Small phytoplankton and carbon export from the surface ocean.
Richardson, Tammi L; Jackson, George A
2007-02-09
Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.
NASA Astrophysics Data System (ADS)
Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.
2017-06-01
New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.
Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Roger W.; Reinot, Tonu; McClelland, John F.
2010-08-03
Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500°C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzing cellulose,more » xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less
Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Roger W.; Reinot, Tonu; McClelland, John F.
2010-08-30
Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500 C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzingmore » cellulose, xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products.« less
NASA Astrophysics Data System (ADS)
Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.
2013-04-01
Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July-September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.
NASA Astrophysics Data System (ADS)
Ohern, J.
2016-02-01
Marine mammals are generally located in areas of enhanced surface primary productivity, though they may forage much deeper within the water column and higher on the food chain. Numerous studies over the past several decades have utilized ocean color data from remote sensing instruments (CZCS, MODIS, and others) to asses both the quantity and time scales over which surface primary productivity relates to marine mammal distribution. In areas of sustained upwelling, primary productivity may essentially grow in the secondary levels of productivity (the zooplankton and nektonic species on which marine mammals forage). However, in many open ocean habitats a simple trophic cascade does not explain relatively short time lags between enhanced surface productivity and marine mammal presence. Other dynamic features that entrain prey or attract marine mammals may be responsible for the correlations between marine mammals and ocean color. In order to investigate these features, two MODIS (moderate imaging spectroradiometer) data products, the concentration as well as the standard deviation of surface chlorophyll were used in conjunction with marine mammal sightings collected within Ecuadorian waters. Time lags between enhanced surface chlorophyll and marine mammal presence were on the order of 2-4 weeks, however correlations were much stronger when the standard deviation of spatially binned images was used, rather than the chlorophyll concentrations. Time lags also varied between Balaenopterid and Odontocete cetaceans. Overall, the standard deviation of surface chlorophyll proved a useful tool for assessing potential relationships between marine mammal sightings and surface chlorophyll.
NASA Astrophysics Data System (ADS)
Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.
2017-12-01
Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models overemphasize the drought effects or underestimate the watering impacts on primary production in the normal-state, with the direct consequence that carbon-water interactions need to be improved in future model generations with improved mechanistic representations.
NASA Astrophysics Data System (ADS)
Iriarte, J. L.; González, H. E.; Liu, K. K.; Rivas, C.; Valenzuela, C.
2007-09-01
The southern fjord region of Chile is a unique ecosystem characterized by complex marine-terrestrial-atmospheric interactions that result in high biological production. Since organic nitrogen from terrestrial and atmospheric compartments is highly significant in this region (>40%), as is the low NO 3:PO 4 ratio in surface waters, it is suggested that fertilization from inorganic and organic nitrogen sources has a strong influence on both phytoplankton biomass/primary production and harmful algae bloom dynamics. The data presented in this paper provide an opportunity to improve our knowledge of phytoplankton dynamics on temporal and spatial mesoscales. Ocean color data from NASA (SeaWiFS) for chlorophyll and primary production estimates and in situ surface measurement of inorganic nutrients, phytoplankton biomass, and primary productivity revealed that the coastal waters of southern Chile have a classical spring and autumn chlorophyll bloom cycle in which primary production is co-limited by strong seasonal changes in light and nitrate. During spring blooms, autotrophic biomass (such as chlorophyll a, Chl- a) and primary production estimates reached 25 mg Chl- a m -3 and 23 mg C m -3 h -1, respectively, and micro-phytoplankton accounted for a significant portion of the biomass (60%) in spring. The contribution of phytoplankton size classes to total chlorophyll a revealed the dominance of nanoplankton (>50%) in winter and post-bloom periods (<1.0 mg Chl- a m -3).
NASA Astrophysics Data System (ADS)
Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.
2012-11-01
Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.
NASA Astrophysics Data System (ADS)
Jacox, M.; Edwards, C. A.; Kahru, M.; Rudnick, D. L.; Kudela, R. M.
2012-12-01
A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. The ratio of integrated primary productivity to surface chlorophyll correlates strongly to surface chlorophyll concentration (chl0). However, chl0 does not correlate to chlorophyll-specific productivity, and appears to be a proxy for vertical phytoplankton distribution rather than phytoplankton physiology. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by empirical parameterization of photosynthetic efficiency in the Vertically Generalized Production Model. Much larger improvements are enabled by improving accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model, substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 and total log10 root mean squared difference, while inclusion of in situ chlorophyll and light profiles improves these metrics significantly. Autonomous underwater gliders, capable of measuring subsurface fluorescence on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for improved PP estimation in coastal upwelling systems.
Primary Productivity Regime and Nutrient Removal in the Danube Estuary
NASA Astrophysics Data System (ADS)
Humborg, C.
1997-11-01
The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.
NASA Astrophysics Data System (ADS)
Ao, Wen; Wang, Yang; Wu, Shixi
2017-07-01
Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.
We used remotely sensed estimates of chlorophyll a and sea surface temperature, incorporated into the Chesapeake Bay Productivity Model (Harding et al., 2002), to estimate the spatial and temporal variation of phytoplankton net primary production and species size in the Narragans...
David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger
2003-01-01
The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...
NASA Technical Reports Server (NTRS)
Imhoff, M. L.; Tucker, C. J.; Lawrence, W. T.; Stutzer, D.; Rusin, Robert
2000-01-01
Data from two different satellites, a digital land cover map, and digital census data were analyzed and combined in a geographic information system to study the effect of urbanization on photosynthetic vegetation productivity in the United States. Results show that urbanization can have a measurable but variable impact on the primary productivity of the land surface. Annual productivity can be reduced by as much as 20 days in some areas, but in resource limited regions, photosynthetic production can be enhanced by human activity. Overall, urban development reduces the productivity of the land surface and those areas with the highest productivity are directly in the path of urban sprawl.
Evaluation of MODIS NPP and GPP products across multiple biomes.
David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl
2006-01-01
Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...
Zhou, Weihua; Huo, Wenyi; Yuan, Xiangcheng; Yin, Kedong
2003-07-01
The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.
NASA Technical Reports Server (NTRS)
Cour-Palais, Burton G.
1989-01-01
The long-term effects of the orbital debris and micrometeoroid environments on materials that are current candidates for use on space vehicles are discussed. In addition, the limits of laboratory testing to determine these effects are defined and the need for space-based data is delineated. The impact effects discussed are divided into primary and secondary surfaces. Primary surfaces are those that are subject to erosion, pitting, the degradation and delamination of optical coatings, perforation of atomic oxygen erosion barriers, vapor coating of optics and the production of secondary ejecta particles. Secondary surfaces are those that are affected by the result of the perforation of primary surfaces, for example, vapor deposition on electronic components and other sensitive equipment, and the production of fragments with damage potential to internal pressurized elements. The material properties and applications that are required to prevent or lessen the effects described, are defined.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2014-10-01
The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES
Pancer, G.P.; Zegger, J.L.
1961-12-19
A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)
NASA Astrophysics Data System (ADS)
Böll, Anna; Gaye, Birgit; Lückge, Andreas
2014-05-01
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).
NASA Astrophysics Data System (ADS)
Wainright, S. C.
2016-02-01
A year-long study was performed to investigate seasonal changes in the phytoplankton biomass and primary production in the Thames River, a salt wedge estuary that empties into Long Island Sound in southeastern CT. Chlorophyll measurements were made on discrete filtered samples collected above and below the 1-3 m deep pycnocline at a 5-meter deep station. Surface chlorophyll concentrations, primarily from diatoms, averaged approx. 2 mg m-3, with maxima (up to 10 mg m-3) during summer months (Jun to Aug) and minima during October through March (as low as 0.3 mg m-3). The lower water layer had nearly the same annual average but a smaller range (0.7-3.3 mg m-3) and a winter/spring bloom (Jan-Apr) that was not seen in surface water. During most of the winter, chlorophyll concentrations were higher in the lower layer. Primary production, as measured by 13C uptake in bottle incubations, averaged 67 mgC m-3 h-1 in surface water [range 0.1 (Jan 2012) to 800 mgC m-3 h-1 (Aug 2011)], and 3 mgC m-3 h-1 [range 0.04 (Jan 2012) to 17 mgC m-3 h-1 (Aug 2011)] in the lower layer. On most occasions, deep water incubated near the surface had a higher primary production rate than surface water incubated at the surface; apparently the light-limited phytoplankton in the lower layer were released from light-limitation during these incubations. During the study period there were over a dozen heavy wind or heavy rain events, including Hurricane Irene in August and a freak Nor'easter snow storm in October 2011. Hurricane Irene was associated with a large decline in phytoplankton biomass and primary production. With significant storms as frequent as the rate of sampling, it is difficult to separate a "storm effect" from a background seasonal pattern. The study reveals that phytoplankton, especially those in the lower layer, are light-limited in the Thames River estuary, and that the effects of significant storm events are superimposed on significant seasonal variation.
Evaluation of Organic Proxies for Quantifying Past Primary Productivity
NASA Astrophysics Data System (ADS)
Raja, M.; Rosell-Melé, A.; Galbraith, E.
2017-12-01
Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.
Factors affecting the estimate of primary production from space
NASA Technical Reports Server (NTRS)
Balch, W. M.; Byrne, C. F.
1994-01-01
Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.
NASA Astrophysics Data System (ADS)
Uitz, Julia; Claustre, Hervé; Gentili, Bernard; Stramski, Dariusz
2010-09-01
We apply an innovative approach to time series data of surface chlorophyll from satellite observations with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to estimate the primary production associated with three major phytoplankton classes (micro-, nano-, and picophytoplankton) within the world's oceans. Statistical relationships, determined from an extensive in situ database of phytoplankton pigments, are used to infer class-specific vertical profiles of chlorophyll a concentration from satellite-derived surface chlorophyll a. This information is combined with a primary production model and class-specific photophysiological parameters to compute global seasonal fields of class-specific primary production over a 10-year period from January 1998 through December 2007. Microphytoplankton (mostly diatoms) appear as a major contributor to total primary production in coastal upwelling systems (70%) and temperate and subpolar regions (50%) during the spring-summer season. The contribution of picophytoplankton (e.g., prokaryotes) reaches maximum values (45%) in subtropical oligotrophic gyres. Nanophytoplankton (e.g., prymnesiophytes) provide a ubiquitous, substantial contribution (30-60%). Annual global estimates of class-specific primary production amount to 15 Gt C yr-1 (32% of total), 20 Gt C yr-1 (44%) and 11 Gt C yr-1 (24%) for micro-, nano-, and picophytoplankton, respectively. The analysis of interannual variations revealed large anomalies in class-specific primary production as compared to the 10-year mean cycle in both the productive North Atlantic basin and the more stable equatorial Pacific upwelling. Microphytoplankton show the largest range of variability of the three phytoplankton classes on seasonal and interannual time scales. Our results contribute to an understanding and quantification of carbon cycle in the ocean.
NASA Astrophysics Data System (ADS)
Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.
2017-12-01
The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.
Carbon-Water-Energy Relations for Selected River Basins
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1998-01-01
A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.
Microbially driven export of labile organic carbon from the Greenland ice sheet
NASA Astrophysics Data System (ADS)
Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.
2017-04-01
Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.
Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models
NASA Astrophysics Data System (ADS)
van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.
2010-12-01
The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from <100 mg C m -2 day -1 to > 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (<800 mg C m -2 day -1) in offshore central and western regions of the EGAB. High productivities (1600-3900 mg C m -2 day -1) were restricted to hotspots in the east that were influenced by the upwelled water mass. There was a strong correlation between the depth of the euphotic zone and the depth of the mixed layer that suggested that ˜50% of the euphotic zone lay below the mixed layer depth. As a result, high rates of primary productivity did not require upwelled water to reach the surface. A significant proportion of total productivity in the euphotic zone (57% in 2005 and 65% in 2006) occurred in the upwelled water mass below the surface mixed layer. This result has implications for daily integral productivities modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.
Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.
Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva
2013-01-01
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.
Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity
Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva
2013-01-01
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098
Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2014-01-01
We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
NASA Astrophysics Data System (ADS)
Arteaga, L.; Pahlow, M.; Oschlies, A.
2016-02-01
Primay production by marine phytoplankton essentially drives the oceanic biological carbon pump. Global productivity estimates are commonly founded on chlorophyll-based primary production models. However, a major drawback of most of these models is that variations in chlorophyll concentration do not necessarily account for changes in phytoplankton biomass resulting from the physiological regulation of the chlorophyll-to-carbon ratio (Chl:C). Here we present phytoplankton production rates and surface phytoplankton C concentrations for the global ocean for 2005-2010, obtained by combining satellite Chl observations with a mechanistic model for the acclimation of phytoplankton stoichiometry to variations in nutrients, light and temperature. We compare our inferred phytoplankton C concentrations with an independent estimate of surface particulate organic carbon (POC) to identify for the first time the global contribution of living phytoplankton to total POC in the surface ocean. Our annual primary production (46 Pg C yr-1) is in good agreement with other C-based model estimates obtained from satellite observations. We find that most of the oligotrophic surface ocean is dominated by living phytoplankton biomass (between 30-70% of total particulate carbon). Lower contributions are found in the tropical Pacific (10-30% phytoplankton) and the Southern Ocean (≈ 10%). Our method provides a novel analytical tool for identifying changes in marine plankton communities and carbon cycling.
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Fung, M.
2017-12-01
Nutrients loads delivered by the Mississippi River to the Louisiana continental shelf (LCS) stimulate phytoplankton production of organic matter and coupled community respiration. These processes ultimately consume oxygen in bottom waters and promote the development of hypoxia and anoxia on the LCS. Several recent studies have emphasized the importance of nearshore (<15 m depth) phytoplankton production and respiration as a principal driver of heterotrophy and oxygen concentration patterns across this shelf. However, no studies to date have measured these nearshore rates. Other studies have invoked a more classical pattern of surface water primary production fueling water-column and bottom water respiration directly beneath through vertical deposition of organic matter. Yet, patterns of heterotrophy that have been observed across most of the LCS do not seem to support this hypothesis. In this study, we investigated these two different ideas by measuring primary production and respiration rates in distinct water masses at stations spanning salinity and depth gradients on the LCS in spring and summer of 2017. Over the course of this study, we have consistently observed highest primary production and respiration rates in nearshore waters of the Louisiana Coastal Current. This narrow band of low salinity water deriving from the Mississippi and Atchafalaya rivers exhibits maximum production rates exceeding 200 mmol C m-3 d-1 and maximum P/R > 10. Other water masses investigated, which included: surface water at offshore locations (> 15 m depth), sub-surface chlorophylla maxima, mid-water O2 minima and maxima, and bottom water, had average production and respiration rates that were 4-10 fold lower than in the nearshore zone and P/R < 1. These results and a scaling analysis demonstrate the potential for organic matter subsidies from the Louisiana Coastal Current to fuel respiration across the wider shelf and downcoast of the river inputs. Further, the results support recent physical and modeling analyses indicating that mid-water O2 minima and maxima observed on the LCS are primarily derived from lateral advection as opposed to developing in place as a result of excess primary production, sinking, and respiration.
NASA Astrophysics Data System (ADS)
Muraleedharan, K. R.; Jasmine, P.; Achuthankutty, C. T.; Revichandran, C.; Dinesh Kumar, P. K.; Anand, P.; Rejomon, G.
2007-03-01
Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July-August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m -3), low surface primary production (2.55 mg C m -3 day -1) and low zooplankton biovolume (0.14 ml m -3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO 3-N > 8.2 μM, PO 4-P > 0.8 μM, SiO 4-Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a - 0.25 mg m -3, PP - 9.23 mg C m -3 day -1), and mesozooplankton biovolume (1.12 ml m -3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.
R. Flint Hughes; Seeven R. Archer; Gegory P. Asner; Carol A. Wessman; Chad McMurtry; Jim Nelson; R. James. Ansley
2006-01-01
When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on...
Diatoms Si uptake capacity drives carbon export in coastal upwelling systems
NASA Astrophysics Data System (ADS)
Abrantes, Fatima; Cermeno, Pedro; Lopes, Cristina; Romero, Oscar; Matos, Lélia; Van Iperen, Jolanda; Rufino, Marta; Magalhães, Vitor
2016-07-01
Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California, and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production, and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. On the global scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.
Global land-surface primary productivity based upon Nimbus-7 37 GHz data
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Accumulation and renewal of organic matter as quantified through net primary productivity (NPP) is considered a very major function of the biosphere, and its estimation is crucial in understanding the carbon cycle. A physically-based model relating NPP to the difference of vertically and horizontally polarized brightness temperatures (Delta T) observed at 37 GHz frequency of the scanning multichannel microwave radiometer on board the Nimbus-7 satellite is used for fitting areally averaged values of NPP and Delta T for five biomes. The land-surface NPP within 80 deg N to 55 deg S is then calculated using the Delta T data and compared with other estimates.
Seasonal Phytoplankton Dynamics in the Eastern Tropical Atlantic
NASA Technical Reports Server (NTRS)
Monger, Bruce; McClain, Charles; Murtugudde, Ragu
1997-01-01
The coastal zone color scanner (CZCS) that operated aboard the Nimbus 7 satellite provided extensive coverage of phytoplankton pigment concentrations in the surface waters of the eastern tropical Atlantic (ETA) from March 1979 to February 1980 and coincided with four major research cruises to this region. Total primary production within the ETA (5 deg N-10 deg S, 25 deg W-10 deg E) was determined from CZCS pigment estimates and an empirical algorithm derived from concurrent in situ data taken along 4 deg W that relates near-surface chlorophyll concentration and integrated primary production. We estimated an average annual production for the ETA of 2.3 Gt C/yr with an associated 3.5-fold seasonal variation in the magnitude of this production. We describe the principal physical mechanisms controlling seasonal phytoplankton dynamics within the ETA and propose that in addition to seasonal change in the thermocline depth, one must also consider changes in the depth of the equatorial under current. An extensive validation effort indicates that the standard CZCS global products are a conservative estimate of pigment concentrations in ETA surface waters. Significant underestimates by the CZCS global products were observed in June and July which we attributed, in part, to aerosol correction errors and, more importantly, to errors caused by a significant reduction in the concentration of near-surface dissolved organic matter that resulted from strong equatorial upwelling.
NASA Technical Reports Server (NTRS)
Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.
2000-01-01
In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.
Habitat of calling blue and fin whales in the Southern California Bight
NASA Astrophysics Data System (ADS)
Sirovic, A.; Chou, E.; Roch, M. A.
2016-02-01
Northeast Pacific blue whale B calls and fin whale 20 Hz calls were detected from passive acoustic data collected over seven years at 16 sites in the Southern California Bight (SCB). Calling blue whales were most common in the coastal areas, during the summer and fall months. Fin whales began calling in fall and continued through winter, in the southcentral SCB. These data were used to develop habitat models of calling blue and fin whales in areas of high and low abundance in the SCB, using remotely sensed variables such as sea surface temperature, sea surface height, chlorophyll a, and primary productivity as model covariates. A random forest framework was used for variable selection and generalized additive models were developed to explain functional relationships, evaluate relative contribution of each significant variable, and investigate predictive abilities of models of calling whales. Seasonal component was an important feature of all models. Additionally, areas of high calling blue and fin whale abundance both had a positive relationship with the sea surface temperature. In areas of lower abundance, chlorophyll a concentration and primary productivity were important variables for blue whale models and sea surface height and primary productivity were significant covariates in fin whale models. Predictive models were generally better for predicting general trends than absolute values, but there was a large degree of variation in year-to-year predictability across different sites.
Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles
NASA Astrophysics Data System (ADS)
Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.
2017-12-01
Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.
NASA Astrophysics Data System (ADS)
Stefanì, Chiara; Bonamano, Simone; Melchiorri, Cristiano; Piermattei, Viviana; Fani, Fabiola; Lazzara, Luigi; Marcelli, Marco
2015-04-01
The estimation of phytoplankton primary production provides basic input for the quantification of carbon flux in the ocean because of the strong relationship between available photosynthetic energy at the ocean surface and energy storage by algal photosynthesis. We used a new version of PhytoVFP (Variable Fluorescence Phytoplankton Production) bio-optical model to calculate phytoplankton primary production (PP) in the euphotic zone. PhytoVFP is classified as a Wavelength- and Depth-resolved (WRDR) model and is based on the implementation of photosynthetic efficiency (Fv / Fmax), measured in-situ by the PrimProd probe. An innovation of the model is the reproduction of the daily photoacclimation process by varying photosynthetic parameters (Ek, alfa and Pbmax ) along the water column as a function of stratification. The PhytoVFP model is structured into three main modules: (1) "PAR estimation ";- (2) "Photo-acclimation of marine phytoplankton"; - (3) "Phytoplankton primary production estimation". The performance of the PhytoVFP model was evaluated using PAR and 14C primary production measures collected during the SAMCA3 and SAMCA4 oceanographic cruises. The comparison between the measured and calculated radiation showed a good correlation, both in the surface and along the water column (R2 = 0.8992 in the presence, and R2 = 0.8747 in the absence, of clouds) Sensitivity tests, carried out on phie (photosynthetic quantum yield) and beta (photoinhibition parameter), allowed us to identify the best model parametrization which minimized the MAE (Mean Absolute Error). The values assigned to these parameters allowed to have a good correlation between the measured and estimated primary production values (R² = 0.808923). The results of PhytoVFP model have been also compared with its older version and the Morel (1991) model showing that the MAE of the new version is lower than the other models. The PhytoVFP model was applied on Primprod data collected during MedGOOS12 cruise in order to analyse the vertical distribution of phytoplankton primary production in the eastern Mediterranean sea.
Impact of Chromophoric Dissolved Organic Matter on UV Inhibition of Primary Productivity in the Sea
NASA Technical Reports Server (NTRS)
Arrigo, Kevin R.; Brown, Christopher W.
1996-01-01
A model was developed to assess the impact of chromophoric dissolved organic matter (CDOM) on phytoplankton production within the euphotic zone. The rate of depth-integrated daily gross primary productivity within the euphotic zone was evaluated as a function of date, latitude, CDONI absorption characteristics, chlorophyll a (chl a) concentration, vertical stratification, and phytoplankton sensitivity to UV radiation (UVR). Results demonstrated that primary production was enhanced in the upper 30 m of the water column by the presence of CDOM, where predicted increases in production due to the removal of damaging UVR more than offset its reduction resulting from the absorption of photosynthetically usable radiation. At greater depths, where little UVR remained, primary production was always reduced due to removal by CDOM of photosynthetically usable radiation. When CDOM was distributed homogeneously within the euphotic zone, the integral over z [(GPP)(sub ez)], was reduced under most bio-optical (i.e. solar zenith angle, and CDOM absorption, and ozone concentration) and photophysiological production at depth was greater than the enhancement of production at the surface.
Matsuzaki, Shin-Ichiro S; Suzuki, Kenta; Kadoya, Taku; Nakagawa, Megumi; Takamura, Noriko
2018-06-09
Nutrient supply is a key bottom-up control of phytoplankton primary production in lake ecosystems. Top-down control via grazing pressure by zooplankton also constrains primary production, and primary production may simultaneously affect zooplankton. Few studies have addressed these bidirectional interactions. We used convergent cross-mapping (CCM), a numerical test of causal associations, to quantify the presence and direction of the causal relationships among environmental variables (light availability, surface water temperature, NO 3 -N, and PO 4 -P), phytoplankton community composition, primary production, and the abundances of five functional zooplankton groups (large-cladocerans, small-cladocerans, rotifers, calanoids, and cyclopoids) in Lake Kasumigaura, a shallow, hypereutrophic lake in Japan. CCM suggested that primary production was causally influenced by NO 3 -N and phytoplankton community composition; there was no detectable evidence of a causal effect of zooplankton on primary production. Our results also suggest that rotifers and cyclopoids were forced by primary production, and cyclopoids were further influenced by rotifers. However, our CCM suggested that primary production was weakly influenced by rotifers (i.e., bidirectional interaction). These findings may suggest complex linkages between nutrients, primary production, and rotifers and cyclopoids, a pattern that has not been previously detected or has been neglected. We used linear regression analysis to examine the relationships between the zooplankton community and pond smelt (Hypomesus nipponensis), the most abundant planktivore and the most important commercial fish species in Lake Kasumigaura. The relative abundance of pond smelt was significantly and positively correlated with the abundances of rotifers and cyclopoids, which were causally influenced by primary production. This finding suggests that bottom-up linkages between nutrient, primary production, and zooplankton abundance might be a key mechanism supporting high planktivore abundance in eutrophic lakes. Because increases in primary production and cyanobacteria blooms are likely to occur simultaneously in hypereutrophic lakes, our study highlights the need for ecosystem management to resolve the conflict between good water quality and high fishery production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
1985-01-01
The cellular mechanism and genetic restriction of neonatally induced HA- specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12. PMID:2580040
Fish like it Hot? The response of ichthyolith accumulation to changing climates of the Paleogene
NASA Astrophysics Data System (ADS)
Sibert, E. C.; Zill, M. E.; Bryant, R. M.; Graves, L. G.; Norris, R. D.
2014-12-01
It has been hypothesized that the production of fish in the water column is related to the amount of primary production in the surface waters. Most future Earth scenarios suggest that as the climate warms, increased surface ocean stratification will decrease nutrient availability and therefore net primary productivity and fish production. Here we calculate accumulation rates of ichthyoliths (microfossil fish teeth and shark dermal scales) throughout the Paleogene and find that ichthyolith accumulation is inversely related to hypothesized changes in primary productivity, but is positively related to ocean temperature. At DSDP Site 596 in the South Pacific, and ODP Site 1258 from the equatorial Atlantic, accumulation of fish fossils increase 6-10 fold from the relatively cool Paleocene into the warm Early Eocene Climate Optimum. In contrast, cooling and increased biosilica deposition at the Eocene/Oligocene (E/O) Boundary suggests that the marine ecosystem switched to a highly productive diatom-dominated ocean, which should favor short, efficient food chains and increased fish production. However, we find that at both Pacific DSDP Site 596 and Atlantic DSDP Site 522, fish accumulation drops by about 50% across the E/O. Indeed, this relation between ichthyolith accumulation and δ18O-estimated paleotemperature is also seen in the Oligocene, at North Pacific ODP Site 886, where warming in the middle Oligocene is mirrored by an increase in ichthyolith accumulation. It appears that ichthyolith accumulation rate may not be purely an effect of total primary production in the water column but rather, may reflect a fundamental response in fish physiology or ecosystem efficiency to warmer water. It has been documented that respiration is faster and more efficient in warm waters, and this may help generate more efficient food web links that compensate for any decrease in primary productivity caused by global warming. Indeed, it appears that fish seem to thrive as the temperature goes up.
