" results, have almost completely ignored the nonmonoexponential nature of the basic signal decay with b factor is worthy of communal introspection. Here we limit our attention to a review of the basic experimental features associated with brain water signal diffusion decay curves as measured over extended b-factor ranges, the simple few parameter fitting functions that have been proposed to characterize these decays and the more involved models, e.g.,"ruminations," which have been proposed to account for the nonmonoexponentiality to date.
On high b diffusion imaging in the human brain: ruminations and experimental insights✩
Mulkern, Robert V.; Haker, Steven J.; Maier, Stephan E.
2010-01-01
Interest in the manner in which brain tissue signal decays with b factor in diffusion imaging schemes has grown in recent years following the observation that the decay curves depart from purely monoexponential decay behavior. Regardless of the model or fitting function proposed for characterizing sufficiently sampled decay curves (vide infra), the departure from monoexponentiality spells increased tissue characterization potential. The degree to which this potential can be harnessed to improve specificity, sensitivity and spatial localization of diseases in brain, and other tissues, largely remains to be explored. Furthermore, the degree to which currently popular diffusion tensor imaging methods, including visually impressive white matter fiber “tractography” results, have almost completely ignored the nonmonoexponential nature of the basic signal decay with b factor is worthy of communal introspection. Here we limit our attention to a review of the basic experimental features associated with brain water signal diffusion decay curves as measured over extended b-factor ranges, the simple few parameter fitting functions that have been proposed to characterize these decays and the more involved models, e.g.,“ruminations,” which have been proposed to account for the nonmonoexponentiality to date. PMID:19520535
Sano, Larissa L; Bartell, Steven M; Landrum, Peter F
2005-10-01
A biocide decay model was developed to assess the potential efficacy and environmental impacts associated with using glutaraldehyde to treat unballasted overseas vessels trading on the Laurentian Great Lakes. The results of Monte Carlo simulations indicate that effective glutaraldehyde concentrations can be maintained for the duration of a vessel's oceanic transit (approximately 9-12 days): During this transit, glutaraldehyde concentrations were predicted to decrease by approximately 10% from initial treatment levels (e.g., 500 mgL(-1)). In terms of environmental impacts, mean glutaraldehyde concentrations released at Duluth-Superior Harbor, MN were predicted to be 100-fold lower than initial treatment concentrations, and ranged from 3.2 mgL(-1) (2 SD: 2.74) in April to 0.7 mgL(-1) (2 SD: 1.28) in August. Sensitivity analyses indicated that the re-ballasting dilution factor was the major variable governing final glutaraldehyde concentrations; however, lake surface temperatures became increasingly important during the warmer summer months.
Exotic Higgs boson decay modes as a harbinger of S{sub 3} flavor symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Gautam; Leser, Philipp; Paes, Heinrich
2011-01-01
Discrete symmetries employed to explain flavor mixing and mass hierarchies can be associated with an enlarged scalar sector which might lead to exotic Higgs decay modes. In this paper, we explore such a possibility in a scenario with S{sub 3} flavor symmetry which requires three scalar SU(2) doublets. The spectrum is fixed by minimizing the scalar potential, and we observe that the symmetry of the model leads to tantalizing Higgs decay modes potentially observable at the CERN Large Hadron Collider.
Smoothing Polymer Surfaces by Solvent-Vapor Exposure
NASA Astrophysics Data System (ADS)
Anthamatten, Mitchell
2003-03-01
Ultra-smooth polymer surfaces are of great importance in a large body of technical applications such as optical coatings, supermirrors, waveguides, paints, and fusion targets. We are investigating a simple approach to controlling surface roughness: by temporarily swelling the polymer with solvent molecules. As the solvent penetrates into the polymer, its viscosity is lowered, and surface tension forces drive surface flattening. To investigate sorption kinetics and surface-smoothing phenomena, a series of vapor-deposited poly(amic acid) films were exposed to dimethyl sulfoxide vapors. During solvent exposure, the surface topology was continuously monitored using light interference microscopy. The resulting power spectra indicate that high-frequency defects smooth faster than low-frequency defects. This frequency dependence was studied by depositing polymer films onto a series of 2D sinusoidal surfaces and performing smoothing experiments. Results show that the amplitudes of the sinusoidal surfaces decay exponentially with solvent exposure time, and the exponential decay constants are proportional to surface frequency. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Decay of sandstone monuments in Petra (Jordan): Gravity-induced stress as a stabilizing factor
NASA Astrophysics Data System (ADS)
Řihošek, Jaroslav; Bruthans, Jiří; Mašín, David; Filippi, Michal; Schweigstillova, Jana
2016-04-01
As demonstrated by physical experiments and numerical modeling the gravity-induced stress (stress in further text) in sandstone massive reduces weathering and erosion rate (Bruthans et al. 2014). This finding is in contrast to common view that stress threatens stability of man-made monuments carved to sandstone. Certain low- levels of gravity-induced stress can in fact stabilize and protect these forms against weathering and disintegration. The purpose of this investigation is to evaluate the effect of the stress on weathering of sandstone monuments at the Petra World Heritage Site in Jordan via field observations, salt weathering experiments, and physical and numerical modeling. Previous studies on weathering of Petra monuments have neglected the impact of stress, but the ubiquitous presence of stress-controlled landforms in Petra suggests that it has a substantial effect on weathering and erosion processes on man-made monuments and natural surfaces. Laboratory salt weathering experiments with cubes of Umm Ishrin sandstone from Petra demonstrated the inverse relationship between stress magnitude and decay rate. Physical modeling with Strelec locked sand from the Czech Republic was used to simulate weathering and decay of Petra monuments. Sharp forms subjected to water erosion decayed to rounded shapes strikingly similar to tombs in Petra subjected to more than 2000 years of weathering and erosion. The physical modeling results enabled visualization of the recession of monument surfaces in high spatial and temporal resolution and indicate that the recession rate of Petra monuments is far from constant both in space and time. Numerical modeling of stress fields confirms the physical modeling results. This novel approach to investigate weathering clearly demonstrates that increased stress decreases the decay rate of Petra monuments. To properly delineate the endangered zones of monuments, the potential damage caused by weathering agents should be combined with stress modeling and verified by documentation of real damage. This research was funded by Grant Agency of Charles University (no. 386815) Bruthans J., Soukup J., Vaculíková J., Filippi M., Schweigstillova J., Mayo A.L., Mašín D., Kletetschka G.,Řihošek J. (2014): Sandstone landforms shaped by negative feedback between stress and erosion. Nature Geoscience 7(8): 597-601.
Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soo-Young
2009-10-15
We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.
Hydrodynamic growth and decay of planar shock waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.
2016-03-15
A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less
NASA Astrophysics Data System (ADS)
Stephens, A. W.; Green, M. A.
1996-10-01
A method for measuring minority-carrier mobility using microwave-detected photoconductance decay without requiring bulk lifetime, estimates is presented. Three different measurements on a single sample yield values for surface recombination velocity, bulk lifetime, and diffusivity. For each measurement the surface conditions of the sample are changed, allowing extraction of different parameters. The usefulness of 0.08 molar ethanol/iodine solution as a means of achieving such good surface passivation is demonstrated. The following procedure was used to achieve high surface recombination. A CF4 plasma surface etch was shown to achieve the same level of surface damage as mechanical abrasion. The advantage of the new method is that it completely eliminates the chance of breaking samples during the abrasion process, which is of particular advantage for thin samples. The new experimental method for minority-carrier mobility measurement is evaluated using carrier lifetime measurements made on a commercially available Leo Giken ``Wafer-τ'' lifetime tester.
Photoacoustic microscopy of human teeth
NASA Astrophysics Data System (ADS)
Rao, Bin; Cai, Xin; Favazza, Christopher; Yao, Junjie; Li, Li; Duong, Steven; Liaw, Lih-Huei; Holtzman, Jennifer; Wilder-Smith, Petra; Wang, Lihong V.
2011-03-01
Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp.
Heavy particle decay studies using different versions of nuclear potentials
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Sukumaran, Indu
2017-10-01
The heavy particle decay from 212-240Pa , 219-245Np , 228-246Pu , 230-249Am , and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei have been studied using fourteen versions of nuclear potentials. The study has shown that the barrier penetrability as well as the decay half-lives are found to vary with the nuclear potential used. The investigated decay events of the emission of the clusters 22Ne , 24Ne , 26Mg , 28Mg , 32Si and 33Si are not experimentally detected yet but may be detectable in the future. As most of the half-lives predicted are found to lie within the experimental upper limit, T 1/2 < 1030 s, our predictions will be a guide to future experimental design. The GN plots studied are linear for different cluster emissions from different parents with varying slopes and intercepts. Also, it is to be noted that the linearity of the GN plots is unaltered using different nuclear potentials. The universal curve studied ( log10 T 1/2 vs. -ln P for various clusters emitted from various parents shows a linear behavior with the same slope and intercept irrespective of the nuclear potential used.
Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP)
Iuculano, Francesca; Mazuecos, Ignacio P.; Reche, Isabel; Agustí, Susana
2017-01-01
Transparent exopolymer particles (TEP), usually associated with phytoplankton blooms, promote the formation of marine aggregates. Their exportation to deep waters is considered a key component of the biological carbon pump. Here, we explored the role of solar radiation and picocyanobacteria in the formation of TEP in oligotrophic surface waters of the Atlantic and Pacific Oceans in ten on-deck incubation experiments during the Malaspina 2010 Expedition. TEP concentrations were low on the ocean’s surface although these concentrations were significantly higher on the surface of the Pacific (24.45 ± 2.3 μg XG Eq. L-1) than on the surface of the Atlantic Ocean (8.18 ± 4.56 μg XG Eq. L-1). Solar radiation induced a significant production of TEP in the on-deck experiments from the surface water of the Pacific Ocean, reaching values up to 187.3 μg XG Eq. L-1 compared with the low production observed in the dark controls. By contrast, TEP production in the Atlantic Ocean experiments was lower, and its formation was not related to the light treatments. Prochlorococcus sp. from the surface ocean was very sensitive to solar radiation and experienced a high cell decay in the Pacific Ocean experiments. TEP production in the on-deck incubation experiments was closely related to the observed cell decay rates of Prochlorococcus sp., suggesting that this picocyanobacteria genus is a potential source of TEP. The evidence to propose such potential role was derived experimentally, using natural communities including the presence of several species and a variety of processes. Laboratory experiments with cultures of a non-axenic strain of Prochlorococcus marinus were then used to test TEP production by this genus. TEP concentrations in the culture increased with increasing cell abundance during the exponential phase, reaching the highest TEP concentration at the beginning of the stationary phase. The average TEP concentration of 1474 ± 226 μg XG Eq. L-1 (mean ± SE) observed at the stationary phase of P. marinus cultures is comparable with the values reported in the literature for diatom cultures, also growing in non-axenic as well as axenic cultures. Our results identify Prochlorococcus sp. as a possible relevant source of TEP in the oligotrophic ocean. PMID:28491056
Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP).
Iuculano, Francesca; Mazuecos, Ignacio P; Reche, Isabel; Agustí, Susana
2017-01-01
Transparent exopolymer particles (TEP), usually associated with phytoplankton blooms, promote the formation of marine aggregates. Their exportation to deep waters is considered a key component of the biological carbon pump. Here, we explored the role of solar radiation and picocyanobacteria in the formation of TEP in oligotrophic surface waters of the Atlantic and Pacific Oceans in ten on-deck incubation experiments during the Malaspina 2010 Expedition. TEP concentrations were low on the ocean's surface although these concentrations were significantly higher on the surface of the Pacific (24.45 ± 2.3 μg XG Eq. L -1 ) than on the surface of the Atlantic Ocean (8.18 ± 4.56 μg XG Eq. L -1 ). Solar radiation induced a significant production of TEP in the on-deck experiments from the surface water of the Pacific Ocean, reaching values up to 187.3 μg XG Eq. L -1 compared with the low production observed in the dark controls. By contrast, TEP production in the Atlantic Ocean experiments was lower, and its formation was not related to the light treatments. Prochlorococcus sp. from the surface ocean was very sensitive to solar radiation and experienced a high cell decay in the Pacific Ocean experiments. TEP production in the on-deck incubation experiments was closely related to the observed cell decay rates of Prochlorococcus sp., suggesting that this picocyanobacteria genus is a potential source of TEP. The evidence to propose such potential role was derived experimentally, using natural communities including the presence of several species and a variety of processes. Laboratory experiments with cultures of a non-axenic strain of Prochlorococcus marinus were then used to test TEP production by this genus. TEP concentrations in the culture increased with increasing cell abundance during the exponential phase, reaching the highest TEP concentration at the beginning of the stationary phase. The average TEP concentration of 1474 ± 226 μg XG Eq. L -1 (mean ± SE) observed at the stationary phase of P. marinus cultures is comparable with the values reported in the literature for diatom cultures, also growing in non-axenic as well as axenic cultures. Our results identify Prochlorococcus sp. as a possible relevant source of TEP in the oligotrophic ocean.
Quantum decay model with exact explicit analytical solution
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.
Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian
2015-01-01
Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions.
Methamphetamine Users Have Increased Dental Disease: A Propensity Score Analysis.
Shetty, V; Harrell, L; Clague, J; Murphy, D A; Dye, B A; Belin, T R
2016-07-01
Methamphetamine (MA) users are assumed to have a high burden of tooth decay. Less clear is how the distribution and severity of dental caries in MA users differ from the general population. Using a covariate-balancing propensity score strategy, we investigated the differential effects of MA use on dental caries by comparing the patterns of decayed, missing, and filled teeth in a community sample of 571 MA users with a subset of 2,755 demographically similar control individuals selected from a National Health and Nutrition Examination Survey (NHANES) cohort. Recruited over a 2-y period with a stratified sampling protocol, the MA users underwent comprehensive dental examinations by 3 trained and calibrated dentists using NHANES protocols. Propensity scores were estimated with logistic regression based on background characteristics, and a subset of closely matched subjects was stratified into quintiles for comparisons. MA users were twice as likely to have untreated caries (odds ratio [OR] = 2.08; 95% confidence interval [95% CI]: 1.55 to 2.78) and 4 times more likely to have caries experience (OR = 4.06; 95% CI: 2.24 to 7.34) than the control group of NHANES participants. Additionally, MA users were twice as likely to have 2 more decayed, missing, or filled teeth (OR = 2.08; 95% CI: 1.29 to 2.79) than the NHANES participants. The differential involvement of the teeth surfaces in MA users was quite distinctive, with carious surface involvement being highest for the maxillary central incisors, followed by maxillary posterior premolars and molars. Users injecting MA had significantly higher rates of tooth decay compared with noninjectors (P = 0.04). Although MA users experienced decayed and missing dental surfaces more frequently than NHANES participants, NHANES participants had more restored surfaces, especially on molars. The high rates and distinctive patterns of dental caries observed could be used 1) to alert dentists to covert MA use in their patients and 2) as the basis for comprehensive management strategies. © International & American Associations for Dental Research 2016.
NASA Astrophysics Data System (ADS)
Itonaga, K.; Motoba, T.
The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.
NASA Astrophysics Data System (ADS)
Ismail, M.; Adel, A.
2018-04-01
The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.
NASA Astrophysics Data System (ADS)
Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.
Hard-X-Ray-Induced Multistep Ultrafast Dissociation
NASA Astrophysics Data System (ADS)
Travnikova, Oksana; Marchenko, Tatiana; Goldsztejn, Gildas; Jänkälä, Kari; Sisourat, Nicolas; Carniato, Stéphane; Guillemin, Renaud; Journel, Loïc; Céolin, Denis; Püttner, Ralph; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Simon, Marc
2016-05-01
Creation of deep core holes with very short (τ ≤1 fs ) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1 s →σ* excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Andrey K., E-mail: belyaev@herzen.spb.ru; Domcke, Wolfgang, E-mail: wolfgang.domcke@ch.tum.de; Lasser, Caroline, E-mail: classer@ma.tum.de
The Landau–Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected formore » the nuclear dynamics: Ultrafast Jahn–Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.« less
QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER
Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.
2010-01-01
The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087
Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates
NASA Astrophysics Data System (ADS)
Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.
2013-11-01
We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".
Characteristics of Streptococcus mutans genotypes and dental caries in children
Cheon, Kyounga; Moser, Stephen A.; Wiener, Howard W.; Whiddon, Jennifer; Momeni, Stephanie S.; Ruby, John D.; Cutter, Gary R.; Childers, Noel K.
2013-01-01
This longitudinal cohort study evaluated the diversity, commonality, and stability of Streptococcus mutans genotypes associated with dental caries history. Sixty-seven 5 and 6 yr-old children, considered being at high caries risk, had plaque collected from baseline through 36 months for S. mutans isolation and genotyping with repetitive extragenic palindromic-PCR (4,392 total isolates). Decayed, missing, filled surfaces (dmfs/DMFS) for each child were recorded at baseline. At baseline, 18 distinct genotypes were found among 911 S. mutans isolates from 67 children (diversity) and 13 genotypes were shared by at least 2 children (commonality). The number of genotypes per individual was positively associated with the proportion of decayed surfaces (p-ds) at baseline. Twenty-four of the 39 children who were available at follow-up visits maintained a predominant genotype for the follow-up periods (stability) and was negatively associated with p-ds. The observed diversity, commonality, and stability of S. mutans genotypes represent a pattern of dental caries epidemiology in this high caries risk community, which suggest fewer decayed surfaces are significantly associated with lower diversity and stability of S. mutans genotypes. PMID:23659236
Measurements of a Strength of Metals in a Picosecond Time Range
NASA Astrophysics Data System (ADS)
Ashitkov, Sergey; Komarov, Pavel; Agranat, Mikhail; Kanel, Gennady; Fortov, Vladimir
2013-06-01
We studied the shock-wave phenomena in metal films of a micron or submicron thickness irradiated by femtosecond laser pulses. The single-shot interferometer technique was used to record the time and spatial resolved displacements of both the frontal and rear surfaces of the films. The free surface displacement histories were converted into the free surface velocity histories using several various approaches. As a result, new data on the HEL and spall strength values have been obtained for aluminum, iron, nickel and other metals in strongly metastable states close to ultimate shear and tensile stresses. Comparison of measured parameters of elastic shock waves with the data of plate impact experiments at larger sample thicknesses demonstrate different regimes of the decay: whereas for pure fcc metals the decay may be described by one power function over 1 μm to 10 mm range of the distances, in the case of bcc iron main decay occurs obviously at the distance of order of 50 μm. The data are discussed from the view point of main mechanisms of high-rate deformation and fracture.
Long-term measurements of 36Cl to investigate potential solar influence on the decay rate
NASA Astrophysics Data System (ADS)
Kossert, Karsten; Nähle, Ole J.
2014-03-01
Recently, Jenkins et al. [6] reported on fluctuations in the detected decay events of 36Cl which were measured with a Geiger-Müller counter. Experimental data of 32Si measured by means of an end-window gas-flow proportional counter at the Brookhaven National Laboratory show similar periodicity, albeit a different amplitude. Jenkins et al. interpret the fluctuations as evidence of solar influence on the decay rates of beta-decaying radionuclides.
Experimental analysis of decay biases in the fossil record of lobopodians
NASA Astrophysics Data System (ADS)
Murdock, Duncan; Gabbott, Sarah; Purnell, Mark
2016-04-01
If fossils are to realize their full potential in reconstructing the tree of life we must understand how our view of ancient organisms is obscured by taphonomic filters of decay and preservation. In most cases, processes of decay will leave behind either nothing or only the most decay resistant body parts, and even in those rare instances where soft tissues are fossilized we cannot assume that the resulting fossil, however exquisite, represents a faithful anatomical representation of the animal as it was in life.Recent experiments have shown that the biases introduced by decay can be far from random; in chordates, for example, the most phylogenetically informative characters are also the most decay-prone, resulting in 'stemward slippage'. But how widespread is this phenomenon, and are there other non-random biases linked to decay? Intuitively, we make assumptions about the likelihood of different kinds of characters to survive and be preserved, with knock-on effects for anatomical and phylogenetic interpretations. To what extent are these assumptions valid? We combine our understanding of the fossil record of lobopodians with insights from decay experiments of modern onychophorans (velvet worms) to test these assumptions. Our analysis demonstrates that taphonomically informed tests of character interpretations have the potential to improve phylogenetic resolution. This approach is widely applicable to the fossil record - allowing us to ground-truth some of the assumptions involved in describing exceptionally preserved fossil material.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Frank, Stefan; Rikvold, Per Arne
2006-06-01
The influence of lateral adsorbate diffusion on the dynamics of the first-order phase transition in a two-dimensional Ising lattice gas with attractive nearest-neighbor interactions is investigated by means of kinetic Monte Carlo simulations. For example, electrochemical underpotential deposition proceeds by this mechanism. One major difference from adsorption in vacuum surface science is that under control of the electrode potential and in the absence of mass-transport limitations, local adsorption equilibrium is approximately established. We analyze our results using the theory of Kolmogorov, Johnson and Mehl, and Avrami (KJMA), which we extend to an exponentially decaying nucleation rate. Such a decay may occur due to a suppression of nucleation around existing clusters in the presence of lateral adsorbate diffusion. Correlation functions prove the existence of such exclusion zones. By comparison with microscopic results for the nucleation rate I and the interface velocity of the growing clusters v, we can show that the KJMA theory yields the correct order of magnitude for Iv2. This is true even though the spatial correlations mediated by diffusion are neglected. The decaying nucleation rate causes a gradual crossover from continuous to instantaneous nucleation, which is complete when the decay of the nucleation rate is very fast on the time scale of the phase transformation. Hence, instantaneous nucleation can be homogeneous, producing negative minima in the two-point correlation functions. We also present in this paper an n-fold way Monte Carlo algorithm for a square lattice gas with adsorption/desorption and lateral diffusion.
Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Andrews, Malcolm J.
2011-04-01
We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.
Tommasino, L; Tokonami, S
2011-05-01
Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.
Exploring a nonminimal sterile neutrino model involving decay at IceCube
NASA Astrophysics Data System (ADS)
Moss, Z.; Moulai, M. H.; Argüelles, C. A.; Conrad, J. M.
2018-03-01
We study the phenomenology of neutrino decay together with neutrino oscillations in the context of eV-scale sterile neutrinos. We review the formalism of visible neutrino decay in which one of the decay products is a neutrino that potentially can be observed. We apply the formalism developed for decay to the recent sterile neutrino search performed by IceCube with TeV neutrinos. We show that for a ν4 lifetime τ4/m4≲10-16 eV-1 s , the interpretation of the high-energy IceCube analysis can be significantly changed.