NASA Astrophysics Data System (ADS)
Keene, William C.; Long, Michael S.; Reid, Jeffrey S.; Frossard, Amanda A.; Kieber, David J.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Quinn, Patricia K.; Bates, Timothy S.
2017-11-01
Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.
A multi-sensor remote sensing approach for measuring primary production from space
NASA Technical Reports Server (NTRS)
Gautier, Catherine
1989-01-01
It is proposed to develop a multi-sensor remote sensing method for computing marine primary productivity from space, based on the capability to measure the primary ocean variables which regulate photosynthesis. The three variables and the sensors which measure them are: (1) downwelling photosynthetically available irradiance, measured by the VISSR sensor on the GOES satellite, (2) sea-surface temperature from AVHRR on NOAA series satellites, and (3) chlorophyll-like pigment concentration from the Nimbus-7/CZCS sensor. These and other measured variables would be combined within empirical or analytical models to compute primary productivity. With this proposed capability of mapping primary productivity on a regional scale, we could begin realizing a more precise and accurate global assessment of its magnitude and variability. Applications would include supplementation and expansion on the horizontal scale of ship-acquired biological data, which is more accurate and which supplies the vertical components of the field, monitoring oceanic response to increased atmospheric carbon dioxide levels, correlation with observed sedimentation patterns and processes, and fisheries management.
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
Ditter, Dominique; Mahler, Hanns-Christian; Roehl, Holger; Wahl, Michael; Huwyler, Joerg; Nieto, Alejandra; Allmendinger, Andrea
2018-04-01
The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo™ and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo™ vials. The present comprehensive characterization of surface properties of the different vial types may serve as basis to further guide the selection of adequate primary packaging based on the desired quality target product profile and to support studies of glass surface interactions with formulations. The proposed analytical method panel can be used for characterization of future glass vials either before delivery to the manufacturer or drug product manufacturing. Copyright © 2018 Elsevier B.V. All rights reserved.
Anthropogenic climate change has altered primary productivity in Lake Superior
O'Beirne, M. D.; Werne, J. P.; Hecky, R. E.; Johnson, T. C.; Katsev, S.; Reavie, E. D.
2017-01-01
Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems. PMID:28598413
Anthropogenic climate change has altered primary productivity in Lake Superior.
O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D
2017-06-09
Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.
Levings, C D; Varela, D E; Mehlenbacher, N M; Barry, K L; Piercey, G E; Guo, M; Harrison, P J
2005-12-01
We investigated the effect of acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (Howe Sound, BC, Canada) on primary productivity and chlorophyll a levels in the receiving waters of Howe Sound before, during, and after freshet from the Squamish River. Elevated concentrations of copper (integrated average through the water column >0.050 mgl(-1)) in nearshore waters indicated that under some conditions a small gyre near the mouth of Britannia Creek may have retained the AMD from Britannia Creek and from a 30-m deep water outfall close to shore. Regression and correlation analyses indicated that copper negatively affected primary productivity during April (pre-freshet) and November (post-freshet). Negative effects of copper on primary productivity were not supported statistically for July (freshet), possibly because of additional effects such as turbidity from the Squamish River. Depth-integrated average and surface chlorophyll a were correlated to copper concentrations in April. During this short study we demonstrated that copper concentrations from the AMD discharge can negatively affect both primary productivity and the standing stock of primary producers in Howe Sound.
NASA Astrophysics Data System (ADS)
Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura
2014-10-01
In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.
NASA Astrophysics Data System (ADS)
Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar
2011-03-01
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8-59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.
NASA Astrophysics Data System (ADS)
Jacox, Michael G.; Edwards, Christopher A.; Kahru, Mati; Rudnick, Daniel L.; Kudela, Raphael M.
2015-02-01
A 26-year record of depth integrated primary productivity (PP) in the Southern California Current System (SCCS) is analyzed with the goal of improving satellite net primary productivity (PP) estimates. Modest improvements in PP model performance are achieved by tuning existing algorithms for the SCCS, particularly by parameterizing carbon fixation rate in the vertically generalized production model as a function of surface chlorophyll concentration and distance from shore. Much larger improvements are enabled by improving the accuracy of subsurface chlorophyll and light profiles. In a simple vertically resolved production model for the SCCS (VRPM-SC), substitution of in situ surface data for remote sensing estimates offers only marginal improvements in model r2 (from 0.54 to 0.56) and total log10 root mean squared difference (from 0.22 to 0.21), while inclusion of in situ chlorophyll and light profiles improves these metrics to 0.77 and 0.15, respectively. Autonomous underwater gliders, capable of measuring subsurface properties on long-term, long-range deployments, significantly improve PP model fidelity in the SCCS. We suggest their use (and that of other autonomous profilers such as Argo floats) in conjunction with satellites as a way forward for large-scale improvements in PP estimation.
NASA Astrophysics Data System (ADS)
Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.
2011-12-01
The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.
The effects of temporal variability of mixed layer depth on primary productivity around Bermuda
NASA Technical Reports Server (NTRS)
Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.
1994-01-01
Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.
Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Henley, Sian F.; Tuerena, Robyn E.; Annett, Amber L.; Fallick, Anthony E.; Meredith, Michael P.; Venables, Hugh J.; Clarke, Andrew; Ganeshram, Raja S.
2017-05-01
Nutrient supply, uptake and cycling underpin high primary productivity over the continental shelf of the west Antarctic Peninsula (WAP). Here we use a suite of biogeochemical and isotopic data collected over five years in northern Marguerite Bay to examine these macronutrient dynamics and their controlling biological and physical processes in the WAP coastal ocean. We show pronounced nutrient drawdown over the summer months by primary production which drives a net seasonal nitrate uptake of 1.83 mol N m-2 yr-1, equivalent to net carbon uptake of 146 g C m-2 yr-1. High primary production fuelled primarily by deep-sourced macronutrients is diatom-dominated, but non-siliceous phytoplankton also play a role. Strong nutrient drawdown in the uppermost surface ocean has the potential to cause transient nitrogen limitation before nutrient resupply and/or regeneration. Interannual variability in nutrient utilisation corresponds to winter sea ice duration and the degree of upper ocean mixing, implying susceptibility to physical climate change. The nitrogen isotope composition of nitrate (δ15NNO3) shows a utilisation signal during the growing seasons with a community-level net isotope effect of 4.19 ± 0.29‰. We also observe significant deviation of our data from modelled and observed utilisation trends, and argue that this is driven primarily by water column nitrification and meltwater dilution of surface nitrate. This study is important because it provides a detailed description of the nutrient biogeochemistry underlying high primary productivity at the WAP, and shows that surface ocean nutrient inventories in the Antarctic sea ice zone can be affected by intense recycling in the water column, meltwater dilution and sea ice processes, in addition to utilisation in the upper ocean.
Inorganic carbon addition stimulates snow algae primary productivity
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Havig, J. R.
2017-12-01
Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.
Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D
2013-12-03
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
The fate of iron on Mars: Mechanism of oxidation of basaltic minerals to ferric-bearing assemblages
NASA Technical Reports Server (NTRS)
Burns, Roger G.
1992-01-01
Perhaps the most conspicuous indication that chemical weathering has occurred on the surface of Mars is the overall color of the red planet and the spectroscopic features that identify ferric-bearing assemblages in the martian regolith. Apparently, Fe(2+) ions in primary minerals in parent igneous rocks on the martian surface have been oxidized to ferric iron, which occurs in degradation products that now constitute the regolith. The mineralogy of the unweathered igneous rocks prior to weathering on the martian surface is reasonably well constrained, mainly as a result of petrographic studies of the SNC meteorites. However, the alteration products resulting from oxidative weathering of these rocks are less well-constrained. The topics covered include the following: primary rocks subjected to chemical weathering; dissolution processes; oxidation of dissolved Fe(2+); mechanism of polymerization of hydrous ferric oxides; terrestrial occurrences of ferromagnesian smectites; and dehydroxylated Mg-Fe smectites on Mars.
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean
Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.
2013-01-01
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565
NASA Technical Reports Server (NTRS)
Eppley, R. W.; Stewart, E.; Abbott, M. R.; Owen, R. W.
1985-01-01
The EASTROPAC expedition took place in 1967-68 in the eastern tropical Pacific Ocean. Primary production was related to near-surface chlorophyll in these data. Much of the variability in the relation was due to the light-history of the phytoplankton and its photoadaptive state. This was due to changes in the depth of mixing of the surface waters more than changes in insolation. Accurate estimates of production from satellite chlorophyll measurements may require knowledge of the temporal and spatial variation in mixing of this region.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2015-01-01
NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.
Chen, H; Zhao, T; Wang, Y; Sun, Y C
2016-10-18
To establish a digital method for production of custom trays for edentulous jaws using fused deposition modeling (FDM) based on three-dimensional (3D) scans of primary jaw impressions, and to quantitatively evaluate the accuracy. A red modeling compound was used to make a primary impression of a standard maxillary edentulous plaster model. The plaster model data and the primary impression tissue surface data were obtained using a 3D scanner. In the Gemomagic 2012 software, several commands were used, such as interactive drawing curves, partial filling holes, local offset, bodily offset, bodily shell, to imitate clinical procedures of drawing tray boundary, filling undercut, buffer, and generating the tray body. A standard shape of tray handle was designed and attached to the tray body and the data saved as stereolithography (STL) format. The data were imported into a computer system connected to a 3D FDM printing device, and the custom tray for the edentulous jaw model was printed layer upon layer at 0.2 mm/layer, using polylactic acid (PLA) filament, the tissue surface of the tray was then scanned with a 3D scanner. The registration functions of Geomagic 2012 was used to register the 3-dimentional surface data, and the point-cloud deviation analysis function of the Imageware 13.0 system was used to analyze the error. The CAD data of the custom tray was registered to the scan data, and the error between them was analyzed. The scanned plaster model surface was registered to the scanned impression surface and the scanned tray data to the CAD data, then the distance between the surface of plaster model and the scanned tissue surface of the custom tray was measured in Imageware 13.0. The deviation between the computer aided design data and the scanned data of the custom tray was (0.17±0.20) mm, with (0.19±0.18) mm in the primary stress-bearing area, (0.17±0.22) mm in the secondary stress-bearing area, (0.30±0.29) mm in the border seal area, (0.08±0.06) mm in the buffer area; the space between the tissue faces of the plaster model and the scanned tissue surface of custom tray was (1.98±0.40) mm, with (1.85±0.24) mm in the primary stress-bearing area, (1.86±0.26) mm in the secondary stress-bearing area, (1.77±0.36) mm in the border seal area, (2.90±0.26) mm in the buffer area. With 3D scanning, computer aided design and FDM technology, an efficient means of custom tray production was established.
Ozone production process in pulsed positive dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Ono, Ryo; Oda, Tetsuji
2007-01-01
The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.
Synoptic events force biological productivity in Patagonian fjord ecosystems
NASA Astrophysics Data System (ADS)
Daneri, Giovanni
2016-04-01
The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063
Satellite remote sensing of primary production
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Sellers, P. J.
1986-01-01
Leaf structure and function are shown to result in distinctive variations in the absorption and reflection of solar radiation from plant canopies. The leaf properties that determine the radiation-interception characteristics of plant canopies are directly linked to photosynthesis, stomatal resistance and evapotranspiration and can be inferred from measurements of reflected solar energy. The effects of off-nadir viewing and atmospheric constituents, coupled with the need to measure changing surface conditions, emphasize the need for multitemporal measurements of reflected radiation if primary production is to be estimated.
Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event
NASA Astrophysics Data System (ADS)
Georgiev, Svetoslav V.; Horner, Tristan J.; Stein, Holly J.; Hannah, Judith L.; Bingen, Bernard; Rehkämper, Mark
2015-01-01
Earth's most extreme extinction event near the end of the Late Permian decimated more than 90% of all extant marine species. Widespread and intensive oceanic anoxia almost certainly contributed to the catastrophe, though the driving mechanisms that sustained such conditions are still debated. Of particular interest is whether water column anoxia was a consequence of a 'stagnant ocean', or if it was controlled by increases in nutrient supply, primary productivity, and subsequent heterotrophic respiration. Testing these competing hypotheses requires deconvolving sedimentary/bottom water redox conditions from changes in surface water productivity in marine sediments. We address this issue by studying marine shales from East Greenland and the mid-Norwegian shelf and combining sedimentary redox proxies with cadmium-isotopic analyses. Sedimentary nitrogen-isotopic data, pyrite framboid analyses, and organic and inorganic shale geochemistry reveal sulfidic conditions with vigorous upwelling, and increasingly anoxic conditions with a strengthening upwelling in the Greenland and Norwegian sections, respectively. Detailed analysis of sedimentary metal budgets illustrates that Cd is primarily associated with organic carbon and records primary geochemical signatures, thus enabling reconstruction of surface water nutrient utilization. Cadmium-isotopic analyses of the authigenic shale fraction released by inverse aqua regia digestion yield an average δ114Cd110 of + 0.15 ± 0.01 ‰ (2 SE, n = 12; rel. NIST SRM 3108), indicative of incomplete surface water nutrient utilization up-section. The constant degree of nutrient utilization combined with strong upwelling requires increasing primary productivity - and not oceanic stagnation - to balance the larger nutrient fluxes to both study sites during the development of the Late Permian water column anoxia. Overall, our data illustrate that if bottom water redox and upwelling can be adequately constrained, Cd-isotopic analyses of organic-rich sediments can be used to provide valuable information on nutrient utilization and therefore past productivity.
Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity
NASA Astrophysics Data System (ADS)
Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.
2014-07-01
The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2015-04-01
The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)
NASA Technical Reports Server (NTRS)
Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2016-01-01
The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying FT and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems. There are no L1 science requirements for the L4_C product; however self-imposed requirements have been established focusing on NEE as the primary product field for validation, and on demonstrating L4_C accuracy and success in meeting product science requirements (Jackson et al. 2012). The other L4_C product fields also have strong utility for carbon science applications; however, analysis of these other fields is considered secondary relative to primary validation activities focusing on NEE. The L4_C targeted accuracy requirements are to meet or exceed a mean unbiased accuracy (ubRMSE) for NEE of 1.6 g C/sq m/d or 30 g C/sq m/yr, emphasizing northern (45N) boreal and arctic ecosystems; this is similar to the estimated accuracy level of in situ tower eddy covariance measurement-based observations (Baldocchi 2008).
A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
NASA Astrophysics Data System (ADS)
Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne; Jornet-Puig, Albert; Sardans, Jordi; Violette, Aurelie; Peng, Shushi; Sun, Yan; Kvakic, Marko; Guimberteau, Matthieu; Guenet, Bertrand; Zaehle, Soenke; Penuelas, Josep; Janssens, Ivan; Ciais, Philippe
2017-10-01
Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year) and a late (4.1 Myr) stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.
Validation of SMAP surface soil moisture products with core validation sites
USDA-ARS?s Scientific Manuscript database
The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...
Insights into Seasonal Variations in Phosphorus Concentrations and Cycling in Monterey Bay
NASA Astrophysics Data System (ADS)
Kong, M.; Defforey, D.; Paytan, A.; Roberts, K.
2014-12-01
Phosphorus (P) is an essential nutrient for life as it is a structural constituent in many cell components and a key player in cellular energy metabolism. Therefore, P availability can impact primary productivity. Here we quantify dissolved and particulate P compounds and trace P sources and cycling in Monterey Bay over the course of a year. This time series gives insights into monthly and seasonal variations in the surface water chemistry of this region. Preliminary characterization of seawater samples involves measuring total P and soluble reactive P (SRP) concentrations. 31P nuclear magnetic resonance spectroscopy (31P NMR) is used to determine the chemical structure of organic phosphorus compounds present in surface seawater. The isotopic signature of phosphatic oxygen (δ18Op) is used as a proxy for studying P cycling and sources. Oxygen isotope ratios in phosphate are determined by continuous-flow isotope mass ratio spectrometry (CF-IRMS) following purification of dissolved P from seawater samples and precipitation as silver phosphate. We expect to observe seasonal changes in P concentrations, as well as differences in organic P composition and P sources. The chemical structure of organic P compounds will affect their bioavailability and thus the extent to which they can fuel primary productivity in Monterey Bay. δ18Op will reflect source signatures and provide information on turnover rates of P in surface waters. Results from this work will provide valuable insights into seasonal changes in P cycling in surface waters and have important implications for understanding primary productivity in the Monterey Bay ecosystem.
Differences in Surface Water Quality Draining Four Road Surface Types in the Southern Appalachians
Barton D. Clinton; James M. Vose
2003-01-01
Improved and unimproved roads can be the primary source of stream sediment in forested watersheds. We assessed differences in production of total suspended solids (TSS; ppm) from four road sulfate conditions in a Southern Appalachian watershed: (1) a 2-yr-old paved surface (P), (2) an improved gravel sulfate with controlled drainage and routine maintenance (RG), (3) an...
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1979-01-01
The techniques of fabricating and characterizing the surface properties of electrode materials were investigated. The basic surface properties of these materials were studied with respect to their utilization as thermionic energy converter electrodes. Emphasis was placed on those factors (e.g, cesium disorption kinetic and mechanisms of low work function production) which are of primary concern to thermionic converter performance.
Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution
NASA Astrophysics Data System (ADS)
Harrold, Z.; Gorman-Lewis, D.
2013-12-01
Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.
Climate, carbon cycling, and deep-ocean ecosystems.
Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S
2009-11-17
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.
NASA Astrophysics Data System (ADS)
Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David
2013-04-01
As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control air-sea CO2 fluxes and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of air-sea CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of air-sea CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and SeaWiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and air-sea flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.
NASA Astrophysics Data System (ADS)
Zancopé, Bruna R.; Cesar, Marina M. C.; Rodrigues, Lidiany K. A.; Nobre-dos-Santos, Marinês
2014-02-01
This study aimed at investigating if CO2 laser irradiation (λ =10.6μm - 11.3 J/cm2) combined with fluoridated products, enhances the CaF2 formation on enamel surface and inhibits lesion progression of demineralized primary enamel. Thus, 135 demineralized primary enamel specimens (DES) were allocated to 9 groups (n=15) as follows: 1- DES only, 2- DES + pH cycling (control), 3- 1.23% acidulated phosphate fluoride gel (APF), 4- 1.23% fluoride foam (FF), 5- 5% fluoride varnish (FV), 6- CO2 Laser (L), 7 - Laser during APF application, 8-Laser during FF application and 9-Laser during FV application. Except for the demineralized enamel group, all specimens were submitted to a 7 day pH cycling regime. The knoop hardness number (KHN) was determined by cross-sectional microhardness analysis. After treatments application, three specimens of each group had their surface examined for CaF2 formation by scanning electron microscopy (SEM). The data was analyzed by ANOVA and Student's t-test (α= 0.05). Enamel mineral loss (ΔS) for groups 1 to 9 were respectively,(8,676.28+/-1,077.46b),(12,419.54+/-1,050.21a),(8,156.80+/-1,279.90b),(8,081.32+/-1,019.69b),(8,820.86+/-1,805. 99b),(8,723.45+/-1,167.14b),(9,003.17+/-796.90b),(8.229,03+/-961.25b),(9,023.32+/-1,1069b). The results showed statistically significant difference between control and all treatments groups (p<0.05). However there was no difference among them (p>0.05). SEM observations showed evidences of melting, fusion and calcium fluoride formation on enamel surface. In conclusion, laser irradiation alone or combined with fluoridated products inhibited lesion progression of demineralized primary enamel surface. However, no synergistic effect was observed when CO2 laser irradiation and fluoridated products application were combined.
Specific SPS construction studies: Operations and maintenance
NASA Technical Reports Server (NTRS)
Miller, K. H.
1980-01-01
Surface as well as in-space operations of the solar power satellite program are addressed. The primary end products of SPS industrial enterprise are shown SPS and its ground receiving antenna every six months; and (3) construction of electric cargo orbital transfer vehicles. The production of photovoltaic cells and solar blankets is also considered.
Full reactor coolant system chemical decontamination qualification programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.E.
1995-03-01
Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systemsmore » leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.« less
NASA Astrophysics Data System (ADS)
Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Woodward, Malcolm; Greenwood, Naomi; Sivyer, Dave; Hull, Tom
2017-04-01
Autumnal phytoplankton blooms are considered characteristic features of the seasonal cycle of primary productivity in most temperate and subpolar oceans. While observations of their occurrence and strength have been documented extensively, their significance within the seasonal cycle of primary production is not well quantified. Our aim is to establish the role the autumn bloom plays within the seasonal cycle and estimate its contribution to the annual primary production of a temperate continental shelf. In particular, we will illustrate that the autumn bloom has the potential to be as productive as the well-studied summer sub-surface chlorophyll maximum (SCM) and the capacity to significantly contribute to the drawdown of atmospheric CO2. We do this by combining long-term, high resolution observations of water column structure, meteorological forcing, nitrate and chlorophyll fluorescence over the entire seasonal cycle observed in a temperate shelf sea. We present a new series of continuous measurements spanning 17 months (March 2014 - July 2015), which were collected in a temperate shelf sea on the North West European Shelf. A long-term mooring array recorded full depth vertical density structure, dynamics and meteorological data as well as surface chlorophyll fluorescence biomass and inorganic nutrient data over a full seasonal cycle at a station 120 km north-east from the continental shelf break. Eight process cruises supplied additional full depth profiles of chlorophyll fluorescence biomass and macronutrients. The breakdown of stratification in 2014 commenced in early October due to increased winds compared to summer months, and a predominantly negative net heat flux (the ocean lost heat to the overlying atmosphere). Vertical mixing in autumn not only transformed the vertical density structure but also the vertical structure of chlorophyll biomass and surface nutrients. The SCM became eroded and instead a vertically homogeneous profile of chlorophyll biomass established itself above the pycnocline. This increased mixing also led to replenishment of surface nutrients and drove enhanced growth, which was almost 4 times stronger than observed during the summer months: We find an increase in depth integrated chlorophyll biomass of ˜50 mg m-2 in autumn 2014 compared to values of ˜20 mg m-2 during the summers of 2014 and 2015.
Robitzch, Vanessa S N; Lozano-Cortés, Diego; Kandler, Nora M; Salas, Eva; Berumen, Michael L
2016-04-30
We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days). Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal cycles of pelagic production and consumption
NASA Astrophysics Data System (ADS)
Longhurst, Alan
Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.
NASA Astrophysics Data System (ADS)
Uhde, E.; Salthammer, T.
The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Michalski, J. R.
2006-12-01
Spectral data suggest that the Martian surface may be chemically altered. However, TES data show evidence for abundant primary glass, and Mini-TES data from MER Spirit in the Columbia Hills identify primary basaltic glass in rocks that are believed to be altered (Haskin et al., 2005, Ming et al., 2006, Wang et al., 2006). Debate over whether the primary glass identified spectrally may be interpreted as alteration products, such as clay minerals and/or amorphous silica coatings (Wyatt and McSween, 2002, Kraft et al., 2003), has focused on their spectral similarities (Koeppen and Hamilton, 2005). We suggest that some of the putative primary glass may be due to nonlinear spectral mixing of primary and secondary phases. We created physical mixtures made up of a primary phase (augite, andesine, or a 50:50 weight percent mixture of augite and andesine) and a secondary phase (montmorillonite clay or amorphous silica in 2.5, 5, 10, and 20 weight percent abundances) to test how secondary phases affect primary mineral thermal infrared spectra and modeled mineralogies. We found that the presence of small to moderate amounts of secondary material strongly affect modeled mineralogies, cause the false identification of primary glass in abundances as high as 40 volume percent, and report modeled plagioclase to pyroxene ratios that differ from actual ratios in the mixtures. These results are important for the surface mineralogy of Mars because surface type two (ST2), which may be altered, has the highest modeled plagioclase to pyroxene ratio. The presence of alteration material on Mars may cause the false identification or overestimation of primary glass in TES and Mini-TES data and may cause incorrect modeling of primary phases on Mars.
NASA Astrophysics Data System (ADS)
Gentine, P.; Alemohammad, S. H.
2018-04-01
Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.
Production of porous coating on a prosthesis
Sump, Kenneth R.
1987-01-01
Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.
NASA Astrophysics Data System (ADS)
Pospelova, Vera; Mertens, Kenneth N.; Hendy, Ingrid, L.; Pedersen, Thomas F.
2015-04-01
High-resolution sedimentary records of dinoflagellate cysts and other marine palynomorphs from the Santa Barbara Basin (Ocean Drilling Program Hole 893A) demonstrate large variability of primary productivity during the Holocene, as the California Current System responded to climate change. Throughout the sequence, dinoflagellate cyst assemblages are characterized by the dominance of cysts produced by heterotrophic dinoflagellates, and particularly by Brigantedinium, accompanied by other upwelling-related taxa such as Echinidinium and cysts of Protoperidinium americanum. During the early Holocene (~12-7 ka), the species richness is relatively low (16 taxa) and genius Brigantedinium reaches the highest relative abundance, thus indicating nutrient-rich and highly productive waters. The middle Holocene (~7-3.5 ka) is characterized by relatively constant cyst concentrations, and dinoflagellate cyst assemblages are indicative of a slight decrease in sea-surface temperature. A noticeable increase and greater range of fluctuations in the cyst concentrations during the late Holocene (~3.5-1 ka) indicate enhanced marine primary productivity and increased climatic variability, most likely related to the intensification of El Niño-like conditions. Keywords: dinoflagellate cysts, Holocene, North Pacific, climate, primary productivity.
A climatology of visible surface reflectance spectra
NASA Astrophysics Data System (ADS)
Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas
2016-09-01
We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
Primary production in the tropical continental shelf seas bordering northern Australia
NASA Astrophysics Data System (ADS)
Furnas, Miles J.; Carpenter, Edward J.
2016-10-01
Pelagic primary production (14C uptake) was measured 81 times between 1990 and 2013 at sites spanning the broad, shallow Northern Australian Shelf (NAS; 120-145°E) which borders the Australian continent. The mean of all areal production measurements was 1048±109 mg C m-2 d-1 (mean±95% CI). Estimates of areal primary production were correlated with integral upper-euphotic zone chlorophyll stocks (above the 50% and 20% light penetration depths) accessible to ocean color remote sensing and total water column chlorophyll standing crop, but not surface (0-2 m) chlorophyll concentrations. While the NAS is subject to a well characterized monsoonal climate regime (austral summer-NW monsoon -wet: austral winter- SE monsoon -dry), most seasonal differences in means of regional-scale chlorophyll standing crop (11-33 mg Chl m-2 for 12 of 15 season-region combinations) and areal primary production (700-1850 mg C m- day-1 for 12 of 15 season-region combinations) fell within a 3-fold range. Apart from the shallow waters of the Torres Strait and northern Great Barrier Reef, picoplankton (<2 μm size fraction) dominated chlorophyll standing crop and primary production with regional means of picoplankton contributions ranging from 45 to >80%. While the range of our post-1990 areal production estimates overlaps the range of production estimates made in NAS waters during 1960-62, the mean of post-1990 estimates is over 2-fold greater. We regard the difference to be due to improvements in production measurement techniques, particularly regarding the reduction of potential metal toxicity and incubations in more realistic light regimes.
NASA Astrophysics Data System (ADS)
Chan, Phoebe; Halfar, Jochen; Adey, Walter; Hetzinger, Steffen; Zack, Thomas; Moore, Kent; Wortmann, Ulrich; Williams, Branwen; Hou, Alicia
2017-04-01
Arctic sea-ice thickness and concentration have dropped by approximately 9% per decade since 1978. Concurrent with this sea-ice decline is an increase in rates of phytoplankton productivity, driven by shoaling of the mixed layer and enhanced transmittance of solar radiation into the surface ocean. This has recently been confirmed by phytoplankton studies in Arctic and Subarctic basins that have revealed earlier timing, prolonged duration, and increased primary productivity of the spring phytoplankton bloom. However, difficulties of navigating in remote ice-laden waters and harsh polar climates have often resulted in short and incomplete records of in-situ plankton abundance in the northwestern Labrador Sea. Alternatively, information of past ocean productivity may be gained through the study of trace nutrient distributions in the surface water column. Investigations of dissolved barium (Ba) concentrations in the Arctic reveal significant depletions of Ba in surface seawaters due to biological scavenging during the spring phytoplankton bloom. Here we apply a barium-to-calcium (Ba/Ca) and carbon isotope (δ13C) multiproxy approach to long-lived crustose coralline algae in order to reconstruct an annually-resolved multi-centennial record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). The crustose coralline alga Clathromorphum compactum is a shallow marine calcareous plant that is abundant along the eastern Canadian coastline, and produces annual growth increments which allow for the precise calendar dating and geochemical sampling of hard tissue. Algal Ba/Ca ratios can serve as a promising new proxy for surface water productivity, demonstrating a close correspondence to δ13C that does not suffer from the anthropogenically-induced carbon isotope decline (ex. Suess Effect) beginning in the 1960s. Coralline algal Ba/Ca demonstrates statistically significant correlations to both observational and proxy records of sea-ice extent and transport variability, and shows a persistent pattern of covariability that is broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Lower algal Ba/Ca values are interpreted as increased productivity (via biological scavenging) coinciding with warming sea surface temperatures and melting of sea-ice, and vice versa. This relationship is further supported by negative correlations between algal Ba/Ca and spatially averaged chlorophyll α concentrations determined from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS; 1998 - 2009) ocean colour data. Extended comparisons to a multi-centennial tree-ring proxy AMO index demonstrates more frequent positive Ba/Ca excursions (indicating reduced productivity) associated with AMO cool phases during the Little Ice Age, followed by a step-wise decline in Ba/Ca (indicating increasing productivity) from 1910 to present levels - unprecedented in the last 365 years. Our multi-centennial record of coralline algal Ba/Ca in the Subarctic northwest Atlantic demonstrates a long-term increasing trend in primary productivity that is in agreement with recent satellite-based productivity in the Arctic Ocean. This ongoing increase in phytoplankton productivity is expected to fundamentally alter marine biodiversity and trophic dynamics as warming and freshening of the surface layer is projected to intensify over the coming century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.
This data set contain global gridded surfaces of Gross Primary Productivity (GPP) at 2 arc minute (approximately 4 km) spatial resolution monthly for the period of 2000-2014 derived from FLUXNET2015 (released July 12, 2016) observations using a representativeness based upscaling approach.
Harvest intensity and competition control impacts on loblolly pine fusiform rust incidence
Robert J. Eaton; Paula Spaine; Felipe G. Sanchez
2006-01-01
The Long Term Soil Productivity experiment tests the effects of soil compaction, surface organic matter removal, and understory control on net primary productivity. An unintended consequence of these treatments may be an effect on the incidence of fusiform rust [Cronartium quercuum (Berk.) Miy. ex Shirai f. sp. fusiforme Burdsall et Snow]. Loblolly pine (Pinus...
Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel
2013-01-01
Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...
Response of Antarctic cryoconite microbial communities to light.
Bagshaw, Elizabeth A; Wadham, Jemma L; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J; Fountain, Andrew G; Fitzsimons, Sean; Dubnick, Ashley
2016-06-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. © FEMS 2016.
Response of Antarctic cryoconite microbial communities to light
Bagshaw, Elizabeth A.; Wadham, Jemma L.; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J.; Fountain, Andrew G.; Fitzsimons, Sean; Dubnick, Ashley
2016-01-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. PMID:27095815
One-dimensional cold cap model for melters with bubblers
Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...
2015-07-28
The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less
NASA Astrophysics Data System (ADS)
Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma
2014-07-01
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.
Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru
2013-09-01
We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.
NASA Astrophysics Data System (ADS)
Uitz, Julia; Stramski, Dariusz; Gentili, Bernard; D'Ortenzio, Fabrizio; Claustre, Hervé
2012-06-01
An approach that combines a recently developed procedure for improved estimation of surface chlorophyll a concentration (Chlsurf) from ocean color and a phytoplankton class-specific bio-optical model was used to examine primary production in the Mediterranean Sea. Specifically, this approach was applied to the 10 year time series of satellite Chlsurfdata from the Sea-viewing Wide Field-of-view Sensor. We estimated the primary production associated with three major phytoplankton classes (micro, nano, and picophytoplankton), which also yielded new estimates of the total primary production (Ptot). These estimates of Ptot (e.g., 68 g C m-2 yr-1for the entire Mediterranean basin) are lower by a factor of ˜2 and show a different seasonal cycle when compared with results from conventional approaches based on standard ocean color chlorophyll algorithm and a non-class-specific primary production model. Nanophytoplankton are found to be dominant contributors to Ptot (43-50%) throughout the year and entire basin. Micro and picophytoplankton exhibit variable contributions to Ptot depending on the season and ecological regime. In the most oligotrophic regime, these contributions are relatively stable all year long with picophytoplankton (˜32%) playing a larger role than microphytoplankton (˜22%). In the blooming regime, picophytoplankton dominate over microphytoplankton most of the year, except during the spring bloom when microphytoplankton (27-38%) are considerably more important than picophytoplankton (20-27%).
Temporal and spatial patterns of phytoplankton production in Tomales Bay, California, U.S.A.
Cole, B.E.
1989-01-01
Primary productivity in the water column was measured 14 times between April 1985 and April 1986 at three sites in Tomales Bay, California, USA The conditions at these three stations encompassed the range of hydrographic conditions, phytoplankton biomass, phytoplankton community composition, and turbidity typical of this coastal embayment. Linear regression of the measured daily carbon uptake against the composite parameter B Zp Io (where B is the average phytoplankton biomass in the photic zone; Zp is the photic depth; and Io is the daily surface insolation) indicates that 90% of the variability in primary productivity is explained by variations in phytoplankton biomass and light availability. The linear function derived using Tomales Bay data is essentially the same as that which explains more than 80% of the variation in productivity in four other estuarine systems. Using the linear function and measured values for B, Zp, and Io, the daily photic-zone productivity was estimated for 10 sites at monthly intervals over the annual period. The average daily photic-zone productivity for the 10 sites ranged from 0??2 to 2??2 g C m-2. The bay-wide average annual primary productivity in the water column was 400 g C m-2, with most of the uptake occuring in spring and early summer. Spatial and temporal variations in primary productivity were similar to variations in phytoplankton biomass. Productivity was highest in the seaward and central regions of the bay and lowest in the shallow landward region. ?? 1989.
Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport
NASA Technical Reports Server (NTRS)
Englert, Peter A. J.
1988-01-01
Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.
Empirical retrieval of sea spray aerosol production using satellite microwave radiometry
NASA Astrophysics Data System (ADS)
Savelyev, I. B.; Yelland, M. J.; Norris, S. J.; Salisbury, D.; Pascal, R. W.; Bettenhausen, M. H.; Prytherch, J.; Anguelova, M. D.; Brooks, I. M.
2017-12-01
This study presents a novel approach to obtaining global sea spray aerosol (SSA) production source term by relying on direct satellite observations of the ocean surface, instead of more traditional approaches driven by surface meteorology. The primary challenge in developing this empirical algorithm is to compile a calibrated, consistent dataset of SSA surface flux collected offshore over a variety of conditions (i.e., regions and seasons), thus representative of the global SSA production variability. Such dataset includes observations from SEASAW, HiWASE, and WAGES field campaigns, during which the SSA flux was measured from the bow of a research vessel using consistent and state-of-the-art eddy covariance methodology. These in situ data are matched to observations of the state of the ocean surface from Windsat polarimetric microwave satellite radiometer. Previous studies demonstrated the ability of WindSat to detect variations in surface waves slopes, roughness and foam, which led to the development of retrieval algorithms for surface wind vector and more recently whitecap fraction. Similarly, in this study, microwave emissions from the ocean surface are matched to and calibrated against in situ observations of the SSA production flux. The resulting calibrated empirical algorithm is applicable for retrieval of SSA source term throughout the duration of Windsat mission, from 2003 to present.
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
A Shelterwood-Burn Technique for Regenerating Productive Upland Oak Sites in the Piedmont Region
Patrick H. Brose; David H. van Lear; Patrick D. Keyser
1999-01-01
Regenerating oak stands on productive uplandsires is widely recognized byforesters as a major problem in hardwood management. Recent research indicates that oak regeneration is more resistant to surface fires than its primary competitors on these sites if burning occurs 3 to 5 yr after a partial overstory harvest. This combination of cutting followed by fire (...
Bacterial and primary production in the Greenland Sea
NASA Astrophysics Data System (ADS)
Børsheim, Knut Yngve
2017-12-01
Bacterial production rates were measured in water profiles collected in the Greenland Sea and adjacent areas. Hydrography and nutrients throughout the water column were measured along 75°N from 12°W to 10°E at 20 km distance intervals. Net primary production rates from satellite sensed data were compared with literature values from 14C incubations and used for regional and seasonal comparisons. Maximum bacterial production rates were associated with the region close to the edge of the East Greenland current, and the rates decreased gradually towards the center of the Greenland Sea central gyre. Integrated over the upper 20 m the maximum bacterial production rate was 17.9 mmol C m- 2 day- 1, and east of the center of the gyre the average integrated rate was 4.6 mmol C m- 2 day- 1. It is hypothesized that high bacterial production rates in the western Greenland Sea were sustained by organic material carried from the Arctic Ocean by the East Greenland Current. The depth profiles of nitrate and phosphate were very similar both sides of the Arctic front, with 2% higher values between 500 m and 2000 m in the Arctic domain, and a N/P ratio of 13.6. The N/Si ratio varied by depth and region, with increasing silicate depletion from 1500 m depth to the surface. The rate of depletion from 1500 m depth to surface in the Atlantic domain was twice as high as in the Arctic domain. Net primary production rates in the area between the edge of the East Greenland current and the center of the Greenland Sea gyre was 96 mmol C m- 2 day- 1 at the time of the expedition in 2006, and 78 mmol C m- 2 day- 1 east of the center including the Atlantic domain. Annual net primary production estimated from satellite data in the Greenland Sea increased substantially in the period between 2003 and 2016, and the rate of increase was lowest close to the East Greenland Current.
Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico)
Naumann, Malik S.; Jantzen, Carin; Haas, Andreas F.; Iglesias-Prieto, Roberto; Wild, Christian
2013-01-01
High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems. PMID:24367570
Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhen; Wang, Y.; Gu, Dasa
2012-08-28
We analyze summertime photochemistry near the surface in Beijing, China, using a 1-D photochemical model (Regional chEmical and trAnsport Model, REAM-1D) constrained by in situ observations, focusing on the budgets of ROx (OH + HO2 + RO2) radicals and O3 formation. While the modeling analysis focuses on near-surface photochemical budgets, the implications for the budget of O3 in the planetary boundary layer are also discussed. In terms of daytime average, the total ROx primary production rate near the surface in Beijing is 6.6 ppbv per hour (ppbv h{sup 1}, among the highest found in urban atmospheres. The largest primary ROxmore » source in Beijing is photolysis of oxygenated volatile organic compounds (OVOCs), which produces HO2 and RO2 at 2.5 ppbv h{sup 1}1 and 1.7 ppbv h{sup 1}, respectively. Photolysis of excess HONO from an unknown heterogeneous source is the predominant primary OH source at 2.2 ppbv h{sup 1}, much larger than that of O1D+H2O (0.4 ppbv h{sup 1}). The largest ROx sink is via OH + NO2 reaction (1.6 ppbv h{sup 1}), followed by formation of RO2NO2 (1.0 ppbv h{sup 1}) and RONO2 (0.7 ppbv h{sup 1}). Due to the large aerosol surface area, aerosol uptake of HO2 appears to be another important radical sink, although the estimate of its magnitude is highly variable depending on the uptake coefficient value used. The daytime average O3 production and loss rates near the surface are 32 ppbv h{sup 1} and 6.2 ppbv h{sup 1}, respectively. Assuming NO2 to be the source of excess HONO, the NO2 to HONO transformation leads to considerable O3 loss and reduction of its lifetime. Our observation-constrained modeling analysis suggests that oxidation of VOCs (especially aromatics) and heterogeneous reactions (e.g. HONO formation and aerosol uptake HO2) play potentially critical roles in the primary radical budget and O3 formation in Beijing. One important ramification is that O3 production is neither NOx nor VOC limited, but in a transition regime where reduction of either NOx or VOCs could result in reduction of O3 production. The transition regime implies more flexibility in the O3 control strategies than a binary system of either NOx or VOC limited regime. The co-benefit of concurrent reduction of both NOx and VOCs in reducing column O3 production integrated in the planetary boundary layer is significant. Further research on the spatial extent of the transition regime over the polluted eastern China is critically important for controlling regional O3 pollution.« less
Concentration of floating biogenic material in convergence zones
NASA Astrophysics Data System (ADS)
Dandonneau, Yves; Menkes, Christophe; Duteil, Olaf; Gorgues, Thomas
Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of 1 month. The model shows that the distribution of FBM should depart rapidly from that of primary production, and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.
Production regimes in four eastern boundary current systems
NASA Technical Reports Server (NTRS)
Carr, M. E.; Kearns, E. J.
2003-01-01
High productivity (maxima 3 g C m(sup -2)day(sup -1)) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements ofthe wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highlycorrelated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due toavailability of iron, physical retention, or differences in planktonic community structure.
A Low O/Si Ratio on the Surface of Mercury: Evidence for Silicon Smelting?
NASA Astrophysics Data System (ADS)
McCubbin, Francis M.; Vander Kaaden, Kathleen E.; Peplowski, Patrick N.; Bell, Aaron S.; Nittler, Larry R.; Boyce, Jeremy W.; Evans, Larry G.; Keller, Lindsay P.; Elardo, Stephen M.; McCoy, Timothy J.
2017-10-01
Data from the Gamma-Ray Spectrometer (GRS) that flew on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft indicate that the O/Si weight ratio of Mercury's surface is 1.2 ± 0.1. This value is lower than any other celestial surface that has been measured by GRS and suggests that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. The origin of the metal is best explained by a combination of space weathering and graphite-induced smelting. The smelting process would have been facilitated by interaction of graphite with boninitic and komatiitic parental liquids. Graphite entrained at depth would have reacted with FeO components dissolved in silicate melt, resulting in the production of up to 0.4-0.9 wt % CO from the reduction of FeO to Fe0—CO production that could have facilitated explosive volcanic processes on Mercury. Once the graphite-entrained magmas erupted, the tenuous atmosphere on Mercury prevented the buildup of CO over the lavas. The partial pressure of CO would have been sufficiently low to facilitate reaction between graphite and SiO2 components in silicate melts to produce CO and metallic Si. Although exotic, Si-rich metal as a primary smelting product is hypothesized on Mercury for three primary reasons: (1) low FeO abundances of parental magmas, (2) elevated abundances of graphite in the crust and regolith, and (3) the presence of only a tenuous atmosphere at the surface of the planet within the 3.5-4.1 Ga timespan over which the planet was resurfaced through volcanic processes.
Estimators of primary production for interpretation of remotely sensed data on ocean color
NASA Technical Reports Server (NTRS)
Platt, Trevor; Sathyendranath, Shubha
1993-01-01
The theoretical basis is explained for some commonly used estimators of daily primary production in a vertically uniform water column. These models are recast into a canonical form, with dimensionless arguments, to facilitate comparison with each other and with an analytic solution. The limitations of each model are examined. The values of the photoadaptation parameter I(k) observed in the ocean are analyzed, and I(k) is used as a scale to normalize the surface irradiance. The range of this scaled irradiance is presented. An equation is given for estimation of I(k) from recent light history. It is shown how the models for water column production can be adapted for estimation of the production in finite layers. The distinctions between model formulation, model implementation and model evaluation are discussed. Recommendations are given on the choice of algorithm for computation of daily production according to the degree of approximation acceptable in the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, M. S.; Keene, William C.; Zhang, J.
2016-11-08
Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3 rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD ormore » Na +, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.« less
Cohen, R.R.; Pollock, S.O.
1983-01-01
Primary productivity by phytoplankton was measured on samples collected from the Potomac Tidal River, Maryland. The studies were performed monthly from May 1980 to September 1981. Additional studies were done once a week in August 1980, twice a week from August 4 to 8, 1980 and twice in September 1980. Depth-integrated samples were collected at five stations and incubated in boxes that were exposed to natural sunlight. The boxes were covered with neutral density filters transmitting 100 , 65, 32, 16, and 6 percent surface light. River water was pumped continuously over the samples. The extinction of light in the water column by phytoplankton was measured when samples were collected. Experiments were performed to select a method for routine productivity analysis. No difference was found between productivity: (1) determined in situ and in boxes; (2) measured in 300 ml and (4) calculated from short term (4 hours) and long term (10-24 hours) incubations. There were higher productivity differences in samples that were rotated among different light intensities every 15 minutes (simulating mixing) than those remaining stationary. Respiration was significantly less in samples pumped through a hose from those collected using a depth-integrating sampler. Depth-integrated primary productivity was determined from the productivity data using an equation modified from one reported in the literature. Depth-integrated gross primary productivity was highest in August 1980 and 1981 and lowest in January 1980. (USGS)
Sustained climate warming drives declining marine biological productivity
NASA Astrophysics Data System (ADS)
Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.
2018-03-01
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.
NASA Astrophysics Data System (ADS)
Paiewonsky, Pablo; Elison Timm, Oliver
2018-03-01
In this paper, we present a simple dynamic global vegetation model whose primary intended use is auxiliary to the land-atmosphere coupling scheme of a climate model, particularly one of intermediate complexity. The model simulates and provides important ecological-only variables but also some hydrological and surface energy variables that are typically either simulated by land surface schemes or else used as boundary data input for these schemes. The model formulations and their derivations are presented here, in detail. The model includes some realistic and useful features for its level of complexity, including a photosynthetic dependency on light, full coupling of photosynthesis and transpiration through an interactive canopy resistance, and a soil organic carbon dependence for bare-soil albedo. We evaluate the model's performance by running it as part of a simple land surface scheme that is driven by reanalysis data. The evaluation against observational data includes net primary productivity, leaf area index, surface albedo, and diagnosed variables relevant for the closure of the hydrological cycle. In this setup, we find that the model gives an adequate to good simulation of basic large-scale ecological and hydrological variables. Of the variables analyzed in this paper, gross primary productivity is particularly well simulated. The results also reveal the current limitations of the model. The most significant deficiency is the excessive simulation of evapotranspiration in mid- to high northern latitudes during their winter to spring transition. The model has a relative advantage in situations that require some combination of computational efficiency, model transparency and tractability, and the simulation of the large-scale vegetation and land surface characteristics under non-present-day conditions.
Why mushrooms form gills: efficiency of the lamellate morphology
FISCHER, Mark W. F.; MONEY, Nicholas P.
2009-01-01
Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of freestanding lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. PMID:20965062
Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas
2014-07-01
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.
Terrestrial ecosystems in a changing environment
USDA-ARS?s Scientific Manuscript database
Transpiration—the movement of water from the soil, through plants, and into the atmosphere—is the dominant water flux from the earth’s terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alteration...
Fabrication of the LSST monolithic primary-tertiary mirror
NASA Astrophysics Data System (ADS)
Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Ketelsen, Dean A.; Law, Kevin; Gressler, William J.; Zhao, Chunyu
2012-09-01
As previously reported (at the SPIE Astronomical Instrumentation conference of 2010 in San Diego1), the Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona’s Steward Observatory Mirror Lab. We will provide an update to the status of the mirrors and metrology systems, which have advanced from concepts to hardware in the past two years. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab, reducing the degrees of freedom needed to be controlled in the telescope. The surface specification is described as a structure function, related to seeing in excellent conditions. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper details the manufacturing process and metrology systems for each surface, including the alignment of the two surfaces. M1 is a hyperboloid and can utilize a standard Offner null corrector, whereas M3 is an oblate ellipsoid, so it has positive spherical aberration. The null corrector is a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature. Laser trackers are relied upon to measure the alignment and spacing as well as rough-surface metrology during looseabrasive grinding.
NASA Astrophysics Data System (ADS)
Dierssen, Heidi M.; Randolph, Kaylan
The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats (e.g., seagrasses, kelps), eutrophication processes, oil spills, and a variety of hazards in the coastal zone.
Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.
Brown, Paul A; Messina, Michael
2016-03-03
We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.
Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S
2011-01-01
Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales. © Mary Ann Liebert, Inc.
NASA Astrophysics Data System (ADS)
Pourmand, Ali; Marcantonio, Franco; Bianchi, Thomas S.; Canuel, Elizabeth A.; Waterson, Elizabeth J.
2007-12-01
Uranium series radionuclides and organic biomarkers, which represent major groups of planktonic organisms, were measured in western Arabian Sea sediments that span the past 28 ka. Variability in the past strength of the southwest and northeast monsoons and its influence on primary productivity, sea surface temperature (SST), and planktonic community structure were investigated. The average alkenone-derived SST for the last glacial period was ˜3°C lower than that measured for the Holocene. Prior to the deglacial, the lowest SSTs coincide with the highest measured fluxes of organic biomarkers, which represent primarily a planktonic suite of diatoms, coccolithophorids, dinoflagellates, and zooplankton. We propose that intensification of winter northeast monsoon winds during the last glacial period resulted in deep convective mixing, cold SSTs and enhanced primary productivity. In contrast, postdeglacial (<17 ka) SSTs are warmer during times in which biomarker fluxes are high. Associated with this transition is a planktonic community structure change, in which the ratio of the average cumulative flux of diatom biomarkers to the cumulative flux of coccolithophorid biomarkers is twice as high during the deglacial and Holocene than the average ratio during the last glacial period. We suggest that this temporal transition represents a shift from a winter northeast monsoon-dominated (pre-17 ka) to a summer southwest monsoon-dominated (post-17 ka) wind system.
Rambhatla, S; Tchessalov, S; Pikal, Michael J
2006-04-21
The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.
Solar Versus Fission Surface Power for Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.;
2016-01-01
A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.
Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David
2013-01-01
Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.
Carrasco, Erica; Smith, Kenneth J; Meloni, Giovanni
2018-01-11
The reactions of furan and 2-methylfuran with methylidyne CH (X 2 Π) radical were investigated at 298 K using synchrotron radiation produced at the Advanced Light Source of the Lawrence Berkeley National Laboratory. Reaction products were observed by multiplexed photoionization mass spectrometry and characterized based on their photoionization spectra and kinetic time traces. Primary products observed in furan + CH are 2,4-cyclopentadien-1-one (m/z = 80), 2-penten-4-ynal (m/z = 80), and vinylacetylene (m/z = 52). From 2-methylfuran + CH, 2-4-cyclopentadien-1-carbaldehyde (m/z = 94), 2,3,4-hexatrienal (m/z = 94), 1,3 cyclopentadiene (m/z = 66), 3-penten-1-yne (Z) (m/z = 66), and vinylacetylene (m/z = 52) are the primary products observed. Using potential energy surface scans, thermodynamically favorable reaction pathways are proposed. CH addition to the π-bonds in furan and 2-methylfuran rings was found to be the entrance channel that led to formation of all identified primary products. Both reactions follow patterns of H loss and CHO loss, as well as formation of cyclic and acyclic isomers.