Upper-Level Waves of Synoptic Scale at Midlatitudes
NASA Astrophysics Data System (ADS)
Rivest, Chantal
1990-01-01
Upper-level waves of synoptic scale are important dynamical entities at midlatitudes. They often induce surface cyclogenesis (cf. Peterssen and Smebye, 1971), and their life duration is typically longer than time scales for disruption by the ambient shear (Sanders, 1988). The objectives of the present thesis are to explain the maintenance and genesis of upper-level synoptic-scale waves in the midlatitude flow. We develop an analytical model of waves on generalized Eady basic states that have uniform tropospheric and stratospheric potential vorticity, but allow for the decay of density with height. The Eady basic state represents the limiting case of infinite stratospheric stability and constant density. We find that the Eady normal mode characteristics hold in the presence of realistic tropopause and stratosphere. In particular, the basic states studied support at the synoptic scale upper-level normal modes. These modes provide simple models for the dynamics of upper-level synoptic-scale waves, as waves supported by the large latitudinal gradients of potential vorticity at the tropopause. In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal mode solutions no longer exist, as was demonstrated in Green (1960). Disappearance of the normal mode solution when a parameter changes slightly represents a dilemma that we seek to understand. We examine what happens to the upper-level normal modes in the presence of tropospheric gradients of potential vorticity in a series of initial -value experiments. Our results show that the normal modes become slowly decaying quasi-modes. Mathematically the quasi-modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained. Basic states with positive tropospheric and stratospheric gradients of potential vorticity are found to support upper-level synoptic-scale waves for time scales consistent with observations. Following Farrell (1989), we then identify a class of near optimal initial conditions for the excitation of upper-level waves. The initial conditions consist of upper -tropospheric disturbances that lean against the shear. They strongly excite upper-level waves not only in the absence of tropospheric potential vorticity gradients, but also in their presence. This result demonstrates that quasi -modes are as likely to emerge from favorably configured initial conditions as real normal modes, although their excitation is followed by a slow decay. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay
Frederick Green
2000-01-01
Environmental pressures to replace chromium and arsenic in fixed waterborne preservatives have been increasing. Potential inhibitors of brown-, white- and soft-rot fungi need to be evaluated as alternative preservatives by screening and testing in, in vitro model systems. This paper reports the inhibition of cellulose depolymerization and weight loss of selected decay...
Wood decomposition of Cyrilla racemiflora in a tropical montane forest.
Juan A. Torres
1994-01-01
Changes in wood density, nutrient content, and invertebrate populations throughout the decay of Cyrilla racemiflora (Cyrillaceaea) were compared with those observed in temperate woody tree species. Wood density tended ro remain constant as decay advanced except in the late stages. Nutrients (N, P, Ca, Mg) were in highest concentrations in intact bark, surface wood, and...
Partitioning of a Falling Droplet's Energy After Surface Impact
NASA Astrophysics Data System (ADS)
Kern, Vanessa; Steen, Paul
2017-11-01
Understanding energy partitioning post-impact is a first step to understanding immersive flow-forming processes. Here we investigate the partitioning of kinetic energy into surface energies for capillary water droplets falling onto homogeneous prepared hydrophilic, hydrophobic and super-hydrophobic surfaces. We analyze high-speed images of the impact event. Pre-impact Weber numbers range from 0-15. After impact and initial spreading, the droplet's contact line pins. After pinning, there is a slow decay to the rest state. During this underdamped decay, the droplet's remaining kinetic energy partitions into a linear combination of mode shape energies. These mode shapes and their frequencies correspond to those of pinned sessile droplets from theory. The influence of impact energy on modes excited will be discussed.
Nonclassical Smoothening of Nanoscale Surface Corrugations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlebacher, Jonah; Aziz, Michael J.; Chason, Eric
2000-06-19
We report the first experimental observation of nonclassical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(001) by sputter rippling and then annealed at 650-750 degree sign C . In contrast to the classical exponential decay with time, the ripple amplitude A{sub {lambda}}(t) followed an inverse linear decay, A{sub {lambda}}(t)=A{sub {lambda}}( 0)/(1+k{sub {lambda}}t) , agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6{+-}0.2 eV , consistent with the fundamental energies of creation and migration on Si(001). (c) 2000 The Americanmore » Physical Society.« less
Neutron stars: history of the magnetic field decay
NASA Astrophysics Data System (ADS)
Igoshev, Andrei P.; Kholtygin, Alexander F.
2013-03-01
Using the data of the ATNF pulsar catalog we study the relation connected the real age t of young neutron stars (NS) and their spin-down age τ. We suppose that this relation is independent from both initial period of the NS and its initial surface magnetic field, and that the laws of the surface magnetic field decay are similar for all NSs in the Milky Way. We further assume that the birth-rate of pulsars was constant during at least last 200 million years. With these assumptions we were able to restore the history of the magnetic field decay for the galactic NSs. We reconstruct the universal function f(t) = B(t)/B 0, where B 0 is the initial magnetic field and B(t) is the magnetic field of NS at the age t. The function f(t) can be fitted by a power law with power index α = -1.17.
Marxer, C Galli; Coen, M Collaud; Bissig, H; Greber, U F; Schlapbach, L
2003-10-01
Interpretation of adsorption kinetics measured with a quartz crystal microbalance (QCM) can be difficult for adlayers undergoing modification of their mechanical properties. We have studied the behavior of the oscillation amplitude, A(0), and the decay time constant, tau, of quartz during adsorption of proteins and cells, by use of a home-made QCM. We are able to measure simultaneously the frequency, f, the dissipation factor, D, the maximum amplitude, A(0), and the transient decay time constant, tau, every 300 ms in liquid, gaseous, or vacuum environments. This analysis enables adsorption and modification of liquid/mass properties to be distinguished. Moreover the surface coverage and the stiffness of the adlayer can be estimated. These improvements promise to increase the appeal of QCM methodology for any applications measuring intimate contact of a dynamic material with a solid surface.
Beyond the bucket: testing the effect of experimental design on rate and sequence of decay
NASA Astrophysics Data System (ADS)
Gabbott, Sarah; Murdock, Duncan; Purnell, Mark
2016-04-01
Experimental decay has revealed the potential for profound biases in our interpretations of exceptionally preserved fossils, with non-random sequences of character loss distorting the position of fossil taxa in phylogenetic trees. By characterising these sequences we can rewind this distortion and make better-informed interpretations of the affinity of enigmatic fossil taxa. Equally, rate of character loss is crucial for estimating the preservation potential of phylogentically informative characters, and revealing the mechanisms of preservation themselves. However, experimental decay has been criticised for poorly modeling 'real' conditions, and dismissed as unsophisticated 'bucket science'. Here we test the effect of a differing experimental parameters on the rate and sequence of decay. By doing so, we can test the assumption that the results of decay experiments are applicable to informing interpretations of exceptionally preserved fossils from diverse preservational settings. The results of our experiments demonstrate the validity of using the sequence of character loss as a phylogenetic tool, and sheds light on the extent to which environment must be considered before making decay-informed interpretations, or reconstructing taphonomic pathways. With careful consideration of experimental design, driven by testable hypotheses, decay experiments are robust and informative - experimental taphonomy needn't kick the bucket just yet.
Tunneling of Bloch electrons through vacuum barrier
NASA Astrophysics Data System (ADS)
Mazin, I. I.
2001-08-01
Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum kparallel = 0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary kparallel ("hot spots" ), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum. We illustrate this by first-principles calculations for (110) Pd surface.
Stopped cosmic-ray muons in plastic scintillators on the surface and at the depth of 25 m.w.e
NASA Astrophysics Data System (ADS)
Maletić, D.; Dragić, A.; Banjanac, R.; Joković, D.; Veselinović, N.; Udovičić, V.; Savić, M.; Puzović, J.; Aničin, I.
2013-02-01
Cosmic ray muons stopped in 5 cm thick plastic scintillators at surface and at depth of 25 m.w.e are studied. Apart from the stopped muon rate we measured the spectrum of muon decay electrons and the degree of polarization of stopped muons. Preliminary results for the Michel parameter yield values lower than the currently accepted one, while the asymmetry between the numbers of decay positrons registered in the upper and lower hemispheres appear higher than expected on the basis of numerous earlier studies.
Properties of charmonia in a hot equilibrated medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannuzzi, Floriana; Mannarelli, Massimo
2009-09-01
We investigate the properties of charmonia in a thermal medium, showing that with increasing temperature the decay widths of these mesons behave in a nontrivial way. Our analysis is based on a potential model with interaction potential extracted from thermal lattice QCD calculations of the free-energy of a static quark-antiquark pair. We find that in the crossover region some decay widths are extremely enhanced. In particular, at temperatures T{approx}T{sub c} the decay widths of the J/{psi} that depend on the value of the wave function at the origin are enhanced with respect to the values in vacuum by about amore » factor 2. In the same temperature range the decay width of the process {chi}{sub cJ}{yields}J/{psi}+{gamma} is enhanced by approximately a factor 6 with respect to the value in vacuum. At higher temperatures the charmonia states dissociate and the widths of both decay processes become vanishing small.« less
Basso, Lorenzo; Dittmaier, Stefan; Huss, Alexander; Oggero, Luisa
We present the extension of two general algorithms for the treatment of infrared singularities arising in electroweak corrections to decay processes at next-to-leading order: the dipole subtraction formalism and the one-cutoff slicing method. The former is extended to the case of decay kinematics which has not been considered in the literature so far. The latter is generalised to production and decay processes with more than two charged particles, where new "surface" terms arise. Arbitrary patterns of massive and massless external particles are considered, including the treatment of infrared singularities in dimensional or mass regularisation. As an application of the two techniques we present the calculation of the next-to-leading order QCD and electroweak corrections to the top-quark decay width including all off-shell and decay effects of intermediate [Formula: see text] bosons. The result, e.g., represents a building block of a future calculation of NLO electroweak effects to off-shell top-quark pair ([Formula: see text]) production. Moreover, this calculation can serve as the first step towards an event generator for top-quark decays at next-to-leading order accuracy, which can be used to attach top-quark decays to complicated many-particle top-quark processes, such as for [Formula: see text] or [Formula: see text].
NASA Astrophysics Data System (ADS)
Cirigliano, Vincenzo; Dekens, Wouter; Mereghetti, Emanuele; Walker-Loud, André
2018-06-01
We present the first chiral effective theory derivation of the neutrinoless double-β decay n n →p p potential induced by light Majorana neutrino exchange. The effective-field-theory framework has allowed us to identify and parametrize short- and long-range contributions previously missed in the literature. These contributions cannot be absorbed into parametrizations of the single-nucleon form factors. Starting from the quark and gluon level, we perform the matching onto chiral effective field theory and subsequently onto the nuclear potential. To derive the nuclear potential mediating neutrinoless double-β decay, the hard, soft, and potential neutrino modes must be integrated out. This is performed through next-to-next-to-leading order in the chiral power counting, in both the Weinberg and pionless schemes. At next-to-next-to-leading order, the amplitude receives additional contributions from the exchange of ultrasoft neutrinos, which can be expressed in terms of nuclear matrix elements of the weak current and excitation energies of the intermediate nucleus. These quantities also control the two-neutrino double-β decay amplitude. Finally, we outline strategies to determine the low-energy constants that appear in the potentials, by relating them to electromagnetic couplings and/or by matching to lattice QCD calculations.
Case, Ryan; Schollmeyer, Hauke; Kohl, Phillip; Sirota, Eric B; Pynn, Roger; Ewert, Kai E; Safinya, Cyrus R; Li, Youli
2017-12-01
Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.
2004-01-01
Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.
Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle
Krarup, Christian
1981-01-01
1. Potentiation of the isometric twitch tension was compared during and after the staircase and after tetanic stimuli in the fast-twitch extensor digitorum longus muscle of adult Lewis rats at 37-38°C. 2. With up to 250 stimuli the potentiation rose with an increase in both the frequency and number of stimuli in the staircase (2-5/sec) and the tetanus (100-167/sec). After a tetanus of 375 stimuli (125/sec) the potentiation was smaller. The potentiation 2 sec after a tetanus of 250 stimuli (167/sec) was + 132 ± 5% (n = 21, s.e. of mean) which was greater (P < 0·001) than at the 250th stimulus at 5/sec, +92±3% (n = 21, s.e. of mean). 3. After the staircase the decay of potentiation was initially slow and later more rapid. This was taken to indicate both the recovery of a process that diminished twitch tension and the decay of a process causing potentiation. After 250 stimuli (5/sec) the rate of decay of the processes causing diminution and potentiation had time constants of 34·5 ± 3·8 sec (n = 18, s.e. of mean) and 102·2 ± 6·6 sec (n = 20, s.e. of mean) respectively. Compared with the potentiation, the process causing diminution became relatively more pronounced the greater the frequency of stimuli. 4. The decay of post-tetanic potentiation showed an initial rapid and a later slower phase of decay. After a tetanus of 250 stimuli (167/sec) the rates of decay had time constants of 5·7 ± 0·8 sec (n = 16, s.e. of mean) and 113·5 ± 8·7 sec (n = 19, s.e. of mean) respectively. 5. Compared with the unpotentiated response the time course of the twitch was shortened initially in the staircase and when the post-tetanic potentiation was low. The contraction time was then increasingly prolonged the greater the potentiation and the greater the number of stimuli in the staircase and in the tetanus. The half-relaxation time was the more prolonged the greater the number of stimuli. 6. Potentiation can be described in terms of a two-compartment model of processes which show saturation. Both compartments were activated in a tetanus whereas only the compartment with a slow rate of decay was activated in the staircase. It is speculated that the two compartments are related to the excitation—contraction coupling. The process that caused diminution of twitch tension during the staircase may be due to fatigue. It is suggested that the energy consumption in 250 twitches is about 10 times greater than in a tetanus of 250 stimuli which may explain the presence of fatigue after the staircase whereas it was absent after the tetanus. PMID:7264972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurgalin, S. D.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru; Churakova, T. A.
A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal,more » subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.« less
Potential of decaying wood to restore root-available base cations in depleted forest soils
Walter C. Shortle; Kevin T. Smith; Jody Jellison; Jonathan S. Schilling
2012-01-01
The depletion of root-available Ca in northern forest soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost Ca. This study presents changes in concentration of Ca, Mg, and K in sapwood of red spruce (Picea rubens Sarg.),...
Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessandria, F; Ardito, R; Artusa, DR
We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10 -2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of Tmore » $$0v\\atop{1/2}$$(1θ) = 1.6 \\times 10 26 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T$$0v\\atop{1/2}$$(1.64θ) = 9.5 \\times 10 25 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.« less
Decay properties of charm and beauty open flavour mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar Rai, Ajay; Vinodkumar, P. C.
The masses of S and P states, pseudoscalar and vector decay constants, leptonic, semileptonic decay widths of charm (D) and beauty (B) open flavour mesons have been computed in the framework of Coulomb and power potential of the form V(r) = -({alpha}{sub c}/r)+Ar{sup v}. The results are compared with other theoretical as well as experimental results.
Wood decay fungi restore essential calcium to acidic soils in northern New England
Walter C. Shortle; Kevin T. Smith
2015-01-01
The depletion of root-available calcium in northern forests soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost calcium to the rooting zone of trees. This study reports changes in concentrations of Ca, Mg, and K during decay of sapwood of...
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Thermal decay of a metastable state: Influence of rescattering on the quasistationary dynamical rate
NASA Astrophysics Data System (ADS)
Chushnyakova, M. V.; Gontchar, I. I.
2018-03-01
We study the effect of backscattering of the Brownian particles as they escape out of a metastable state overcoming the potential barrier. For this aim, we model this process numerically using the Langevin equations. This modeling is performed for the wide range of the friction constant covering both the energy and spatial diffusion regimes. It is shown how the influence of the descent stage on the quasistationary decay rate gradually disappears as the friction constant decreases. It is found that, in the energy diffusion regime, the rescattering absents and the descent stage does not influence the decay rate. As the value of friction increases, the descent alters the value of the rate by more than 50% for different values of thermal energy and different shapes of the potential. To study the influence of the backscattering on the decay rate, four potentials have been considered which coincide near the potential well and the barrier but differ beyond the barrier. It is shown that the potential for which the well and the barrier are described by two smoothly joined parabolas ("the parabolic potential") plays a role of a dividing range for the mutual layout of the quasistationary dynamical rate and the widely used in the literature Kramers rate. Namely, for the potentials with steeper tails, the Kramers rate RKM underestimates the true quasistationary dynamical rate RD, whereas for the less steep tails the opposite holds (inversion of RD/RKM ). It is demonstrated that the mutual layout of the values of RD for different potentials is explained by the rescattering of the particles from the potential tail.
Chun, Chan Lan; Peller, Julie R.; Shively, Dawn; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J.
2017-01-01
Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (< 0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.
Chun, Chan Lan; Peller, Julie R; Shively, Dawn; Byappanahalli, Muruleedhara N; Whitman, Richard L; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J
2017-01-01
Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (<0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines. Copyright © 2016 Elsevier B.V. All rights reserved.
Conducting a thermal conductivity survey
NASA Technical Reports Server (NTRS)
Allen, P. B.
1985-01-01
A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Zaunbrecher, K.
2012-06-01
Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). Photoluminescence images on silicon bricks can be correlated to lifetime measured by photoconductive decay and could be used for high-resolution characterization of material before wafers are cut. The RCPCD technique has shown the longest lifetimesmore » of any of the lifetime measurement techniques we have applied to the bricks. RCPCD benefits from the low-frequency and long-excitation wavelengths used. In addition, RCPCD is a transient technique that directly monitors the decay rate of photoconductivity and does not rely on models or calculations for lifetime. The measured lifetimes over brick surfaces have shown strong correlations to the PL image intensities; therefore, this correlation could then be used to transform the PL image into a high-resolution lifetime map.« less
Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L
2017-03-21
The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.
Need for new caries detection methods
NASA Astrophysics Data System (ADS)
Young, Douglas A.; Featherstone, John D. B.
1999-05-01
Dental caries (tooth decay) continues to be a major problems for adults as well as children, even though great advances have been made in preventive methods in the last 20 years. New methods for the management of caries will work best if lesions can be detected at an early stage and chemical rather than physical intervention can take place, thereby preserving the natural tooth structure and helping the saliva to heal, or remineralize, the areas of early decay. Clinical detection of caries in the US relies on visual examination, tactile with hand held explorer, and conventional radiographs, all of which are inadequate for the occlusal (biting) surfaces of the teeth where most of the decay now occurs. The dentist often has to explore by drilling with a dental bur to confirm early decay in these areas. New method that can determine the extent and degree of subsurface lesions in these surfaces non-destructively are essential for further advances in the clinical management of dental caries. Optical methods, which exploit the differences between sound and carious enamel and dentin, show great promise for the accurate detection of these lesions. Two or three- dimensional images, which include a measure of severity will be needed.
Systematic investigation of cluster radioactivity for uranium isotopes
NASA Astrophysics Data System (ADS)
Seif, W. M.; Amer, Laila H.
2018-01-01
The most probable cluster decays that can be observed for 217-238U isotopes are investigated. We identified the more-probable decays that commonly manifest themselves via cold valleys in the driving potentials with respect to the mass number and the atomic number, individually. The calculations are performed using the Skyrme-SLy4 nucleon-nucleon interaction, within the frame work of the performed cluster model. Among the indicated favored decays that involve emitted light clusters heavier than α-particle, twenty six decay modes display calculated half-life less than 1022 years, with branching ratio larger than 10-14%. The estimated branching ratio for the α-decay of 237U, that did not observed yet, is B = 2.1 ×10-10% (Tα = 8.7 ×109 years). The indicated most probable decays that did not observed yet include the 22Ne decay of 232U, 25Ne and 32Si decays of 233U, 24Ne and 29Mg decays of 235U, and the 34Si and 30Mg decay modes of 238U, with 10-14 < B(%) <10-7.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-04-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation
NASA Astrophysics Data System (ADS)
Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien
2018-06-01
We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.
Singhal, Sonica; Figueiredo, Rafael; Dupuis, Sandy; Skellet, Rachel; Wincott, Tara; Dyer, Carolyn; Feller, Andrea; Quiñonez, Carlos
2017-01-01
Most children are exposed to medical, but not dental, care at an early age, making primary health care providers an important player in the reduction of tooth decay. The goal of this research was to understand the feasibility of using primary health care providers in promoting oral health by assessing their knowledge, attitude, willingness and readiness in this regard. Using the Dillman method, a mail-in cross-sectional survey was conducted among all family physicians and pediatricians in the Niagara region of Ontario who have primary contact with children. A descriptive analysis was performed. Close to 70% (181/265) of providers responded. More than 90% know that untreated tooth decay could affect the general health of a child. More than 80% examine the oral cavity for more than 50% of their child patients. However, more than 50% are not aware that white spots or lines on the tooth surface are the first signs of tooth decay. Lack of clinical time was the top reason for not performing oral disease prevention measures. Overall, survey responses show a positive attitude and willingness to engage in the oral health of children. To capitalize on this, there is a need to identify mechanisms of providing preventive oral health care services by primary health care providers; including improving their knowledge of oral health and addressing other potential barriers.
Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Böyükata, Mahmut
2017-01-01
The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.
Orbitally excited spectra and decay of cc¯ meson
NASA Astrophysics Data System (ADS)
Chaturvedi, Raghav; Rai, A. K.
2018-05-01
We use the hydrogen like trial wave function for computation of the mass spectra and decay properties of charmonia within the framework of phenomenological quark anti-quark Coulomb plus power potential with varying potential index from 0.5 to 2.0. The spin-spin hyperfine interaction is considered to incorporate splitting of the ground and radially excited states energy levels, further spin-orbit and tensor interactions are employed to calculate the masses of orbitally excited states. We construct the Regge trajectories from the mass spectra in (J, M2) and (nr, M2) planes. We also compute γγ decay width of P wave states of cc¯.
Search for neutrinoless double beta decay
NASA Astrophysics Data System (ADS)
Ostrovskiy, Igor; O'Sullivan, Kevin
2016-06-01
We review current experimental efforts to search for neutrinoless double beta decay (0νββ). A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in 0νββ decay, is emphasized.
On the kinematics of scalar iso-surfaces in turbulent flow
NASA Astrophysics Data System (ADS)
Blakeley, Brandon C.; Riley, James J.; Storti, Duane W.; Wang, Weirong
2017-11-01
The behavior of scalar iso-surfaces in turbulent flows is of fundamental interest and importance in a number of problems, e.g., the stoichiometric surface in non-premixed reactions, and the turbulent/non-turbulent interface in localized turbulent shear flows. Of particular interest here is the behavior of the average surface area per unit volume, Σ. We report on the use of direct numerical simulations and sophisticated surface tracking techniques to directly compute Σ and model its evolution. We consider two different scalar configurations in decaying, isotropic turbulence: first, the iso-surface is initially homogenous and isotropic in space, second, the iso-surface is initially planar. A novel method of computing integral properties from regularly-sampled values of a scalar function is leveraged to provide accurate estimates of Σ. Guided by simulation results, modeling is introduced from two perspectives. The first approach models the various terms in the evolution equation for Σ, while the second uses Rice's theorem to model Σ directly. In particular, the two principal effects on the evolution of Σ, i.e., the growth of the surface area due to local surface stretching, and the ultimate decay due to molecular destruction, are addressed.
Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability
Gummalla, Mallika; Ball, Sarah; Condit, David; ...
2015-05-29
The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2006-12-15
In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.
Surfactant-associated bacteria in the near-surface layer of the ocean.
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-12
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.
Surfactant-associated bacteria in the near-surface layer of the ocean
Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William
2016-01-01
Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514
Decay properties of 256-339Ds superheavy nuclei
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2017-09-01
The decay properties of 84 isotopes of darmstadtium superheavy nuclei ( Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of 256-339Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future.
Exciton-Plasmon hybrids for surface catalysis detected by SERS.
Cao, En; Sun, Mengtao; Song, Yu-Zhi; Liang, Wenjie
2018-06-25
Surface plasmons (SPs), the free electrons are collectively excited on the metal surface, which have been successfully used in the analysis chemical and signal detection. Generally, SPs possess two types of decay channels. One of that is radiation decay by reemitting photons. The other way is producing hot electrons with high kinetic energy that named non-radiation, which can be applied in surface catalysis. When the excitation light with special wavelength is irradiated on the surface of pasmonic nanostructure, the strong coupling interaction between electrons and light will occur on that, followed by a series of unique properties. More than a decade, two-dimensional (2D) materials have become a hot topic of research, since the graphene was found in 2004. Recently, the combination of graphene with metal NPs has been shown lots of supernormal advantages in that, such as high stability and catalytic activity, which also has been successfully applied in plasmon-exciton co-driven chemical reactions. © 2018 IOP Publishing Ltd.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
Huang, Ying; Bayfield, Mark A; Intine, Robert V; Maraia, Richard J
2006-07-01
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.