Liquid phase products and solid deposit formation from thermally stressed model jet fuels
NASA Technical Reports Server (NTRS)
Kim, W. S.; Bittker, D. A.
1984-01-01
The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.
Optical testing of the LSST combined primary/tertiary mirror
NASA Astrophysics Data System (ADS)
Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Gressler, William J.; Zhao, Chunyu
2010-07-01
The Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona's Steward Observatory Mirror Lab. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper describes the basic metrology systems for each surface, with particular attention to the alignment of the two surfaces. These surfaces are aspheric enough to require null correctors for each wavefront. Both M1 and M3 are concave surfaces with both non-zero conic constants and higher-order terms (6th order for M1 and both 6th and 8th orders for M3). M1 is hyperboloidal and can utilize a standard Offner null corrector. M3 is an oblate ellipsoid, so has positive spherical aberration. We have chosen to place a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature (CoC), whereas the M1 null lens is beyond the CoC. One relatively new metrology tool is the laser tracker, which is relied upon to measure the alignment and spacings. A separate laser tracker system will be used to measure both surfaces during loose abrasive grinding and initial polishing.
Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean
NASA Astrophysics Data System (ADS)
Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki
2017-12-01
In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (< 200 µatm) in the Chukchi Sea of the western Arctic Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low (< 27) and pCO2sea was closer to the air-sea CO2 equilibrium (˜ 360 µatm). From the relationships between salinity and total alkalinity, we confirmed that the low salinity in the Canada Basin was due to the larger fraction of meltwater input (˜ 0.16) rather than the riverine discharge (˜ 0.1). Such an increase in pCO2sea was not so clear in the coastal region near Point Barrow, where the fraction of riverine discharge was larger than that of sea-ice melt. We also identified low pCO2sea (< 250 µatm) in the depth of 30-50 m under the halocline of the Canada Basin. This subsurface low pCO2sea was attributed to the advection of Pacific-origin water, in which dissolved inorganic carbon is relatively low, through the Chukchi Sea where net primary production is high. Oxygen supersaturation (> 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
Sustained climate warming drives declining marine biological productivity
Moore, J. Keith; Fu, Weiwei; Primeau, Francois; ...
2018-03-01
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less
Sustained climate warming drives declining marine biological productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J. Keith; Fu, Weiwei; Primeau, Francois
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less
Gittens, Rolando A; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L; Schneider, Jennifer M; Schwartz, Zvi; Sandhage, Kenneth H; Boyan, Barbara D
2012-12-01
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gittens, Rolando A.; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L.; Schneider, Jennifer M.; Schwartz, Zvi; Sandhage, Kenneth H.; Boyan, Barbara D.
2013-01-01
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. PMID:22989383
Solution blow spinning of food-grade gelatin nanofibers
USDA-ARS?s Scientific Manuscript database
The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food-grade gelatin nanofibers from mammalian and fishery by-products, such as pork skin gelatins (PGs) and...
1991-09-01
by 2.7 m (4 ft by 9 ft) sheets with cross cuts every 32 mm (1.25 in) through 90 per cent of its thickness. This allows the sheets to drape easily over...aluminium substrates. This procedure has many uses such as the production of dual hardness armour . An example of its primary use on wear surfaces could
Improved assessment of gross and net primary productivity of Canada's landmass
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien
2013-12-01
assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.
Anthropogenic disturbance of element cycles at the Earth's surface.
Sen, Indra S; Peucker-Ehrenbrink, Bernhard
2012-08-21
The extent to which humans are modifying Earth's surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts (Klee and Graedel, 2004). We quantify anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compare it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions, and for helium, hydrodynamic escape from the Earth's atmosphere. We introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporate uncertainties of element mass fluxes through Monte Carlo simulations. We find that at the Earth's surface anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes. For these elements mining is the major factor of anthropogenic influence, whereas petroleum burning strongly influences the surficial cycle of rhenium. Our assessment indicates that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements surpass their corresponding natural fluxes.
Estimated nitrogen and phosphorus inputs to the Fish Creek watershed, Teton County, Wyoming, 2009–15
Eddy-Miller, Cheryl A.; Sando, Roy; MacDonald, Michael J.; Girard, Carlin E.
2016-12-15
Nutrients, such as nitrogen and phosphorus, are essential for plant and animal growth and nourishment, but the overabundance of bioavailable nitrogen and phosphorus in water can cause adverse health and ecological effects. It is generally accepted that increased primary production of surface-water bodies because of high inputs of nutrients is now the most important polluting effect in surface water in the developed world.
NASA Astrophysics Data System (ADS)
Straškrábová, V.; Izmest'yeva, L. R.; Maksimova, E. A.; Fietz, S.; Nedoma, J.; Borovec, J.; Kobanova, G. I.; Shchetinina, E. V.; Pislegina, E. V.
2005-04-01
Three years of regular weekly/biweekly monitoring of seasonal changes in temperature, transparency, chlorophyll a (CHL) and bacteria [erythrosine-stained microscopic counts and cultivable colony forming units (CFUs)] at the vertical profile in the South basin of Lake Baikal (51°54'195″N, 105°04'235″E, depth 800 m) were evaluated. In more detail, the structure and function of phytoplankton and the microbial loop in the euphotic layer at the same site were investigated during the late-winter-early-spring period under the ice. The depth of euphotic zone (up to 1% of surface irradiation) was 35 to 40 m. Primary production was measured three times a week with the 14C method in 2, 10, 20, 30 and 40 m. Maximum production was found in 10 m, with lower values towards the surface (light inhibition) and towards the lower layers. The total production in cells larger than 1 μm in the column (0-40 m) was 204-240 mg C d -1 m -2, 30-40% of it being in cells 1-3 μm (mostly picocyanobacteria), which represented roughly 9% of the total chlorophyll a (estimated from pigment analyses). A major part of phytoplankton biomass was formed by diatoms ( Synedra acus Hust., Asterionella formosa Hass. and Stephanodiscus meyerii Genkal & Popovskaya). Total production (including extracellular, dissolved organic matter) was 235-387 mg C day -1 m -2, and the exudates were readily used by bacteria (particles 0.2-1 μm). This part amounted to 1-5% of cellular production in 2 to 20 m and 11-77% of cellular production in 20-40 m, i.e., in light-limited layers. From 0 to 30 m, chlorophyll a concentration was 0.8 to 1.3 μg l -1, wherefrom it decreased rapidly to 0.1 μg l -1 towards the depth of 40 m. Bacteria (DAPI-stained microscopic counts) reached 0.5-1.4×10 6 ml -1; their cell volumes measured via image analysis were small (average 0.05 μm -3), often not well countable when erythrosine stain was used. Bacterial biomasses were in the range of 6-21 μg C l -1. Numbers of colony forming units (CFUs) on nutrient fish-agar were c. 3-4 orders lower than DAPI counts. The amounts of heterotrophic protists were low, whereby flagellates reached 6 to 87 ml -1 and ciliates, 0.2-1.2 ml -1 (mostly Oligotrichida). Bacterial production was measured in the same depths as primary production using 3H-thymidine (Thy) and 14C-leucine (Leu) uptake. Consistently, bacterial abundances, biomasses, thymidine and leucine production were higher by 30-50% in layers 2, 10 and 20 m compared with that in the deeper 30 and 40 m, where cellular primary production was negligible. Leucine uptake in the deeper layers was even three times lower than in the upper ones. From the comparison of primary and bacterial production, bacteria roughly use 20-40% of primary production during 24 h in the layers 2 to 20 m.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.
2010-12-01
Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how contemporary changes in fire activity and land use are changing the global carbon cycle.
NASA Astrophysics Data System (ADS)
Beckmann, Aike; Hense, Inga
2007-12-01
This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.
The fate of production in the central Arctic Ocean - top-down regulation by zooplankton expatriates?
NASA Astrophysics Data System (ADS)
Olli, Kalle; Wassmann, Paul; Reigstad, Marit; Ratkova, Tatjana N.; Arashkevich, Elena; Pasternak, Anna; Matrai, Patricia A.; Knulst, Johan; Tranvik, Lars; Klais, Riina; Jacobsen, A.
2007-01-01
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m -2 d -1 (mean 93 mg C m -2 d -1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m -3 in the upper 20 m and <0.02 mg Chl m -3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 10 5, mean 4.1 × 10 5 cells ml -1 in the upper 20 m and 1.3-3.7 × 10 5, mean 1.9 × 10 5 cells ml -1 below) and Chl concentrations were closely correlated ( r = 0.75). Mineral nutrients (3 μmol NO 3 l -1, 0.45 μmol PO 4 l -1, 4-5 μmol SiO 4 l -1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m -3 and PON ∼5.4-14.9 (mean 8.2) mg N m -3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m -2 d -1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m -2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m -2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m -2 d -1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.
What Controls Seasonal Variation of Phytoplankton Growth in the East China Sea?
NASA Astrophysics Data System (ADS)
Liu, K.; Chao, S.; Lee, H.; Gong, G.; Teng, Y.
2009-05-01
The seasonal variation of phytoplankton growth in the East China Sea (ECS) is simulated with a three- dimensional coupled physical-biogeochemical model, which includes discharges from Changjiang (aka the Yangtze River). The purpose is to determine the main control on the seasonality of primary productivity in the ECS shelf, which nurtures rich biological resources. The model has a horizontal resolution of 1/6 degree in the domain from 23N to 41N and from 116E to 134E, excluding the Japan/East Sea, and 33 layers in the vertical. The nitrogen-based biogeochemical model has four compartments: dissolved inorganic nitrogen (DIN), phytoplankton, zooplankton and detritus. The chlorophyll to phytoplankton ratio depends on light and DIN availability. The model is driven by monthly climatological winds with the sea surface temperature, salinity and DIN relaxed towards the climatological mean values. It successfully reproduces the observed seasonal variation of phytoplankton growth over the ECS shelf with a strong peak in later spring and summer. The modeled annual mean primary production over the entire ECS shelf is 439 mg C m-2 d-1, which falls within the reported range of 390-529 mg C m-2 d-1. It also reproduces the marked gradient of DIN across the shelf decreasing away from the Changjiang River plume. An alternative model run, Free-N, which deviates from the standard run by essentially removing nudging on DIN, generates the same seasonal pattern of primary productivity but somewhat reduced productivity. In yet another alternative run, Fix-PAR, which deviates from Free-N by removing the seasonal cycle of photosynthetically active radiation, the seasonality of primary productivity almost vanishes. These model results demonstrate that light availability is the major control on the seasonality of primary productivity. However, nutrient supply from vertical nutrient pumping and from Changjiang discharges is still important. It is the insufficient nutrient pumping that leads to the lowered primary production predicted by the Free-N experiment.
Lightning NOx and Impacts on Air Quality
NASA Technical Reports Server (NTRS)
Murray, Lee T.
2016-01-01
Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.
The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse
NASA Technical Reports Server (NTRS)
Zachos, J. C.; Arthus, M. A.; Dean, W. E.
1988-01-01
The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.
Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration
2014-07-01
The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
Why mushrooms form gills: efficiency of the lamellate morphology.
Fischer, Mark W F; Money, Nicholas P
2010-01-01
Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of free-standing lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas
2014-01-01
Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.].
Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F
2009-01-01
The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.; Bianchi, T.
2006-12-01
Uranium-series radionuclides and organic compounds, which represent major groups of planktonic organisms, have been measured in western Arabian Sea sediments that span the past 28 ka. Variability of the Indian Ocean monsoons and their influence on primary productivity, sea surface temperature (SST), and planktonic community structure has been investigated. The average alkenone-derived SST for the glacial was ~3°C lower than that measured for the Holocene. We also identify, for the first time, an interval of exceptionally low SSTs between 19-18.1 ka BP (15.3°C at 18.5 ka). During this time, the low SSTs coincide with high cumulative biomarker fluxes (CBF). We propose that intensification of winter northeast monsoon winds during the glacial period resulted in cold SSTs, deep convective mixing, and enhanced primary productivity. Following the last termination, and within the Holocene, SSTs vary by ~2°C with high CBFs occurring at times of relatively warmer SSTs. The fluxes of dinoflagellates and zooplankton relative to the total flux of organisms remain constant throughout the record. However, transitioning from the glacial to the Holocene, diatom fluxes comparatively increase relative to the total flux of organisms, while those of coccolithophorids decrease. Considering that the Indian Ocean monsoons are an important component of the global climate system, a shift in the planktonic ecosystem structure in the Arabian Sea may have important implications for the global biogeochemical cycle of carbon.
NASA Astrophysics Data System (ADS)
Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; D'Ortenzio, Fabrizio; Severin, Tatiana; Taillandier, Vincent; Conan, Pascal
2018-03-01
A 3-D high-resolution coupled hydrodynamic-biogeochemical model of the western Mediterranean was used to study phytoplankton dynamics and organic carbon export in three regions with contrasting vertical regimes, ranging from deep convection to a shallow mixed layer. One month after the initial increase in surface chlorophyll (caused by the erosion of the deep chlorophyll maximum), the autumnal bloom was triggered in all three regions by the upward flux of nutrients resulting from mixed layer deepening. In contrast, at the end of winter, the end of turbulent mixing favored the onset of the spring bloom in the deep convection region. Low grazing pressure allowed rapid phytoplankton growth during the bloom. Primary production in the shallow mixed layer region, the Algerian subbasin, was characterized by a long period (4 months) of sustained phytoplankton development, unlike the deep convection region where primary production was inhibited during 2 months in winter. Despite seasonal variations, annual primary production in all three regions is similar. In the deep convection region, total organic carbon export below the photic layer (150 m) and transfer to deep waters (800 m) was 5 and 8 times, respectively, higher than in the Algerian subbasin. Although some of the exported material will be injected back into the surface layer during the next convection event, lateral transport, and strong interannual variability of MLD in this region suggest that a significant amount of exported material is effectively sequestrated.
NASA Astrophysics Data System (ADS)
Paparazzo, Flavio E.; Williams, Gabriela N.; Pisoni, Juan P.; Solís, Miriam; Esteves, José L.; Varela, Diana E.
2017-08-01
We compared biological and chemical parameters in surface waters of the Gulf of San Jorge to better understand carbon export and the factors that control phytoplankton production in an area of the Argentinian Continental Shelf, a vastly under sampled region of the SW Atlantic Ocean. In April of 2012, we estimated new and regenerated primary production in the Gulf by measuring nitrate and ammonium uptake, respectively. We also measured macronutrient, and in situ chlorophyll-a concentrations, which were compared to chlorophyll-a estimates from remote sensing. Although the Gulf of San Jorge presents high levels of chlorophyll-a and primary production, the relationship between these parameters is not straightforward. Previous studies showed that surface chlorophyll-a explains only part of the variance in euphotic-zone integrated primary production, and that satellite-derived chlorophyll-a underestimates in situ primary production. Our results showed large spatial variability in the Gulf, with transitional physico-chemical conditions, such as fronts, that could favor an increase in biological production. In situ chlorophyll-a concentrations were highest at the mid-shelf station (6.0 mg m- 3) and lowest at the northernmost location by an order of magnitude. Remote sensing measurements of chlorophyll-a underestimated our in situ chlorophyll-a concentrations. Total nitrogen (nitrate + ammonium) uptake showed relatively similar rates throughout the study area (≈ 130 nM-N d- 1), except in the northernmost station where it was much lower (53 nM-N d- 1). This north region had a distinct water mass and maximal levels of macronutrients (nitrate ≈ 6 μM, ammonium ≈ 1.2 μM, phosphate ≈ 1.2 μM and silicic acid ≈ 4 μM). For the entire sampling region, chlorophyll-a concentrations strongly correlated with total nitrogen uptake (r = 0.76, n = 8, p < 0.05) and new primary production (r = 0.78, n = 8, p < 0.05). Values of the f-ratio were 0.9 in mid-shelf, and ranged between 0.35 and 0.45 in inner and coastal stations. Our results indicate that highest carbon export may occur in the outer part of the Gulf, closer to the mid-shelf region. Further studies will be necessary to better understand the functioning of this ecosystem, including the impact of fisheries and horizontal transport by currents in the overall CO2 balance.
2014-09-30
be used for habitat modeling include sea surface temperature (SST), sea surface height (SSH), chlorophyll a concentration, and primary production...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Blue and Fin Whale Habitat Modeling from Long-Term Year...predictive, year-round habitat models of the presence of calling blue and fin whales in the Southern California Bight, to facilitate Navy’s operational
Alvarez, Sara D.; Derfus, Austin M.; Schwartz, Michael P.; Bhatia, Sangeeta N.; Sailor, Michael J.
2008-01-01
Porous Si is a nanostructured material that is of interest for molecular and cell-based biosensing, drug delivery, and tissue engineering applications. Surface chemistry is an important factor determining the stability of porous Si in aqueous media, its affinity for various biomolecular species, and its compatibility with tissues. In this study, the attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported, and the ability of the porous Si films to retain their optical reflectivity properties relevant to molecular biosensing is assessed. Four chemical species grafted to the porous Si surface are studied: silicon oxide (via ozone oxidation), dodecyl (via hydrosilylation with dodecene), undecanoic acid (via hydrosilylation with undecylenic acid), and oligo(ethylene) glycol (via hydrosilylation with undecylenic acid followed by an oligo(ethylene) glycol coupling reaction). Fourier Transform Infrared (FTIR) spectroscopy and contact angle measurements are used to characterize the surface. Adhesion and short-term viability of primary rat hepatocytes on these surfaces, with and without pre-adsorption of collagen type I, are assessed using vital dyes (calcein-AM and ethidium homodimer I). Cell viability on undecanoic acid-terminated porous Si, oxide-terminated porous Si, and oxide-terminated flat (non-porous) Si are monitored by quantification of albumin production over the course of 8 days. The stability of porous Si thin films after 8 days in cell culture is probed by measuring the optical interferometric reflectance spectra. Results show that hepatocytes adhere better to surfaces coated with collagen, and that chemical modification does not exert a deleterious effect on primary rat hepatocytes. The hydrosilylation chemistry greatly improves the stability of porous Si in contact with cultured primary cells while allowing cell coverage levels comparable to standard culture preparations on tissue culture polystyrene. PMID:18845334
Frontal dynamics boost primary production in the summer stratified Mediterranean sea
NASA Astrophysics Data System (ADS)
Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda
2017-06-01
Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.
Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.
2003-01-01
Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.
Early diagenesis and trace element accumulation in North American Arctic margin sediments
NASA Astrophysics Data System (ADS)
Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.
2017-04-01
Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production combined with a shallow water column (average 64 m) leads to high rates of authigenic trace element accumulation in sediments from the Bering-Chukchi shelves. High to moderate primary production combined with deep water (average 610 m) leads to moderate rates of authigenic trace element accumulation in sediments from Lancaster Sound. Low to very low primary production combined with moderate water depths (average 380 m) leads to low rates of authigenic trace element accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes significantly to metabolism in Arctic margin sediments. Our results suggest that the broad and shallow shelf of the Chukchi Sea, which has high productivity sustained by imported nutrients, contributes disproportionately to global biogeochemical cycles.
Wu, Zhiqiang; Yang, Wangcai; Li, Yaowu; Yang, Bolun
2018-05-01
In this work, the distributions and releasing properties of the primary volatile products during co-pyrolysis of low-rank coal and green algae (GA) has been studied using fixed-bed reactor with online mass spectrometry. Surface morphology of the char was described quantitatively by SEM combined with fractal theory. Different forms of synergistic effects existed from both the yields of products and composition of the main gaseous products. Positive synergistic effects from tar yield were observed under 25% of GA from 600 to 850 °C, indicating GA promoted the formation of tar. Opposite synergistic effects on the content of H 2 and CO were gained when the mass ratio of GA was 50%. The fractal dimensions of co-pyrolysis char were less than the calculated values except under 650 °C, which meant the GA promoted the homogeneity of char surface. This work could provide essential data for proper operation parameters selecting for co-pyrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Polymeric carbon nitride for solar hydrogen production.
Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas
2017-07-04
If solar hydrogen production from water is to be a realistic candidate for industrial hydrogen production, the development of photocatalysts, which avoid the use of expensive and/or toxic elements is highly desirable from a scalability, cost and environmental perspective. Metal-free polymeric carbon nitride is an attractive material that can absorb visible light and produce hydrogen from water. This article reviews recent developments in polymeric carbon nitride as used in photocatalysis and then develops the discussion focusing on the three primary processes of a photocatalytic reaction: light-harvesting, carrier generation/separation/transportation and surface reactions.
Comparisons of MODIS vegetation index products with biophysical and flux tower measurements
NASA Astrophysics Data System (ADS)
Sirikul, Natthanich
Vegetation indices (VI) play an important role in studies of global climate and biogeochemical cycles, and are also positively related to many biophysical parameters and satellite products, such as leaf area index (LAI), gross primary production (GPP), land surface water index (LSWI) and land surface temperature (LST). In this study we found that VI's had strong relationships with some biophysical products, such as gross primary production, yet were less well correlated with biophysical structural parameters, such as leaf area index. The relationships between MODIS VI's and biophysical field measured LAI showed poor correlation at semi-arid land and broadleaf forest land cover type whereas cropland showed stronger correlations than the other vegetation types. In addition, the relationship between the enhanced vegetation index (EVI)-LAI and normalized difference vegetation index (NDVI)-LAI did not show significant differences. Comparisons of the relationships between the EVI and NDVI with tower-measured GPP from 11 flux towers in North America, showed that MODIS EVI had much stronger relationships with tower-GPP than did NDVI, and EVI was better correlated with the seasonal dynamics of GPP than was NDVI. In addition, there were no significant differences among the 1x1, 3x3 and 7x7 pixel sample sizes. The comparisons of VIs from the 3 MODIS products from which VI's are generated (Standard VI (MOD13)), Nadir Adjusted Surface Reflectance (NBAR (MOD43)), and Surface Reflectance (MOD09)), showed that MODIS NBAR-EVI (MOD43) was best correlated with GPP compared with the other VI products. In addition, the MODIS VI - tower GPP relationships were significantly improved using NBAR-EVI over the more complex canopy structures, such as the broadleaf and needleleaf forests. The relationship of tower-GPP with other MODIS products would be useful in more thorough characterization of some land cover types in which the VI's have encountered problems. The land surface temperature (LST) product were found useful for empirical estimations of GPP in needleleaf forests, but were not useful for the other land cover types, whereas the land surface water index (LSWI) was more sensitive to noise from snowmelt, ground water table levels, and wet soils than to the canopy moisture levels. Also the MODIS EVI was better correlated with LST than was NDVI. Finally, the cross-site comparisons of GPP and multi-products from MODIS showed that the relationships between EVI and GPP were the strongest while LST and GPP was the weakest. EVI may thus be useful in scaling across landscapes, including heterogeneous ones, for regional estimations of GPP, especially if BRDF effects have been taken into account (such as with the NBAR product). Thus, the relationships of EVI-GPP over space and time would potentially provide much useful information for studies of the global carbon cycle.
Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas
2016-01-01
Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. PMID:25357184
Combined constraints on global ocean primary production using observations and models
NASA Astrophysics Data System (ADS)
Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le
2013-09-01
production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G; Aires, Filipe; Green, Julia K; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-01-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
NASA Astrophysics Data System (ADS)
Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-09-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
Primary productivity of the Palmer Long Term Ecological Research Area and the Southern Ocean
NASA Astrophysics Data System (ADS)
Smith, R. C.; Baker, K. S.; Byers, M. L.; Stammerjohn, S. E.
1998-11-01
A major objective of the Palmer Long Term Ecological Research (Palmer LTER) project is to obtain a comprehensive understanding of the various components of the Antarctic marine ecosystem. Phytoplankton production plays a key role in this so-called high nutrient, low chlorophyll environment, and factors that regulate production include those that control cell growth (light, temperature, and nutrients) and those that control cell accumulation rate and hence population growth (water column stability, grazing, and sinking). Sea ice mediates several of these factors and frequently conditions the water column for a spring bloom which is characterized by a pulse of production restricted in both time and space. This study models the spatial and temporal variability of primary production within the Palmer LTER area west of the Antarctic Peninsula and discusses this production in the context of historical data for the Southern Ocean. Primary production for the Southern Ocean and the Palmer LTER area have been computed using both light-pigment production models [Smith, R.C., Bidigare, R.R., Prézelin, B.B., Baker, K.S., Brooks, J.M., 1987. Optical characterization of primary productivity across a coastal front. Mar. Biol. (96), 575-591; Bidigare, R.R., Smith, R.C., Baker, K.S., Marra, J., 1987. Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations. Global Biogeochem. Cycles (1), 171-186; Morel, A., Berthon, J.F., 1989. Surface pigments, algal biomass profiles and potential production of the euphotic layer—relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. (34), 1545-1562] and an ice edge production model [Nelson, D.M., Smith, W.O., 1986. Phytoplankton bloom dynamics of the western Ross Sea ice edge: II. Mesoscale cycling of nitrogen and silicon. Deep-Sea Res. (33), 1389-1412; Wilson, D.L., Smith, W.O., Nelson, D.M., 1986. Phytoplankton bloom dynamics of the Western Ross Sea ice edge: I. primary productivity and species-specific production. Deep-Sea Res., 33, 1375-1387; Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production in the Southern Ocean. BioScience (36), 251-257]. Chlorophyll concentrations, total photosynthetically available radiation (PAR) and sea ice concentrations were derived from satellite data. These same parameters, in addition to hydrodynamic conditions, have also been determined from shipboard and Palmer Station observations during the LTER program. Model results are compared, sensitivity studies evaluated, and productivity of the Palmer LTER region is discussed in terms of its space time distribution, seasonal and interannual variability, and overall contribution to the marine ecology of the Southern Ocean.
Microbes in a bottle: Where model organisms and analog systems meet
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Weber, M.; Lott, C.; Havig, J. R.; Clark, C.; Bird, L. R.; de Beer, D.; Dron, A.; Freeman, K. H.; Macalady, J. L.