Atmospheric structure favoring high sea surface temperatures in the western equatorial Pacific
NASA Astrophysics Data System (ADS)
Wirasatriya, Anindya; Kawamura, Hiroshi; Shimada, Teruhisa; Hosoda, Kohtaro
2016-10-01
We investigated the atmospheric processes over high sea surface temperature called Hot Event (HE) in the western equatorial Pacific from climatological analysis and a case study of the HE which began on 28 May 2003 (hereafter, HE030528). Climatological analysis shows that during the development stage of HE, solar radiation inside the HE area is higher than its climatology and wind speed is lower than the decay stage. During the decay stage, strong westerly wind often occurs inside HE area. The case study of HE030528 shows that the suppressed convection above high SST area resulted from the deep convection from the northern and southern areas outside HE. The suppressed convection created a band-shaped structure of low cloud cover along HE area increasing solar radiation during the development stage. Thus, the theory of "remote convection" was supported for the HE030528 formation mechanisms. The large sea level pressure gradient magnitude between the southern side of the terrain gap and the northern coast of the Solomon Islands, through which strong wind blew, indicated the role of land topography for the increase of wind speed during the decay of HE030528. Moreover, surface wind had an important role to influence the variability of solar radiation during the occurrence of HE030528 by controlling the water vapor supply in the upper troposphere through surface evaporation and surface convergence variation. Thus, surface wind was the key factor for HE030528 occurrence. The representativeness of HE030528 and the possible relation between HE and Madden-Julian Oscillation are also discussed.
Removal of inactivation causes time-invariant sodium current decays
1988-01-01
The kinetic properties of the closing of Na channels were studied in frog skeletal muscle to obtain information about the dependence of channel closing on the past history of the channel. Channel closing was studied in normal and modified channels. Chloramine-T was used to modify the channels so that inactivation was virtually removed. A series of depolarizing prepulse potentials was used to activate Na channels, and a -140-mV postpulse was used to monitor the closing of the channels. Unmodified channels decay via a biexponential process with time constants of 72 and 534 microseconds at 12 degrees C. The observed time constants do not depend upon the potential used to activate the channels. The contribution of the slow component to the total decay increases as the activating prepulse is lengthened. After inactivation is removed, the biexponential character of the decay is retained, with no change in the magnitude of the time constants. However, increases in the duration of the activating prepulse over the range where the current is maximal 1-75 ms) produce identical biexponential decays. The presence of biexponential decays suggests that either two subtypes of Na channels are found in muscle, or Na channels can exist in one of two equally conductive states. The time- invariant decays observed suggest that channel closure does not depend upon their past history. PMID:2852208
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon Cycle Model CO2 Decay Response and Future CO2... Absolute GWP for the Adopted Carbon Cycle Model CO2 Decay Response and Future CO2 Atmospheric...
Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells.
Cui, Jin; Chen, Cheng; Han, Junbo; Cao, Kun; Zhang, Wenjun; Shen, Yan; Wang, Mingkui
2016-03-01
This work reports on incorporation of spectrally tuned gold/silica (Au/SiO 2 ) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH 3 NH 3 PbI 3 ) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH 3 NH 3 PbI 2.85 Br 0.15 -based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH 3 NH 3 PbI 2.85 Br 0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.
0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simkovic, Fedor; Bogoliubov Laboratory of Theoretical Physics, JINR, RU-141 980 Dubna, Moscow region; Department of Nuclear Physics, Comenius University, Mlynska dolina F1, SK-842 15 Bratislava
A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elementsmore » for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.« less
Effects of film growth kinetics on grain coarsening and grain shape.
Reis, F D A Aarão
2017-04-01
We study models of grain nucleation and coarsening during the deposition of a thin film using numerical simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice growth models in three different universality classes, with no effect of the grain structure. The first model of grain coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011)PLEEE81539-375510.1103/PhysRevE.84.021601], in which nucleation occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the film thickness with the same exponent. This model is extended by allowing nucleation of new grains during the deposition, with constant but small rates. The surface grain density crosses over from the initial power law decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power law decays, similar to other systems with coarsening and particle injection, with exponents also related to the dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion; thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth dominated by surface diffusion, the increase of grain size with temperature is observed.
Surface Evolution from Orbital Decay on Phobos
NASA Astrophysics Data System (ADS)
Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew
2015-11-01
Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.
Schein, Perry; Kang, Pilgyu; O’Dell, Dakota; ...
2015-01-27
Direct measurements of particle–surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. In this paper, we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scatteredmore » by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. Finally, as shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less
Nuclear inertia and the decay modes of superheavy nuclei
NASA Astrophysics Data System (ADS)
Poenaru, D. N.; Gherghescu, R. A.; Greiner, Walter
2013-10-01
Superheavy nuclei produced up to now decay mainly by α emission and spontaneous fission. For atomic numbers larger than 121 cluster decay has a good chance to compete. While calculated α decay half-lives are in agreement with experimental data within one order of magnitude and cluster decay experiments are also very well accounted for, the discrepancy between theory and experiment can be as high as ten orders of magnitude for spontaneous fission. We analyze some ways of improving the accuracy: using a semiempirical formula for α decay and changing the parameters of analytical superasymmetric fission and of the universal curve for cluster decay. For spontaneous fission we act on nuclear dynamics based on potential barriers computed by the macroscopic-microscopic method and employing various nuclear inertia variation laws. Applications are illustrated for 284Cn and Z = 118-124 even-even parent nuclei. Communicated by Steffen Bass
Volume Ice Radiolysis in the Outer Solar System
NASA Technical Reports Server (NTRS)
Cooper, John F.; Cooper, Paul D.
2006-01-01
The primary energy flux of charged particle components of the heliospheric and magnetospheric environments of the solar system is primarily carried by highly penetrating energetic particles. Although laboratory experiments on production of organics and oxidants typically only address effects on very thin surface layers, energy deposition occurs on surfaces of icy bodies of the outer solar system to meters in depth. Time scales for significant radiolytic deposition vary from thousands of years at millimeter depths on Europa to billions of years in the meters-deep regolith of Kuiper Belt Objects. Radioisotope decay (e.g., K-40) also contributes to volume radiolysis as the only energy source at much greater depths. Radiolytic oxygen is a potential resource for life within Europa and a partial source of oxygen for Saturn's magnetosphere and Titan's upper atmosphere. Interactions of very high energy cosmic rays with ices at Titan's surface may provide one of the few sources of oxidants in that highly reducing environment. The red colors of low-inclination classical Kuiper Belt Objects at 40-50 AU, and Centaur objects originating from this same population, may arise from volume radiolysis of deep ice layers below more refractory radiation crusts eroded away by surface sputtering and micrometeoroid impacts. A variety of techniques are potentially available to measure volume radiolysis products and have been proposed for study as part of the new Space Physics of Life initiative at NASA Goddard Space Flight Center. The technique of Electron Paramagnetic Resonance (EPR) has been used in medical studies to measure oxidant production in irradiated human tissue for cancer treatment. Other potential techniques include optical absorption spectroscopy and standard wet chemical analysis. These and other potential techniques are briefly reviewed for applicability to problems in solar system ice radiolysis and astrobiology.
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.
NASA Astrophysics Data System (ADS)
Eldridge, Jeffrey I.; Allison, Stephen W.; Jenkins, Thomas P.; Gollub, Sarah L.; Hall, Carl A.; Walker, D. Greg
2016-12-01
Phosphor thermometry measurements in turbine engine environments can be difficult because of high background radiation levels. To address this challenge, luminescence lifetime-based phosphor thermometry measurements were obtained using thulium-doped Y3Al5O12 (YAG:Tm) to take advantage of the emission wavelengths at 365 nm (1D2 → 3H6 transition) and at 456 nm (1D2 → 3F4 transition). At these wavelengths, turbine engine radiation background is reduced compared with emission from longer wavelength phosphors. Temperature measurements of YAG:Tm coatings were demonstrated using decay of both the 365 and 456 nm emission bands in a furnace environment up to 1400 °C. To demonstrate that reliable surface temperatures based on short-wavelength YAG:Tm emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative environment, measurements were obtained from a YAG:Tm-coated Honeywell stator vane doublet placed in the afterburner flame exhaust stream of the augmenter-equipped General Electric J85 turbojet test engine at the University of Tennessee Space Institute (UTSI). Using a probe designed for engine insertion, spot temperature measurements were obtained by measuring luminescence decay times over a range of steady state throttle settings as well as during an engine throttle acceleration. YAG:Tm phosphor thermometry measurements of the stator vane surface in the afterburner exhaust stream using the decay of the 456 nm emission band were successfully obtained at temperatures up to almost 1300 °C. Phosphor thermometry measurements acquired with the engine probe using the decay of the 365 nm emission band were not successful at usefully high temperatures because the probe design allowed transmission of intense unfiltered silica Raman scattering that produced photomultiplier tube saturation with extended recovery times. Recommendations are made for probe modifications that will enable temperature measurements using the 365 nm emission band decay, which will be beneficial in environments with strong reflections of combustor radiation.
Hu, Qichi; Song, Hongwei; Johnson, Christopher J; Li, Jun; Guo, Hua; Continetti, Robert E
2016-06-28
Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4 (-) represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H(-)(NH3) ion-dipole complex and the NH4 (-) DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.
Low-Latitude Solar Coronal Hole Formation
NASA Astrophysics Data System (ADS)
Haislmaier, Karl; Petrie, G.
2013-01-01
Little is known about the origin of low-latitude solar coronal holes (CHs) and their relation to the magnetic flux distribution of the underlying Solar Photosphere. Two recent reports (Karachik et al. 2010, Wang et al. 2010) suggest that CH formation might be correlated with the decay of active regions (ARs) in the photosphere. In order to explore the nature and extent of such correlations, we surveyed GONG (Global Oscillations Network Group) synoptic magnetograms and STEREO (Solar TErrestrial RElations Observatory) synoptic extreme ultraviolet images of Carrington rotations 2047-2112. From these two data sets, 41 AR-CH pairs were identified, accounting for ~34% of all ARs that appeared during the surveyed rotations. Each of these AR-CH pairs fell into one of two general classes: 1) those where the CHs were associated with the leading polarity fluxes of decaying ARs whose lagging fluxes largely decayed away, and 2) those where the CHs were associated with the lagging fluxes of surviving ARs. Perhaps surprisingly, the positive and negative fluxes of the ARs generally remained well balanced after their CHs developed. Extrapolated coronal potential-field source-surface (PFSS) models linked the CH creation and development to changes in magnetic connectivity with the surroundings as the AR flux became more diffuse over time. These considerations lead us to conclude that CHs are associated with low intensity, unipolar magnetic flux regions in the photosphere, which are most readily created by the turbulent diffusion and decay of AR flux. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.
Fine-structure-resolution for Rovibrational Excitation of CN Due to H2
NASA Astrophysics Data System (ADS)
Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.
2018-06-01
Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.
Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system
NASA Astrophysics Data System (ADS)
Longcai, Zhang
2014-07-01
Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
The apparent decay of pulsar magnetic fields
NASA Astrophysics Data System (ADS)
Biryukov, A.; Astashenok, A.; Karpov, S.; Beskin, G.
2017-12-01
Neutron stars are extremely strong cosmic magnets which fields are expected to decay with time. Here we report on the simple test of this process. Adopting a novel approach, we have estimated surface magnetic fields B for 76 radiopulsars (the most numerous subclass of the known isolated neutron stars) which ages t are known independently. Focusing on the accurate evaluation of the precision of both quantities, we determined a significant power-law trend B(t) ∝ t -β with index β = 0.19 - 0.06 + 0.05 at 95% C.L. The effects of the observational selection turn this value into the upper limit for the intrinsic field decay rate. If so, then neutron star crusts are close to the “impurity-free crystals”, which results in a relatively slow magnetic fields decay.
Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves
NASA Astrophysics Data System (ADS)
Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas
2018-04-01
We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.
Hardt, Oliver; Nader, Karim; Wang, Yu-Tian
2014-01-05
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.
NASA Astrophysics Data System (ADS)
Weller, Robert
2014-05-01
Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.
NASA Astrophysics Data System (ADS)
Jones, Morgan T.; Gislason, Sigurður R.
2008-08-01
Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.
Cluster-model calculations of exotic decays from heavy nuclei
NASA Astrophysics Data System (ADS)
Buck, B.; Merchant, A. C.
1989-05-01
A cluster model employing a local, effective cluster-core potential is used to investigate exotic decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approximation. Excellent agreement with all reported experimental measurements of the decay widths for 14C and 24Ne emission is obtained. As an added bonus, the width for alpha particle emission from 212Po is also calculated in good agreement with experiment.
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
Background rejection of n+ surface events in GERDA Phase II
NASA Astrophysics Data System (ADS)
Lehnert, Björn
2016-05-01
The GERDA experiment searches for neutrinoless double beta (0vββ) decay in 76Ge using an array of high purity germanium (HPGe) detectors immersed in liquid argon (LAr). Phase II of the experiment uses 30 new broad energy germanium (BEGe) detectors with superior pulse shape discrimination capabilities compared to the previously used semi-coaxial detector design. By far the largest background component for BEGe detectors in GERDA are n+-surface events from 42K β decays which are intrinsic in LAr. The β particles with up to 3.5 MeV can traverse the 0.5 to 0.9 mm thick electrode and deposit energy within the region of interest for the 0vββ decay. However, those events have particular pulse shape features allowing for a strong discrimination. The understanding and simulation of this background, showing a reduction by up to a factor 145 with pulse shape discrimination alone, is presented in this work.
Theoretical predictions for hot-carrier generation from surface plasmon decay
Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.
2014-01-01
Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713
Bradley, Justin M; Svistunenko, Dimitri A; Moore, Geoffrey R; Le Brun, Nick E
2017-10-18
Ferritins are 24meric proteins that overcome problems of toxicity, insolubility and poor bioavailability of iron in all types of cells by storing it in the form of a ferric mineral within their central cavities. In the bacterioferritin (BFR) from Escherichia coli iron mineralization kinetics have been shown to be dependent on an intra-subunit catalytic diiron cofactor site (the ferroxidase centre), three closely located aromatic residues and an inner surface iron site. One of the aromatic residues, Tyr25, is the site of formation of a transient radical, but the roles of the other two residues, Tyr58 and Trp133, are unknown. Here we show that these residues are important for the rates of formation and decay of the Tyr25 radical and decay of a secondary radical observed during Tyr25 radical decay. The data support a mechanism in which these aromatic residues function in electron transfer from the inner surface site to the ferroxidase centre.
Cosmological perturbations of axion with a dynamical decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu
2016-08-25
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less
NASA Astrophysics Data System (ADS)
Arling, J.-H.; Gerhardt, M.; Gößling, C.; Gehre, D.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Quante, T.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Zatschler, S.; Zuber, K.
2017-11-01
The COBRA collaboration searches for neutrinoless double beta-decay (0νββ-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sasso underground laboratory (LNGS) indicates that alpha-induced lateral surface events are the dominant source of background events. By instrumenting the guard-ring electrode it is possible to suppress this type of background. In laboratory measurements this method achieved a suppression factor of alpha-induced lateral surface events of 5300+2660-1380, while retaining (85.3 ±0.1%) of gamma events occurring in the entire detector volume. This suppression is superior to the pulse-shape analysis methods used so far in COBRA by three orders of magnitude.
Estimation of the alpha decay of Platinum isotopes using different versions of theoretical formula
NASA Astrophysics Data System (ADS)
Hosseini, S. S.; Hassanabadi, H.; Sobhani, H.
The alpha decay half-lives of even-even and even-odd Platinum (Pt) nuclei have been studied within the Coulomb and proximity potential model (CPPM). The present study is restricted to even-even nuclei with A = 166-198. The results are compared with other calculations such as the Semi-empirical formula (SemFIS) from Poenaru et al. based on fission theory of alpha decay, the Viola-Seaborg (VS), Royer (R) and Brown formulae. Also, the alpha decay half-lives have been calculated using the Scaling law of Brown (SLB), the Universal Decay Law (UDL) of Qi et al., the Scaling Law of Horoi et al. (SLH), and Akrawy-Dorin formula (ADF) of Akrawy and Poenaru, which are the Royer modified formula for alpha decay half-live by adding asymmetry term.
Werner, Kent; Bosson, Emma; Berglund, Sten
2006-12-01
Safety assessment related to the siting of a geological repository for spent nuclear fuel deep in the bedrock requires identification of potential flow paths and the associated travel times for radionuclides originating at repository depth. Using the Laxemar candidate site in Sweden as a case study, this paper describes modeling methodology, data integration, and the resulting water flow models, focusing on the Quaternary deposits and the upper 150 m of the bedrock. Example simulations identify flow paths to groundwater discharge areas and flow paths in the surface system. The majority of the simulated groundwater flow paths end up in the main surface waters and along the coastline, even though the particles used to trace the flow paths are introduced with a uniform spatial distribution at a relatively shallow depth. The calculated groundwater travel time, determining the time available for decay and retention of radionuclides, is on average longer to the coastal bays than to other biosphere objects at the site. Further, it is demonstrated how GIS-based modeling can be used to limit the number of surface flow paths that need to be characterized for safety assessment. Based on the results, the paper discusses an approach for coupling the present models to a model for groundwater flow in the deep bedrock.
Hydraulic fracture modeling and fracture surface area calculations determined from pressure decay analysis and reservoir numerical flow simulation support estimates of created hydraulic fracture surface areas of 24-60 MM sq ft.
Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai
2017-11-01
The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-adiabatic dynamics of isolated green fluorescent protein chromophore anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li, E-mail: zhaoli282@dicp.ac.cn, E-mail: pwzhou@dicp.ac.cn, E-mail: libinsnet@dicp.ac.cn, E-mail: aihuagao@dicp.ac.cn; Gao, Ai-Hua, E-mail: zhaoli282@dicp.ac.cn, E-mail: pwzhou@dicp.ac.cn, E-mail: libinsnet@dicp.ac.cn, E-mail: aihuagao@dicp.ac.cn; University of the Chinese Academy of Sciences, Beijing 100049
2014-12-21
On-the-fly ab initio molecular dynamics calculations have been performed to investigate the relaxation mechanism of green fluorescent protein chromophore anion under vacuum. The CASSCF surface hopping simulation method based on Zhu-Nakamura theory is applied to present the real-time conformational changes of the target molecule. The static calculations and dynamics simulation results suggest that not only the twisting motion around bridging bonds between imidazolinone and phenoxy groups but the strength mode of C=O and pyramidalization character of bridging atom are major factors on the ultrafast fluorescence quenching process of the isolated chromophore anion. The abovementioned factors bring the molecule to themore » vicinity of conical intersections on its potential energy surface and to finish the internal conversion process. A Hula-like twisting pattern is displayed during the relaxation process and the entire decay process disfavors a photoswitching pattern which corresponds to cis-trans photoisomerization.« less
Chi, Donald L; Hopkins, Scarlett; O'Brien, Diane; Mancl, Lloyd; Orr, Eliza; Lenaker, Dane
2015-10-09
Dental caries (tooth decay) is a significant public health problem in Alaska Native children. Dietary added sugars are considered one of the main risk factors. In this cross-sectional pilot study, we used a validated hair-based biomarker to measure added sugar intake in Alaska Native Yup'ik children ages 6-17 years (N = 51). We hypothesized that added sugar intake would be positively associated with tooth decay. A 66-item parent survey was administered, a hair sample was collected from each child, and a dental exam was conducted. Added sugar intake (grams/day) was measured from hair samples using a linear combination of carbon and nitrogen ratios. We used linear and log-linear regression models with robust standard errors to test our hypothesis that children with higher added sugar intake would have a higher proportion of carious tooth surfaces. The mean proportion of carious tooth surfaces was 30.8 % (standard deviation: 23.2 %). Hair biomarker-based added sugar intake was associated with absolute (6.4 %; 95 % CI: 1.2 %, 11.6 %; P = .02) and relative increases in the proportion of carious tooth surfaces (24.2 %; 95 % CI: 10.6 %, 39.4 %; P < .01). There were no associations between self-reported measures of sugar-sweetened food and beverage intake and tooth decay. Added sugar intake as assessed by hair biomarker was significantly and positively associated with tooth decay in our sample of Yup'ik children. Self-reported dietary measures were not associated tooth decay. Most added sugars were from sugar-sweetened fruit drinks consumed at home. Future dietary interventions aimed at improving the oral health of Alaska Native children should consider use of objective biomarkers to assess and measure changes in home-based added sugar intake, particularly sugar-sweetened fruit drinks.
Barium Tagging from nEXO Using Resonance Ionization Spectroscopy
NASA Astrophysics Data System (ADS)
Twelker, K.; Kravitz, S.
nEXO is a 5-ton liquid enriched-xenon time projection chamber (TPC) to search for neutrinoless double-beta decay, designed to have the sensitivity to completely probe the inverted mass hierarchy of Majorana neutrinos. The detector will accommodate-as a background reduction technique-a system to recover and identify the barium decay product. This upgrade will allow a background-free measurement of neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at least one order of magnitude. Ongoing research and development includes a system to test barium extraction from liquid xenon using surface adsorption and Resonance Ionization Spectroscopy (RIS).
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yinshan; Zhu, Men; Laventure, Audrey
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less
Quantifying Tip-Sample Interactions in Vacuum Using Cantilever-Based Sensors: An Analysis
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur E.; Zhou, Chao; Altman, Eric I.; Schwarz, Udo D.
2018-04-01
Atomic force microscopy is an analytical characterization method that is able to image a sample's surface topography at high resolution while simultaneously probing a variety of different sample properties. Such properties include tip-sample interactions, the local measurement of which has gained much popularity in recent years. To this end, either the oscillation frequency or the oscillation amplitude and phase of the vibrating force-sensing cantilever are recorded as a function of tip-sample distance and subsequently converted into quantitative values for the force or interaction potential. Here, we theoretically and experimentally show that the force law obtained from such data acquired under vacuum conditions using the most commonly applied methods may deviate more than previously assumed from the actual interaction when the oscillation amplitude of the probe is of the order of the decay length of the force near the surface, which may result in a non-negligible error if correct absolute values are of importance. Caused by approximations made in the development of the mathematical reconstruction procedures, the related inaccuracies can be effectively suppressed by using oscillation amplitudes sufficiently larger than the decay length. To facilitate efficient data acquisition, we propose a technique that includes modulating the drive amplitude at a constant height from the surface while monitoring the oscillation amplitude and phase. Ultimately, such an amplitude-sweep-based force spectroscopy enables shorter data acquisition times and increased accuracy for quantitative chemical characterization compared to standard approaches that vary the tip-sample distance. An additional advantage is that since no feedback loop is active while executing the amplitude sweep, the force can be consistently recovered deep into the repulsive regime.
Pion properties at finite isospin chemical potential with isospin symmetry breaking
NASA Astrophysics Data System (ADS)
Wu, Zuqing; Ping, Jialun; Zong, Hongshi
2017-12-01
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)
Taboada-Aranza, Olga; Rodríguez-Nieto, Karen
2018-01-01
The first permanent molar is susceptible to acquire tooth decay since its eruption, due to its anatomy and because it has been exposed before other teeth. An observational, prolective, transversal and comparative study in 194 students, with an average age of 9.9 ± 1.8 years. The evaluation of the dentobacterial plate (DBP) was analyzed using the O'Leary index and the tooth decay experience with the DMFS (sum of decayed, missing, extracted and filling dental surfaces) and DMFT (sum of decayed, missing, extracted and filling per tooth) indexes. The prevalence of DBP in the first permanent molar was of 99.4% and tooth decay of 57.2%. The value of DMFT was 1.4 ± 1.4. The tooth decay experience was higher in children from 7.10 years old with a value of 2.2 ± 2.3, who are 7.9 times more likely to develop lesions than younger children (odds ratio: 8.9; 95% confidence interval: 4.1-19.5; p < 0.0001). We found an association between age and the values of the tooth decay experience indexes; even though these were weak in the case of DMF (r = 0.439), the model allowed to explain 19% of the association, and 22% for DMFT (r = 0.464). Tooth decay develops rapidly in the first permanent molars; however, it does not receive the necessary care because it is usually unknown that it is a permanent tooth. Copyright: © 2018 Permanyer.
Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.
2010-09-23
In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less
NASA Astrophysics Data System (ADS)
Adel, A.; Alharbi, T.
2018-07-01
A systematic study on α-decay fine structure is presented for odd-mass nuclei in the range 83 ≤ Z ≤ 92. The α-decay partial half-lives and branching ratios to the ground and excited states of daughter nuclei are calculated in the framework of the Wentzel-Kramers-Brillouin (WKB) approximation with the implementation of the Bohr-Sommerfeld quantization condition. The microscopic α-daughter potential is obtained using the double-folding model with a realistic M3Y-Paris nucleon-nucleon (NN) interaction. The exchange potential, which accounts for the knock-on exchange of nucleons between the interacting nuclei, is calculated using the finite-range exchange NN interaction which is essentially a much better approximation as compared to the zero-range pseudo-potential adopted in the usual double-folding calculations. Our calculations of α-decay fine structure have been improved by considering the preformation factor extracted from the recently proposed cluster formation model on basis of the binding energy difference. The computed partial half-lives and branching ratios are compared with the recent experimental data and they are in good agreement.
McLaren, Lindsay; Patterson, Steven; Thawer, Salima; Faris, Peter; McNeil, Deborah; Potestio, Melissa; Shwart, Luke
2016-06-01
To examine the short-term impact of fluoridation cessation on children's caries experience measured by tooth surfaces. If there is an adverse short-term effect of cessation, it should be apparent when we focus on smooth tooth surfaces, where fluoride is most likely to have an impact for the age group and time frame considered in this study. We examined data from population-based samples of school children (Grade 2) in two similar cities in the province of Alberta, Canada: Calgary, where cessation occurred in May 2011 and Edmonton where fluoridation remains in place. We analysed change over time (2004/2005 to 2013/2014) in summary data for primary (defs) and permanent (DMFS) teeth for Calgary and Edmonton, for all tooth surfaces and smooth surfaces only. We also considered, for 2013/2014 only, the exposed subsample defined as lifelong residents who reported usually drinking tap water. We observed, across the full sample, an increase in primary tooth decay (mean defs - all surfaces and smooth surfaces) in both cities, but the magnitude of the increase was greater in Calgary (F-cessation) than in Edmonton (F-continued). For permanent tooth decay, when focusing on smooth surfaces among those affected (those with DMFS>0), we observed a non-significant trend towards an increase in Calgary (F-cessation) that was not apparent in Edmonton (F-continued). Trends observed for primary teeth were consistent with an adverse effect of fluoridation cessation on children's tooth decay, 2.5-3 years post-cessation. Trends for permanent teeth hinted at early indication of an adverse effect. It is important that future data collection efforts in the two cities be undertaken, to permit continued monitoring of these trends. © 2016 The Authors. Community Dentistry and Oral Epidemiology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bauer, Bruno; Hutchinson, Trevor; Awe, Thomas
2017-10-01
The stratified electrothermal instability (ETI) was recently observed on the surface of thick aluminum 6061 pulsed with rapidly rising lineal current density (3 ×1015 A m-1s-1) for 70 ns. A transparent 70- μm-thick Parylene-N coating tamped the aluminum expansion and suppressed surface plasma. The evolution of the aluminum surface emission pattern was recorded with time-resolved microscopy (3- μm resolution). The images were converted into a series of blackbody surface-temperature maps. Analysis of these temperature maps provides information on the evolution of temperature fluctuations, as a function of axial wavelength and azimuthal width. Perturbations with axial wavelength longer than 20 μm grow, while those with axial wavelength shorter than 10 μm decay. Comparing the spectral dependence of growth/decay rates with MHD simulations could test the modeling of ETI positive feedback and of damping by thermal conduction. Work supported by Sandia National Laboratories LDRD program, PO 1742766.
Plasmonic Landau damping in active environments
NASA Astrophysics Data System (ADS)
Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.
2018-03-01
Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.
NASA Astrophysics Data System (ADS)
Kocher, D. C.; Smith, J. S.
Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.
Confirmation of the Decay of 283112 and First Indication for Hg-like Behavior of Element 112
NASA Astrophysics Data System (ADS)
Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dressler, R.; Dmitriev, S. N.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Lebedev, V. Ya.; Laube, A.; Malyshev, O. N.; Oganessian, Yu. Ts.; Petruschkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V.
2007-05-01
Two gas phase adsorption chemistry experiments aimed at the chemical characterization of element 112 using its isotope 283112 have been performed at the Flerov Laboratory for Nuclear Reactions (FLNR) Dubna, Russia. The applied Insitu-Volatilization and On-line Detection (IVO) technique is a thermochromatographic system combining the determination of the deposition temperature of volatile elements on a surface along a temperature gradient with an efficient detection of the deposited species by event-by-event alpha and SF-fragment spectroscopy. Two possibilities to produce the isotope 283112 were used: 1.) the direct production reaction 238U( 48Ca,3n) 283112; 2.) the reaction 242Pu( 48Ca,3n), where the primary product 287114, decays via alpha emission to 283112 with a half-life of 0.5 s. The chemistry experiments were aimed at a chemical identification of 283112 and an independent confirmation of its decay properties. In the direct reaction no decays related to 283112 were observed. However, two decay chains unambiguously attributed to the decay of 283112 were observed using the second production path. Previously reported observation of 283112 and 279Ds and their decay properties were confirmed. From its thermochromatorgaphic deposition first thermochemical data were deduced for element 112, unveiling it as a typical group 12 element.
Shielding concepts for low-background proportional counter arrays in surface laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.
2016-02-01
Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
Slow Relaxation in Anderson Critical Systems
NASA Astrophysics Data System (ADS)
Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail
2016-05-01
We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.
Report of the Working Group on CP Violation and Rare Decays
DOE R&D Accomplishments Database
Cronin, J. W.; Deshpande, N. G.; Kane, G. L.; Luth, V. C.; Odian, A. C.; Machacek, M. E.; Paige, F.; Schmidt, M. P.; Slaughter, J.; Trilling, G. H.
1984-10-01
It has been pointed out that, with its high energy and luminosity, the SSC may provide the best or only way in which CP violation in heavy meson decays or the rare decay modes of such mesons can be observed. The major problem in the exploitation of the high rates of heavy quark production is the identification of interesting decays in the midst of a large background of more conventional processes. There have been some optimistic reports on the feasibility of such experiments, but relatively little quantitative backup has been provided. In the present report, we concentrate exclusively on B-meson decays. As is the case for K mesons, but not for charm or top decays, the favored modes are suppressed by the smallness of Cabibbo-Kobayashi-Maskawa angles, and therefore rare modes are relatively more frequent and potentially easier to observe.
Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: the π3s Rydberg state.
Wu, Guorong; Boguslavskiy, Andrey E; Schalk, Oliver; Schuurman, Michael S; Stolow, Albert
2011-10-28
Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ(∗) valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (∼20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ∗ state increases with increasing methylation, and (2) the π3s∕ππ∗ minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.
Singhal, Sonica; Figueiredo, Rafael; Dupuis, Sandy; Skellet, Rachel; Wincott, Tara; Dyer, Carolyn; Feller, Andrea; Quiñonez, Carlos
2017-01-01
Background: Most children are exposed to medical, but not dental, care at an early age, making primary health care providers an important player in the reduction of tooth decay. The goal of this research was to understand the feasibility of using primary health care providers in promoting oral health by assessing their knowledge, attitude, willingness and readiness in this regard. Methods: Using the Dillman method, a mail-in cross-sectional survey was conducted among all family physicians and pediatricians in the Niagara region of Ontario who have primary contact with children. A descriptive analysis was performed. Results: Close to 70% (181/265) of providers responded. More than 90% know that untreated tooth decay could affect the general health of a child. More than 80% examine the oral cavity for more than 50% of their child patients. However, more than 50% are not aware that white spots or lines on the tooth surface are the first signs of tooth decay. Lack of clinical time was the top reason for not performing oral disease prevention measures. Interpretation: Overall, survey responses show a positive attitude and willingness to engage in the oral health of children. To capitalize on this, there is a need to identify mechanisms of providing preventive oral health care services by primary health care providers; including improving their knowledge of oral health and addressing other potential barriers. PMID:28401141
Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state
NASA Astrophysics Data System (ADS)
Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert
2011-10-01
Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.
Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David
2011-01-01
Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Hadronic decays of the X(3872) to {chi}{sub cJ} in effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Sean; Mehen, Thomas
2008-11-01
The decays of the X(3872) to P-wave quarkonia are calculated under the assumption that it is a shallow bound state of neutral charmed mesons. The X(3872) is described using an effective theory of nonrelativistic D mesons and pions (X-EFT). We calculate X(3872) decays by first matching heavy hadron chiral perturbation theory (HH{chi}PT) amplitudes for D{sup 0}D*{sup 0}{yields}{chi}{sub cJ}({pi}{sup 0},{pi}{pi}) onto local operators in X-EFT, and then using these operators to calculate the X(3872) decays. This procedure reproduces the factorization theorems for X(3872) decays to conventional quarkonia previously derived using the operator product expansion. For single pion decays, we find nontrivialmore » dependence on the pion energy from HH{chi}PT diagrams with virtual D mesons. This nontrivial energy dependence can potentially modify heavy-quark symmetry predictions for the relative sizes of decay rates. At leading order, decays to final states with two pions are dominated by the final state {chi}{sub c1}{pi}{sup 0}{pi}{sup 0}, with a branching fraction just below that for the decay to {chi}{sub c1}{pi}{sup 0}. Decays to all other final states with two pions are highly suppressed.« less
Fluorine atom abstraction by Si(100). I. Experimental
NASA Astrophysics Data System (ADS)
Tate, M. R.; Gosalvez-Blanco, D.; Pullman, D. P.; Tsekouras, A. A.; Li, Y. L.; Yang, J. J.; Laughlin, K. B.; Eckman, S. C.; Bertino, M. F.; Ceyer, S. T.
1999-08-01
In the interaction of low energy F2 with Si(100) at 250 K, a dissociative chemisorption mechanism called atom abstraction is identified in which only one of the F atoms is adsorbed while the other F atom is scattered into the gas phase. The dynamics of atom abstraction are characterized via time-of-flight measurements of the scattered F atoms. The F atoms are translationally hyperthermal but only carry a small fraction (˜3%) of the tremendous exothermicity of the reaction. The angular distribution of F atoms is unusually broad for the product of an exothermic reaction. These results suggest an "attractive" interaction potential between F2 and the Si dangling bond with a transition state that is not constrained geometrically. These results are in disagreement with the results of theoretical investigations implying that the available potential energy surfaces are inadequate to describe the dynamics of this gas-surface interaction. In addition to single atom abstraction, two atom adsorption, a mechanism analogous to classic dissociative chemisorption in which both F atoms are adsorbed onto the surface, is also observed. The absolute probability of the three scattering channels (single atom abstraction, two atom adsorption, and unreactive scattering) for an incident F2 are determined as a function of F2 exposure. The fluorine coverage is determined by integrating the reaction probabilities over F2 exposure, and the reaction probabilities are recast as a function of fluorine coverage. Two atom adsorption is the dominant channel [P2=0.83±0.03(95%, N=9)] in the limit of zero coverage and decays monotonically to zero. Single atom abstraction is the minor channel (P1=0.13±0.03) at low coverage but increases to a maximum (P1=0.35±0.08) at about 0.5 monolayer (ML) coverage before decaying to zero. The reaction ceases at 0.94±0.11(95%, N=9) ML. Thermal desorption and helium diffraction confirm that the dangling bonds are the abstraction and adsorption sites. No Si lattice bonds are broken, in contrast to speculation by other investigators that the reaction exothermicity causes lattice disorder.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, William; Hysell, David
2016-07-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
Observations of HF backscatter decay rates from HAARP generated FAI
NASA Astrophysics Data System (ADS)
Bristow, W. A.; Hysell, D. L.
2016-12-01
Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.
Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger
2017-01-24
The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA FITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA FITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA FITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp 2 -defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA FITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.
Depth of origin of solar active regions
NASA Technical Reports Server (NTRS)
Parker, E. N.
1984-01-01
Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.
Surface and allied studies in silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1984-01-01
Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
A comparative analysis of alpha-decay half-lives for even-even 178Pb to 234U isotopes
NASA Astrophysics Data System (ADS)
Hosseini, S. S.; Hassanabadi, H.; Zarrinkamar, S.
2018-02-01
The feasibility for the alpha decay from the even-even transitions of 178Pb to 234U isotopes has been studied within the Coulomb and proximity potential model (CPPM). The alpha decay half-lives are considered from different theoretical approaches using Semi-empirical formula of Poenaru et al. (SemFIS), the Universal Decay law (UDL) of Qi et al., Akrawy-Dorin formula of Akrawy and Poenaru (ADF), the Scaling law of Brown (SLB) and the Scaling Law of Horoi et al. (SLH). The numerical results obtained by the CPPM and compared with other method as well the experimental data.
Decay and the double-decay properties of edge bands of phosphorene ribbons
NASA Astrophysics Data System (ADS)
Yang, M.; Duan, H.-J.; Wang, R.-Q.
2015-11-01
Phosphorene (a monolayer of black phosphorus) recently spurred much attention due to its potential for application. We notice there are two types of zigzag edge and two types of armchair edge for phosphorene lattice. We study the winding number of various types of edge of phosphorene ribbons and conclude that, besides on the typical zigzag edge, the flat zero-energy edge band can be found in the ribbon of another nontypical armchair edge. The localization of these edge bands is investigated analytically. We find every single edge state of the atypical armchair edge decays to the bulk at two different decay rates.
Shape coexistence and β decay of 70Br within a beyond-mean-field approach
NASA Astrophysics Data System (ADS)
Petrovici, A.
2018-02-01
β -decay properties of the odd-odd N =Z 70Br nucleus are self-consistently explored within the beyond-mean-field complex excited vampir variational model using an effective interaction obtained from a nuclear matter G -matrix based on the charge-dependent Bonn CD potential and an adequate model space. Results on superallowed Fermi β decay of the ground state and Gamow-Teller decay of the 9+ isomer in 70Br correlated with the shape coexistence and mixing effects on the structure and electromagnetic properties of the populated states in the daughter nucleus 70Se are presented and compared with available data.
Distribution of borates around point source injections in wood members exposed outside
Rodney C. De Groot; Colin C. Felton; Douglas M. Crawford
2000-01-01
In bridge timbers, wood decay is usually found where water has accessed the end-grain surfaces. In preservative-treated members, end-grain surfaces are most likely to be those resulting from on-site framing cuts or borings. Because these at-risk surfaces are easy to see, it seems feasible to establish a program where diffusible preservatives are repetitively inserted...
Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study
NASA Astrophysics Data System (ADS)
Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.
2005-03-01
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.
The Decay of Motor Memories Is Independent of Context Change Detection
Brennan, Andrew E.; Smith, Maurice A.
2015-01-01
When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected. This new theory, the context-dependent decay hypothesis, makes two key predictions: (1) after error signals are withheld, decay onset should be systematically delayed until the context change is detected; and (2) manipulations that impair detection by masking context changes should result in prolonged delays in decay onset and reduced decay amplitude at any given time. Here we examine the decay of motor adaptation following the learning of novel environmental dynamics in order to carefully evaluate this hypothesis. To account for potential issues in previous work that supported the context-dependent decay hypothesis, we measured decay using a balanced and baseline-referenced experimental design that allowed for direct comparisons between analogous masked and unmasked context changes. Using both an unbiased variant of the previous decay onset analysis and a novel highly-powered group-level version of this analysis, we found no evidence for systematically delayed decay onset nor for the masked context change affecting decay amplitude or its onset time. We further show how previous estimates of decay onset latency can be substantially biased in the presence of noise, and even more so with correlated noise, explaining the discrepancy between the previous results and our findings. Our results suggest that the decay of motor memories is an intrinsic feature of error-based learning that does not depend on context change detection. PMID:26111244
Chen, Yinshan; Zhu, Men; Laventure, Audrey; ...
2017-06-26
Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C 2H 5, OCH 3, and NHCH 3, and referred to as “Et”, “OMe”, and “NHMe”, respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow asmore » the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. Here, this result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.« less
A Dark Matter Search with MALBEK
NASA Astrophysics Data System (ADS)
Giovanetti, G. K.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.
The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.
Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M
2018-03-21
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
Semileptonic decays of Λ _c baryons in the relativistic quark model
NASA Astrophysics Data System (ADS)
Faustov, R. N.; Galkin, V. O.
2016-11-01
Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.
NASA Astrophysics Data System (ADS)
Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.
2018-03-01
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
Preformation probability inside α emitters around the shell closures Z = 50 and N = 82
NASA Astrophysics Data System (ADS)
Seif, W. M.; Ismail, M.; Zeini, E. T.
2017-05-01
The preformation of an α-particle as a distinct entity inside the α-emitter is the first move towards α-decay. We investigate the α-particle preformation probability (S α ) in ordinary and exotic α-decays. We consider favored and unfavored decays at which the α-emitters and the produced daughter nuclides are in their ground or isomeric states. The study of 244 α-decay modes with 52≤slant Z≤slant 81 and 53≤slant N≤slant 112 is accomplished using the preformed cluster model. The preformation probabilities were estimated from the experimental half-lives and the computed decay widths based on the Wentzel-Kramers-Brillouin tunneling penetrability and knocking frequency, and the Skyrme-SLy4 interaction potential. We found that the favored α-decay mode from a ground state to an isomeric state shows larger α-preformation probability than the favored and unfavored decays of the same isotope but from isomeric to ground states. The favored decay mode from isomeric- to ground-state exhibits rather less S α relative to the other decay modes from the same nuclide. The favored decay modes between two isomeric states tend to yield larger S α and less partial half-life compared with the favored and unfavored decays from the same nuclides but between two ground states. For the decays involving two ground states, the preformation probability is larger for the favored decay modes than for the unfavored ones. The unfavored α-decay modes from ground- to isomeric-states are rare. The unfavored decay modes from isomeric- to ground-states show less S α than that for the favored decays from the ground states of the same emitters. The unfavored α-decay modes between two isomeric states exhibit larger S α than the other α-decay modes from the same isomers.
What heated the parent meteorite planets?
NASA Technical Reports Server (NTRS)
Wood, John A.; Pellas, Paul
1991-01-01
The plausibility of the two most wide discussed mechanisms, decay of short-lived Al-26 and solar wind induction heating, for heating the small planetesimals in which the meteorites formed are examined and shown to have significant problems. The main problem for the Al-26 decay mechanism is the fact that eucritic lavas, melted by the mysterious heating mechanism in some early planetesimal, did not contain enough Al-26 to decay to radiogenic Mg-26 when they erupted to their planetesimal surface and cooled. It is necessary to postulate that the lavas lingered underground while their Al-26 decayed away. The solar wind induction heat concept has the problem that astrophysical evidence has made is seem increasingly unlikely that an intense solar wind flux blew past planetesimals in the early solar system. Instead, it was probably collimated in the direction of the sun's poles by the persistence of the solar nebula during the T Tauri epoch.
New detectors to explore the lifetime frontier
NASA Astrophysics Data System (ADS)
Chou, John Paul; Curtin, David; Lubatti, H. J.
2017-04-01
Long-lived particles (LLPs) are a common feature in many beyond the Standard Model theories, including supersymmetry, and are generically produced in exotic Higgs decays. Unfortunately, no existing or proposed search strategy will be able to observe the decay of non-hadronic electrically neutral LLPs with masses above ∼ GeV and lifetimes near the limit set by Big Bang Nucleosynthesis (BBN), cτ ≲107-108 m. We propose the MATHUSLA surface detector concept (MAssive Timing Hodoscope for Ultra Stable neutraL pArticles), which can be implemented with existing technology and in time for the high luminosity LHC upgrade to find such ultra-long-lived particles (ULLPs), whether produced in exotic Higgs decays or more general production modes. We also advocate a dedicated LLP detector at a future 100 TeV collider, where a modestly sized underground design can discover ULLPs with lifetimes at the BBN limit produced in sub-percent level exotic Higgs decays.
Tleugabulova, Dina; Duft, Andy M; Brook, Michael A; Brennan, John D
2004-01-06
The fluorescence-based nanosize metrology approach, proposed recently by Geddes and Birch (Geddes, C. D.; Birch, D. J. S. J. Non-Cryst. Solids 2000, 270, 191), was used to characterize the extent of binding of a fluorescent cationic solute, rhodamine 6G (R6G), to the surface of silica particles after modification of the surface with the hydrophilic polymer poly(ethylene oxide) (PEO) of various molecular weights. The measurement of the rotational dynamics of R6G in PEO solutions showed the absence of strong interactions between R6G and PEO chains in water and the ability of the dye to sense the presence of polymer clusters in 30 wt % solutions. Time-resolved anisotropy decays of polymer-modified Ludox provided direct evidence for distribution of the dye between bound and free states, with the bound dye showing two decay components: a nanosecond decay component that is consistent with local motions of bound probes and a residual anisotropy component due to slow rotation of large silica particles. The data showed that the dye was strongly adsorbed to unmodified silica nanoparticles, to the extent that less than 1% of the dye was present in the surrounding aqueous solution. Addition of PEO blocked the adsorption of the dye to a significant degree, with up to 50% of the probe being present in the aqueous solution for Ludox samples containing 30 wt % of low molecular weight PEO. The addition of such agents also decreased the value and increased the fractional contribution of the nanosecond rotational correlation time, suggesting that polymer adsorption altered the degree of local motion of the bound probe. Atomic force microscopy imaging studies provided no evidence for a change in the particle size upon surface modification but did suggest interparticle aggregation after polymer adsorption. Thus, this redistribution of the probe is interpreted as being due to coverage of particles with the polymer, resulting in lower adsorption of R6G to the silica. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the modification of silica surfaces and suggest that this method should prove useful in characterization of new chromatographic stationary phases and nanocomposite materials.
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
NASA Astrophysics Data System (ADS)
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
Photographic monitoring of soiling and decay of roadside walls in central Oxford, England
NASA Astrophysics Data System (ADS)
Thornbush, Mary J.; Viles, Heather A.
2008-12-01
As part of the Environmental Monitoring of Integrated Transport Strategies (EMITS) project, which examined the impact of the Oxford Transport Strategy (OTS) on the soiling and decay of buildings and structures in central Oxford, England, a simple photographic survey of a sample of roadside walls was carried out in 1997, with re-surveys in 1999 and 2003. Thirty photographs were taken each time, covering an area of stonework approximately 30 × 30 cm in dimensions at 1-1.3 m above pavement level. The resulting images have been used to investigate, both qualitatively as well as quantitatively, the progression of soiling and decay. Comparison of images by eye reveals a number of minor changes in soiling and decay patterns, but generally indicates stability except at one site where dramatic, superficial damage occurred over 2 years. Quantitative analysis of decay features (concavities resulting from surface blistering, flaking, and scaling), using simple techniques in Adobe Photoshop, shows variable pixel-based size proportions of concavities across 6 years of survey. Colour images (in Lab Color) generally have a reduced proportion of pixels, representing decay features in comparison to black and white (Grayscale) images. The study conveys that colour images provide more information both for general observations of soiling and decay patterns and for segmentation of decay-produced concavities. The study indicates that simple repeat photography can reveal useful information about changing patterns of both soiling and decay, although unavoidable variation in external lighting conditions between re-surveys is a factor limiting the accuracy of change detection.