2015-12-01
Understanding the evolution of the Earth's surface chemistry is one of the most exciting challenges in modern geoscience. The Great Oxidation Event occurred ~2.5 Ga, when the concentration of oxygen in the atmosphere increased from <0.001% of the present atmospheric level (PAL) to within 1-10%. Following the initial rise, concentrations of O2 in the atmosphere and oceans remained well below present-day atmospheric levels through the Proterozoic until a second rise ~0.6 Ga to levels around those observed today. Thus, for much of Earth's history, deep oceans probably remained oxygen-poor until the most recent increase in atmospheric O2. In addition to low levels of O2, at least portions of the oceans were euxinic (sulfide-rich) with H2S often reaching the photic zone. Oxygenic photosynthesis is the largest source of O2 in the atmosphere. Primary productivity and the remineralization of organic matter are intimately linked to planetary redox and thus to levels of O2. As a result, biologic carbon isotope fractionation and other biomarkers (i.e. hopanoids) facilitate our interpretation of biogeochemical cycling during the Proterozoic Eon. Here, we describe the isolation and characterization of two photoautotrophs—the dominant primary producers—from a Proterozoic Ocean analog. We examined the 13C fractionation in the microbial mat and employed in situ microcosms to estimate primary productivity. In addition, we deployed diver-operated microsensors to determine oxygen production and sulfide consumption over a 24-hour cycle and sequenced total RNA from 4 time points. Using these data, we examined primary production in pure cultures of the dominant Cyanobacteria and green sulfur bacteria from the mat under conditions that mimic those observed in situ. We use this information to begin to build a model of oxygen production and organic carbon burial in a Proterozoic-like environment where Cyanobacteria can contribute to primary productivity in the absence of oxygen production. Furthermore, we examined the differences between 13C fractionation in cultures maintained under "ideal" conditions compared to those observed in situ. Collectively, the RNA sequencing data, the in situ primary productivity data and pure culture information were necessary to interpret the 13C signal from the mats.
NASA Astrophysics Data System (ADS)
Daryabor, Farshid; Abu Samah, Azizan; Hai Ooi, See
2016-04-01
The ecosystem off the east coast of Peninsular Malaysia is controlled by multiple physical processes during the monsoons (winter and summer) , including the air-sea interaction (such as net heat and surface freshwater fluxes), the small-scale eddies off the southern South China Sea (SSCS), and the monsoon wind induced coastal upwelling. Using high-resolution Regional Ocean Modeling System (ROMS), in-situ observations and remote sensing data, this paper attempts to study the hydrodynamics of the shelf and coastal processes as well as thermohaline circulation in response to changes in the hydrological seasonal cycle especially in the summer monsoon. In addition, we investigate its impacts on the spatial patterns of chlorophyll biomass which acts as a proxy for primary productivity in the SSCS. This study looks into not only the detailed small-scale-circulation such as localized eddies but also the link between the southern South China Sea and the Indian Ocean through the Straits of Malacca and the Java Sea. The flow through the Strait of Malacca and the Java Sea is not only important for navigational purpose but also has an influence on the seasonal spatial and temporal variations of primary productivity in the region. Keywords: southern South China Sea; summer monsoon; coastal upwelling; primary productivity
The Biogeochemical Role of Antarctic Krill and Baleen Whales in Southern Ocean Nutrient Cycling.
NASA Astrophysics Data System (ADS)
Ratnarajah, L.
2015-12-01
Iron limits primary productivity in large areas of the Southern Ocean. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but evidence on their contribution is scarce. We analysed the concentration of iron in Antarctic krill and baleen whale faeces and muscle. Iron concentrations in Antarctic krill were over 1 million times higher, and whale faecal matter were almost 10 million times higher than typical Southern Ocean High Nutrient Low Chlorophyll seawater concentrations. This suggests that Antarctic krill act as a reservoir of in in Southern Ocean surface waters, and that baleen whales play an important role in converting this fixed iron into a liquid form in their faeces. We developed an exploratory model to examine potential contribution of blue, fin and humpback whales to the Southern Ocean iron cycle to explore the effect of the recovery of great whales to historical levels. Our results suggest that pre-exploitation populations of blue whales and, to a lesser extent fin and humpback whales, could have contributed to the more effective recycling of iron in surface waters, resulting in enhanced phytoplankton production. This enhanced primary productivity is estimated to be: 8.3 x 10-5 to 15 g C m-2 yr-1 (blue whales), 7 x 10-5 to 9 g C m-2 yr-1 (fin whales), and 10-5 to 1.7 g C m-2 yr-1 (humpback whales). To put these into perspective, current estimates of primary production in the Southern Ocean from remotely sensed ocean colour are in the order of 57 g C m-2 yr-1 (south of 50°). The high degree of uncertainty around the magnitude of these increases in primary productivity is mainly due to our limited quantitative understanding of key biogeochemical processes including iron content in krill, krill consumption rates by whales, persistence of iron in the photic zone, bioavailability of retained iron, and carbon-to-iron ratio of phytoplankton. We are actively working on addressing these unknowns.
The Influence of Sea Ice on Primary Production in the Southern Ocean: A Satellite Perspective
NASA Technical Reports Server (NTRS)
Smith, Walker O., Jr.; Comiso, Josefino C.
2007-01-01
Sea ice in the Southern Ocean is a major controlling factor on phytoplankton productivity and growth, but the relationship is modified by regional differences in atmospheric and oceanographic conditions. We used the phytoplankton biomass (binned at 7-day intervals), PAR and cloud cover data from SeaWiFS, ice concentrations data from SSM/I and AMSR-E, and sea-surface temperature data from AVHRR, in combination with a vertically integrated model to estimate primary productivity throughout the Southern Ocean (south of 60"s). We also selected six areas within the Southern Ocean and analyzed the variability of the primary productivity and trends through time, as well as the relationship of sea ice to productivity. We found substantial interannual variability in productivity from 1997 - 2005 in all regions of the Southern Ocean, and this variability appeared to be driven in large part by ice dynamics. The most productive regions of Antarctic waters were the continental shelves, which showed the earliest growth, the maximum biomass, and the greatest areal specific productivity. In contrast, no large, sustained blooms occurred in waters of greater depth (> 1,000 m). We suggest that this is due to the slightly greater mixed layer depths found in waters off the continental shelf, and that the interactive effects of iron and irradiance (that is, increased iron requirements in low irradiance environments) result in the limitation of phytoplankton biomass over large regions of the Southern Ocean.
Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2016-01-01
Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.
NASA Technical Reports Server (NTRS)
Cullen, John J.; Lewis, Marlon R.; Davis, Curtiss O.; Barber, Richard T.
1992-01-01
Macronutrients persist in the surface layer of the equatorial Pacific because the production of phytoplankton is limited; the nature of this limitation has yet to be resolved. Measurements of photosynthesis as a function of irradiance (P-I) provide information on the control of primary productivity, a question of great biogeochemical importance. Accordingly, P-I was measured in the equatorial Pacific along 150 deg W, during February-March 1988. Diel variability of P-I showed a pattern consistent with nocturnal vertical mixing in the upper 20 m followed by diurnal stratification, causing photoinhibition near the surface at midday. Otherwise, the distribution of photosynthetic parameters with depth and the stability of P-I during simulated in situ incubations over 2 days demonstrated that photoadaptation was nearly complete at the time of sampling: photoadaptation had not been effectively countered by upwelling or vertical mixing. Measurements of P-I and chlorophyll during manipulations of trace elements showed that simple precautions to minimize contamination were sufficient to obtain valid rate measurements and that the specific growth rates of phytoplankton were fairly high in situ, a minimum of 0.6/d. Diel variability of beam attenuation also indicated high specific growth rates of phytoplankton and a strong coupling of production with grazing. It appears that grazing is the proximate control on the standing crop of phytoplankton. Nonetheless, the supply of a trace nutrient such as iron might ultimately regulate productivity by influencing species composition and food-web structure.
Analytical volcano deformation source models
Lisowski, Michael; Dzurisin, Daniel
2007-01-01
Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.
Simulating the effects of fire disturbance and vegetation recovery on boreal ecosystem carbon fluxes
NASA Astrophysics Data System (ADS)
Yi, Y.; Kimball, J. S.; Jones, L. A.; Zhao, M.
2011-12-01
Fire related disturbance and subsequent vegetation recovery has a major influence on carbon storage and land-atmosphere CO2 fluxes in boreal ecosystems. We applied a synthetic approach combining tower eddy covariance flux measurements, satellite remote sensing and model reanalysis surface meteorology within a terrestrial carbon model framework to estimate fire disturbance and recovery effects on boreal ecosystem carbon fluxes including gross primary production (GPP), ecosystem respiration and net CO2 exchange (NEE). A disturbance index based on MODIS land surface temperature and NDVI was found to coincide with vegetation recovery status inferred from tower chronosequence sites. An empirical algorithm was developed to track ecosystem recovery status based on the disturbance index and used to nudge modeled net primary production (NPP) and surface soil organic carbon stocks from baseline steady-state conditions. The simulations were conducted using a satellite based terrestrial carbon flux model driven by MODIS NDVI and MERRA reanalysis daily surface meteorology inputs. The MODIS (MCD45) burned area product was then applied for mapping recent (post 2000) regional disturbance history, and used with the disturbance index to define vegetation disturbance and recovery status. The model was then applied to estimate regional patterns and temporal changes in terrestrial carbon fluxes across the entire northern boreal forest and tundra domain. A sensitivity analysis was conducted to assess the relative importance of fire disturbance and recovery on regional carbon fluxes relative to assumed steady-state conditions. The explicit representation of disturbance and recovery effects produces more accurate NEE predictions than the baseline steady-state simulations and reduces uncertainty regarding the purported missing carbon sink in the high latitudes.
Investigating smoke's influence on primary production throughout the Amazon
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.
2007-12-01
Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).
FLUXNET to MODIS: Connecting the dots to capture heterogenious biosphere metabolism
NASA Astrophysics Data System (ADS)
Woods, K. D.; Schwalm, C.; Huntzinger, D. N.; Massey, R.; Poulter, B.; Kolb, T.
2015-12-01
Eddy co-variance flux towers provide our most widely distributed network of direct observations for land-atmosphere carbon exchange. Carbon flux sensitivity analysis is a method that uses in situ networks to understand how ecosystems respond to changes in climatic variables. Flux towers concurrently observe key ecosystem metabolic processes (e..g. gross primary productivity) and micrometeorological variation, but only over small footprints. Remotely sensed vegetation indices from MODIS offer continuous observations of the vegetated land surface, but are less direct, as they are based on light use efficiency algorithms, and not on the ground observations. The marriage of these two data products offers an opportunity to validate remotely sensed indices with in situ observations and translate information derived from tower sites to globally gridded products. Here we provide correlations between Enhanced Vegetation Index (EVI), Leaf Area Index (LAI) and MODIS gross primary production with FLUXNET derived estimates of gross primary production, respiration and net ecosystem exchange. We demonstrate remotely sensed vegetation products which have been transformed to gridded estimates of terrestrial biosphere metabolism on a regional-to-global scale. We demonstrate anomalies in gross primary production, respiration, and net ecosystem exchange as predicted by both MODIS-carbon flux sensitivities and meteorological driver-carbon flux sensitivities. We apply these sensitivities to recent extreme climatic events and demonstrate both our ability to capture changes in biosphere metabolism, and differences in the calculation of carbon flux anomalies based on method. The quantification of co-variation in these two methods of observation is important as it informs both how remotely sensed vegetation indices are correlated with on the ground tower observations, and with what certainty we can expand these observations and relationships.
The whale pump: marine mammals enhance primary productivity in a coastal basin.
Roman, Joe; McCarthy, James J
2010-10-11
It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4) metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.
The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin
Roman, Joe; McCarthy, James J.
2010-01-01
It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×104 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward “whale pump” played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities. PMID:20949007
PRODUCTION OF HELIUM IN IRON METEORITES BY THE ACTION OF COSMIC RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, J.H.; Nier, A.O.
1958-12-15
The helium distribution in a slice from the iron meteorite, Grant, was measured aud plotted in the form of contour maps. The contours of constant helium show a minimum helium content and isotopic ratio, He/sup 3//He/sup 4/, near the center of the slice, tbe isotopic ratio varying from 0.26 near the center to 0.30 at the surface. A cosmogenic helium production rate equation was fitted to the data giving a He/sup 3//He/sup 4/ production ratio by primary cosmic rays of 0.50 and by secondary particles of 0.14. Primary and secondary particle interaction cross sections were found to be 540 mbmore » and 720 mb, respectively. The ratio of the average post-atmospheric radius to the pre- atmospheric radius of Grant was calculated to be 0.65. (auth)« less
Lawrenz, Evelyn; Richardson, Tammi L
2017-12-01
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing-induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl -1 ) · h -1 . Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high-CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short-term 14 C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3-fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl -1 ) · h -1 . Thus, a lack of PFSL differentially impairs primarily CO 2 -fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems. © 2017 Phycological Society of America.
NASA Astrophysics Data System (ADS)
Burt, William J.; Westberry, Toby K.; Behrenfeld, Michael J.; Zeng, Chen; Izett, Robert W.; Tortell, Philippe D.
2018-02-01
We present optically derived estimates of phytoplankton carbon (Cphyto) and chlorophyll a concentration (Chl) across a wide range of productivity and hydrographic regimes in the Subarctic Pacific Ocean. Our high-frequency measurements capture changes in Cphyto and Chl across regional gradients in macronutrient and micronutrient limitations and submesoscale hydrographic frontal zones. Throughout the majority of our survey region, carbon to chlorophyll ratios (Cphyto:Chl) ranged between 50 and 100. Lower values (10-20) were constrained to the highly productive coastal upwelling system along Vancouver Island, whereas higher estimated values (>200) were found directly off the southern British Columbia continental shelf. Further offshore, Cphyto:Chl was less variable, ranging from 50 to 80 in high nutrient low Chl waters in June and from 80 to 120 in the Gulf of Alaska in July. Much of the variability in Cphyto:Chl throughout the study region could be explained by mixed-layer light levels (i.e., photoacclimation), with additional variability attributed to nutrient-controlled changes in phytoplankton growth rates in some regions. Elevated Cphyto:Chl ratios resulting from apparent nutrient stress were found in areas of low macronutrient concentrations. In contrast, iron-limited waters exhibited Cphyto:Chl ratios lower than predicted from the photoacclimation model. Applying the carbon-based production model, we derived Cphyto and Chl-based estimates of net primary productivity, which showed good coherence with independent 14C uptake measurements. Our results highlight the utility of ship-board optical data to examine phytoplankton physiological ecology and productivity in surface marine waters.
NASA Astrophysics Data System (ADS)
Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.
2015-07-01
Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially-driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low N : P ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified N availability as controlling of primary production, while a possible co-limitation of nitrate and phosphate (P) could not be ruled out. To better understand the impact of changing N : P ratios on primary production and on N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicate was supplied at 15 μmol L-1 in all mesocosms. We monitored nutrient drawdown, bloom formation, biomass build up and diazotrophic feedback in response to variable nutrient stoichiometry. Our results confirmed N to be limiting to primary production. We found that excess P was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low P availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where inorganic N was still available, indicating that bioavailable N does not necessarily has to have a negative impact on N2 fixation. We observed a shift from a mixed cyanobacterial/proteobacterial dominated active diazotrophic community towards diazotrophic diatom symbionts of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially modifying primary productivity.
NASA Astrophysics Data System (ADS)
Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.
2016-02-01
Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export.
2015-09-30
SST), sea surface height anomaly (SSH), chlorophyll a concentration (Chla), and primary productivity (PP). These data are available on similar...between the high and low area, and in areas with low abundance, chlorophyll a concentration was also a significant explanatory variable. For fin
We have developed a process that uses surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted ultraviolet light is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...
Excess nutrients are a leading cause of impairment to streams, rivers, lakes and the coastal ecosystems. Excessive nutrient loadings result in increased primary productivity of plant and algal communities leading to eutrophication and other impacts to aquatic resources. Nitrogen ...
Models for ecological models: Ocean primary productivity
Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.
2016-01-01
The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life. Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(. As an example, consider the Coastal Gulf of Alaska (CGOA) region.
Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard
2015-01-01
Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.
NASA Astrophysics Data System (ADS)
Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.
2017-12-01
In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.
Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data
NASA Technical Reports Server (NTRS)
Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.
2012-01-01
Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat images for the 2000 epoch. As surface reflectance likely will be a standard product for future Landsat missions, the approach developed in this study can be adapted as an operational quality assessment system for those missions.
Association of iris crypts with acute primary angle closure.
Koh, Victor; Chua, Jacqueline; Shi, Yuan; Thakku, Sri Gowtham; Lee, Ryan; Nongpiur, Monisha E; Baskaran, Mani; Kumar, Rajesh S; Perera, Shamira; Aung, Tin; Cheng, Ching-Yu
2017-10-01
To determine the relationship between iris surface features and acute primary angle closure (APAC) in eyes with angle closure. Case-control study involving Asian patients diagnosed with previous APAC, primary angle closure suspect (PACS), primary angle closure (PAC) and primary angle closure glaucoma (PACG) at an eye centre in Singapore between August 2012 and January 2015. Participants underwent ophthalmic examination and digital slit-lamp iris photography. Iris surface features were graded based on crypts, furrows and colour. Fellow eyes of APAC were compared with PACS and PAC/PACG eyes with regard to their iris surface features. Occurrence of APAC. A total of 309 patients (71 APAC, 139 PACS, 47 PAC and 52 PACG) were included (mean age: 67.7±7.2 years and 36.6% male). Compared with PACS, higher crypt grade was significantly associated with lower odds of APAC (OR=0.58 for one grade higher in crypt grade; p=0.027, adjusted for age, gender, ethnicity and pupil diameter). The results remained similar when compared with PAC/PACG group (OR=0.58 for one grade higher in crypt grade; p=0.043). We did not observe any significant associations between iris furrows or colour with presence of APAC. Our study comprising Asian eyes with angle closure suggests that the presence of a higher crypt grading may be protective for APAC. As such, assessing iris surface architecture for crypts could be a new measure for risk stratification of developing APAC in eyes with angle closure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The long-term Global LAnd Surface Satellite (GLASS) product suite and applications
NASA Astrophysics Data System (ADS)
Liang, S.
2015-12-01
Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
Foodborne hepatitis A outbreak associated with bakery products in northern Germany, 2012.
Harries, M; Monazahian, M; Wenzel, J; Jilg, W; Weber, M; Ehlers, J; Dreesman, J; Mertens, E
2014-12-18
In October 2012, a hepatitis A (HA) outbreak with 83 laboratory-confirmed cases occurred in Lower Saxony. We defined primary outbreak cases as people with laboratory-confirmed HA and symptom onset between 8 October and 12 November 2012, residing in or visiting the affected districts. Secondary outbreak cases were persons with symptom onset after 12 November 2012 and close contact with primary cases. We identified 77 primary and six secondary cases. We enrolled 50 primary cases and 52 controls matched for age and sex, and found that 82% of cases and 60% of controls had consumed products from a particular bakery (OR=3.09; 95% CI: 1.15–8.68). Cases were more likely to have eaten sweet pastries (OR=5.74; 95% CI: 1.46–22.42). Viral isolates from five selected cases and three positively tested surfaces in the bakery had identical nucleotide sequences. One additional identical isolate derived from a salesperson of the bakery suffering from a chronic disease that required immunosuppressive treatment. Epidemiological and laboratory findings suggested that the salesperson contaminated products while packing and selling. Future risk assessment should determine whether food handlers with chronic diseases under immunosuppressive treatment could be more at risk of contaminating food and might benefit from HAV immunisation.
NASA Technical Reports Server (NTRS)
Stegmann, P. M.; Lewis, M. R.; Davis, C. O.; Cullen, J. J.
1992-01-01
Biological, optical, and hydrographical data were collected on the WEC88 cruise along 150 deg W and during a 6-day time-series station on the equator during February/March 1988. This area was characterized by a subsurface chlorophyll maximum (SCM), located at 50-70 m depth at the equator and descending down to 120-125 m at the north and south end of the transect. Highest primary production rates were near-surface and confined to the equatorial region and stations between 7 deg and 11 deg N. To determine the relationship between solar-stimulated fluorescence (centered at 683 nm wavelength) and primary production, a production-fluorescence model based on phytoplankton physiology and marine optics is described. Results of model calculations predict that there is a linear relation between production and fluorescence. A comparison between morning and midday measurements of the production-fluorescence relation showed that there was some difference between the two, whereas evening measurements, on the other hand, were distinctly different from the morning/midday ones. This seems to suggest that diurnal variations contribute significantly to variability in the quantum yield of photochemical processes. The ratio of the quantum yield of photosynthesis to the quantum yield of fluorescence ranged between 0.24 and 0.44 molC/Ein for all stations. The highest value for this ratio occurred at the equatorial stations, indicating that latitudinal variability could have an effect on the production-fluorescence relation.
Fathi, Yasmin; Price, Chelsea; Meloni, Giovanni
2017-04-20
This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O( 3 P) atoms. The oxidation was investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identity. Using electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined and presented in this paper to further validate the primary chemistry occurring. Branching fractions of primary products at all three temperatures were also provided. At room temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone (53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene (2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses corresponds to the 550 K data. At the highest temperature, a small amount of propyne (1.0%) was also observed.
Zhukov, V A; Shishkina, L N; Sergeev, A A; Malkova, E M; Riabchikova, E I; Petrishchenko, V A; Sergeev, A N; Ustiuzhanina, N V; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2008-01-01
The levels of susceptibility to influenza virus A/Aichi/2/68 H3N2 and the virus yield were determined using primary cells of the trachea and lungs of CD-1 mice and Wistar rats, and for 3 sets of cells obtained from primary lung cells of the both species by centrifugation in the gradient of density and by sedimentation on a surface. The values of ID50 virus dose for 10(6) cells and virus yield per 1 infected cell determined for primary mice cells were 4.0+/-0.47 and 3.2+/-0.27 IgEID50 (lung cells), 3.8+/-0.17 and 3.3+/-0.20 IgEID50 (tracheal cells), and those determined for primary rat cells were 4.0+/-0.35 and 2.1+/-0.24 IgEID50 (lung cells), 3.7+/-0.27 and 2.2+/-0.46 IgEID50 (tracheal cells). The values of ID50 and yield measured for mixtures of cells obtained from primary lung cells by centrifugation in gradient of density and by sedimentation on a surface differed insignificantly (p = 0.05) from the values of the corresponding parameters measured for lung and tracheal cells for both rats and mice. The analysis of data on the variation of the concentrations of different cell types in the experimental cell mixtures shows that type 1 and 2 alveolocytes possess significantly lower (p = 0.05) susceptibility and productivity vs. ciliated cells of the both species. The investigation was conducted within the frame of the ISTC/DARPA#450p project.
Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea
NASA Astrophysics Data System (ADS)
Schulte, Sonja; Rostek, Frauke; Bard, Edouard; Rullkötter, Jürgen; Marchal, Olivier
1999-11-01
Two deep-sea sediment cores from the northeastern and the southeastern Arabian Sea were studied in order to reconstruct the palaeoenvironments of the past glacial cycles. Core 136KL was recovered from the high-productivity area off Pakistan within the modern oxygen-minimum zone (OMZ). By contrast, modern primary productivity at the site of MD900963 close to Maldives is moderate and bottom waters are today well oxygenated. For both cores, we reconstructed the changes in palaeoproductivity using a set of biomarkers (alkenones, dinosterol and brassicasterol); the main result is that primary productivity is enhanced during glacial stages and lowered during interstadials. The proxies associated with productivity show a 23 kyr cyclicity corresponding to the precession-related insolation cycle. Palaeoredox conditions were studied in both cores using a new organic geochemical parameter (C 35/C 31- n-alkane ratio) developed by analysing surface sediments from a transect across the OMZ off Pakistan. The value of this ratio in core 136KL shows many variations during the last 65 kyr, indicating that the OMZ was not stable during this time: it disappeared completely during Heinrich- and the Younger Dryas events, pointing to a connection between global oceanic circulation and the stability of the OMZ. The C 35/C 31 ratio determined in sediments of core MD900963 shows that bottom waters remained rather well oxygenated over the last 330 kyr, which is confirmed by comparison with authigenic metal concentrations in the same sediments. A zonally averaged, circulation-biogeochemical ocean model was used to explore how the intermediate Indian Ocean responds to a freshwater flux anomaly at the surface of the North Atlantic. As suggested by the geochemical time series, both the abundance of Southern Ocean Water and the oxygen concentration are significantly increased in response to this freshwater perturbation.
Restoring Ecological Function to a Submerged Salt Marsh
Stagg, C.L.; Mendelssohn, I.A.
2010-01-01
Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.
Investigation of Ejecta Production in Tin Using Plate Impact Experiments
NASA Astrophysics Data System (ADS)
Rigg, P. A.; Anderson, W. W.; Olson, R. T.; Buttler, W. T.; Hixson, R. S.
2006-07-01
Experiments to investigate ejecta production in shocked tin have been performed using plate impact facilities at Los Alamos National Laboratory. Three primary diagnostics — piezoelectric pins, Asay foils, and low energy X-ray radiography — were fielded simultaneously in an attempt to quantify the amount of ejecta produced in tin as the shock wave breaks out of the free surface. Results will be presented comparing and contrasting all three diagnostics methods. Advantages and disadvantages of each method will be discussed.
Topographic modelling of haptic properties of tissue products
NASA Astrophysics Data System (ADS)
Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.
2014-03-01
The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).
Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.
1997-01-01
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.
Wiencek, Thomas C [Orland Park, IL; Matos, James E [Oak Park, IL; Hofman, Gerard L [Downers Grove, IL
2000-12-12
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.
Distribution of Nitrogen Compounds in Marine Aerosol and Their Deposition Over the Pacific Ocean
NASA Astrophysics Data System (ADS)
Uematsu, M.; Narita, Y.; Sun, S. Y.
2016-02-01
Nutrient supply to the ocean surface layer is an important factor controlling the marine ecosystem. The major paths of supplies of nutrients have been considered as those from nutrient-rich deep waters and riverine input, which is mostly taken up near the estuary region, but the nutrients transported through the atmosphere recognize to be important for the open ocean, where the nutrients are limiting primary productivity. Because of rapid economic development surrounding the Pacific Ocean, anthropogenic NOx emissions increased by 2-3 times during the past decades. This rapid increase of NOx emission causes a large amount of N deposition mostly in the form of nitrate and ammonium over ocean surfaces, and strongly impacts their marine ecosystems. Especially, biological N2 fixation, riverine input and atmospheric deposition contribute to support "new production" and affect CO2 air-sea exchange. The concentration of nitrogen compounds in marine aerosol has been measured on the island stations and onboard of research vessels in the Pacific Ocean over a few decades. The temporal and spatial atmospheric distribution of water-soluble particulate nitrogen compounds is summarized in this study. As the transport of anthropogenic nitrogen compounds from land, high concentration is revealed over the marginal seas in the western North Pacific. Most of nitrate exists in the coarse aerosol associated with sea-salt particle while ammonium exists in the fine particle and showing a good relationship with non-sea-salt sulfate. This different particle size affects to estimate the deposition flux of nitrogen compounds to the ocean surface. Over the high primary productive areas such as the equatorial Pacific and the Southern Ocean, ammonia is released into the atmosphere and transported to other area. By wet and dry deposition, ammonium is removed to the ocean surface and modified the distribution of nitrogen compounds in the surface waters.
A more productive, but different, ocean after mitigation
NASA Astrophysics Data System (ADS)
John, Jasmin G.; Stock, Charles A.; Dunne, John P.
2015-11-01
Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John
2012-01-01
The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].
A Study of Aerosol Direct Radiative Effect and Its Impacts on Global Terrestrial Ecosystem Cycles
NASA Astrophysics Data System (ADS)
Zhang, J.; Shao, S.; Zhou, L.
2017-12-01
Aerosols can absorb and scatter solar radiation, thus cause the total solar radiation reaching the surface to drop and the fraction of diffuse radiation to increase, which influence the surface radiation budget. The global surface radiation with and without consideration of aerosols are calculated by the Fu-Liou atmospheric radiative transfer model based on the MODIS aerosol products, CERES cloud products and other remote sensing data. The aerosol direct radiative effect is calculated based on the two scenarios of aerosols. Our calculation showed that in 2007, aerosols decreased the global total radiation by 9.16 W m-2 on average. Large decrease generally occurred in places with high AOD. As for the diffuse radiation, aerosol-induced changes were either positive or negative. Large increase generally occurred in places with high surface albedo, while large decrease generally occurred in places with high cloud fraction. The global aerosol-induced diffuse radiation change averaged 8.17 W m-2 in 2007. The aerosol direct radiative effect causes the photosynthetic active radiation to increase, and its influences on the global carbon cycle of terrestrial ecosystem are studied by using the Community Land Model (CLM). Calculations show that the aerosol direct radiative effects caused the global averages of terrestrial gross primary productivity (GPP), net primary productivity (NPP), heterotrophic respiration (RH), autotrophic respiration (RA), and net ecosystem productivity (Reco) to increase in 2007, with significant spatial variations however. The global average changes of GPP, NPP, NEP, RA, RH and Reco in 2007 were +6.47 gC m-2, +2.23 gC m-2, +0.34 gC m-2, +4.24 gC m-2, +1.89 gC m-2, +6.13 gC m-2, respectively. Examinations of the carbon fluxes show that the aerosol direct radiative effects influence the terrestrial ecosystem carbon cycles via the following two approaches: First, the diffuse fertilization effect, i.e. more diffuse radiation absorbed by vegetation shade leaves (photosynthetic active radiation, PAR) results in higher photosynthetic rates; Second, the radiation changes lead to changes in temperature and humidity, thereby changing the rates of the plant biophysical and chemical processes.
NASA Astrophysics Data System (ADS)
Aluwihare, L.
2016-12-01
The 2016 "State of the Lake Report" for Lake Tahoe notes that surface waters of have warmed 15 times faster in the last four years as compared to the long trend. Lake mixing depth has decreased with only 4 instances of full-lake mixing ( 450 m) recorded since 2000, none since 2011, and the shallowest depth of mixing on record, 80 m, was observed in 2015. Snowpack in the region shows a long-term decline, and April snowpack in 2015 was the lowest recorded in nearly 100 years. Lake biomass peaks shortly after mixing occurs, which demonstrates the dependence of lake primary production on this process. Lake mixing also oxygenates deep waters of the lake. Mixing, organic matter production, and vertical gradients in nutrient and oxygen concentrations profoundly impact the depth distribution of microbial communities and metabolisms. Spring melt also brings nutrients into the lake including organic matter; and in other high elevation lake systems it has been shown that streamflow seeds the lake's microbiome. Here we present data from an year long observation of monthly changes in microbial (including phytoplankton) community composition to examine how the seasonally segregated processes of runoff, lake mixing, and surface primary production affect Lake Tahoe's microbial ecology. Members of certain phylogenetic groups showed trends that we are currently exploring in the context of their metabolic capabilities. For example, Chlorobi and Chloroflexi primarily appear in surface waters during deep mixing, consistent with some of them being sensitive to oxygen. Similarly, common but poorly characterized clades of Actinobacteria exhibited negative responses to discharge, while certain clades of Betaproteobacteria exhibited a positive response during and following discharge events at LT. Actinobacteria have been found to be abundant in numerous lake systems suggesting that their metabolic capabilities maybe particularly telling of the dominant species sorting mechanisms at play in large lakes. Some members of the lake's microbial community appeared sensitive to the loading of terrestrial DOM. However, other members were abundant during times of high primary production. These latter populations may be more vulnerable to processes that decrease overall lake productivity.
NASA Astrophysics Data System (ADS)
Loescher, Carolin; Fischer, Martin; Neulinger, Sven; Fiedler, Björn; Philippi, Miriam; Schütte, Florian; Singh, Arvind; Hauss, Helena; Karstensen, Johannes; Körtzinger, Arne; Schmitz, Ruth
2016-04-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (<1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed layer base. The O2-depleted core waters eddy promoted transcription of the key gene for denitrification, nirS. This process is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.
2015-08-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of around 40 μmol kg-1. Only recently, the discovery of re-occurring mesoscale eddies with sometimes close to anoxic O2 concentrations (<1 μmol kg-1) and located just below the mixed layer challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first metagenomic dataset from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed a significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and increased carbon uptake rates up to three times as high as in surrounding waters. Carbon uptake below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our combined data indicate that high primary production in the eddy fuels export production and the presence of a specific microbial community responsible for enhanced respiration at shallow depths, below the mixed layer base. Progressively decreasing O2 concentrations in the eddy were found to promote transcription of the key gene for denitrification, nirS, in the O2-depleted core waters. This process is usually absent from the open ETNA waters. In the light of future ocean deoxygenation our results show exemplarily that even distinct events of anoxia have the potential to alter microbial community structures and with that critically impact primary productivity and biogeochemical processes of oceanic water bodies.
NASA Astrophysics Data System (ADS)
Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.
2015-12-01
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open-ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale eddies with close to anoxic O2 concentrations (< 1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the eddy fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed-layer base. The transcription of the key functional marker gene for dentrification, nirS, further indicated a potential for nitrogen loss processes in O2-depleted core waters of the eddy. Dentrification is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.
Global Distribution and Density of Constructed Impervious Surfaces.
Elvidge, Christopher D; Tuttle, Benjamin T; Sutton, Paul C; Baugh, Kimberly E; Howard, Ara T; Milesi, Cristina; Bhaduri, Budhendra; Nemani, Ramakrishna
2007-09-21
We present the first global inventory of the spatial distribution and density ofconstructed impervious surface area (ISA). Examples of ISA include roads, parking lots,buildings, driveways, sidewalks and other manmade surfaces. While high spatialresolution is required to observe these features, the new product reports the estimateddensity of ISA on a one-km² grid based on two coarse resolution indicators of ISA - thebrightness of satellite observed nighttime lights and population count. The model wascalibrated using 30-meter resolution ISA of the USA from the U.S. Geological Survey.Nominally the product is for the years 2000-01 since both the nighttime lights andreference data are from those two years. We found that 1.05% of the United States landarea is impervious surface (83,337 km²) and 0.43 % of the world's land surface (579,703km²) is constructed impervious surface. China has more ISA than any other country(87,182 km²), but has only 67 m² of ISA per person, compared to 297 m² per person in theUSA. The distribution of ISA in the world's primary drainage basins indicates that watersheds damaged by ISA are primarily concentrated in the USA, Europe, Japan, China and India. The authors believe the next step for improving the product is to include reference ISA data from many more areas around the world.
Haberl, Helmut; Erb, K Heinz; Krausmann, Fridolin; Gaube, Veronika; Bondeau, Alberte; Plutzar, Christoph; Gingrich, Simone; Lucht, Wolfgang; Fischer-Kowalski, Marina
2007-07-31
Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.
A modified integrated NDVI for improving estimates of terrestrial net primary production
NASA Technical Reports Server (NTRS)
Running, Steven W.
1990-01-01
Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.
NASA Astrophysics Data System (ADS)
Cooper, L. Annie; Ballantyne, Ashley P.; Holden, Zachary A.; Landguth, Erin L.
2017-04-01
Forest disturbances influence forest structure, composition, and function and may impact climate through changes in net radiation or through shifts in carbon exchange. Climate impacts vary depending on environmental variables and disturbance characteristics, yet few studies have investigated disturbance impacts over large, environmentally heterogeneous, regions. We used satellite data to objectively determine the impacts of fire, bark beetles, defoliators, and "unidentified disturbances" (UDs) on land surface temperature (LST) and gross primary productivity (GPP) across the western United States (U.S.). We investigated immediate disturbance impacts, the drivers of those impacts, and long-term postdisturbance LST and GPP recovery patterns. All disturbance types caused LST increases (°C; fire: 3.45 ± 3.02, bark beetles: 0.76 ± 3.04, defoliators: 0.49 ± 3.12, and UD: 0.76 ± 3.03). Fire and insects resulted in GPP declines (%; fire: -25.05 ± 21.67, bark beetles: -2.84 ± 21.06, defoliators: -0.23 ± 15.40), while UDs resulted in slightly enhanced GPP (1.89 ± 24.20%). Disturbance responses also varied between ecoregions. Severity and interannual changes in air temperature were the primary drivers of short-term disturbance responses, and severity also had a strong impact on long-term recovery patterns. These results suggest a potential climate feedback due to disturbance-induced biophysical changes that may strengthen as disturbance regimes shift due to climate change.
Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...
Steven D. Warren
2014-01-01
Biological soil crusts, composed of soil surfaces stabilized by a consortium of cyanobacteria, algae, fungi, lichens, and/or bryophytes, are common in most deserts and perform functions of primary productivity, nitrogen fixation, nutrient cycling, water redistribution, and soil stabilization. The crusts are highly susceptible to disturbance. The degree of perturbation...
Ultraviolet radiation (UVR) is a naturally occurring stressor to most forms of life. The sole relevant source of this stressor is the sun. The Earth's stratospheric ozone layer reduces the amount of UVR that reaches the Earth's surface. The potential for continued depletion of th...
Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Antoine, David; Ardyna, Mathieu; Asanuma, Ichio; Babin, Marcel; Bélanger, Simon; Benoît‐Gagné, Maxime; Devred, Emmanuel; Fernández‐Méndez, Mar; Gentili, Bernard; Hirawake, Toru; Kang, Sung‐Ho; Kameda, Takahiko; Katlein, Christian; Lee, Sang H.; Lee, Zhongping; Mélin, Frédéric; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Turpie, Kevin R.; Waters, Kirk J.; Westberry, Toby K.
2015-01-01
Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll‐a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed‐layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite‐derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low‐productivity seasons as well as in sea ice‐covered/deep‐water regions. Depth‐resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption‐based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll‐a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic‐relevant parameters. PMID:27668139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.; ...
2017-09-20
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
Late Pleistocene-Holocene phytoplankton productivity in the Gulf of Alaska, IODP Site U1419
NASA Astrophysics Data System (ADS)
LeVay, L. J.; Romero, O. E.; McClymont, E.; Müller, J.; Penkrot, M. L.; Jaeger, J. M.; Mix, A.; Walczak, M.
2016-12-01
The modern Gulf of Alaska (GoA) is a high-nutrient, low-chlorophyll region that is iron-limited; however, the coastal region of Alaska is macronutrient-limited. Vertical mixing of these shallow coastal and deep basinal waters produce high seasonal productivity across the shelf. Previous studies on the Alaskan shelf showed that productivity varied across the Pleistocene-Holocene transition, likely related to climate and sea level change that brought nutrients from estuaries into the Gulf. Here we explore an extended record through the Late Pleistocene-Holocene to reconstruct the productivity of phytoplankton groups in the GoA and to understand the impact of glacial/interglacial climates on primary production and nutrient availability near the shelf. International Ocean Discovery Program (IODP) Site U1419 was cored during Expedition 341 on the upper continental slope in the GoA. A high-resolution sedimentary sequence was recovered that records Late Pleistocene-Holocene glacial and paleoceanographic dynamics. Both calcareous nannoplankton and diatoms are well-represented at Site U1419. Very few studies have explored the competition of these two phytoplankton groups in the geologic record. Because calcareous nannoplankton and diatoms favor differing nutrient conditions, changes in their abundance can aid in reconstructing shifts in primary productivity as well as the causes, such as stratification or nutrient limitation. We present a multi-proxy record, including the group and species abundance of diatoms and calcareous nannoplankton, biogenic bulk components content, alkenone-based sea surface temperatures, and XRF core scanning elemental composition, which is used to interpret fluctuations in phytoplankton and identify the underlying causes. Initial results show the group abundance of nannoplankton and diatoms fluctuates greatly and appears to covary. Calcareous nannoplankton abundance increases with sea surface temperature and is related to higher alkenone concentrations in the sediments. The occurrence of diatoms is sporadic and could be linked to silica-limitation in surface waters. These findings will provide new insights into the processes governing fossil phytoplankton interactions and how this affects production and carbon cycling on the shelf.
NASA Astrophysics Data System (ADS)
Wingfield, Dana K.
2009-12-01
This research examined the incorporation of highly productive regions within the marine system. I combined historical conservation literature, remotely sensed oceanography, ship based surveys, satellite tagged animals, and statistical models to explore an integrated approach to the identification of key oceanic regions that require incorporation into current marine conservation strategies. In my first chapter, I undertook a literature review of the term "hotspot", one of the most common ways by which scientists ascribe conservation prioritization in the marine and terrestrial systems. My results showed that marine literature has identified important areas of biodiversity and productivity (i.e. high primary production that results in trophic linkages and species aggregations) are in need of protection from human threats. However, current non-governmental organizations focus primarily on biodiversity, thus missing important areas of productivity for marine conservation. In my second chapter, I demonstrated how remotely sensed oceanography, ship-based surveys, and satellite tagged animals can help to identify the formation of such a "productivity hotspot". Specifically, I examined the connection between physical forcing (surface winds and vertical Ekman upwelling), sea-surface temperature, primary production (chlorophyll-a concentrations), retentive features of fronts and dynamic height, and prey abundance (red crabs) in the spatial and temporal concentration of the critically endangered North Pacific juvenile loggerhead sea turtle (Caretta caretta) within its foraging habitat off the Pacific coast of Baja California. Finally, in my third chapter, I identified habitat selection of loggerheads to better understand the species preference within suitable habitat. I sampled several environmental variables (depth, sea-surface temperature, and chlorophyll- a) within 'preferred' versus 'avoided' turtle habitat. Results from a generalized additive model showed the statistical importance of all three variables in the prediction of loggerhead presence within suitable habitat off of Baja California. I then incorporated prey distribution to fully explore the connection between a highly migratory species and its environment. These results show how knowledge of threatened and endangered species habitat use within a productivity hotspot can help to more efficiently identify and prioritize critical areas for conservation.
NASA Astrophysics Data System (ADS)
Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.
2017-12-01
During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.
NASA Astrophysics Data System (ADS)
Duplessis, P.; Chang, R.; Frossard, A. A.; Keene, W. C.; Maben, J. R.; Long, M. S.; Beaupre, S. R.; Kieber, D. J.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.
2017-12-01
Primary marine aerosol particles (PMA) are produced by bursting bubbles from breaking waves at the air-sea interface and significantly modulate atmospheric chemical transformations and cloud properties. Surfactants in bulk seawater rapidly (seconds) adsorb onto fresh bubble surfaces forming organic films that influence size, rise velocity, bursting behavior, and associated PMA emissions. During a cruise on the R/V Endeavor in September and October 2016, PMA production from biologically productive and oligotrophic seawater was investigated at four stations in the western North Atlantic Ocean. PMA were produced in a high-capacity generator via turbulent mixing of seawater and clean air in a Venturi nozzle. When the flow of fresh seawater through the generator was turned off, surfactant depletion via bubble processing resulted in greater PMA mass production efficiencies per unit air detrained but had no consistent influence on number production efficiencies. The greater (factor of 3) production efficiencies of organic matter associated with PMA generated with the Venturi relative to those generated with frits during previous campaigns contributed to a faster depletion of surfactants from the seawater reservoir and corresponding divergence in response.
Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland
NASA Astrophysics Data System (ADS)
Rysgaard, Søren; Nielsen, Torkel Gissel
2006-10-01
Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m -2 yr -1 of which megafauna accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate of 7 g C m -2 yr -1 was determined. A group of walruses (up to 50 adult males) feed in the area in shallow waters (<40 m) during the short, productive, ice-free period, and they have been shown to be able to consume <3% of the standing stock of bivalves ( Hiatella arctica, Mya truncata and Serripes Groenlandicus), or half of the annual bivalve somatic production. Feeding at greater depths is negligible in comparison with their feeding in the bivalve-rich shallow waters.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee; Schneider, Irene; Hassler, Donald M.
2006-01-01
The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.
Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales
NASA Astrophysics Data System (ADS)
Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.
2016-12-01
Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.
Darvishi, Farshad; Moradi, Marzieh; Madzak, Catherine; Jolivalt, Claude
2017-03-01
Laccases are used in numerous applications, from green degradation of various xenobiotic compounds, waste detoxification, textile dye bleaching, and delignification of lignocellulose materials to biofuel production. In this study, the recombinant Yarrowia lipolytica YL4 strain carrying the white-rot fungus Trametes versicolor laccase IIIb gene was used for laccase production from beet molasses as an agro-industrial residue. Response surface methodology was used to statistical optimization of the production of laccase by Y. lipolytica using an industrial medium containing molasses which allows a six times increase in laccase activity compared to primary medium contains glucose after 144 h. In bioreactor cultivation after 48 h, laccase production reached to 3.7- and 22.5-fold more than optimized and primary media in shake-flask cultures, respectively. Laccase productivity in bioreactor (0.0937 U/h) was higher than shake-flask culture (0.0084 U/h). The present study provides valuable information about statistical optimization of bioprocess development for cost-effective production of laccase and other heterologous proteins in Y. lipolytica from beet molasses as sole carbon source, thus allowing the valorization and decreasing environmental pollution of this agro-industrial waste.
A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.
1998-01-01
Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).
Bio-Optical Measurements at Ocean Boundaries in Support of SIMBIOS. Chapter 7
NASA Technical Reports Server (NTRS)
Chavez, Francisco P.; Strutton, Peter G.; Schlining, Brian M.
2001-01-01
The equatorial Pacific is a major component of global biogeochemical cycles, due to upwelling that occurs from the coast of South America to beyond 180 deg. This upwelling has significant implications for global CO2 fluxes, as well as primary and secondary production. In addition, this region of the world's oceans represents a large oceanic province over which validation data for Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) are necessary. This project consists of a mooring program and supporting cruise-based measurements aimed at quantifying the spectrum of biological and chemical variability in the equatorial Pacific and obtaining validation data for SeaWiFS. The project has the following general objectives: (1) to understand the relationships between physical forcing, primary production, nutrient supply and the exchange of carbon dioxide between ocean and atmosphere in the equatorial Pacific; (2) to describe the biological and chemical responses to climate and ocean variability; (3) to describe the spatial, seasonal and inter-annual variability in near surface plant pigments, primary production, carbon dioxide and nutrient distributions; and (4) to obtain near real-time bio-optical measurements for validation of SeaWiFS and subsequent ocean color sensors.
NASA Astrophysics Data System (ADS)
Lipschultz, F.; Wofsy, S. C.; Ward, B. B.; Codispoti, L. A.; Friedrich, G.; Elkins, J. W.
1990-10-01
Rates of transformations of inorganic nitrogen were measured in the low oxygen, subsurface waters (50-450 m) of the Eastern Tropical South Pacific during February 1985, using 15N tracer techniques. Oxygen concentrations over the entire region were in a range (O 2 < 2.5 μM) that allowed both oxidation and reduction of nitrogen to occur. A wide range of rates was observed for the lowest oxygen levels, indicating that observed oxygen concentration was not a primary factor regulating nitrogen metabolism. High values for subsurface metabolic rates correspond with high levels for surface primary production, both apparently associated with mesoscale features observed in satellite imagery and with mesoscale features of the current field. Measured rates of nitrate reduction and estimated rates of denitrification were sufficient to respire nearly all of the surface primary production that might be transported into the oxygen deficient zone. These results imply that the supply of labile organic material, especially from the surface, was more important than oxygen concentration in modulating the rates of nitrogen transformations within the low oxygen water mass of the Eastern Tropical South Pacific. The pattern of nitrite oxidation and nitrite reduction activities in the oxygen minimum zone supports the hypothesis ( ANDERSONet al., 1982, Deep-Sea Research, 29, 1113-1140) that nitrite, produced from nitrate reduction, can be recycled by oxidation at the interface between low and high oxygen waters. Rates for denitrification, estimated from nitrate reduction rates, were in harmony with previous estimates based on electron transport system (ETS) measurements and analysis of the nitrate deficit and water residence times. Assimilation rates of NH 4+ were substantial, providing evidence for heterotrophic bacterial growth in low oxygen waters. Ambient concentrations of ammonium were maintained at low values primarily by assimilation; ammonium oxidation was an important mechanism at the surface boundary of the low oxygen zone.
Deciphering the role of radical precursors during the Second Texas Air Quality Study.
Olaguer, Eduardo P; Rappenglück, Bernhard; Lefer, Barry; Stutz, Jochen; Dibb, Jack; Griffin, Robert; Brune, William H; Shauck, Maxwell; Buhr, Martin; Jeffries, Harvey; Vizuete, William; Pinto, Joseph P
2009-11-01
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (approximately30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.
NASA Astrophysics Data System (ADS)
Pitari, Giovanni; Coppari, Eleonora; De Luca, Natalia; Di Carlo, Piero; Pace, Loretta
2014-09-01
Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L'Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L'Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.
Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site
NASA Astrophysics Data System (ADS)
Gundersen, Kjell; Orcutt, Karen M.; Purdie, Duncan A.; Michaels, Anthony F.; Knap, Anthony H.
Errors in total particulate organic carbon (total POC) measurements caused by particles settling in Niskin water samplers, loss of bacterial cells during filtration and undersampling of rare particles such as the diazotrophic cyanobacterium Trichodesmium spp. were investigated at the Bermuda Atlantic Time-series Study (BATS) site. Regular core samples of temperature, primary production, bacterial abundance, chlorophyll- a (Chl- a) and POC were collected at monthly intervals from 1991 to 1996. During this period of time, shorter investigations of particles settling in water samples (1991-1992), bacterial cells lost during filtration (1992-1993), and Trichodesmium abundance (1995-1996) were performed at the BATS site. The BATS site shows striking seasonal patterns in hydrography and phytoplankton primary productivity, with a strong maximum immediately following the deep winter mixing of the water column. Following the peak in primary production, bacterial abundance showed only slightly elevated levels in spring. Maxima of Chl- a and POC also were associated with the primary production peaks, but these particle concentrations became less pronounced through summer and fall. An average of 26% of total POC collected in Niskin water bottles settled below the spigot before it could be sampled. An average of 47% of all bacterial cells passed the nominal pore size of a Whatman GF/F filter, and total POC measurements generated from GF/F filtered seawater samples had to be corrected for this loss. The average integrated stocks of total POC in the upper 65 m of the water column was 32% pigmented phytoplankton, 15% microheterotrophs, 54% other detrital matter (32 : 15 : 54). Phytoplankton C equaled bacterial C in the 65-135 m depth range (16 : 19 : 65), but phytoplankton C was virtually non-existent deeper than 135 m (2 : 14 : 74). Bacterial C biomass was higher than phytoplankton in surface waters outside the spring bloom period, but carbon not accounted for by phytoplankton and bacteria (other C) showed an overall dominance throughout the year. Uncorrected, suspended POC collected on GF/F filters (POC SW) was nearly equal to the sum of phytoplankton C and bacterial C alone, and hence, the other C fraction of total POC was largely generated by the addition of settling particles (POC Dreg). Seasonal occurrences of rare particles such as Trichodesmium colonies in surface waters in late summer may account for as much as 17-56% of total POC. Settling particles and Trichodesmium colonies, seldom included in POC estimates from temperate and tropical regions, constituted more than half of total POC measured in surface waters at BATS.
Efforts to reduce exposure at Japanese PWRs: CVCS improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terada, Ryosuke
1995-03-01
Many reports have been focused on the reduction of radiation sources and related occupational exposures. The radiation sources mainly consist of corrosion products. Radiation dose rate is determined by the amount of the activated corrosion products on the surface of the primary loop components of Pressurized Water Reactor (PWR) plants. Therefore, reducing the amount of the corrosion product will contribute to the reduction of occupational exposures. In order to reduce the corrosion products, Chemical and Volume Control System (CVCS) has been improved in Japanese PWRs as follows: (a) Cation Bed Demineralizer Flowrate Control; (b) Hydrogen Peroxide Injection System; (c) Purificationmore » Flowrate During Plant Shutdown; (d) Fine Mesh Filters Upstream of Mixed Bed Demineralizers.« less
Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling
NASA Astrophysics Data System (ADS)
Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.