NASA Astrophysics Data System (ADS)
Outzourhit, Abdelkader
In this study both the structure of the native oxide of the aluminum substrate and its electrical properties were investigated using electron tunneling spectroscopy which uses aluminum/aluminum oxide/lead tunnel junctions. It is found that the structure of the oxide as well as the barrier heights vary as a function of the preparation conditions. Room temperature oxidation in air or in the presence of small amounts of water vapor results in a disordered oxide, while glow discharge oxidation in an oxygen plasma leads to a more ordered oxide as evidenced by a sharp Al-O band in the inelastic electron tunneling (IET) spectra of as-grown tunnel junctions. In addition, the thermally oxidized junctions show a large barrier asymmetry (6.1 eV), which decrease as the humidity level is increased. These observations can be correlated with a change in the concentration, charge, and environment of the chemically adsorbed hydroxyl on the surface of the aluminum oxide. Tunneling studies of Hydroxy Squarylium (OHSq)- and PNDMA-doped tunnel junctions reveal the lowering of the effective barrier for electron tunneling as well as the barrier asymmetry in accordance with the modification of the charged hydroxyl groups at the surface of the oxide. IET spectra of these junctions support the Lewis-acid/Lewis-base type of interaction between the oxide surface and the adsorbed molecules. The ionization energy of the OHSq aggregates was measured to be 5.0 eV using the valence band XPS. This parameter was also evaluated from a simple Huckel molecular orbital theory applied to the dye molecule after taking into account the polarization energy. High dark decay rates are associated with low barrier for hole injection into the OHSq aggregates. Schottky emission is the primary cause of the dark decay at low voltages, while the Frenkel -Poole mechanism dominates the dark decay at higher voltages. The Lewis-acid/Lewis-base mechanism for the dark decay is not ruled out. Structural studies reveal the existence of silicon- and sodium-rich protrusions in the samples which show unacceptable dark decay rates. The protrusions can enhance the electric field within the photoconductor and thus lead to higher dark decay rates. (Abstract shortened with permission of author.).
Laser-induced caesium-137 decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmina, E V; Simakin, A V; Shafeev, G A
2014-08-31
Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)
NASA Astrophysics Data System (ADS)
Crosby, B. T.; Rodgers, D. W.; Lauer, I. H.
2017-12-01
The 1983 Borah Peak, Idaho, earthquake (M 7.0) produced both local ground surface rupture and notable far-field geodetic elevation changes that inspired a suite of investigations into coseismic flexural response. Shortly after the earthquake, Stein and Barrientos revisited a 50 km leveling line that runs roughly perpendicular to and spanning the Lost River normal fault. They found 1 meter of surface subsidence adjacent to the fault on the hanging wall that decays to no detectable change over 25 km distance from the fault. On the footwall, 20 cm of surface uplift was observed adjacent to the fault, decaying to zero change over 17 km. Though the changes in elevation are calculated as a difference between the first leveling in 1933 and the post-event leveling in 1984, they treat this change as the coseismic period, assuming little change between 1933 and 1983. A subsequent survey in 1985 revealed no significant change, suggesting that postseismic relaxation was complete. We evaluate the assumption that no detectable interseismic slip occurred between 1933 and the Borah Peak event by resurveying the line and differencing elevations between 2017 and 1985. If interseismic slip is insignificant, then there should be no detectable change over these 32 years. Using RTK GNSS with a 3D error ellipse of 0.9 cm, we resurveyed all leveling monuments in June, 2017. Significant deformation was observed. Between 1985 and 2017, 28 cm of displacement occurred across the fault. The hanging wall, adjacent to the fault, subsided 8 cm while the footwall rose 20 cm. Subsidence on the hanging wall increases slightly with distance away from the fault, reaching a maximum of 10 cm at a distance of 4 km from the fault and decaying to zero by 17 km. On the footwall surface uplift increases from 20 cm at the fault to 42 cm by 6.5 km before decaying. Clearly interseismic deformation has occurred over the last 32 years, including both discrete slip at the fault and distributed subsidence or surface uplift with distance away from the fault. A difference between the 2017 and 1933 data reveal that the opposing patterns of deformation pre and post event at on the footwall largely balance each other out, creating block-like surface uplift. These vertical changes are complemented by observations from continuous geodetic GNSS that corroborate the interseismic extension.
Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars.
Gerakines, Perry A; Hudson, Reggie L
2013-07-01
We report new laboratory studies of the radiation-induced destruction of glycine-containing ices for a range of temperatures and compositions that allow extrapolation to martian conditions. In situ infrared spectroscopy was used to study glycine decay rates as a function of temperature (from 15 to 280 K) and initial glycine concentrations in six mixtures whose compositions ranged from dry glycine to H2O+glycine (300:1). Results are presented in several systems of units, with cautions concerning their use. The half-life of glycine under the surface of Mars is estimated as an extrapolation of this data set to martian conditions, and trends in decay rates are described as are applications to Mars' near-surface chemistry.
Attractive non-DLVO forces induced by adsorption of monovalent organic ions.
Smith, Alexander M; Maroni, Plinio; Borkovec, Michal
2017-12-20
Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (Ph 4 As + ), 1-hexyl-3-methylimidazolium (HMIM + ), and 1-octyl-3-methylimidazolium (OMIM + ). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces. This additional and unexpected attraction decays exponentially with a decay length of a few nanometers, and is strikingly similar to the one previously observed in the presence of multivalent ions. This attractive force probably originates from coupled spontaneous charge fluctuations on the respective surfaces as initially suggested by Kirkwood and Shumaker.
Fission properties of superheavy nuclei for r -process calculations
NASA Astrophysics Data System (ADS)
Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.
2018-03-01
We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.
Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
Jiang, Zilong; Chang, Cui -Zu; Masir, Massoud Ramezani; ...
2016-05-04
Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (Bi xSb 1–x) 2Te 3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (Bi xSbmore » 1–x) 2Te 3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. Lastly, the enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.« less
Dental hard tissue characterization using laser-based ultrasonics
NASA Astrophysics Data System (ADS)
Blodgett, David W.; Massey, Ward L.
2003-07-01
Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.
Heavy quarkonium hybrids: Spectrum, decay, and mixing
NASA Astrophysics Data System (ADS)
Oncala, Ruben; Soto, Joan
2017-07-01
We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.
Heavy quarkonia in a potential model: binding energy, decay width, and survival probability
NASA Astrophysics Data System (ADS)
Srivastava, P. K.; Chaturvedi, O. S. K.; Thakur, Lata
2018-06-01
Recently a lot of progress has been made in deriving the heavy quark potential within a QCD medium. In this article we have considered heavy quarkonium in a hot quark gluon plasma phase. The heavy-quark potential has been modeled properly for short as well as long distances. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. We have numerically solved the 1+1-dimensional Schrodinger equation for this potential and obtained the eigen wavefunction and binding energy for the 1 S and 2 S states of charmonium and bottomonium. Further, we have calculated the decay width and dissociation temperature of quarkonium states in the QCD plasma. Finally, we have used our recently proposed unified model with these new values of decay widths to calculate the survival probability of the various quarkonium states with respect to centrality at relativistic heavy ion collider and large hadron collider energies. This study provides a unified, consistent and comprehensive description of spectroscopic properties of various quarkonium states at finite temperatures along with their nuclear modification factor at different collision energies.
Surface structure evolution in a homologous series of ionic liquids.
Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe
2018-02-06
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.
1986-01-01
The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and wave surface are used to describe the geometry of the wave propagation process. It is shown that the decay of the wave amplitudes depends not only on the distance from the source (as in isotropic media) but also depends on the direction of the point of interest from the source. As an example, the displacement field is computed for a laboratory fabricated unidirectional fiberglass epoxy composite. The solution for the displacements is expressed as an amplitude distribution and is presented in polar diagrams. This analysis has potential usefulness in the acoustic emission (AE) and ultrasonic nondestructive evaluation of composite materials. For example, the transient localized disturbances which are generally associated with AE sources can be modeled via this analysis. In which case, knowledge of the displacement field which arrives at a receiving transducer allows inferences regarding the strength and orientation of the source, and consequently perhaps the degree of damage within the composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin
2015-10-21
In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less
Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles
2017-01-01
Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core–shell configurations (core, core–isocrystalline shell, and core–silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core–silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals. PMID:28919934
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua
2018-04-01
In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.
1983-03-01
network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III
Post-fire logging reduces surface woody fuels up to four decades following wildfire
David W. Peterson; Erich Kyle Dodson; Richy J. Harrod
2015-01-01
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...
Repulsion Between Finite Charged Plates with Strongly Overlapped Electric Double Layers.
Ghosal, Sandip; Sherwood, John D
2016-09-20
Screened Coulomb interactions between uniformly charged flat plates are considered at very small plate separations for which the Debye layers are strongly overlapped, in the limit of small electrical potentials. If the plates are of infinite length, the disjoining pressure between the plates decays as an inverse power of the plate separation. If the plates are of finite length, we show that screening Debye layer charges close to the edge of the plates are no longer constrained to stay between the plates, but instead spill out into the surrounding electrolyte. The resulting change in the disjoining pressure is calculated analytically: the force between the plates is reduced by this edge correction when the charge density is uniform over the surface of the plates, and is increased when the surface is at constant potential. A similar change in disjoining pressure due to loss of lateral confinement of the Debye layer charges should occur whenever the sizes of the interacting charged objects become small enough to approach the Debye scale. We investigate the effect here in the context of a two-dimensional model problem that is sufficiently simple to yield analytical results.
Impact of Electrostatics on Processing and Product Performance of Pharmaceutical Solids.
Desai, Parind Mahendrakumar; Tan, Bernice Mei Jin; Liew, Celine Valeria; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Manufacturing of pharmaceutical solids involves different unit operations and processing steps such as powder blending, fluidization, sieving, powder coating, pneumatic conveying and spray drying. During these operations, particles come in contact with other particles, different metallic, glass or polymer surfaces and can become electrically charged. Electrostatic charging often gives a negative connotation as it creates sticking, jamming, segregation or other issues during tablet manufacturing, capsule filling, film packaging and other pharmaceutical operations. A thorough and fundamental appreciation of the current knowledge of mechanisms and the potential outcomes is essential in order to minimize potential risks resulting from this phenomenon. The intent of this review is to discuss the electrostatic properties of pharmaceutical powders, equipment surfaces and devices affecting pharmaceutical processing and product performance. Furthermore, the underlying mechanisms responsible for the electrostatic charging are described and factors affecting electrostatic charging have been reviewed in detail. Feasibility of different methods used in the laboratory and pharmaceutical industry to measure charge propensity and decay has been summarized. Different computational and experimental methods studied have proven that the particle charging is a very complex phenomenon and control of particle charging is extremely important to achieve reliable manufacturing and reproducible product performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Johnson, Christopher J.; Continetti, Robert E., E-mail: hguo@umn.edu, E-mail: rcontinetti@ucsd.edu
2016-06-28
Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH{sub 4} and the double Rydberg anion NH{sub 4}{sup −} represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H{sup −}(NH{sub 3}) ion-dipole complex and the NH{sub 4}{sup −} DRA probes different regions on the neutral NH{sub 4} PES. Photoelectron energy and angular distributions at photon energiesmore » of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH{sub 4} Rydberg radical occurs to H + NH{sub 3} with a peak kinetic energy of 0.13 eV, showing the ground state of NH{sub 4} to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.« less
Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme
NASA Astrophysics Data System (ADS)
Bhavsar, Tanvi; Shah, Manan; Vinodkumar, P. C.
2018-03-01
Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J^{PC} = 1^{-} mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states.
Decay Heat Removal from a GFR Core by Natural Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.
2004-07-01
One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less
Optimizing sensitivity to γ with B0→D K+π-, D →KS0π+π- double Dalitz plot analysis
NASA Astrophysics Data System (ADS)
Craik, D.; Gershon, T.; Poluektov, A.
2018-03-01
Two of the most powerful methods currently used to determine the angle γ of the CKM Unitarity Triangle exploit B+→D K+, D →KS0π+π- decays and B0→D K+π-, D →K+K-, π+π- decays. It is possible to combine the strengths of both approaches in a "double Dalitz plot" analysis of B0→D K+π-, D →KS0π+π- decays. The potential sensitivity of such an analysis is investigated in the light of recently published experimental information on the B0→D K+π- decay. The formalism is also expanded, compared to previous discussions in the literature, to allow B0→D K+π- with any subsequent D decay to be included.
Interaction of real and virtual p p bar pairs in J / ψ → p p bar γ (ρ , ω) decays
NASA Astrophysics Data System (ADS)
Milstein, A. I.; Salnikov, S. G.
2017-10-01
The p p bar invariant mass spectra of the processes J / ψ → p p bar ω, J / ψ → p p bar ρ, and J / ψ → p p bar γ close to the p p bar threshold are calculated by means of the N N bar optical potential. The potential model for N N bar interaction in the S10 state is proposed. The parameters of the model are obtained by fitting the cross section of N N bar scattering together with the p p bar invariant mass spectra of the J / ψ decays. Good agreement with the available experimental data is achieved. Using our potential and the Green's function approach we also describe the peak in the η‧π+π- invariant mass spectrum in the decay J / ψ → γη‧π+π- in the energy region near the N N bar threshold.
[Caries morbidity in the odonto-stomatologic services in Yaounde, Cameroon].
Bengondoi, M C; Ngoa, S; Onana, J; Ewo, C; Bengono, G
2006-06-01
In our regions, it is believed that dental decay is an illness without prestige or danger for the life. It's the reason of teeth loss and many complications. The objective of this study was to valuate the morbidity of this pathology in odonto-stomatology services. With an average of 4.5 teeth decays per person and a morbidity index of 0.15; dental carie concern all socio-professional levels, without distinction of age or sex. Women seem more vulnerable to teeth decay, and they consult services more than men. We are potential edentulous because of dental decay, if preventive and training measures in mouth and tooth healths are not taken in our country.
Anomalous Z' and diboson resonances at the LHC
NASA Astrophysics Data System (ADS)
Ismail, Ahmed; Katz, Andrey
2018-04-01
We propose novel collider searches which can significantly improve the LHC reach to new gauge bosons Z' with mixed anomalies with the electroweak (EW) gauge group. Such a Z' necessarily acquires a Chern-Simons coupling to the EW gauge bosons and these couplings can drive both exotic Z decays into Z'γ if the new gauge boson is sufficiently light, as well as Z' decays into EW gauge bosons. While the exotic decay rate of the heavy Z into Z'γ is too small to be observed at the LHC, for a light Z', we show the potential of a lepton jet search in association with a photon to probe the rare decay Z → Z'γ.
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Multiple proton decays of 6Be, 8C, 8B(IAS) and excited states in 10C
NASA Astrophysics Data System (ADS)
Sobotka, Lee
2011-10-01
Recent technical advances have allowed for high-order correlation experiments to be done. We have primarily focused on experiments in which the final channels are composed of only alphas and protons. Four cases we have studied are: 6Be, 10C*, 8C, and 8B*(IAS) via 3, 4, 5, and 3-particle correlation measurements, respectively. While the first case had been studied before, our work presents very high statistics in the full Jacobi coordinates (the coordinates needed to describe 3-body decay.) Our study of 10C excited states provides isolatable examples of: correlated 2p decay, from one state, and the decay of another which is unusually highly correlated, a ``ménage a quatre.'' 8C decay presents the only case of sequential 3-body 2p decay steps (i.e. 2p-2p.) The intermediate in this 2-step process is the first example (6Be) mentioned above. Unlike the well-studied second step (6Be decay), the first step in this 2p-2p process provides another example of correlated 2p emission. The decay of 8B(IAS), the isobaric analog of 8C, also decays overwhelmingly by 2p emission, in this case to 6Li(IAS). This IAS-to-IAS 2p decay is one for which decay to the potential 1p intermediates is energetically allowed but isospin forbidden. This represents an expansion, over that originally envisioned by Goldanski, of the conceivable nuclear territory for 2p decay.
Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians.
Murdock, Duncan Je; Gabbott, Sarah E; Mayer, Georg; Purnell, Mark A
2014-11-29
Fossil lobopodians, including animals proposed to have close affinity to modern onychophorans, are crucial to understanding the evolution of the panarthropod body plan and the phylum-level relationships between the ecdysozoan groups. Unfortunately, the key features of their anatomy are un-mineralized and subject to biases introduced during death, decay and preservation, yet the extent to which these fossils have been affected by the processes of post-mortem decay is entirely untested. Recent experimental work on chordates has highlighted a profound bias caused by decay, resulting in the erroneous interpretation of badly decayed specimens as primitive members of a clade (stemward slippage). The degree to which this bias affects organisms other than chordates is unknown. Here we use experimental decay of velvet worms (Onychophora) to examine the importance of decay bias in fossil lobopodians. Although we find stemward slippage is not significant in the interpretation of non-mineralized lobopodian fossils, the affect of decay is far from unbiased. Quantitative analysis reveals significant changes in body proportions during decay, a spectrum of decay resistance across anatomical features, and correlated decay of topologically associated characters. These results have significant implications for the interpretation of fossil lobopodian remains, demonstrating that features such as body outline and relative proportions are unreliable for taxonomy or phylogenetic reconstruction, unless decay is taken into account. Similarly, the non-independent loss of characters, due to juxtaposition in the body, during decay has the potential to bias phylogenetic analyses of non-biomineralized fossils. Our results are difficult to reconcile with interpretations of highly decay-prone tissues and structures, such as neural tissue, and complex musculature, in recently described Cambrian lobopodians. More broadly, we hypothesize that stemward slippage is unlikely to be a significant factor among the taphonomic biases that have affected organisms where decay-resistant features of the anatomy are rich in phylogenetically informative characters. Conversely, organisms which possess decay-resistant body parts but have informative characters concentrated in decay-prone tissues will be just as liable to bias as those that lack decay-resistant body parts. Further experimental analysis of decay is required to test these hypotheses.
NASA Astrophysics Data System (ADS)
Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.
2015-06-01
The earlier study of *124Ce formed in the 32S+92Mo reaction at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki et al. for the nuclear proximity potential in the dynamical cluster-decay model (DCM), is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach under the frozen density approximation. The Skyrme forces used are the old SII, SIII, SIV, SKa, SkM, and SLy4 and new GSkI and KDE0(v1), given for both normal and isospin-rich nuclei. It is found that the α -nucleus structure, over the non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with the new decay region of heavy mass fragments (HMFs) and the near-symmetric and symmetric fission fragments which, on adding the complementary heavy fragments, corresponds to (A /2 )±12 mass region of the fusion-fission (ff) process, are predicted by considering cross sections of orders observed in the experiment under study. For the predicted (total) fusion cross section, the survival probability Psurv of the compound nucleus (CN) against fission is shown to be very small because of the very large predicted ff component. On the other hand, the CN formation probability PCN is found to be nearly equal to 1, and hence the decay under study is a pure CN decay for all the nuclear potentials considered, since the estimated noncompound nucleus (nCN) content is almost negligible. We have also applied the extended-Wong model of Gupta and collaborators, and find that the ℓmax values and total fusion cross sections are of the same order as for the DCM. Thus, the extended-Wong model, which describes only the total fusion cross section in terms of the barrier characteristics of the entrance channel nuclei, could be useful for initial experimental studies to be fully treated using the DCM for all the observed decay products.
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe
2013-06-01
A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.
AMS-02 positron excess and indirect detection of three-body decaying dark matter
NASA Astrophysics Data System (ADS)
Cheng, Hsin-Chia; Huang, Wei-Chih; Huang, Xiaoyuan; Low, Ian; Sming Tsai, Yue-Lin; Yuan, Qiang
2017-03-01
We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the AMS-02 positron excess without being constrained by the Fermi-LAT gamma-ray data and the cosmic ray anti-proton measurements. We scrutinize over different final state fermions, paying special attention to handling of the cosmic ray background and including various contributions from cosmic ray propagation with the help of the LIKEDM package. It is found that primary decays into an electron-positron pair and a stable neutral particle could give rise to the AMS-02 positron excess and, at the same time, stay unscathed against the gamma-ray and anti-proton constraints. Decays to a muon pair or a mixed flavor electron-muon pair may also be viable depending on the propagation models. Decays to all other standard model fermions are severely disfavored.
Okeke, Benedict C.
2014-08-17
Availability, cost and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum and Trichoderma aureoviride. Trichoderma sp. SG2 correspondingly displayed as much as 9.84±1.12, 48.02±2.53 and 30.10±1.11 unitsmore » mL-1 of cellulase, xylanase and β-glucosidase. Ten times dilution of culture supernatant of strain SG2 revealed that activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase respectively, indicating that more enzymes are present to contact with substrates in biomass sacharification. In parallel experiments Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.« less
Östberg, Anna-Lena; Kjellström, Anna N; Petzold, Max
2017-06-01
The objective was to examine associations between a primary Care Need Index (CNI) and dental caries experience. Dental journal records for 300 988 individuals in western Sweden, aged 3-19 years in 2007-09, were completed with official socioeconomic information. The CNI (independent variable), originally developed for assessing primary care need, was calculated for residential areas (small areas, parishes, dental clinics) based on markers of material deprivation, sociodemographic characteristics, social instability and cultural needs. Dental caries (dependent variable) was registered using the decayed, missing, filled teeth (DMFT) system. Multilevel Poisson regression and logistic regression models were used. All analyses were adjusted for age and gender. In the most deprived areas, the incidence rate ratio (IRR) for dental caries was up to five times higher than in the most affluent areas (reference); in small areas, the IRR for decayed teeth (DT) was 3.74 (95% CI: 3.39-4.12) and 5.11 (CI: 4.45-5.87) for decayed surfaces approximally (DSa). Caries indices including fillings (decayed filled teeth [DFT], decayed filled surfaces approximally [DFSa]) produced lower IRRs, with similar pictures at the parish and dental clinic level. The intracluster correlation was low overall, but stronger at lower geographical levels. The odds ratios for ≥3 caries lesions in the two most deprived areas of the CNI deciles were high, with a DT OR of 3.55 in small areas (95% CI: 3.39-3.73), compared with the eight more affluent deciles. There were strong associations between an index for assessing need in primary care, the CNI and dental caries in Swedish children and adolescents. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2013 CFR
2013-01-01
... above the soil surface. Administrator. The Administrator of the Animal and Plant Health Inspection... purposes. Plant litter and debris. Discarded or decaying organic matter; detached leaves, twigs, or stems...
Code of Federal Regulations, 2014 CFR
2014-01-01
... above the soil surface. Administrator. The Administrator of the Animal and Plant Health Inspection... purposes. Plant litter and debris. Discarded or decaying organic matter; detached leaves, twigs, or stems...
Code of Federal Regulations, 2010 CFR
2010-01-01
... above the soil surface. Administrator. The Administrator of the Animal and Plant Health Inspection... purposes. Plant litter and debris. Discarded or decaying organic matter; detached leaves, twigs, or stems...
Code of Federal Regulations, 2012 CFR
2012-01-01
... above the soil surface. Administrator. The Administrator of the Animal and Plant Health Inspection... purposes. Plant litter and debris. Discarded or decaying organic matter; detached leaves, twigs, or stems...