2015-12-01
The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully evaluated before use as proxies for primary productivity.
NASA Astrophysics Data System (ADS)
Riemer, Daniel David
Two areas integral to the global cycle of tropospheric ozone were studied. The first segment of this investigation involved the study of marine ecosystems to define the sources of nonmethane hydrocarbons (NMHCs) in the surface ocean. This included laboratory and field investigations conducted to determine the function and importance of dissolved organic matter (DOM) in the abiotic photochemical production of nonmethane hydrocarbons (NMHCs) in surface seawater. Concurrently, phytoplankton were investigated as a biogenic source of NMHCs in the surface ocean. Low molecular weight alkenes, compounds observed in the greatest quantities in the surface ocean, are formed almost exclusively as a result of DOM-mediated photochemistry. Isoprene was found to be produced by all phytoplankton species investigated. The primary sink for NMHCs found in surface seawater was gas exchange. The second segment of this study focused on the prevalence of NMHCs and oxygenated volatile organic compounds (OVOCs) in the rural southeastern United States. To characterize the importance of NMHCs and OVOCs to the process of atmospheric reactivity and tropospheric ozone chemistry, mixing ratios for a number of NMHCs and OVOCs were determined. Isoprene and its primary oxidation products, methacrolein and methyl vinyl ketone, were observed to be the dominant hydroxyl radical (OH) sink in the rural atmosphere. Certain OVOCs, namely methanol, acetone and acetaldehyde-although not as important on a reactivity basis-were the most prevalent in terms of mass. Methanol was the dominant OVOC measured in the rural atmosphere and serves as an important source of formaldehyde in the rural atmosphere. On the basis of the mixing ratio patterns exhibited by many of the OVOCs present in the rural atmosphere, considerable biogenic sources are likely.
Morphometric analysis of primary graft non-function in liver transplantation.
Vertemati, M; Sabatella, G; Minola, E; Gambacorta, M; Goffredi, M; Vizzotto, L
2005-04-01
Primary graft non-function (PNF) is a life-threatening condition that is thought to be the consequence of microcirculation injury. The aim of the present study was to assess, with a computerized morphometric model, the morphological changes at reperfusion in liver biopsy specimens from patients who developed PNF after liver transplantation. Biopsy specimens were obtained at maximum ischaemia and at the end of reperfusion. Morphology included many stereological parameters, such as volumes of all parenchymal components, surface density, size distribution and mean diameter of hepatocytes. Other variables examined were intensive care unit stay, degree of steatosis, serum liver function tests and ischaemic time. In the postoperative period, the PNF group showed elevated serum levels of alanine transferase, decreased daily rate of bile production and prothrombin activity. Blood lactates were significantly higher in the PNF group than in a control group. When comparing groups, the volumetric parameters related to hepatocytes and sinusoids and the surface densities of the hepatic cells showed an inverse relationship. At the end of reperfusion, in PNF group the volume fraction of hepatocyte cytoplasm was decreased; in contrast, the volume fraction of sinusoidal lumen was markedly increased. The cell profiles showed the same inverse trend: the surface density of the parenchymal border of hepatocytes was decreased in PNF when compared with the control group, while the surface density of the vascular border was increased. In the PNF group, the surface density of the sinusoidal bed was directly correlated with alanine transferase, daily rate of bile production, prothrombin activity and cold ischaemic time. The alterations in hepatic architecture, as demonstrated by morphometric analysis in liver transplant recipients that developed PNF, provide additional information that may represent useful viability markers of the graft to complement conventional histological analysis.
A water-quality reconnaissance of Big Bear Lake, San Bernardino County, California, 1972-1973
Irwin, George A.; Lemons, Michael
1974-01-01
A water-quality reconnaissance study of the Big Bear Lake area in southern California was made by the U.S. Geological Survey from April 1972 through April 1973. The primary purpose of the study was to measure the concentration and distribution of selected primary nutrients, organic carbon, dissolved oxygen, phytoplankton, and water temperature in the lake. Estimates of the nitrogen, phosphorus, and silica loading to the lake from surface-water tributaries and precipitation were also made.Results of the study indicate that Big Bear Lake is moderately eutrophic, at least in regard to nitrogen, phosphorus, and organic content. Nitrate was found in either trace concentrations or below detectable limits; however, ammonia nitrogen was usually detected in concentrations greater than 0.05 milligrams per liter. Orthophosphate phosphorus was detected in mean concentrations ranging from 0.01 to 0.05 milligrams per liter. Organic nitrogen and phosphorus were also detected in measurable concentrations.Seasonal levels of dissolved oxygen indicated that the nutrients and other controlling factors were optimum for relatively high primary productivity. However, production varied both seasonally and areally in the lake. Primary productivity seemed highest in the eastern and middle parts of the lake. The middle and western parts of the lake exhibited severe oxygen deficits in the deeper water during the warmer summer months of June and July 1972.
NASA Astrophysics Data System (ADS)
Ooi, S. H.; Samah, A. A.; Braesicke, P.
2013-08-01
Near coastal areas of the equatorial South China Sea (SCS) are one of the world's regions with highest primary productivity (phytoplankton growth). Concentrations of phytoplankton in the SCS depend significantly on atmospheric forcings and the oceanic state, in particular during the northeast (winter) monsoon season from November to March. Aided by new ocean-observing satellite data, we present a climatological overview of recent surface atmospheric and oceanic features in the equatorial SCS during the northeast monsoon to identify the dominant air-sea processes influencing and modulating the primary productivity of the region. Measured chlorophyll a concentrations are used as a proxy for phytoplankton amounts and the spatial and temporal variations are characterized according to meteorological conditions. Converging northeasterly surface winds support high chlorophyll a concentrations along East Malaysia's coastline in conjunction with a continual nutrient supply from the bottom of the continental shelf by vertical mixing. The mixing can be enhanced due to increased turbulence by wind-generated high waves when they approach shallow water from the deep basin during strong cold surges and monsoon disturbances. Intraseasonal variability during the winter monsoon is characterized by a coastal increase of chlorophyll a starting in November and peaking in January. A general decrease is observed in March. Interannual variability of chlorophyll a concentrations is influenced by ENSO (due to the known modulation of cold surge occurrences), with decreases during El Niño and increases during La Niña in early winter along the shore of East Malaysia. As an example, we discuss an enhanced phytoplankton growth event that occurred due to a typical cold surge-induced Borneo vortex event in January 2010.
Robot Sequencing and Visualization Program (RSVP)
NASA Technical Reports Server (NTRS)
Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C
2013-01-01
The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.
Multiyear predictability of tropical marine productivity
Séférian, Roland; Bopp, Laurent; Gehlen, Marion; Swingedouw, Didier; Mignot, Juliette; Guilyardi, Eric; Servonnat, Jérôme
2014-01-01
With the emergence of decadal predictability simulations, research toward forecasting variations of the climate system now covers a large range of timescales. However, assessment of the capacity to predict natural variations of relevant biogeochemical variables like carbon fluxes, pH, or marine primary productivity remains unexplored. Among these, the net primary productivity (NPP) is of particular relevance in a forecasting perspective. Indeed, in regions like the tropical Pacific (30°N–30°S), NPP exhibits natural fluctuations at interannual to decadal timescales that have large impacts on marine ecosystems and fisheries. Here, we investigate predictions of NPP variations over the last decades (i.e., from 1997 to 2011) with an Earth system model within the tropical Pacific. Results suggest a predictive skill for NPP of 3 y, which is higher than that of sea surface temperature (1 y). We attribute the higher predictability of NPP to the poleward advection of nutrient anomalies (nitrate and iron), which sustain fluctuations in phytoplankton productivity over several years. These results open previously unidentified perspectives to the development of science-based management approaches to marine resources relying on integrated physical-biogeochemical forecasting systems. PMID:25071174
Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data
NASA Astrophysics Data System (ADS)
Siemann, Amanda Lynn
The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.
Jones, Elizabeth M.; Venables, Hugh J.; Firing, Yvonne L.; Dittrich, Ribanna; Heiser, Sabrina; Dougans, Julie
2018-01-01
The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760112
Henley, Sian F; Jones, Elizabeth M; Venables, Hugh J; Meredith, Michael P; Firing, Yvonne L; Dittrich, Ribanna; Heiser, Sabrina; Stefels, Jacqueline; Dougans, Julie
2018-06-28
The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.
Widespread methanotrophic primary production in lowland chalk rivers.
Shelley, Felicity; Grey, Jonathan; Trimmer, Mark
2014-05-22
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers.
Widespread methanotrophic primary production in lowland chalk rivers
Shelley, Felicity; Grey, Jonathan; Trimmer, Mark
2014-01-01
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers. PMID:24695425
Mechanisms of Cytotoxicity of the AIDS Virus.
1991-10-10
lentiviruses causes immunosuppression in cats ( feline immunodeficiency virus) (Pederson et al., 1987; Luciw et al., 1989), sheep (visna virus) (Haas et...determinant within the human immunodeficiency virus 1 surface envelope glycoprotein critical for productive infection of primary monocytes. 4. Simian... Immunodeficiency Virus Negative Factor Suppresses the Level of Viral mRNA in COS cells 5. Protein N-myristoylation/AIDS/fatty acid analogs 6. Functional
We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...
B. D. Dudley; Richard MacKenzie; T. S. Sakihara; H. Dulaiova; C. A. Waters; Flint Hughes; R. Ostertag
2014-01-01
In coastal waters, it remains unclear how terrestrial invasive species might alter nutrient availability and thus affect bottom-up control of primary production. Anchialine ponds are tidal- and groundwater-fed coastal water bodies without surface connections that provide convenient model systems in which to examine terrestrial to aquatic nutrient flow. To investigate...
Dreux Chappell, P.; Vedmati, Jagruti; Selph, Karen E.; Cyr, Heather A.; Jenkins, Bethany D.; Landry, Michael R.; Moffett, James W.
2016-01-01
The Costa Rica Dome (CRD) is a wind-driven feature characterized by high primary production and an unusual cyanobacterial bloom in surface waters. It is not clear whether this bloom arises from top-down or bottom-up processes. Several studies have argued that trace metal geochemistry within the CRD contributes to the composition of the phytoplankton assemblages, since cyanobacteria and eukaryotic phytoplankton have different transition metal requirements. Here, we report that total dissolved zinc (Zn) is significantly depleted relative to phosphate (P) and silicate (Si) within the upper water column of the CRD compared with other oceanic systems, and this may create conditions favorable for cyanobacteria, which have lower Zn requirements than their eukaryotic competitors. Shipboard grow-out experiments revealed that while Si was a limiting factor under our experimental conditions, additions of Si and either iron (Fe) or Zn led to higher biomass than Si additions alone. The addition of Fe and Zn alone did not lead to significant enhancements. Our results suggest that the depletion of Zn relative to P in upwelled waters may create conditions in the near-surface waters that favor phytoplankton with low Zn requirements, including cyanobacteria. PMID:27275028
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.
2016-01-01
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F
2016-05-27
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.
Cosmic Ray Interactions in Shielding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.
2011-09-08
This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less
Case Studies of Rock Reinforcement Components and Systems Testing
NASA Astrophysics Data System (ADS)
Thompson, A. G.; Villaescusa, E.
2014-09-01
Rock reinforcement is widely used in tunnels and surface and underground mines. A large number of proprietary products are available in various configurations of components. While the mechanical properties of the primary element are available from product brochures, the associated component properties may vary widely and adversely influence the overall performance of the system. Field pull out tests are most commonly used to measure the system response in the toe anchor region. However, the response of the collar region is less commonly considered but may be more important. Several case studies are described in which various components and systems of rock bolts and cable bolts have been subjected to static loading in the laboratory and in the field. The results generally demonstrate the importance of considering the properties of all the components and not simply those of the primary element. In some cases, the internal fixtures have strengths much less than the elements. Often it has also been found that the fixture at the collar has significantly less strength than the element and this will result in complete loss of function in restraining surface support hardware, such as plates, mesh and reinforced shotcrete.
Ash production by attrition in volcanic conduits and plumes.
Jones, T J; Russell, J K
2017-07-17
Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.
Materials flow of indium in the United States in 2008 and 2009
Goonan, Thomas G.
2012-01-01
Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.
Warm Anomaly Effects on California Current Phytoplankton
NASA Astrophysics Data System (ADS)
Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.
2016-02-01
Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.
Jiang, Hao; Kaminska, Bozena
2018-04-24
To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.
A Cu/Pt Near-Surface Alloy for Water-Gas Shift Catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Jan; Nilekar, Anand U.; Vang, Ronnie T.
2007-05-01
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The primary route to hydrogen production from fossil fuels involves the water-gas shift (WGS) reaction, and an improvement in the efficiency of WGS catalysts could therefore lead to a major leap forward in the realization of hydrogen economy. On the basis of a combination of high-resolution scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations, we suggestmore » the existence of a new thermodynamically stable Cu/Pt near-surface alloy (NSA). Temperature-programmed desorption and DFT reveal that this Cu/Pt NSA binds CO significantly more weakly than does Pt alone, thereby implying a considerable reduction in the potential for CO poisoning of the Cu/Pt NSA surface as compared to that of pure Pt. In addition, DFT calculations show that this Cu/Pt NSA is able to activate H2O easily, which is the rate-determining step for the WGS on several metal surfaces, and, at the same time, to bind the products of that reaction and formate intermediates rather weakly, thus avoiding possible poisoning of the catalyst surface. The Cu/Pt NSA is thus a promising candidate for an improved WGS catalyst.« less
Barman, Rahul; Jain, Atul K; Liang, Miaoling
2014-05-01
We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis-driven GPP bias was significantly positive with respect to the observed meteorology-driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m(-2) yr(-1) across sites (ca. 15% of site level GPP). At the northern mid-/high-latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20-30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short-wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site-level reanalysis-driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate-driven uncertainties in carbon, energy, and water fluxes using a single modeling framework. © 2013 John Wiley & Sons Ltd.
Wiencek, T.C.; Matos, J.E.; Hofman, G.L.
1997-03-25
A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1990-01-01
The assembly, emplacement, checkout, operation, and maintenance of equipment on planetary surfaces are all part of expanding human presence out into the solar system. A single point design, a reference scenario, is presented for lunar base operations. An initial base, barely more than an output, which starts from nothing but then quickly grows to sustain people and produce rocket propellant. The study blended three efforts: conceptual design of all required surface systems; assessments of contemporary developments in robotics; and quantitative analyses of machine and human tasks, delivery and work schedules, and equipment reliability. What emerged was a new, integrated understanding of hot to make a lunar base happen. The overall goal of the concept developed was to maximize return, while minimizing cost and risk. The base concept uses solar power. Its primary industry is the production of liquid oxygen for propellant, which it extracts from native lunar regolith. Production supports four lander flights per year, and shuts down during the lunar nighttime while maintenance is performed.
Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view.
Andreae, M O; Raemdonck, H
1983-08-19
Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weightedaverage concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 x 10(12) grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.
Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.; Raemdonck, Hans
1983-08-01
Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weighted-average concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 × 1012 grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.
Live Candida albicans suppresses production of reactive oxygen species in phagocytes.
Wellington, Melanie; Dolan, Kristy; Krysan, Damian J
2009-01-01
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.
Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †
Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.
2009-01-01
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256
Davis, Kathryn M; Badu-Tawiah, Abraham K
2017-04-01
The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Davis, Kathryn M.; Badu-Tawiah, Abraham K.
2017-04-01
The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O2 •-) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution.
Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary
NASA Astrophysics Data System (ADS)
McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.
2016-12-01
The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.
NASA Astrophysics Data System (ADS)
Li, J.; Ding, W.; Dong, L.
2017-12-01
The black shale in the early Cambrian Yurtus Formation (>521 Ma) in the Tarim basin, northwestern China, is characterized by its high TOC value (up to 16%) andgreat lateral continuity. It has been proven to be high-quality hydrocarbon source rocks. Abundant phytoplanktons and small shelly fossils have been reported from the lower Yurtus chert. However, recent biomarker discovery of aryl isoprenoid hydrocarbons suggests the existence of green sulfur bacteria, which indicates that the water column was stratified and the photic zone was prevailingly euxinic. These seemingly contradictory observations hamper our further understanding of the paleoenvironment in which the Yurtus shale was deposited and its control on the accumulation of organic matter. In this study, we systematically collected samples from the Yurtus Formation at the Kungaikuotan Section, and measured the organic carbon and nitrogen isotopic compositions and the content of trace element Barium (Ba). The strong negative excursions of nitrogen isotope ( -13‰) in the lower and upper parts of the Yurtus Formation are likely attributed to the biological activity of green and purple sulfur bacteria, which is consistent with our organic carbon isotope data as well as previous biomarker discovery. As green sulfur bacteria can only live in euxinic photic zone, it may indicate that the water column above this euxinic zone contains prolific organic matters which consume all the dissolved oxidants in surface ocean. It is well accepted that Ba flux can be used as an indicator for surface ocean primary productivity. Significant increase of barium content (from <100 to 2000 ppm) is observed at the same horizon as where the negative excursion of δ15Norg occurs, suggesting the substantive organic matter in the early Cambrian surface ocean mainly result from extremely high primary productivity. The abundant phytoplankton fossil record from this time period also supports this interpretation. In summary, high TOC in the Yurtus shale may derive from the extremely high primary productivity of phytoplanktons. Organic matter consumes all the dissolved oxidants in the water and generates the euxinic zone, which facilitates the accumulation and preservation of the surplus organic matter. This study also shed light on the ecology of the surface ocean before Cambrian Explosion.
NASA Astrophysics Data System (ADS)
Shin, Jung-Wook; Park, Jinku; Choi, Jang-Geun; Jo, Young-Heon; Kang, Jae Joong; Joo, HuiTae; Lee, Sang Heon
2017-12-01
The aim of this study was to examine the size structure of phytoplankton under varying coastal upwelling intensities and to determine the resulting primary productivity in the southwestern East Sea. Samples of phytoplankton assemblages were collected on five occasions from the Hupo Bank, off the east coast of Korea, during 2012-2013. Because two major surface currents have a large effect on water mass transport in this region, we first performed a Backward Particle Tracking Experiment (BPTE) to determine the coastal sea from which the collected samples originated according to advection time of BPTE particles, following which we used upwelling age (UA) to determine the intensity of coastal upwelling in the region of origin for each sample. Only samples that were affected by coastal upwelling in the region of origin were included in subsequent analyses. We found that as UA increased, there was a decreasing trend in the concentration of picophytoplankton, and increasing trends in the concentration of nanophytoplankton and microphytoplankton. We also examined the relationship between the size structure of phytoplankton and primary productivity in the Ulleung Basin (UB), which has experienced significant variation over the past decade. We found that primary productivity in UB was closely related to the strength of the southerly wind, which is the most important mechanism for coastal upwelling in the southwestern East Sea. Thus, the size structure of phytoplankton is determined by the intensity of coastal upwelling, which is regulated by the southerly wind, and makes an important contribution to primary productivity.
Global Biogeochemical Fluxes Program for the Ocean Observatories Initiative: A Proposal. (Invited)
NASA Astrophysics Data System (ADS)
Ulmer, K. M.; Taylor, C.
2010-12-01
The overarching emphasis of the Global Biogeochemical Flux Ocean Observatories Initiative
Monsoon control on faunal composition of planktic foraminifera in the Arabian Sea
NASA Astrophysics Data System (ADS)
Munz, P.; Siccha, M.; Kucera, M.; Schulz, H.
2013-12-01
Being among the most productive open ocean basins, sea surface properties in the Arabian Sea are highly influenced by the seasonal reversal of the monsoonal wind system. During boreal summer wind direction from the southwest induces strong upwelling along the coast off Somalia and Oman. Vertical transport of cold and nutrient-rich deep-water masses by Ekman pumping reduces sea surface temperature and triggers primary productivity. Reversed cold and dry winds during boreal winter lead to cooling of the surface- and subsurface-waters and hereby to deep convective mixing, bringing nutrients into the photic zone and enhancing primary productivity especially in the northern part of the Arabian Sea. Here, we study the influence of the different seasonal monsoon systems on the faunal composition of planktic foraminifera, in order to improve our understanding how the faunal community record is influenced by the respective monsoon systems and to provide baseline information for the reconstruction of ancient monsoon conditions. We used published core-top foraminiferal databases, significantly increased in spatial coverage by new contributions. The resulting combined database consists of 413 core-top samples spanning the Arabian Sea and the Northern Indian Ocean to 10° S. The seasonal sea surface properties at these stations could be binned into categories of different monsoon influence, based on satellite-derived chlorophyll-a concentrations. Interpretation of species response to environmental control is based on multivariate statistical analyses of each of the categorical bins. First results show that samples influenced only by winter- and summer monsoon conditions, respectively, feature specifiable faunal composition. Globigerina bulloides is mostly associated with summer upwelling conditions, whereas Globigerina falconensis and Pulleniatina obliquiloculata are typical species of winter conditions. Redundancy analysis reveals preferences of species populations with respect to particular environmental gradients and may help to disentangle winter- from summer monsoon impact on modern and fossil faunas.
NASA Astrophysics Data System (ADS)
Subha Anand, S.; Rengarajan, R.; Sarma, V. V. S. S.; Sudheer, A. K.; Bhushan, R.; Singh, S. K.
2017-05-01
The northern Indian Ocean is globally significant for its seasonally reversing winds, upwelled nutrients, high biological production, and expanding oxygen minimum zones. The region acts as sink and source for atmospheric CO2. However, the efficiency of the biological carbon pump to sequester atmospheric CO2 and export particulate organic carbon from the surface is not well known. To quantify the upper ocean carbon export flux and to estimate the efficiency of biological carbon pump in the Bay of Bengal and the Indian Ocean, seawater profiles of total 234Th were measured from surface to 300 m depth at 13 stations from 19.9°N to 25.3°S in a transect along 87°E, during spring intermonsoon period (March-April 2014). Results showed enhanced in situ primary production in the equatorial Indian Ocean and the central Bay of Bengal and varied from 13.2 to 173.8 mmol C m-2 d-1. POC export flux in this region varied from 0 to 7.7 mmol C m-2 d-1. Though high carbon export flux was found in the equatorial region, remineralization of organic carbon in the surface and subsurface waters considerably reduced organic carbon export in the Bay of Bengal. Annually recurring anticyclonic eddies enhanced organic carbon utilization and heterotrophy. Oxygen minimum zone developed due to stratification and poor ventilation was intensified by subsurface remineralization. 234Th-based carbon export fluxes were not comparable with empirical statistical model estimates based on primary production and temperature. Region-specific refinement of model parameters is required to accurately predict POC export fluxes.
Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.
Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S
2016-10-01
Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2) s(-1) in intact polygons to 7 nmol m(-2) s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.
2017-06-01
The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.
Fichtner, E J; Lynch, S C; Rizzo, D M
2009-05-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.
NASA Astrophysics Data System (ADS)
Saberi, S. J.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Solomon, C.; Boucher, J. M.
2016-12-01
Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics because it allows for coherent and consistent spatial and temporal observations as well as estimates of lake functions without in situ measurements. However, in order for RS products to be useful, algorithms that relate in situ measurements to RS data must be developed. Estimates of lake metabolic rates are of particular scientific interest since they are indicative of lakes' roles in carbon cycling and ecological function. Currently, there are few existing algorithms relating remote sensing products to in-lake estimates of metabolic rates and more in-depth studies are still required. Here we use satellite surface temperature observations from Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to produce a univariate quadratic equation model. The general model was validated using other lakes during an equivalent one-year time period (R2=0.76). The statistical analyses reveal significant positive relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific models for Lake Mendota (USA), Rotorua (New Zealand), and Taihu (China) showed stronger relationships than the general combined model, pointing to local influences such as watershed characteristics on in-lake GPP in some cases. These validation data suggest that the developed algorithm has a potential to predict lake GPP on a global scale.
NASA Astrophysics Data System (ADS)
Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.
2017-12-01
A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.
Simulation of cosmic irradiation conditions in thick target arrangements
NASA Technical Reports Server (NTRS)
Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.
1986-01-01
One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.
NASA Astrophysics Data System (ADS)
Petrick, Lauren; Dubowski, Yael
2010-05-01
Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.
NASA Astrophysics Data System (ADS)
Jin, C.; Xiao, X.; Wagle, P.
2014-12-01
Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this study revealed that the errors of the NARR surface reanalysis data introduced significant uncertainties of the PEMs-based GPP estimates. Therefore, it is important to develop more accurate radiation datasets at the regional and global scales to estimate gross and net primary production of terrestrial ecosystems at the regional and global scales.
NASA Astrophysics Data System (ADS)
Gann, Jeanette C.; Eisner, Lisa B.; Porter, Steve; Watson, Jordan T.; Cieciel, Kristin D.; Mordy, Calvin W.; Yasumiishi, Ellen M.; Stabeno, Phyllis J.; Ladd, Carol; Heintz, Ron A.; Farley, Edward V.