Code of Federal Regulations, 2011 CFR
2011-01-01
... above the soil surface. Administrator. The Administrator of the Animal and Plant Health Inspection... purposes. Plant litter and debris. Discarded or decaying organic matter; detached leaves, twigs, or stems...
Adhesives for Achieving Durable Bonds with Acetylated Wood
Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach
2017-01-01
Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...
Ismail, A L; Burt, B A; Brunelle, J A
1987-01-01
This paper describes the estimated prevalence of dental caries and periodontal disease in 2,550 children, 5 through 17 years of age, who resided in five southwestern states of the United States and were examined in the Hispanic Health and Nutrition Examination Survey (HHANES) of 1982-84 of the National Center for Health Statistics. Dental caries in the Mexican American children was predominantly a disease of occlusal surfaces of molars; few smooth surfaces of posterior and anterior teeth were affected by caries. This intra-oral distribution of dental caries strongly supports the use of fissure sealants as a preventive procedure. Filled tooth surfaces contributed about 66 per cent of the total DMFS (decayed, missing, filled surfaces) scores. The analysis also shows that about 50 per cent of the 17 year old Mexican Americans had five or more filled or decayed teeth. Mild gingivitis was prevalent (76.9 per cent) in the Mexican American children. PMID:3605476
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
NASA Astrophysics Data System (ADS)
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... will allow Oconee to effectively manage its spent fuel inventory to meet decay heat zoning requirements... thermal stresses, including potential elongation from decay heat and irradiation. In addition, the NRC...] system provides for the horizontal dry storage of canisterized spent fuel assemblies in a concrete...
Near-field excitation exchange between motionless point atoms located near the conductive surface
NASA Astrophysics Data System (ADS)
Kuraptsev, Aleksei S.; Sokolov, Igor M.
2018-04-01
On the basis of quantum microscopic approach we study the excitation dynamics of two motionless point atoms located near the perfectly conducting mirror. We have analyzed the spontaneous decay rate of individual atoms near the mirror as well as the strength of dipole-dipole interaction between different atoms. It is shown that the spontaneous decay rate of an excited atom significantly depends on the distance from this atom to the mirror. In the case when the interatomic separation is less or comparable with the wavelength of resonant radiation, the spontaneous decay dynamics of an excited atom is described by multi-exponential law. It depends both the interatomic separation and the spatial orientation of diatomic quasimolecule.
Stability and Decay Properties of Foam in Seawater.
1987-04-24
DECAY PROPERTIES OF FOAM IN SEAWATER FMRODUCTION Foam is formed by the entrainment of air in the form of small bubbles at and just beneath the...181 has examined how the size distributions of foam patches formed by wave action on a sandy beach vary with time. It was found that the mean diameter...typical foam patch was 25 seconds. Zheng et al [25] also measured the average lifetime of a foam layer formed at the surface by wave breaking on a
NASA Astrophysics Data System (ADS)
MacGabhann, Breandán; Schiffbauer, James; Hagadorn, James; Van Roy, Peter; Lynch, Edward; Morrsion, Liam; Murray, John
2015-04-01
The enhanced preservation potential of biomineralised tissues in fossil organisms is a key factor in their utility in the investigation of palaeoenvironmental change on fossil ecosystems. By contrast, the considerably lower preservation potential of entirely unmineralised organisms severely reduces the utility of their temporal and spatial distribution in such analyses. However, understanding the taphonomic processes which lead to the preservation of such soft-bodied fossils may be an under-appreciated source of information, particularly in the case of specimens preserved as moulds and casts in coarser siliciclastic sediments. This information potential is well demonstrated by fossil eldonids, a Cambrian to Devonian clade of unmineralised asymmetrical discoidal basal or stem deuterostomes, with an apparently conservative biology and no clear palaeoenvironmental or biogeographical controls on their distribution. We investigated the taphonomic processes involved in the preservation of fossil eldonids as moulds and casts on bedding surfaces and within event beds from sandstones of the Ordovician Tafilalt lagerstätte in south-eastern Morocco, and from siltstones of the Devonian West Falls Group of New York, USA. Laser Raman microspectroscopy, SEM BSE imaging and EDS elemental mapping of fossil specimens reveals that moulded biological surfaces are coated by a fossil surface veneer primarily consisting of mixed iron oxides and oxyhydroxides (including pseudomorphs after pyrite), and aluminosilicate clay minerals. Moreover, comparison to fossil eldonids preserved as carbonaceous compressions in the Burgess Shale reveals that the biological structures preserved in the Tafilalt and New York specimens - the dorsal surface and a coiled sac containing the digestive tract - represent only specific portions of the anatomy of the complete animal. We suggest that the preserved remains were the only parts of these eldonid organisms composed primarily of complex organic biopolymers, and that these tissues were preferentially fossilised by the formation of an early diagenic mould directly on the organic surfaces. Excess divalent iron ions, produced during decay of more labile tissues by means of bacterial iron reduction, would have adsorbed to anionic functional groups in the biopolymeric tissues. This would have provided a ready substrate for the formation and growth of such an early diagenic mineralised mould, including aluminosilicate minerals produced via reaction with seawater silica and metal ions, and iron sulphide minerals produced via reaction with hydrogen sulphide and free sulphur produced from seawater sulphate through bacterial sulphate reduction associated with further decay. Subsequent weathering would have oxidised such iron sulphides to oxides and oxyhydroxides. This taphonomic model supports the lack of utility of the eldonid palaeobiological record in analysing environmental influence on biological communities, due to the lack of preservation of key anatomical components. However, it also suggests that the very occurrence of fossils preserved in this style is dependent on extrinsic palaeoenvironmental factors - including pH, Eh, and the concentration of other ions in the contemporaneous seawater. Analyses of the distribution of fossils preserved in this style may therefore provide information on ambient conditions which may have affected the distribution of contemporaneous mineralised fossils, potentially allowing a more complete analysis of the effects of palaeoenvironmental change on fossil ecosystems.
Table of superdeformed nuclear bands and fission isomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Singh, B.
A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding andmore » deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.« less
Transition in the decay rates of stationary distributions of Lévy motion in an energy landscape.
Kaleta, Kamil; Lőrinczi, József
2016-02-01
The time evolution of random variables with Lévy statistics has the ability to develop jumps, displaying very different behaviors from continuously fluctuating cases. Such patterns appear in an ever broadening range of examples including random lasers, non-Gaussian kinetics, or foraging strategies. The penalizing or reinforcing effect of the environment, however, has been little explored so far. We report a new phenomenon which manifests as a qualitative transition in the spatial decay behavior of the stationary measure of a jump process under an external potential, occurring on a combined change in the characteristics of the process and the lowest eigenvalue resulting from the effect of the potential. This also provides insight into the fundamental question of what is the mechanism of the spatial decay of a ground state.
Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels
1987-10-20
reaching a new steady state rate of inactivation after 5 min. Fig. 6C shows a family of sodium currents elicited by depolarizations to test potentials...Fig. 7 compares time courses of decay of sodium currents during test pulses to +10 mV for 70 msec in the presence or absence of I x 10-7 CsTx on semi...logarithmic coordinates. The decay of the sodium currents in the absence of toxin was described by a single exponential with a decay constant of 0.7
Drag reduction by polymer additives in decaying turbulence.
Kalelkar, Chirag; Govindarajan, Rama; Pandit, Rahul
2005-07-01
We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.
NASA Astrophysics Data System (ADS)
Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin
2015-05-01
We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.
On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.
2015-12-01
Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL
Discovering uncolored naturalness in exotic Higgs decays
NASA Astrophysics Data System (ADS)
Curtin, David; Verhaaren, Christopher B.
2015-12-01
Solutions to the hierarchy problem usually require top partners. In standard SUSY or composite Higgs theories, the partners carry SM color and are becoming increasingly constrained by LHC searches. However, theories like Folded SUSY (FS), Twin Higgs (TH) and Quirky Little Higgs (QLH) introduce uncolored top partners, which can be SM singlets or carry electroweak charge. Their small production cross section left doubt as to whether the LHC can effectively probe such scenarios. Typically, these partners are charged under their own mirror color gauge group. In FS and QLH, the absence of light mirror matter allows glueballs to form at the bottom of the mirror spectrum. This is also the case in some TH realizations. The Higgs can decay to these mirror glueballs, with the glueballs decaying into SM particles with potentially observable lifetimes. We undertake the first detailed study of this glueball signature and quantitatively demonstrate the discovery potential of uncolored naturalness via exotic Higgs decays at the LHC and a potential future 100TeV collider. Our findings indicate that mirror glueballs are the smoking gun signature of natural FS and QLH type theories, in analogy to tree-level Higgs coupling shifts for the TH. We show that glueball masses in the ˜ 10-60 GeV mass range are theoretically preferred. Careful treatment of lifetime, mirror-hadronization and non-perturbative uncertainties is required to perform meaningful collider studies. We outline several new search strategies for exotic Higgs decays of the form h → XX → 4 f at the LHC, with X having lifetimes in the 10 μm to km range. We find that FS stops can be probed with masses up to 600 (1100) GeV at the LHC with 300 (3000) fb-1 of data, and TH top partners could be accessible with masses up to 900 (1500) GeV. This makes exotic Higgs decays the prime discovery channel for uncolored naturalness at the LHC.
Shimada, Daiki; Kusaka, Ryoji; Inokuchi, Yoshiya; Ehara, Masahiro; Ebata, Takayuki
2012-07-07
The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H(2)O) in the S(1) state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S(1)-S(0) origin is 8-9 ps. On the other hand, the lifetime of the OMpCA-H(2)O complex at the origin is 930 ps, which is ∼100 times longer than that of OMpCA. Furthermore, in the complex the S(1) lifetime shows rapid decrease at an energy of ∼200 cm(-1) above the origin and finally becomes as short as 9 ps at ∼500 cm(-1). Theoretical calculations with a symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that the observed lifetime behavior of the two species is described by nonradiative decay dynamics involving trans → cis isomerization. That is both OMpCA and OMpCA-H(2)O in the S(1) state decay due to the trans → cis isomerization, and the large difference of the lifetimes between them is due to the difference of the isomerization potential energy curve. In OMpCA, the trans → cis isomerization occurs smoothly without a barrier on the S(1) surface, while in the OMpCA-H(2)O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H(2)O is in good agreement with that observed experimentally.
Limits on uranium and thorium bulk content in GERDA Phase I detectors
NASA Astrophysics Data System (ADS)
Collaboration, Gerda; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakemüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2017-05-01
Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
Charge transfer to ground-state ions produces free electrons
You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K
2017-01-01
Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238
Observation of the decay Λ b 0 → pK - μ + μ - and a search for CP violation
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.
2017-06-01
A search for CP violation in the decay Λ b 0 → pK - μ + μ - is presented. This decay is mediated by flavour-changing neutral-current transitions in the Standard Model and is potentially sensitive to new sources of CP violation. The study is based on a data sample of proton-proton collisions recorded with the LHCb experiment, corresponding to an integrated luminosity of 3 fb-1. The Λ b 0 → pK - μ + μ - decay is observed for the first time, and two observables that are sensitive to different manifestations of CP violation are measured, Δ A_{CP}≡ A_{CP}({Λ}_b^0\\to p{K}-{μ}+{μ}-)-{A}_{CP}({Λ}_b^0\\to p{K}-J/ψ ) and a {a}_{CP}^{\\widehat{T}- odd} , where the latter is based on asymmetries in the angle between the μ + μ - and pK - decay planes.
Influence of proton-skin thickness on the {{\\alpha }} decays of heavy nuclei
NASA Astrophysics Data System (ADS)
Seif, W. M.; Abdurrahman, A.
2018-01-01
We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z = 52) to Pb (Z = 82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness ({\\varDelta }{{p}}) of the daughter nucleus gives rise to a total α- daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the {Q}α -value increases with {\\varDelta }{{p}}. α-decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the {β }+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.
Fiber optic evanescent wave (FOEW) microbial sensor for dental application
NASA Astrophysics Data System (ADS)
Kishen, Anil; John, M. S.; Chen, Jun-Wei; Lim, Chu S.; Hu, Xiao; Asundi, Anand K.
2001-10-01
In this work a new approach based on the fiber Optic Evanescent Wave (FOEW) Spectroscopy is developed for the effective determination of dental caries activity in human saliva. The biosensor design utilized the exponentially decaying wave that extends to the lower index region of the optical fiber's core-cladding interface. In order to achieve this, a short length of the cladding is removed and the fiber core surface is coated with a porous glass medium using sol-gel technique. The acidogenic profile resulting from the Streptococcus mutans activity in the human saliva is monitored using an indicator, which was encapsulated within the porous coating. These investigations display the potential benefits of FOEW based microbial sensor to monitor caries activity in human saliva.
General Purpose Heat Source Simulator
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2008-01-01
The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.
1991-09-01
Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance
NASA Astrophysics Data System (ADS)
Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth
2012-01-01
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.
Effects of dithiothreitol on end-plate currents.
Terrar, D A
1978-01-01
1. End-plate currents have been studied in frog cutaneus pectoris nerve-muscle preparations mounted in continuously flowing solution, using the voltage clamp technique. 2. Exposure of the muscle to 1 mM-dithiothreitol reduced the amplitude of end-plate currents by a factor of 2.7 (mean; range 1.6-3.4; twelve fibres). 3. 1 mM-dithiothreitol also caused a 2.7-fold (2.3-3.1) increase in the rate of decay, and a 1.4-fold (1.3-1.6) decrease in the time to peak of end-plate currents. During the onset of action of dithiothreitol, there was little or no indication of departure of end-plate current decay from a simple exponential. 4. Dithiothreitol actions on amplitude and decay of end-plate currents developed with similar time courses and both effects were slower in onset at pH 7.2 than at pH 8.5. 5. The actions of dithiothreitol were reversed by exposure of the muscle to 1 mM-5,5'-dithio-bis-(2-nitrobenzoic acid). 6. Following dithiothreitol treatment, the rates of decay of end-plate currents continued to depend on membrane potential; there was little or no change in the slope of the relation between in (rate of decay) and membrane potential, consistent with little or no change in the dipole moment of a gating molecule for ion channels. 7. Dithiothreitol changed the relation between peak end-plate current and membrane potential, so that peak conductance increased at more negative membrane potentials; this finding could be accounted for in terms of the closure of ion-channel gates becoming faster though remaining voltage-sensitive after exposure to dithiothreitol. 8. It is concluded that dithiothreitol causes changes in the kinetics of gating of ion channels associated with receptors and that these changes accompany changes in the binding of ACh to receptors. PMID:25960
Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.
2017-04-01
In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.
Surface structure evolution in a homologous series of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, Julia; Pontoni, Diego; Murphy, Bridget M.
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation’s alkyl chain length n from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present in this paper such a study of the liquid–air interface for n = 2 to 22, using angstrom-resolution X-ray methods. For n < 6, a typical “simple liquid” monotonic surface-normal electron density profile ρ e more » ( z ) is obtained, like those of water and organic solvents. For n > 6, increasingly more pronounced nanoscale self-segregation of the molecules’ charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear n dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For n = 22, a different surface phase is observed above melting. Finally, our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk–surface structure relations.« less
Surface structure evolution in a homologous series of ionic liquids
Haddad, Julia; Pontoni, Diego; Murphy, Bridget M.; ...
2018-01-22
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation’s alkyl chain length n from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present in this paper such a study of the liquid–air interface for n = 2 to 22, using angstrom-resolution X-ray methods. For n < 6, a typical “simple liquid” monotonic surface-normal electron density profile ρ e more » ( z ) is obtained, like those of water and organic solvents. For n > 6, increasingly more pronounced nanoscale self-segregation of the molecules’ charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear n dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For n = 22, a different surface phase is observed above melting. Finally, our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk–surface structure relations.« less
Prospects for future experiments to search for nucleon decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, D.S.; Heller, K.; LoSecco, J.
1982-01-01
We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modesmore » to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.« less
An unattended device for high-voltage sampling and passive measurement of thoron decay products.
Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen
2014-02-01
An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.
Measurement of intercolumnar forces between parallel guanosine four-stranded helices.
Mariani, P; Saturni, L
1996-01-01
The deoxyguanosine-5'-monophosphate in aqueous solution self-associates into stable structures, which include hexagonal and cholesteric columnar phases. The structural unit is a four-stranded helix, composed of a stacked array of Hoogsteen-bonded guanosine quartets. We have measured by osmotic stress method the force per unit length versus interaxial distance between helices in the hexagonal phase under various ionic conditions. Two contributions have been recognized: the first one is purely electrostatic, is effective at large distances, and shows a strong dependence on the salt concentration of the solution. The second contribution is short range, dominates at interaxial separations smaller than about 30-32 A, and rises steeply as the columns approach each other, preventing the coalescence of the helices. This repulsion has an exponential nature and shows a magnitude and a decay length insensitive to the ionic strength of the medium. Because these features are distinctive of the hydration force detected between phospholipid bilayers or between several linear macromolecules (DNA, polysaccharides, collagen), we conclude that the dominant force experienced by deoxyguanosine helices approaching contact is hydration repulsion. The observed decay length of about 0.7 A has been rationalized to emerge from the coupling between the 3-A decay length of water solvent and the helically ordered structure of the hydrophilic groups on the opposing surfaces. The present results agree with recent measurements, also showing the dependence of the hydration force decay on the structure of interacting surfaces and confirm the correlations between force and structure. Images FIGURE 1 PMID:8744324
Simon R. Przewloka; Douglas M. Crawford; Douglas R. Rammer; Donald L. Buckner; Bessie M. Woodward; Gan Li; Darrel D. Nicholas
2008-01-01
Demand for the development of environmentally benign wood preservatives has increased significantly. To reduce the evaluation time of prospective candidates, reliable accelerated decay methodologies are necessary for laboratory screening of potential preservatives. Ongoing research at Mississippi State University has focused upon utilizing custom built equipment to...
Small field axion inflation with sub-Planckian decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane
2016-10-10
We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.
NASA Astrophysics Data System (ADS)
Pak, Jinsu; Min, Misook; Cho, Kyungjune; Lien, Der-Hsien; Ahn, Geun Ho; Jang, Jingon; Yoo, Daekyoung; Chung, Seungjun; Javey, Ali; Lee, Takhee
2016-10-01
Photoswitching response times (rise and decay times) of a vertical organic and inorganic heterostructure with p-type copper phthalocyanine (CuPc) and n-type molybdenum disulfide (MoS2) semiconductors are investigated. By stacking a CuPc layer on MoS2 field effect transistors, better photodetection capability and fast photoswitching rise and decay phenomena are observed. Specifically, with a 2 nm-thick CuPc layer on the MoS2 channel, the photoswitching decay time decreases from 3.57 s to 0.18 s. The p-type CuPc layer, as a passivation layer, prevents the absorption of oxygen on the surface of the MoS2 channel layer, which results in a shortened photoswitching decay time because adsorbed oxygen destroys the balanced ratio of electrons and holes, leading to the interruption of recombination processes. The suggested heterostructure may deliver enhanced photodetection abilities and photoswitching characteristics for realizing ultra-thin and sensitive photodetectors.
Cooperative bi-exponential decay of dye emission coupled via plasmons.
Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P
2018-06-22
Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.
Bifurcation Analysis and Nonlinear Decay of a Tumor in the Presence of an Immune Response
NASA Astrophysics Data System (ADS)
López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.
2017-12-01
The decay of a planar compact surface that is reduced through its boundary is considered. The interest of this problem lies in the fact that it can represent the destruction of a solid tumor by a population of immune cells. The theory of curves is utilized to derive the rate at which the area of the set decreases. Firstly, the process is represented as a discrete dynamical system. A recurrence equation describing the shrinkage of the area at any step is deduced. Then, a continuum limit is attained to derive an ordinary differential equation that governs the decay of the set. The solutions to the differential equation and its implications are discussed, and numerical simulations are carried out to test the accuracy of the decay law. Finally, the dynamics of a tumor-immune aggregate is inspected using this law and the theory of bifurcations. As the ratio of immune destruction to tumor growth increases, a saddle-node bifurcation stabilizes the tumor-free fixed point.
Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies
NASA Astrophysics Data System (ADS)
Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie
2018-05-01
In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .
Analysis of long-lived particle decays with the MATHUSLA detector
NASA Astrophysics Data System (ADS)
Curtin, David; Peskin, Michael E.
2018-01-01
The MATHUSLA detector is a simple large-volume tracking detector to be located on the surface above one of the general-purpose experiments at the Large Hadron Collider. This detector was proposed in [J. P. Chou, D. Curtin, and H. J. Lubatti, Phys. Lett. B 767, 29 (2017), 10.1016/j.physletb.2017.01.043] to detect exotic, neutral, long-lived particles that might be produced in high-energy proton-proton collisions. In this paper, we consider the use of the limited information that MATHULSA would provide on the decay products of the long-lived particle. For the case in which the long-lived particle is pair-produced in Higgs boson decays, we show that it is possible to measure the mass of this particle and determine the dominant decay mode with less than 100 observed events. We discuss the ability of MATHUSLA to distinguish the production mode of the long-lived particle and to determine its mass and spin in more general cases.
Pulse shape discrimination performance of inverted coaxial Ge detectors
NASA Astrophysics Data System (ADS)
Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.
2018-05-01
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.
Measurement of radioactive contamination in the CCD’s of the DAMIC experiment
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D'Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.
2016-05-01
DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.
Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou
2018-04-20
Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs' stability, biocompatibility, and realizing targeting detection, but they impair NPs' sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.
NASA Astrophysics Data System (ADS)
Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou
2018-04-01
Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs’ stability, biocompatibility, and realizing targeting detection, but they impair NPs’ sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.
Materials Outgassing Rate Decay in Vacuum at Isothermal Conditions
NASA Technical Reports Server (NTRS)
Huang, Alvin Y.; Kastanas, George N.; Kramer, Leonard; Soares, Carlos E.; Mikatarian, Ronald R.
2016-01-01
As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for nearly 20 years and is expected to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modeling the outgassing rate decay over a 20 to 30 year period is challenging. Materials outgassing is described herein as a diffusion-reaction process using ASTM E 1559 rate data. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modeling materials outgassing. Non-randomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A diffusion limited decay was adopted as the result of the correlation of the contaminant layer thicknesses on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, and the confirmation of non-depleted material after ten years in the Low Earth Orbit.Keywords: Materials Outgassing, ASTM E 1559, Reaction Kinetics, Diffusion, Space Environments Effects, Contamination
Code of Federal Regulations, 2011 CFR
2011-01-01
... damage: (a) Rancidity or decay; (b) Mold; (c) Insects, worm cuts, web or frass; (d) Freezing injury causing hard, translucent, or discolored flesh; and, (e) Dirt when the surface of the kernel is heavily...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machulin, I. N., E-mail: machulin@lngs.infn.it; Collaboration: Borexino Collaboration
2015-12-15
Academician M.A. Markov in the 1960s first proposed detecting the electron antineutrino in the reaction of inverse beta decay on a proton to study the processes inside the Earth. The radioactive isotopes {sup 238}U, {sup 232}Th, and {sup 40}K present in our planet decay with radiation of neutrinos (antineutrinos). Neutrinos that are produced reach the Earth’s surface practically without absorption and carry information about the internal structure of the planet. However, because of the smallness of the antineutrino fluxes and interaction cross sections with matter, antineutrinos of geological origin were first registered in only two experiments (Borexino and Kamland) inmore » recent years. The experimental observation of antineutrinos from the isotope decays in the depths of the Earth is the only way to study the radiation in our planetary interior.« less
Heat-flow properties of systems with alternate masses or alternate on-site potentials.
Pereira, Emmanuel; Santana, Leonardo M; Ávila, Ricardo
2011-07-01
We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.
Dalitz plot analyses of charmless b-hadron decays at LHCb
NASA Astrophysics Data System (ADS)
Perazzini, Stefano; LHCb Collaboration
2016-04-01
Charmless b-hadron decays are suppressed in the Standard Model by tiny CKM matrix elements which brings the tree amplitudes to levels comparable with loop amplitudes, and potentially New Physics amplitudes. CP violation measurements using Dalitz plot analyses in multi-body decays allow to disentangle these various contributions. In this document we report about the most recent measurements from LHCb in this sector. Firstly, the study of direct CP asymmetries over the Dalitz plane of the B+ →π+h+h- decays and the B+ →K+h+h- decays (where h = π , K), will be presented (through this document the inclusion of charge conjugate is always implied, unless explicitly stated). Then the results obtained studying the B+ → p p ‾h+ decays will be shown. The measurements of the branching ratio of the B+ → Λ ‾ (1520) p (with Λ ‾ (1520) → p ‾K+), of the forward-backward asymmetry of the light meson (π or K) in the p p ‾ rest frame and of the direct CP asymmetry over the B+ → p p ‾h+ Dalitz plane will be discussed.
Exotic decays of the 125 GeV Higgs boson
Curtin, David; Essig, Rouven; Gori, Stefania; ...
2014-10-13
We perform an extensive survey of nonstandard Higgs decays that are consistent with the 125 GeV Higgs-like resonance. Our aim is to motivate a large set of new experimental analyses on the existing and forthcoming data from the Large Hadron Collider (LHC). The explicit search for exotic Higgs decays presents a largely untapped discovery opportunity for the LHC collaborations, as such decays may be easily missed by other searches. We emphasize that the Higgs is uniquely sensitive to the potential existence of new weakly coupled particles and provide a unified discussion of a large class of both simplified and completemore » models that give rise to characteristic patterns of exotic Higgs decays. We assess the status of exotic Higgs decays after LHC run I. In many cases we are able to set new nontrivial constraints by reinterpreting existing experimental analyses. We point out that improvements are possible with dedicated analyses and perform some preliminary collider studies. As a result, we prioritize the analyses according to their theoretical motivation and their experimental feasibility.« less
X-ray rebrightening of the Be/X-ray transient Swift J0243.6+6124
NASA Astrophysics Data System (ADS)
Rouco Escorial, A.; Degenaar, N.; van den Eijnden, J.; Wijnands, R.
2018-04-01
Swift J0243.6+6124 is a Be/X-ray transient that was discovered in October 2017 when it started a giant, type-II outburst (Atel #10809, Atel #10822). After reaching the peak around November 5th 2017, the source luminosity started to decay slowly over & sim;135 days, although the decay rate increased significantly around two weeks ago. To investigate how exactly the source would decay and potentially transit back into quiescence, we triggered a monitoring program (PI: Degenaar) on the system using the Neil Gehrels Swift observatory (Swift).
Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei
NASA Astrophysics Data System (ADS)
Shamami, S. Rahimi; Pahlavani, M. R.
2018-01-01
A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.
Scattered surface wave energy in the seismic coda
Zeng, Y.
2006-01-01
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.
Mitigation of radon and thoron decay products by filtration.
Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen
2011-09-01
Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron decay product concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.
Wong, A; Monsour, P A; Moule, A J; Basford, K E
2002-03-01
Using the fastest dental X-ray film available is an easy way of reducing exposure to ionizing radiation. However, the diagnostic ability of fast films for the detection of proximal surface caries must be demonstrated before these films will become universally accepted. Extracted premolar and molar teeth were arranged to simulate a bitewing examination and radiographed using Ultraspeed and Ektaspeed Plus dental X-ray films. Three different exposure times were used for each film type. Six general dentists were used to determine the presence and depth of the decay in the proximal surfaces of the teeth radiographed. The actual extent of the decay in the teeth was determined by sectioning the teeth and examining them under a microscope. There was no significant difference between the two films for the mean correct diagnosis. However, there was a significant difference between the means for the three exposure times used for Ultraspeed film. The practitioners used were not consistent in their ability to make a correct diagnosis, or for the film for which they got the highest correct diagnosis. Ektaspeed Plus dental X-ray film is just as reliable as Ultraspeed dental X-ray film for the detection of proximal surface decay. The effect of underexposure was significant for Ultraspeed, but not for Ektaspeed Plus. Patient exposure can be reduced significantly with no loss of diagnostic ability by changing from Ultraspeed X-ray film to Ektaspeed Plus X-ray film.
Photoemission stability of negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Zhang, Junju; Wang, Xiaohui; Yang, Wenzheng; Tang, Weidong; Fu, Xiaoqian; Li, Biao; Chang, Benkang
2012-11-01
The stability for reflection-mode GaN photocathode has been investigated by monitoring the photocurrent and the spectral response at room temperature. We watch that the photocurrent of the cathode decays with time in the vacuum system, and compare the spectral response curves after activation and after degradation. The photocurrent decay mechanism for reflection-mode NEA GaN photocathode was studied by the surface model ?GaN (Mg) :Cs ?:O-Cs. The reduction of the effective dipole quantity, which is caused by harmful gases, is the key factor of the photocurrent reduction.
Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.
Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W
2018-06-01
Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Schottky-contact plasmonic dipole rectenna concept for biosensing.
Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre
2013-02-25
Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.
NASA Astrophysics Data System (ADS)
Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei
2015-09-01
A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
Strangeness production in heavy ion collisions -Constraining the KN - potential in medium
NASA Astrophysics Data System (ADS)
Leifels, Yvonne; FOPI Collaboration
2013-03-01
We review the strangeness production in heavy ion collisions at energies around the NN production threshold and discuss recent measurements of the FOPI collaboration on charged kaon flow over a wide impact parameter range. The data are compared to comprehensive state-of-the-art transport models. The dense nuclear matter environment produced in those collisions may provide unique opportunities to form strange few body systems. The FOPI detector is especially suited to reconstruct such states by their charged particle decays. Apart from strongly decaying states special emphasis will be put on the search for long living weakly decaying states, i.e. Hyper-Nuclei. Light hyper nuclei are reconstructed by their two body decay channels and the production of Hyper-Tritons is studied with respect to Λ and t(3He).
Measuring rare and exclusive Higgs boson decays into light resonances
NASA Astrophysics Data System (ADS)
Chisholm, Andrew S.; Kuttimalai, Silvan; Nikolopoulos, Konstantinos; Spannowsky, Michael
2016-09-01
We evaluate the LHC's potential of observing Higgs boson decays into light elementary or composite resonances through their hadronic decay channels. We focus on the Higgs boson production processes with the largest cross sections, pp → h and pp → h+{jet}, with subsequent decays h → ZA or h → Z η _c, and comment on the production process pp → hZ. By exploiting track-based jet substructure observables and extrapolating to 3000 {fb}^{-1} we find {BR}(h → ZA) ≃ {BR}(h → Z η _c) ≲ 0.02 at 95 % CL. We interpret this limit in terms of the 2HDM Type 1. We find that searches for h→ ZA are complementary to existing measurements and can constrain large parts of the currently allowed parameter space.
First measurement of the neutron beta asymmetry with ultracold neutrons.
Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J
2009-01-09
We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.
Acoustic tomography for decay detection in black cherry trees
Xiping Wang; Jan Wiedenbeck; Shanqing Liang
2009-01-01
This study investigated the potential of using acoustic tomography for detecting internal decay in high-value hardwood trees in the forest. Twelve black cherry (Prunus serotina) trees that had a wide range of physical characteristics were tested in a stand of second-growth hardwoods in Kane, PA, using a PiCUS Sonic Tomograph tool. The trees were felled after the field...
Amber Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Sandra Splinter BonDurant; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Igor Grigoriev; Philip J. Kersten; Daniel Cullen
2011-01-01
Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and...
Activity of two strobilurin fungicides against three species of decay fungi in agar plate tests
Juliet D. Tang; Tina Ciaramitaro; Maria Tomaso-Peterson; Susan V. Diehl
2017-01-01
The objective of this study was to examine the toxicity of strobilurin fungicides against wood decay fungi in order to assess their potential to act as a co-biocide for copper-based wood protection. Two strobilurin fungicides, Heritage (50% azoxystrobin active ingredient) and Insignia (20% pyraclostrobin active ingredients), and copper sulfate pentahydrate were tested...
Pipatpanukul, Chinnawut; Takeya, Sasaki; Baba, Akira; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak
2018-04-15
The application of Surface Plasmon Resonance Imaging (SPRi) for the detection of transmembrane antigen of the Rhesus (Rh) blood group system is demonstrated. Clinically significant Rh blood group system antigens, including D, C, E, c, and e, can be simultaneously identified via solid phase immobilization assay, which offers significant time savings and assay simplification. Red blood cells (RBCs) flowed through the micro-channel, where a suitable condition for Rh blood group detection was an RBC dilution of 1:10 with a stop-flow condition. Stop flow showed an improvement in specific binding compared to continuous flow. Rh antigens required a longer incubation time to react with the immobilized antibody than A and B antigens due to the difference in antigen type and their location on the RBC. The interaction between the immobilized antibodies and their specific antigenic counterpart on the RBC showed a significant difference in RBC removal behavior using shear flow, measured from the decay of the SPR signal. The strength of the interaction between the immobilized antibody and RBC antigen was determined from the minimum wall shear stress required to start the decay process in the SPR signal. For a given range of immobilized antibody surface densities, the Rh antigen possesses a stronger interaction than A, B, and AB antigens. Identification of 82 samples of ABO and Rh blood groups using SPRi showed good agreement with the standard micro-column agglutination technique. A wider coverage of antigenic recognition for RBC when using the solid phase immobilization assay was demonstrated for the RBC with the antigenic site located on the transmembrane protein of the clinically significant Rh antigen. Given the level of accuracy and precision, the technique showed potential for the detection of the Rh minor blood group system. Copyright © 2017 Elsevier B.V. All rights reserved.
Oral health status of handicapped primary school pupils in Dar es Salaam, Tanzania.
Simon, E N M; Matee, M I; Scheutz, F
2008-03-01
There is hardly any information regarding oral health status of handicapped primary school pupils in Tanzania. Determination of their oral health status could help in planning sustainable intervention programmes for this disadvantaged group. To determine caries and periodontal status and treatment needs of handicapped primary school pupils in Dar es Salaam, Tanzania. A descriptive cross-sectional study. Uhuru Mchanganyiko and Buguruni special schools, Dar es Salaam. The sample consisted of 179 (55.8%) males and 142 (44.2%) females aged between 7 and 22 years. Majority (71%) were deaf followed by blind (17.8%) and mentally retarded (8.7%). Six (1.9%) pupils were both deaf and blind, while one (0.3%) pupil was blind and mentally retarded. Forty one (12.8%) pupils had at least one decayed deciduous tooth, with the mean (dmfs) ranging from 0.25 to 3.24. The deaf had the highest mean decayed surfaces, followed by the mentally retarded and the blind. There was only one (0.3%) pupil who had a filled deciduous tooth. Thirty three (10.3%) pupils had decayed permanent teeth and 31 (9.7%) had missing permanent teeth. None of the decayed permanent teeth were restored. The blind had the lowest mean deciduous surfaces (DS) scores of between 0 and 1.0. In the mentally retarded group the mean DS ranged from 0.25 to 1.75. About 73.5% of the studied group had bleeding of the gums, with the blind having the highest mean bleeding index scores (p < 0.001) and about 82.8% of the pupils had calculus, with highest mean scores mainly among the blind (p = 0.008). The caries prevalence among handicapped primary school pupils was quite low. However, there was relatively high level of gingival bleeding and calculus. Regarding treatment needs, 23% required dental fillings mainly of one and two surface restorations and 82% required scaling and polishing. Despite these treatment needs these pupils had not received any dental attention.
Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene
Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.
2012-01-01
The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665
SWIR reflectance imaging of demineralization on the occlusal surfaces of teeth beyond 1700 nm
NASA Astrophysics Data System (ADS)
Ng, Chung; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.
2018-02-01
Most new lesions are found in the pits and fissures of the occlusal surface. Radiographs have extremely low sensitivity for early occlusal decay and by the time the lesion is severe enough on a radiograph it typically has penetrated well into the dentin and surgical intervention is required. The occlusal surfaces are heavily stained and visual and tactile methods for their detection also have poor sensitivity and specificity. Previous studies at wavelengths beyond 1300-nm have demonstrated that stains are not visible and demineralization on the occlusal surfaces can be viewed without interference from stains. New extended range InGaAs near- IR cameras allow access to wavelengths beyond 1700-nm. The objective of this study was to determine how the contrast of occlusal lesions varies with wavelength from the visible to 2350-nm. The lesion contrast was measured in 55 extracted teeth with suspected occlusal lesions using reflectance measurements from 400- 2350-nm using Si and InGaAs imaging arrays. The highest lesion contrast in reflectance was measured at wavelengths greater than 1700-nm. Stains interfered significantly at wavelengths shorter than 1150-nm. This study indicates that the optimum wavelengths for reflectance imaging decay in the occlusal surfaces are greater than 1700-nm.
Establishment of a long-term fire salvage study in an interior ponderosa pine forest
Martin W. Ritchie; Eric E. Knapp
2014-01-01
An experiment designed to evaluate the treatment effects of salvaging merchantable fire-killed trees on surface fuels and regeneration was established after a wildfire in northeastern California. The study was then monitored for 10 years. Surface fuel accumulations were rapid, corresponding with a high rate of snag decay and subsequent breakage or windthrow. Pine snags...
Io: Mountains and crustal extension
NASA Technical Reports Server (NTRS)
Heath, M. J.
1985-01-01
It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.
Giobbe, Sara; Marceddu, Salvatore; Scherm, Barbara; Zara, Giacomo; Mazzarello, Vittorio L; Budroni, Marilena; Migheli, Quirico
2007-12-01
A biofilm-forming strain of Pichia fermentans proved to be most effective in controlling brown rot on apple fruit when coinoculated into artificial wounds with a phytopathogenic isolate of Monilinia fructicola. Culture filtrates and autoclaved cells had no significant influence on the disease. When sprayed onto the apple fruit surface, this yeast formed a thin biofilm but failed to colonize the underlying tissues. When inoculated into wounds artificially inflicted to peach fruit or when sprayed onto the surface of peach fruit, the same strain showed an unexpected pathogenic behaviour, causing rapid decay of fruit tissues even in the absence of M. fructicola. Both optical and scanning electron microscopy were used to evaluate the pattern of fruit tissue colonization by P. fermentans. While on apple surface and within the apple wound the antagonist retained its yeast-like shape, colonization of peach fruit tissue was always characterized by a transition from budding growth to pseudohyphal growth. These results suggest that pseudohyphal growth plays a major role in governing the potential pathogenicity of P. fermentans, further emphasizing the importance of a thorough risk assessment for the safe use of any novel biocontrol agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Enos, David
The majority of existing dry storage systems used for spent nuclear fuel (SNF) consist of a welded 304 stainless steel container placed within a passively-ventilated concrete or steel overpack. More recently fielded systems are constructed with dual certified 304/304L and in some cases, 316 or 316L. In service, atmospheric salts, a portion of which will be chloride bearing, will be deposited on the surface of these containers. Initially, the stainless steel canister surface temperatures will be high (exceeding the boiling point of water in many cases) due to decay heat from the SNF. As the SNF cools over time, themore » container surface will also cool, and deposited salts will deliquesce to form potentially corrosive chloride-rich brines. Because austenitic stainless steels are prone to chloride-induced stress corrosion cracking (CISCC), the concern has been raised that SCC may significantly impact long-term canister performance. While the susceptibility of austenitic stainless steels to CISCC in the general sense is well known, the behavior of SCC cracks (i.e., initiation and propagation behavior) under the aforementioned atmospheric conditions is poorly understood.« less
Clinical monitoring of early caries lesions using cross polarization optical coherence tomography
NASA Astrophysics Data System (ADS)
Fried, Daniel; Staninec, Michal; Darling, Cynthia L.; Chan, Kenneth H.; Pelzner, Roger B.
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization and to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role, since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm. It is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results from two clinical studies underway to measure the effect of fluoride intervention on early lesions. CP-OCT was used to monitor early lesions on enamel and root surfaces before and after intervention with fluoride varnish. The lesion depth and internal structure were resolved for all the lesions examined and some lesions had well defined surface zones of lower reflectivity that may be indicative of arrested lesions. Changes were also noted in the structure of some of the lesions after fluoride intervention.
Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation
Morita, Kenji
2016-01-01
It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of ‘Go’ or ‘No-Go’ selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of ‘Go’ values towards a goal, and (2) value-contrasts between ‘Go’ and ‘No-Go’ are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems for value-learning are active even though learning has apparently converged, the systems might be in a state of dynamic equilibrium, where learning and forgetting are balanced. PMID:27736881
Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
Kato, Ayaka; Morita, Kenji
2016-10-01
It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of 'Go' or 'No-Go' selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of 'Go' values towards a goal, and (2) value-contrasts between 'Go' and 'No-Go' are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems for value-learning are active even though learning has apparently converged, the systems might be in a state of dynamic equilibrium, where learning and forgetting are balanced.
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.
2008-07-01
Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of the soil surface microrelief.
Newell, Steven Y.; Blum, Linda K.; Crawford, Richard E.; Dai, Ting; Dionne, Michele
2000-01-01
It has been established that substantial amounts of fungal mass accumulate in standing decaying smooth cordgrass (Spartina alterniflora) marshes in the southeastern United States (e.g., in standing decaying leaf blades with a total fungal organic mass that accounts for about 20% of the decay system organic mass), but it has been hypothesized that in marshes farther north this is not true. We obtained samples of autumnal standing decaying smooth cordgrass from sites in Florida to Maine over a 3-year period. The variation in latitude could not explain any of the variation in the living fungal standing crop (as determined by ergosterol content) or in the instantaneous rates of fungal growth (as determined by acetate incorporation into ergosterol at a standard temperature, 20°C), which led to the conclusion that the potential levels of fungal production per unit of naturally decaying grass are not different in northern and southern marshes. Twenty-one percent of the variation in the size of the living fungal standing crop could be explained by variation in the C/N ratio (the higher the C/N ratio the smaller the fungal crop), but the C/P ratio was not related to the size of the fungal crop. Instantaneous rates of fungal growth were negatively related to the size of the living fungal crop (r = −0.35), but these rates were not correlated with C/nutrient ratios. The same two predominant species of ascomycetes (one Phaeosphaeria species and one Mycosphaerella species) were found ejecting ascospores from standing decaying smooth cordgrass blades at all of the sites examined from Florida to Maine. PMID:10618221
Improvement of gross theory of beta-decay for application to nuclear data
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi
2017-09-01
A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.
Radon and leukemia in the Danish study: another source of dose.
Harley, Naomi H; Robbins, Edith S
2009-10-01
An epidemiologic study of childhood leukemia in Denmark (2,400 cases; 6,697 controls) from 1968 to 1994 suggested a weak, but statistically significant, association of residential radon exposure and acute childhood lymphoblastic leukemia (ALL). The Danish study estimated a relative risk (RR) = 1.56 (95% CI, 1.05-2.30) for a cumulative exposure of 1,000 Bq m-3 y. For an exposure duration of 10 y their RR corresponds to a radon concentration of 100 Bq m-3. There are two dose pathways of interest where alpha particles could damage potential stem cells for ALL. One is the alpha dose to bone marrow, and two is the dose to bronchial mucosa where an abundance of circulating lymphocytes is found. Compared with an exposure of about 1 mSv y-1 from natural external background, radon and decay products contribute an additional 10 to 60% to the bone marrow equivalent dose. The other pathway for exposure of T (or B) lymphocytes is within the tracheobronchial epithelium (BE). Inhaled radon decay products deposit on the relatively small area of airway surfaces and deliver a significant dose to the nearby basal or mucous cells implicated in human lung cancer. Lymphocytes are co-located with basal cells and are half as abundant. Using a 10-y exposure to 100 Bq m-3, our dose estimates suggest that the equivalent dose to these lymphocytes could approach 1 Sv. The relatively high dose estimate to lymphocytes circulating through the BE, potential precursor cells for ALL, provides a dose pathway for an association.
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations.
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong
2016-08-21
Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the (1)ππ(∗), (1)nπ(∗), and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated (1)ππ(∗) system. The first is the diabatic ESIPT process along the (1)ππ(∗) potential energy profile. The generated (1)ππ(∗) keto species then decays to the S0 state via the keto (1)ππ(∗)/gs conical intersection. The second is internal conversion to the dark (1)nπ(∗) state near the (1)ππ(∗) /(1)nπ(∗) crossing point in the course of the diabatic (1)ππ(∗) ESIPT process. Our following dynamics simulations have shown that the ESIPT and (1)ππ(∗) → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the (1)ππ(∗) → S0 internal conversion in the keto region, the (1)ππ(∗) → (1)nπ(∗) internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations
NASA Astrophysics Data System (ADS)
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong
2016-08-01
Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the 1ππ∗, 1nπ∗, and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated 1ππ∗ system. The first is the diabatic ESIPT process along the 1ππ∗ potential energy profile. The generated 1ππ∗ keto species then decays to the S0 state via the keto 1ππ∗/gs conical intersection. The second is internal conversion to the dark 1nπ∗ state near the 1ππ∗ /1nπ∗ crossing point in the course of the diabatic 1ππ∗ ESIPT process. Our following dynamics simulations have shown that the ESIPT and 1ππ∗ → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the 1ππ∗ → S0 internal conversion in the keto region, the 1ππ∗ → 1nπ∗ internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Okeke, Benedict C
2014-10-01
Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.
Exotic decays of heavy B quarks
Fox, Patrick J.; Tucker-Smith, David
2016-01-08
Heavy vector-like quarks of charge –1/3, B, have been searched for at the LHC through the decays B → bZ, bh, tW. In models where the B quark also carries charge under a new gauge group, new decay channels may dominate. We focus on the case where the B is charged under a U(1)' and describe simple models where the dominant decay mode is B → bZ' → b(bb¯¯). With the inclusion of dark matter such models can explain the excess of gamma rays from the Galactic center. We develop a search strategy for this decay chain and estimate thatmore » with integrated luminosity of 300 fb –1 the LHC will have the potential to discover both the B and the Z' for B quarks with mass below ~ 1.6 TeV, for a broad range of Z' masses. Furthermore, a high-luminosity run can extend this reach to 2 TeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hsin-Chia; Huang, Wei-Chih; Huang, Xiaoyuan
We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the AMS-02 positron excess without being constrained by the Fermi-LAT gamma-ray data and the cosmic ray anti-proton measurements. We scrutinize over different final state fermions, paying special attention to handling of the cosmic ray background and including various contributions from cosmic ray propagation with the help of the LIKEDM package. It is found that primary decays into an electron-positron pair and a stablemore » neutral particle could give rise to the AMS-02 positron excess and, at the same time, stay unscathed against the gamma-ray and anti-proton constraints. Decays to a muon pair or a mixed flavor electron-muon pair may also be viable depending on the propagation models. Decays to all other standard model fermions are severely disfavored.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtukian-Nieto, T.; Collaboration: NEX Group of CENBG
2011-11-30
The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can bemore » expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.« less
β Decay as a Probe of Explosive Nucleosynthesis in Classical Novae
NASA Astrophysics Data System (ADS)
Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bardayan, D. W.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Fry, C.; Glassman, B.; Irvine, D.; José, J.; Langer, C.; Larson, N.; McNeice, E. I.; Meisel, Z.; Montes, F.; Naqvi, F.; Pain, S. D.; O'Malley, P.; Ortez, R.; Ong, W.; Pereira, J.; Pérez-Loureiro, D.; Prokop, C.; Quaglia, J.; Quinn, S.; Santia, M.; Schatz, H.; Schwartz, S. B.; Simon, A.; Shanab, S.; Spyrou, A.; Suchyta, S.; Thiagalingam, E.; Thompson, P.; Walters, M.
Classical novae are common thermonuclear explosions in the Milky Way galaxy, occurring on the surfaces of white-dwarf stars that are accreting hydrogen-rich material from companion stars. Nucleosynthesis in classical novae depends on radiative proton-capture reaction rates on radioactive nuclides. Many of these reactions cannot be measured directly at current accelerator facilities due to the lack of intense, high-quality, radioactive-ion beams at the relevant energies. Since most of these reactions proceed via resonant capture, their rates can be determined indirectly by measuring the properties of the resonances. At the National Superconducting Cyclotron Laboratory, we have used the β-delayed γ decays of 26P and 31Cl to populate resonances in 26Si and 31S and study the radiative proton captures on 25Al and 30P, respectively. These were two out of the three most important nuclear-physics uncertainties associated with the observable products of nova nucleosynthesis. The 26P experiment has enabled a more accurate estimate of the nova contribution to the long-lived Galactic 26Al detected with γ-ray telescopes. The 31Cl experiment, currently under analysis, will calibrate potential nova thermometers and mixing meters based on elemental abundance ratios, and facilitate the identification of pre-solar nova grain candidates found in primitive meteorites based on isotopic ratios.
Quantification of temperature persistence over the Northern Hemisphere land-area
NASA Astrophysics Data System (ADS)
Pfleiderer, Peter; Coumou, Dim
2017-10-01
Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.
Theoretical study on the photolysis mechanism of 2,3-diazabicyclo[2.2.2]oct-2-ene.
Chen, Hui; Li, Shuhua
2005-09-28
A CASPT2/CASSCF study has been carried out to investigate the mechanism of the photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) under direct and triplet-sensitized irradiation. By exploring the detailed potential energy surfaces including intermediates, transition states, conical intersections, and singlet/triplet crossing points, for the first excited singlet (S(1)) and the low-lying triplet states (T(1), T(2), and T(3)), we provide satisfactory explanations of many experimental findings associated with the photophysical and photochemical processes of DBO. A key finding of this work is the existence of a significantly twisted S(1) minimum, which can satisfactorily explain the envelope of the broad emission band of DBO. It is demonstrated that the S(1) (n-pi*) intermediate can decay to the T(1) (n-pi*) state by undergoing intersystem crossing (rather inefficient) to the T(2) (pi-pi*) state followed by internal conversion to the T(1) state. The high fluorescence yield and the extraordinarily long lifetime of the singlet excited DBO are due to the presence of relatively high barriers, both for intersystem crossing and for C-N cleavage. The short lifetime of the triplet DBO is caused by fast radiationless decay to the ground state.
Dental erosion and severe tooth decay related to soft drinks: a case report and literature review.
Cheng, Ran; Yang, Hui; Shao, Mei-ying; Hu, Tao; Zhou, Xue-dong
2009-05-01
Soft drinks have many potential health problems. The inherent acids and sugars have both acidogenic and cariogenic potential, resulting in dental caries and potential enamel erosion. In this report we present a 25-year-old man complaining with the severe worn-out of the front teeth during the past 3 years. He had a history of drinking cola for more than 7 years and had a poor oral hygiene. Severe decays were present in the incisors and the canines, while less severe lesions were noted on the premolars and the molars. The review is to show the relationship between dental erosion and caries and soft drinks. Some efforts have been taken to reduce the harmful effect of soft drinks.
Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application
NASA Technical Reports Server (NTRS)
Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James
2011-01-01
This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.
Thawer, Narjis G; Ngondi, Jeremiah M; Mugalura, Frances E; Emmanuel, Isaac; Mwalimu, Charles D; Morou, Evangelia; Vontas, John; Protopopoff, Natacha; Rowland, Mark; Mutagahywa, Joshua; Lalji, Shabbir; Molteni, Fabrizio; Ramsan, Mahdi M; Willilo, Ritha; Wright, Alexandra; Kafuko, Jessica M; Ndong, Isaiah; Reithinger, Richard; Magesa, Stephen Masingili
2015-04-22
Bendiocarb was introduced for the first time for Indoor Residual Spraying (IRS) in Tanzania in 2012 as part of the interim national insecticide resistance management plan. This move followed reports of increasingly alarming levels of pyrethroid resistance across the country. This study used the insecticide quantification kit (IQK) to investigate the intra-operational IRS coverage and quality of spraying, and decay rate of bendiocarb on different wall surfaces in Kagera region. To assess intra-operational IRS coverage and quality of spraying, 104 houses were randomly selected out of 161,414 sprayed houses. A total of 509 samples (218 in Muleba and 291 in Karagwe) were obtained by scraping the insecticide samples from wall surfaces. To investigate decay rate, 66 houses (36 in Muleba and 30 in Karagwe) were selected and samples were collected monthly for a period of five months. Laboratory testing of insecticide concentration was done using IQK(TM) [Innovative Vector Control Consortium]. Of the 509 samples, 89.5% met the World Health Organization (WHO) recommended concentration (between 100-400 mg/m(2)) for IRS target dosage. The proportion of samples meeting WHO standards varied between Karagwe (84.3%) and Muleba (96.3%) (p < 0.001). Assessment of quality of spraying at house level revealed that Muleba (84.8%) had a significantly higher proportion of households that met the expected target dosage (100-400 mg/m(2)) compared to Karagwe (68.9%) (p < 0.001). The quality of spraying varied across different wall substrates in both districts. Evaluation of bendiocarb decay showed that the proportion of houses with recommended concentration declined from 96.9%, 93.5% and 76.2% at months one, two, and three post IRS, respectively (p-trend = 0.03). The rate of decay increased in the fourth and fifth month post spraying with only 55.9% and 26.3% houses meeting the WHO recommendations, respectively. IQK is an important tool for assessing IRS coverage and quality of spraying. The study found adequate coverage of IRS; however, residual life of bendiocarb was observed to be three months. Results suggest that in order to maintain the recommended concentrations with bendiocarb, a second spray cycle should be carried out after three months.
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Long term stability of c-Si surface passivation using corona charged SiO2
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Reichel, Christian; Hermle, Martin; Hamer, Phillip; Wilshaw, Peter R.
2017-08-01
Recombination at the semiconductor surface continues to be a major limit to optoelectronic device performance, in particular for solar cells. Passivation films reduce surface recombination by a combination of chemical and electric field effect components. Dielectric films used for this purpose, however, must also accomplish optical functions at the cell surface. In this paper, corona charge is seen as a potential method to enhance the passivation properties of a dielectric film while maintaining its optical characteristics. It is observed that corona charge can produce extreme reductions in surface recombination via field effect, in the best case leading to lifetimes exceeding 5 ms at an injection of 1015 cm-3. For a 200 μm n-type 1 Ω cm c-Si wafer, this equates to surface recombination velocities below 0.65 cm/s and J0e values of 0.92 fA/cm2. The average improvement in passivation after corona charging gave lifetimes of 1-3 ms. This was stabilised for a period of 3 years by chemically treating the films to prevent water absorption. Surface recombination was kept below 7 cm/s, and J0e < 16.28 fA/cm2 for 3 years, with a decay time constant of 8.7 years. Simulations of back-contacted n-type cells show that front surface recombination represents less than 2% of the total internally generated power in the cell (the loss in power output) when the passivation is kept better than 16 fA/cm2, and as high as 10% if front recombination is worse than 100 fA/cm2.
Diurnal Variations of the Flux Imbalance Over Homogeneous and Heterogeneous Landscapes
NASA Astrophysics Data System (ADS)
Zhou, Yanzhao; Li, Dan; Liu, Heping; Li, Xin
2018-05-01
It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.
NASA Astrophysics Data System (ADS)
Münzenberg, Gottfried; Geissel, Hans; Litvinov, Yuri A.
2010-04-01
This contribution is based on the combination of the talks: "What can we learn from large-scale mass measurements," "Present and future experiments with stored exotic nuclei at relativistic energies," and "Beta decay of highly-charged ions." Studying the nuclear mass surface gives information on the evolution of nuclear structure such as nuclear shells, the onset of deformation and the drip-lines. Previously, most of the masses far-off stability has been obtained from decay data. Modern methods allow direct mass measurements. They are much more sensitive, down to single atoms, access short-lived species and have high accuracy. Large-scale explorations of the nuclear mass surface are ideally performed with the combination of the in-flight FRagment Separator FRS and the Experimental Storage Ring ESR. After a brief historic introduction selected examples such as the evolution of shell closures far-off stability and the proton-neutron interaction will be discussed in the framework of our data. Recently, the experiments have been extended and led to the discovery of new heavy neutron-rich isotopes along with their mass and lifetime measurements. Storage rings applied at relativistic energies are a unique tool to study the radioactive decay of bare or few-electron atomic nuclei. New features observed with the analysis of stored circulating mother and daughter ions including oscillations in the decay curves of hydrogen-like nuclei will be addressed. Future experiments with NUSTAR at FAIR will further extend our knowledge to the borderlines of nuclear existence.
Characterization of the atmospheric muon flux in IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2016-05-01
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
Detection of fallout 241Am in U.S. Atlantic salt marsh soils
NASA Astrophysics Data System (ADS)
Boyd, B. M.; Sommerfield, C. K.
2017-09-01
We report the presence of the fallout radionuclide 241Am (t1/2 = 433 years) in salt marsh soils from two U.S. Atlantic estuaries and discuss its utility as a particle tracer and geochronometer. This work is motivated by the knowledge that 137Cs, the most widely used geochronometer in environmental studies, will decay to extinction during the next century. At the same time, levels of 241Am, produced by radioactive decay of fallout 241Pu, will continue to increase on Earth's surface as they have since the height of atmospheric nuclear weapons testing in the 1960s. Measurements of 241Am in soils at eighteen salt marsh locations were made by non-destructive gamma spectrometry and compared to activities of 137Cs in the same samples. Results indicate that decay of fallout 241Pu can explain the presence of 241Am in the soils, and that the activities are sufficiently high to provide meaningful chronological information with acceptable confidence limits. We achieved a detection limit of 0.28-1.47 Bq kg-1 using low-energy, planar germanium detectors and 11-55 g powderized samples. Activities of 241Am (0.08-6.44 Bq kg-1) were similar in mineral- and organic-rich marsh soils indicating that soil composition does not appear to influence the initial capture of 241Pu and retention of its 241Am progeny. Given its high affinity for fine particles, long half-life, and ease of measurement by non-destructive gamma spectrometry, 241Am has potential to serve as an alternative to 137Cs geochronometry in salt marshes and perhaps other estuarine and coastal environments.
NASA Astrophysics Data System (ADS)
Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L. S.; Page, D.; Altamirano, D.; Cackett, E. M.; Deller, A. T.; Gusinskaia, N.; Hessels, J. W. T.; Homan, J.; Linares, M.; Miller, J. M.; Miller-Jones, J. C. A.
2017-04-01
We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ˜4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual X-ray luminosity decay from ˜18 × 1032 to ˜4 × 1032 (D/5.8 kpc)2 erg s-1 between ˜8 and ˜379 d in quiescence, and the inferred neutron star surface temperature (for an observer at infinity; using a neutron star atmosphere model) decreased from ˜100 to ˜71 eV. This can be interpreted as cooling of an accretion-heated neutron star crust. Modelling the observed temperature curve (using nscool) indicated that the source required ˜1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crustal heating to explain its thermal evolution. Alternatively, the decay could also be modelled without the presence of deep crustal heating, only having a shallow heat source (again ˜1.9 MeV per accreted nucleon was required). However, the XMM-Newton data statistically required an additional power-law component. This component contributed ˜30 per cent of the total unabsorbed flux in 0.5-10 keV energy range. The physical origin of this component is unknown. One possibility is that it arises from low-level accretion. The presence of this component in the spectrum complicates our cooling crust interpretation because it might indicate that the smooth luminosity and temperature decay curves we observed may not be due to crust cooling but due to some other process.
Desmet, N; Touchant, K; Seuntjens, P; Tang, T; Bronders, J
2016-12-15
Large river catchments with mixed land use capture pesticides from many sources, and degradable pesticides are converted during downstream transport. Unravelling the contribution of pesticide source and the effect of degradation processes is a challenge in such areas. However, insight and understanding of the sources is important for targeted management, especially when water is abstracted from the river for drinking water production. The river Meuse is such a case. A long-term monitoring data set was applied in a modelling approach for assessing the contribution of waste water treatment plants (WWTPs) and tributaries (sub-basins) to surface water contamination, and to evaluate the effect of decay on the downstream concentrations of glyphosate and AMPA at the point of drinking water abstraction. The results show that WWTPs are important contributors for glyphosate and AMPA in large river catchments with mixed land uses. In the studied area, the river Meuse in the Netherlands, the relative contribution of WWTP effluents is above 29% for glyphosate and around 12% for AMPA. Local industries are found to be potentially big contributors of AMPA. Glyphosate entering the river system is gradually converted to AMPA and other degradation productions, which results in downstream loads that are considerably lower than the sum of all influxes. In summer when the travel time is longer due to lower discharge, the first order decay of glyphosate in the river Meuse is estimated to result in about 50% reduction of the downstream glyphosate concentrations over a river stretch of 250km. The contribution of glyphosate decay to the observed AMPA concentrations ranges between 2% and 10%. Contributions are sensitive to seasonal variations in discharge that influence the concentrations through dilution and degradation. Copyright © 2016 Elsevier B.V. All rights reserved.
Grembowski, D; Fiset, L; Milgrom, P; Forrester, K; Spadafora, A
1997-01-01
An epidemiology analysis was performed to identify patient and dentist factors influencing over- and undertreatment of restorative services in a sample of insured adults. At baseline, 681 Washington State employees and their spouses, aged 20 to 34 years and residing in the Olympia or Pullman areas, were interviewed by telephone. Oral assessments were conducted to measure personal characteristics, oral disease, and restoration quality. Adults were followed for two years to measure use of restorative services from dental insurance claims. Each adult's baseline and claims data were linked with provider and practice variables collected from the dentist who provided treatment. For overtreatment, 39 percent of adults received one or more replacement restorations in nondecayed teeth with satisfactory fillings at baseline, while 18 percent of adults had one or more restorations placed in teeth with no decay and fillings. An adult's probability of overtreatment was higher if the adult had more fillings at baseline, or if an adult's dentist was younger, had a busy practice, advertised, charged higher fees, had less continuing education, or had a solo practice. For undertreatment, about 16 percent of adults either received no replacement restorations in teeth with unsatisfactory fillings at baseline, or had decayed teeth at baseline that were not filled or crowned. An adult's probability of undertreatment was higher if an adult had less decayed or more missing surfaces at baseline, or if an adult's dentist believed in sharing information with patients, had a busy practice, or reported not placing fillings when radiographic evidence of new caries was present. A minority of adults aged 20 to 34 experienced potential over- or undertreatment of restorative services, which are influenced by both patient and dentist factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, Bruce Palmer
The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in themore » hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.« less
A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds
Brian Kane; Paige S. Warren; Susannah B. Lerman
2015-01-01
Trees in towns and cities provide habitat for wildlife. In particular, cavity-nesting birds nest in the deadand decayed stems and branches of these trees. The same dead and decayed stems and branches alsohave a greater likelihood of failure, which, in some circumstances, increases risk. We examined 1760trees in Baltimore, MD, USA and western MA, USA, assessing tree...
Rodney. De Groot; Bessie. Woodward
1998-01-01
In laboratory experiments, Douglas-fir wood blocks that were treated with copper- based wood preservatives were challenged with two wood decay fungi known to be tolerant of copper. Factors influencing the amount of decay, as determined by loss of weight in the test blocks, were preservative, then fungus. Within those combinations, the relative importance of...
NASA Astrophysics Data System (ADS)
Macris, N.; Martin, Ph. A.; Pulé, J. V.
1988-06-01
We study the diamagnetic surface currents of particles in thermal equilibrium submitted to a constant magnetic field. The current density of independent electrons with Boltzmann (respectively Fermi) statistics has a gaussian (respectively exponential) bound for its fall off into the bulk. For a system of interacting particles at low activity with Boltzmann statistics, the current density is localized near to the boundary and integrable when the two-body potential decays as |x|-α, α >4, α>4, in three dimensions. In all cases, the integral of the current density is independent of the nature of the confining wall and correctly related to the bulk magnetisation. The results hold for hard and soft walls and all field strength. The analysis relies on the Feynman-Kac-Ito representation of the Gibbs state and on specific properties of the Brownian bridge process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Hun; Park, Jeong Young, E-mail: jhjung@inha.ac.kr, E-mail: jeongypark@kaist.ac.kr; Graduate School of EEWS, Korea Advanced Institute of Science and Technology
Study of the triboelectric charging effect has recently gained much attraction by proposing a new potential technical application in the field of energy harvesting. Transparent polydimethylsiloxane (PDMS) has some advantages in employing the triboelectric effect due to good conformity at nanometer scale and the simple fabrication process. In this study, we demonstrate that UV irradiation can enhance the performance of a PDMS-based nanotribogenerator. Contact atomic force microscopy combined with Kelvin probe force microscopy enables an in-depth investigation of the effect of UV illumination on local triboelectric charge generation and its decay in PDMS. We found that UV exposure not onlymore » facilitates triboelectric charge generation but also enhances charge redistribution, which is related to the wettability of the PDMS surface. This study provides insights into the fundamental understanding and design of triboelectric generator devices.« less
Nonlinear surface elastic modes in crystals
NASA Astrophysics Data System (ADS)
Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.
1990-03-01
The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.
NASA Astrophysics Data System (ADS)
Gillmore, G.; Woods, M.
2009-04-01
Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.
NASA Astrophysics Data System (ADS)
Yang, Yuxing; Yang, Lei; Wang, Faming
2017-03-01
To understand the impacts of large-scale circulation during the evolution of El Niño cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975-2014, we investigated the influences of two types of El Niño, the eastern Pacific El Niño (EP-El Niño) and central Pacific El Niño (CP-El Niño), on global TC genesis. We also examined how various environmental factors contribute to these influences using a modified genesis potential index (MGPI). The composites reproduced for two types of El Niño, from their developing to decaying phases, were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea. Certain factors of MGPI with more influence than others in various regions are identified. Over the western North Pacific, five variables were all important in the two El Niño types during developing summer (July-August-September) and fall (October-November-December), and decaying spring (April-May-June) and summer. In the eastern Pacific, vertical shear and relative vorticity are the crucial factors for the two types of El Niño during developing and decaying summers. In the Atlantic, vertical shear, potential intensity and relative humidity are important for the opposite variation of EP- and CP-El Niños during decaying summers. In the Southern Hemisphere, the five variables have varying contributions to TC genesis variation during peak season (January-February-March) for the two types of El Niño. In the Bay of Bengal, relative vorticity, humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-El Niño decaying spring. In the Arabian Sea, the EP-El Niño generates a slightly positive anomaly of TC genesis during developing falls and decaying springs, but the MGPI failed to capture this variation.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology
NASA Astrophysics Data System (ADS)
Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration
2017-08-01
The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.
Shanahan, Phiala E; Tiburzi, Brian C; Wagman, Michael L; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J
2017-08-11
The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
Novel dark matter phenomenology at colliders
NASA Astrophysics Data System (ADS)
Wardlow, Kyle Patrick
While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.
α -decay chains of the superheavy nuclei Rg-350255
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2017-05-01
The decay modes and half-lives of 96 isotopes of the superheavy element roentgenium (Rg) within the range of 255 ≤A ≤350 come under investigation in the present paper. The isotopes which lie beyond the proton drip line are identified by calculating the one-proton and two-proton separation energies. The α -decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). For a theoretical comparison the α half-lives are also evaluated using the Viola-Seaborg semiempirical relation, the universal curve of Poenaru et al., the analytical formula of Royer, and the universal decay law of Qi et al. Spontaneous fission half-lives are computed with the shell-effect-dependent formula of Santhosh and Nithya and the semiempirical formula of Xu et al. The decay modes are predicted by comparing the α -decay half-lives within the CPPMDN with the corresponding spontaneous fission half-lives computed by the shell-effect-dependent formula of Santhosh and Nithya. In our paper it is seen that the isotopes 255-271,273Rg lie beyond the proton drip line and hence decay through proton emission. The isotopes 272,274-277Rg exhibit long α chains. Three α chains are predicted from the isotopes Rg-282278. The isotopes Rg-345283 decay through spontaneous fission. The isotopes Rg-350346 are found to be stable against α decay. The theoretical results are compared with the available experimental results and are seen to be matching well. We hope that our predictions will be useful in future experimental investigations.
NASA Astrophysics Data System (ADS)
Gaines, Carmen Veronica
The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types appeared to have negligible effects on enamel crystallinity. Both remineralizing agents provided an increase in resiliency within the enamel surface layers. Findings from this study may prove useful in identifying more effective methods to prevent enamel demineralization and to promote and/or enhance remineralization for the treatment of tooth decay. Careful consideration of the nanoscale properties of treated surface enamel may lead to an understanding of how to truly regenerate decomposed enamel mineral from the inside out.
Flavour-changing neutral currents making and breaking the standard model.
Archilli, F; Bettler, M-O; Owen, P; Petridis, K A
2017-06-07
The standard model of particle physics is our best description yet of fundamental particles and their interactions, but it is known to be incomplete. As yet undiscovered particles and interactions might exist. One of the most powerful ways to search for new particles is by studying processes known as flavour-changing neutral current decays, whereby a quark changes its flavour without altering its electric charge. One example of such a transition is the decay of a beauty quark into a strange quark. Here we review some intriguing anomalies in these decays, which have revealed potential cracks in the standard model-hinting at the existence of new phenomena.
Characterizing the sources, range, and environmental influences of radon 222 and its decay products
NASA Astrophysics Data System (ADS)
Nero, A. V.; Sextro, R. G.; Doyle, S. M.; Moed, B. A.; Nazaroff, W. W.; Revzan, K. L.; Schwehr, M. B.
1985-06-01
Recent results from our group directly assist efforts to identify and control excessive concentrations of radon 222 and its decay products in residential environments. We have demonstrated directly the importance of pressure-induced flow of soil gas for transport of radon from the ground into houses. Analysis of available information from measurements of concentration in US homes has resulted in a quantitative appreciation of the distribution of indoor levels, including the degree of dependence on geographic location. Experiments on the effectiveness of air cleaning devices for removal of particles and radon decay products indicate the potential and limitations of this approach to control.
Measurement of the decay rate of the SiH feature as a function of temperature
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Kraus, George F.
1994-01-01
We have previously suggested that the SiH fundamental stretch could serve as a diagnostic indicator of the oxidation state of silicate surfaces exposed to the solar wind for prolonged periods. We have now measured the primary decay rate of SiH in vacuo as a function of temperature and find that the primary rate constant for the decay can be characterized by the following equation: k(min(exp -1)) approximately equals 0.186 exp(-9/RT) min(exp -1), where R = 2 x 10(exp -3) kcal deg(exp -1) mole(exp -1). This means that the half-life for the decay of the SiH feature at room temperature is approximately 20 yrs, whereas the half-life at a peak lunar regolith temperature of approximately 500K would be only approximately 20 days. At the somewhat lower temperature of approximately 400K the half-life for the decay is on the order of 200 days. The rate of loss of SiH as a function of temperature provides an upper limit to the quantity of H implanted by the solar wind which can be retained by a silicate grain in a planetary regolith. This will be discussed in more detail here.
Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale
Wu, Yan; Ma, Cheng; Yang, Jihui; ...
2015-01-21
Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 tomore » 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.« less