2016-12-01
Changes to physical and chemical oceanographic structure can lead to changes in phytoplankton biomass and growth, which, in-turn, lead to variability in the amount of energy available for transfer to higher trophic levels (e.g., forage fish). In general, age-0 (juvenile) walleye pollock (Gadus chalcogrammus) have been shown to have low fitness (determined by energy density and size), in warm years compared to average or cold years in the southeastern Bering Sea. Contrary to these findings, the year 2007 was a cold year with low fitness of age-0 pollock compared to the transition year of 2006 (transitioning from warm to cold conditions) and cold years, 2008-2011. In late summer/early fall (mid-August through September), significantly lower surface silicic acid concentrations coupled with low phytoplankton production and chlorophyll a (Chl a) biomass were observed in 2007 among 2006-2012 (P<0.05). We postulate that the low silicic acid concentrations may be an indication of reduced surface nutrient flux during summer, leading to low primary productivity (PP). The nutrient replenishing shelf/slope water exchange that occurred during late October-February (2006-2007) indicates that deep-water nutrient/salinity reserves for the start of the 2007 growing season were plentiful and had similar concentrations to other years (2006-2012). The spring bloom magnitude appeared to be slightly below average, and surface silicic acid concentrations at the end of the spring bloom period in 2007 appeared similar to other years in the middle domain of the southeastern Bering Sea. However, during summer (June-August) 2007, high stratification and the low number of storm events resulted in low flux of nutrients to surface waters, indicated by the low surface silicic acid concentrations at the end of summer (mid-August through September). Surface silicic acid may be useful as an indicator of surface nutrient enrichment (and subsequent PP) during summer since other macronutrients (e.g. nitrate) are usually near or below detection limits at this time, and diatoms are generally scarce during summer. Surface silicic acid concentration was also positively associated with the size of juvenile fish (age-0 pollock weight and length). This reinforces the theory that nutrient availability and primary productivity are important to energy allocation for higher trophic levels during summer, and possibly provides links between stratification and wind mixing, surface nutrient input, PP and juvenile fish size and condition.
Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio
NASA Astrophysics Data System (ADS)
Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu
2017-06-01
The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.
Kostyuk, Vladimir; Potapovich, Alla; Stancato, Andrea; De Luca, Chiara; Lulli, Daniela; Pastore, Saveria; Korkina, Liudmila
2012-01-01
The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A). Conclusions/Significance Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin. PMID:22952984
Seasonal controls of aragonite saturation states in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Wang, Zhaohui Aleck; Lawson, Gareth L.; Pilskaln, Cynthia H.; Maas, Amy E.
2017-01-01
The Gulf of Maine (GoME) is a shelf region especially vulnerable to ocean acidification (OA) due to natural conditions of low pH and aragonite saturation states (Ω-Ar). This study is the first to assess the major oceanic processes controlling seasonal variability of the carbonate system and its linkages with pteropod abundance in Wilkinson Basin in the GoME. Two years of seasonal sampling cruises suggest that water-column carbonate chemistry in the region undergoes a seasonal cycle, wherein the annual cycle of stratification-overturn, primary production, respiration-remineralization and mixing all play important roles, at distinct spatiotemporal scales. Surface production was tightly coupled with remineralization in the benthic nepheloid layer during high production seasons, which results in occasional aragonite undersaturation. From spring to summer, carbonate chemistry in the surface across Wilkinson Basin reflects a transition from a production-respiration balanced system to a net autotropic system. Mean water-column Ω-Ar and abundance of large thecosomatous pteropods show some correlation, although patchiness and discrete cohort reproductive success likely also influence their abundance. Overall, photosynthesis-respiration is the primary driving force controlling Ω-Ar variability during the spring-to-summer transition as well as over the seasonal cycle. However, calcium carbonate (CaCO3) dissolution appears to occur near bottom in fall and winter when bottom water Ω-Ar is generally low but slightly above 1. This is accompanied by a decrease in pteropod abundance that is consistent with previous CaCO3 flux trap measurements. The region might experience persistent subsurface aragonite undersaturation in 30-40 years under continued ocean acidification.
Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes
NASA Technical Reports Server (NTRS)
Andre, M.; Ducloux, H.; Richaud, C.
1986-01-01
When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.
Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen
2013-01-01
We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...
NASA Astrophysics Data System (ADS)
Wilhelm, C.; Rechid, D.; Jacob, D.
2013-05-01
The main objective of this study is the coupling of the regional climate model REMO to a 3rd generation land surface scheme and the evaluation of the new model version of REMO, called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. Attention is paid to the documentation of the technical aspects of the new model constituents and the coupling mechanism. We compare simulation results of REMO-iMOVE and of the reference version REMO2009, to investigate the sensitivity of the regional model to the new land surface scheme. An 11 yr climate model run (1995-2005), forced with ECMWF ERA-Interim lateral boundary conditions, over Europe in 0.44° resolution of both model versions was carried out, to represent present day European climate. The result of these experiments are compared to multiple temperature, precipitation, heat flux and leaf area index observation data, to determine the differences in the model versions. The new model version has further the ability to model net primary productivity for the given plant functional types. This new feature is thoroughly evaluated by literature values of net primary productivity of different plant species in European climatic regions. The new model version REMO-iMOVE is able to model the European climate in the same quality as the parent model version REMO2009 does. The differences in the results of the two model versions stem from the differences in the dynamics of vegetation cover and density and can be distinct in some regions, due to the influences of these parameters to the surface heat and moisture fluxes. The modeled inter-annual variability in the phenology as well as the net primary productivity lays in the range of observations and literature values for most European regions. This study also reveals the need for a more sophisticated soil moisture representation in the newly developed model version REMO-iMOVE to be able to treat the differences in plant functional types. This gets especially important if the model will be used in dynamic vegetation studies.
NASA Astrophysics Data System (ADS)
Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.
2017-12-01
Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record to examine pre-disturbance albedo trends and to link historical land cover and disturbance history to post-disturbance early spring albedo values. We examine the impact of landscape heterogeneity on albedo in the growing and dormant seasons and quantify the effects of snow exposure changes from over-story canopy loss.
Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater
NASA Astrophysics Data System (ADS)
Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.
2017-12-01
Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.
Conversion of 1,2-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-07-17
We have studied the reactions of 1,2-propylene glycol (1,2-PG), DOCH(CH3)CH2OD, on partially reduced, hydroxylated and oxidized TiO2(110) surfaces using temperature programmed desorption. On reduced TiO2(110), propylene, propanal, and acetone are identified as primary carbon-containing products. While the propylene formation channel dominates at low 1,2-PG coverages, all of the above-mentioned products are observed at high coverages. The carbon-containing products are accompanied by the formation of D2O and D2. The observation of only deuterated products shows that the source of hydrogen (D) is from the 1,2-PG hydroxyls. The role of bridging oxygen vacancy (VO) sites was further investigated by titrating them viamore » hydroxylation and oxidation. The results show that hydroxylation does not change the reactivity because the VO sites are regenerated at 500 K, which is a temperature lower than the 1,2-PG product formation temperature. In contrast, surface oxidation causes significant changes in the product distribution, with increased acetone and propanal formation and decreased propylene formation. Additionally D2 is completely eliminated as an observed product at the expense of D2O formation.« less
Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer
NASA Astrophysics Data System (ADS)
Bakker, Eric J.; Olivares, Andres; Schmell, Reed A.; Schmell, Rodney A.; Gartner, Darren; Jaramillo, Anthony; Romero, Kelly; Rael, Andres; Lewis, Jeff
2009-08-01
We present the verification procedure for the 1.4 meter primary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Six mirrors are in mass production at Optical Surface Technologies (OST) in Albuquerque. The six identical parabolic mirrors will have a radius of curvature of 6300 mm and a final surface wavefront quality of 29 nm rms. The mirrors will be tested in a tower using a computer generated hologram, and the Intellium⢠H2000 interferometer from Engineering Synthesis Design, Inc. (ESDI). The mirror fabrication activities are currently in the early stage of polishing and have already delivered some promising results with the interferometer. A complex passive whiffle tree has been designed and fabricated by Advanced Mechanical and Optical Systems (AMOS, Belgium) that takes into account the gravity loading for an alt-alt mount. The final testing of the primary mirrors will be completed with the mirror cells that will be used in the telescopes. In addition we report on shear tests performed on the mirror cell pads on the back of the primary mirrors. These pads are glued to the mirror. The shear test has demonstrated that the glue can withstand at least 4.9 kilo Newton. This is within the requirements.
Chlorophyll a reconstruction from in situ measurements: 1. Method description
NASA Astrophysics Data System (ADS)
Fründt, B.; Dippner, J. W.; Waniek, J. J.
2015-02-01
Understanding the development of primary production is essential for projections of the global carbon cycle in the context of climate change. A chlorophyll a hindcast that serves as a primary production indicator was obtained by fitting in situ measurements of nitrate, chlorophyll a, and temperature. The resulting fitting functions were adapted to a modeled temperature field. The method was applied to observations from the Madeira Basin, in the northeastern part of the oligotrophic North Atlantic Subtropical Gyre and yielded a chlorophyll a field from 1989 to 2008 with a monthly resolution validated with remotely measured surface chlorophyll a data by SeaWiFS. The chlorophyll a hindcast determined with our method resolved the seasonal and interannual variability in the phytoplankton biomass of the euphotic zone as well as the deep chlorophyll maximum. Moreover, it will allow estimation of carbon uptake over long time scales.
NASA Technical Reports Server (NTRS)
Lubin, Dan
2001-01-01
This study has used a combination of ocean color, backscattered ultraviolet, and passive microwave satellite data to investigate the impact of the springtime Antarctic ozone depletion on the base of the Antarctic marine food web - primary production by phytoplankton. Spectral ultraviolet (UV) radiation fields derived from the satellite data are propagated into the water column where they force physiologically-based numerical models of phytoplankton growth. This large-scale study has been divided into two components: (1) the use of Total Ozone Mapping Spectrometer (TOMS) and Special Sensor Microwave Imager (SSM/I) data in conjunction with radiative transfer theory to derive the surface spectral UV irradiance throughout the Southern Ocean; and (2) the merging of these UV irradiances with the climatology of chlorophyll derived from SeaWiFS data to specify the input data for the physiological models.
NASA Astrophysics Data System (ADS)
Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.
2012-12-01
Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.
Climate-driven reduction in soil loss due to the dynamic role of vegetation
NASA Astrophysics Data System (ADS)
Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.
2016-12-01
Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.
Gon Ryu, Sam; Wan Lee, Hae
2015-01-01
The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.
Three-dimensional carbon fibers and method and apparatus for their production
Muradov, Nazim Z [Melbourne, FL
2012-02-21
This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, David R; Albrecht, Peter M
2013-01-01
This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C ismore » left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.« less
NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers
NASA Astrophysics Data System (ADS)
Kakekhani, Arvin; Ismail-Beigi, Sohrab
2013-03-01
NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.
Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters
NASA Technical Reports Server (NTRS)
Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.
1992-01-01
The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Madsen, M. B.; Murad, E.; Wagner, P. A.
2000-01-01
Visible, infrared and Mossbauer spectra have been measured for fine-grained alteration products of volcanic tephra and ash. Comparison of the spectral and chemical properties for different size separates and related samples provides information about the crystalline materials in these samples and how they may have formed. Hydrothermal processes can increase the alteration rates of the primary minerals and glass and provide S, Fe and/or water for formation of sulfates and hydrated minerals. Identification of crystalline alteration minerals on Mars may indicate hydrothermal alteration and sites of interesting geologic processes.
Net production of oxygen in the subtropical ocean.
Riser, Stephen C; Johnson, Kenneth S
2008-01-17
The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.
New approaches to the measurement of chlorophyll, related pigments and productivity in the sea
NASA Technical Reports Server (NTRS)
Booth, C. R.; Keifer, D. A.
1989-01-01
In the 1984 SBIR Call for Proposals, NASA solicited new methods to measure primary production and chlorophyll in the ocean. Biospherical Instruments Inc. responded to this call with a proposal first to study a variety of approaches to this problem. A second phase of research was then funded to pursue instrumentation to measure the sunlight stimulated naturally occurring fluorescence of chlorophyll in marine phytoplankton. The monitoring of global productivity, global fisheries resources, application of above surface-to-underwater optical communications systems, submarine detection applications, correlation, and calibration of remote sensing systems are but some of the reasons for developing inexpensive sensors to measure chlorophyll and productivity. Normally, productivity measurements are manpower and cost intensive and, with the exception of a very few expensive multiship research experiments, provide no contemporaneous data. We feel that the patented, simple sensors that we have designed will provide a cost effective method for large scale, synoptic, optical measurements in the ocean. This document is the final project report for a NASA sponsored SBIR Phase 2 effort to develop new methods for the measurements of primary production in the ocean. This project has been successfully completed, a U.S. patent was issued covering the methodology and sensors, and the first production run of instrumentation developed under this contract has sold out and been delivered.
NASA Technical Reports Server (NTRS)
Balch, William M.
2001-01-01
One of the greatest challenges in providing sea-truth data for various ocean color sensors is climatology. This is particularly true in the Gulf of Maine since it is cloudy and foggy more than it is clear; the climatology shows on average, about one in four to five days has clear skies with clear days slightly more frequent in the late summer and early fall. Our strategy has been to use a ship of opportunity where one has choice of the sampling days. This provides much better flexibility to sample during clear periods with good satellite coverage. Our Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract has been to use the M/S Scotia Prince ferry as a ship of opportunity, running between Portland, Maine and Yarmouth, NS. Measurements include continuous, surface, along-track fluorescence, two independent measures of backscattering, total light scattering, absorption, beam attenuation, above-water remote sensing reflectance, calcite-dependent light scattering, temperature, and salinity. Expendable bathythermography (XBT) drops allow acquisition of vertical temperature information, useful for defining isopycnal slope, which affects primary production. These data are comparable to a previous program from early 1982, where a ship of opportunity program (SOOP) was run on the truck ferry, M/V Marine Evangeline, which ran along the same transect. These surface data were combined with satellite-derived sea surface temperature fields to examine the Maine coastal current. Unfortunately, this program stopped in 1982. The ongoing SIMBIOS results will dovetail nicely with the previous work (which also had Coastal Zone Color Scanner (CZCS) coverage) for looking at any long-term changes in the Gulf of Maine hydrography, bio-optics, and biogeochemistry.
Annual contribution of carbon, nitrogen, and phosphorus by migrant Canada geese to a hardwater lake
Manny, Bruce A.; Wetzel, Robert G.; Johnson, W.C.
1975-01-01
Each year more than 6,000 migrant Canada geese (Branta canadensis interior Todd) rest for 3 to 10 days during the months of March, October, November, and December on Wintergreen Lake, a productive 15 ha (33 acre) hardwater lake in the W. K. Kellogg Bird Sanctuary of Michigan State University in southwestern Michigan. For the past six years accurate weekly counts have been made of resident and migrant waterfowl using Wintergreen Lake. During the past four years Wintergreen Lake has been the site of extensive limnological investigations relating nutrient dynamics and primary productivity. These limnological investigations suggested nutrients contributed by migrant Canada geese were the chief cause of hypereutrophic primary productivity conditions in Wintergreen Lake. Until January 1970, the unpredictable habits of wild Canada geese using Wintergreen Lake prevented accurate estimation of nutrients contributed ton the lake in the form of goose feces. An opportunity to measure this source of nutrients was presented on 9 to 11 January 1970 when about 600 late fall migrant Canada geese rested part of three days in a clearly defined area on newly fallen snow covering frozen Wintergreen Lake. During their stay on the lake accurate records were kept of goose numbers, their location on the lake surface, hours spent on the ice and hours spent feeding off the lake. After the geese left on 11 January 1970, a random sampling procedure was used to measure the density of droppings deposited within the area used by the geese on the lake surface.
Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea)
NASA Astrophysics Data System (ADS)
Kim, Minkyoung; Hwang, Jeomshik; Rho, TaeKeun; Lee, Tongsup; Kang, Dong-Jin; Chang, Kyung-Il; Noh, Suyun; Joo, HuiTae; Kwak, Jung Hyun; Kang, Chang-Keun; Kim, Kyung-Ryul
2017-03-01
This study investigates the biological pump system in the East Sea (Japan Sea) by conducting an analysis of the total particle flux, biogenic material composition, and carbon isotope ratios of sinking particles. The samples were collected for one year starting from March 2011 using time-series sediment traps deployed at depths of 1040 m and 2280 m on bottom-tethered mooring at Station EC1 (37.33°N, 131.45°E; 2300 m water depth) in the Ulleung Basin (UB), southwestern part of the East Sea. The temporal variation in the particulate organic carbon (POC) flux at 1000 m shows a good relationship with the primary production in the corresponding surface water. The ratio of POC flux at 1000 m to satellite-based primary production in the corresponding region in the UB was 3%, which is comparable to the values of 2 to 5% estimated from previous studies of other part of the East Sea. The lithogenic material accounted for > 17% of the sinking particles at 1000 m and for a larger fraction of 40 to 60% at 2280 m. The radiocarbon contents of the sinking POC at both trap depths imply the additional supply of aged POC, with a much greater contribution at 2280 m. Overall, the particle flux in the deep interior of the East Sea appears to be controlled by the supply of complex sources, including aeolian input, the lateral supply of resuspended sediments, and biological production in the surface water.
Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age
Johnston, D. T.; Wolfe-Simon, F.; Pearson, A.; Knoll, A. H.
2009-01-01
Molecular oxygen (O2) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580–550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O2 production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O2 budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe2+ rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms. PMID:19805080
Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
Johnston, D T; Wolfe-Simon, F; Pearson, A; Knoll, A H
2009-10-06
Molecular oxygen (O(2)) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580-550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O(2) production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O(2) budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe(2+) rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms.
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.
2009-04-01
In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya river basins. The temporally-variable inundation extent simulated by the VIC model is compared to 25 km resolution inundation products developed from combined QuikSCAT, AMSR-E and MODIS data sets covering the time period from 2002 onward. The seasonal variation in methane emissions associated with sub-grid variability in water table extent is explored between 1948 and 2006. This work was carried out at Purdue University, at the University of Washington, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA.
The utility of estimating net primary productivity over Alaska using baseline AVHRR data
Markon, C.J.; Peterson, Kim M.
2002-01-01
Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.
NASA Astrophysics Data System (ADS)
Hamilton, T. L.; Havig, J. R.
2016-12-01
The majority of geomicrobiological research conducted on glacial systems to date have focused on glaciers that override primarily carbonate or granitic bedrock types, with little known of the processes that support microbial life in glacial systems overriding volcanic terrains (e.g., basalt or andesite). To better constrain the role of the supraglacial ecosystems in the carbon and nitrogen cycles, to gain insight into microbiome composition and function in alpine glacial systems overriding volcanic terrains, and to constrain potential elemental sequestration or release through weathering processes associated with snow algae communities, we examined the microbial community structure and primary productivity in snow on and near alpine glaciers on stratovolcanoes in the Cascade Range of the Pacific Northwest. Here we present the first published values for carbon fixation rates of snow algae communities on alpine glaciers in the Pacific Northwest. We observed varying levels of light-dependent carbon fixation on snowfields on or near glaciers on Mt Hood, Mt Adams and North Sister. Recovery of algal 18S rRNA transcripts is consistent with previous studies indicating the majority of primary productivity on snow and ice can be attributed to photoautotrophic algae. In contrast to previous observations of glacial ecosystems, our geochemical, isotopic and microcosm data suggest these assemblages are not limited by phosphorus or fixed nitrogen availability. Furthermore, our data indicate these snow assemblages actively sequester Fe, Mn, and P leached from minerals sourced from the local rocks. Our observations of light-dependent primary productivity on snow are consistent with similar studies in polar ecosystems; however, our data underscore the need for similar studies on glacier surfaces and seasonal snowfields to better constrain the role of local bedrock and nutrient delivery on carbon fixation and biogeochemical cycling in these ecosystems.
Definition of a near real time microbiological monitor for space vehicles
NASA Technical Reports Server (NTRS)
Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.
1989-01-01
Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The J.H. Baxter site is in Weed Siskiyou County, north-central California, and consists of the 33-acre J.H. Baxter facility and the adjacent 870-acre Roseburg Forest Products facility. Since 1937, wood treatment operations at the site have involved a variety of chemicals including ammonical copper-zinc-arsenate, creosote, and PCP. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water are organics including PAHs and dioxins; and metals including arsenic.
Alternative Energy Sources for United States Air Force Installations
1975-08-01
easy to maintain, and have a relatively long life expectancy. b. Linear Focus Parabolic trough collectors have been fabricated by two primary methods...engineered and economically manufactured and dis- tributed solar collectors . Development, optimization, production design, and manufacture of these units is...193 and domestic hnt water heating. These systems function by converting the solar energy incident on a collector surface to thermal energy in a working
Space Vehicle Chemical Interactions and Technologies
2015-05-26
the signal intensities for product and transmitted primary ions and applying the Lambert - Beer expression. Measurements are corrected for reactions...other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...a function of the emitted cluster radius. The surface electric field is calculated from Coulomb’s law and levels off at approximately the
Ocean Surface Topography Data Products and Tools
NASA Technical Reports Server (NTRS)
Case, Kelley E.; Bingham, Andrew W.; Berwin, Robert W.; Rigor, Eric M.; Raskin, Robert G.
2004-01-01
The Physical Oceanography Distributed Active Archiving Center (PO.DAAC), NASA's primary data center for archiving and distributing oceanographic data, is supporting the Jason and TOPEX/Poseidon satellite tandem missions by providing a variety of data products, tools, and distribution methods to the wider scientific and general community. PO.DAAC has developed several new data products for sea level residual measurements, providing a longterm climate data record from 1992 to the present These products provide compatible measurements of sea level residuals for the entire time series including the tandem TOPEX/Poseidon and Jason mission. Several data distribution tool. are available from NASA PO.DAAC. The Near-Real-Time Image Distribution Server (NEREIDS) provides quicklook browse images and binary data files The PO.DAAC Ocean ESIP Tool (POET) provides interactive, on-tine data subsetting and visualization for several altimetry data products.
A lower trophic ecosystem model including iron effects in the Okhotsk Sea
NASA Astrophysics Data System (ADS)
Okunishi, Takeshi; Kishi, Michio J.; Ono, Yukiko; Yamashita, Toshihiko
2007-09-01
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.
NASA Astrophysics Data System (ADS)
Tanaka, A.; Takahashi, K.; Shiogama, H.; Hanasaki, N.; Masaki, Y.; Ito, A.; Noda, H.; Hijioka, Y.; Emori, S.
2016-12-01
The Paris Agreement of 2015 includes pursuing efforts to limit the increase in the global mean temperature from preindustrial levels (ΔGMT) to 1.5°C, as well as suppressing ΔGMT well below 2°C. However, how impacts of 1.5°C differ from the impacts of 2°C or greater warming is unclear, and further studies covering wider ranges of ΔGMT are required. We arranged climate-change impacts at different ΔGMT levels by employing the outputs from impact assessment simulations based on climate scenarios of five climate models and four radiative forcing scenarios. We then tested whether climate-change impacts at different ΔGMT levels in a range ΔGMT = 1.5-4°C can be derived from those at ΔGMT = 2°C by linear scaling. We assessed impacts on net primary production, CO2 emissions from biomass burning, soil erosion, and surface runoff, at global and regional scales. We found that linearity holds in most regions for net primary production, biomass burning, and surface runoff, but fails for soil erosion. In this session, we discuss at what value of ΔGMT linearity fails for both world and several regional domains.
Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo
2015-04-02
To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.
Regimes of Pulsar Pair Formation and Particle Energetics
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)
2002-01-01
We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.
Inflectional instabilities in the wall region of bounded turbulent shear flows
NASA Technical Reports Server (NTRS)
Swearingen, Jerry D.; Blackwelder, Ron F.; Spalart, Philippe R.
1987-01-01
The primary thrust of this research was to identify one or more mechanisms responsible for strong turbulence production events in the wall region of bounded turbulent shear flows. Based upon previous work in a transitional boundary layer, it seemed highly probable that the production events were preceded by an inflectional velocity profile which formed on the interface between the low-speed streak and the surrounding fluid. In bounded transitional flows, this unstable profile developed velocity fluctuations in the streamwise direction and in the direction perpendicular to the sheared surface. The rapid growth of these instabilities leads to a breakdown and production of turbulence. Since bounded turbulent flows have many of the same characteristics, they may also experience a similar type of breakdown and turbulence production mechanism.
NASA Astrophysics Data System (ADS)
Kim, Sunghan; Khim, Boo-Keun; Ikehara, Ken; Itaki, Takuya; Shibahara, Akihiko; Yamamoto, Masanobu
2017-07-01
Changes in water column conditions in the northwestern Pacific during the last 23 ka were reconstructed using geochemical and isotope proxies and redox elemental compositions along with published data (alkenone sea surface temperature (SST) and benthic foraminiferal fauna) at core GH02-1030. Surface water primary productivity in terms of biogenic opal and TOC contents, which mainly represented export production of diatom, was closely related to alkenone (spring-summer) SST and the development of spring-summer mixed layer depth. The different variation patterns of nitrate and silicic acid utilization, estimated by bulk δ15N and δ30Sidiatom values, respectively, are most likely due to the water column denitrification influence on bulk δ15N. Dysoxic bottom water conditions occurred during the Bølling-Allerød (BA) and the Pre-Boreal (PB), which was evident by laminated sediments, abundant dysoxic benthic foraminifers, and increased redox elemental compositions. Although surface water productivity increased during the BA and PB, dysoxic bottom water conditions were caused by a combination of enhanced surface water productivity and reduced ventilation of North Pacific Intermediate Water (NPIW) in response to meltwater input from the high latitude areas. Based on records of core GH02-1030 and other cores in the northwestern Pacific, the Okhotsk Sea, and the Bering Sea, which are all proximal to the modern NPIW source region, dissolved oxygen concentrations of bottom water were more depleted during the BA than PB. Such difference was attributed to more sluggish NPIW ventilation due to more meltwater input during the BA than the PB. The opening or closure of the Bering Strait is critical to the direction of meltwater transport to the northwestern Pacific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Weiwei; Randerson, James T.; Moore, J. Keith
We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less
Fu, Weiwei; Randerson, James T.; Moore, J. Keith
2016-09-16
We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less
Optimum Water Chemistry in radiation field buildup control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien, C.
1995-03-01
Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less
Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.
2014-01-01
The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.
Bacterioplankton: A Sink for Carbon in a Coastal Marine Plankton Community
NASA Astrophysics Data System (ADS)
Ducklow, Hugh W.; Purdie, Duncan A.; Leb. Williams, Peter J.; Davies, John M.
1986-05-01
Recent determinations of high production rates (up to 30 percent of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a ``microbial loop'' that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14--labeled bacterioplankton for over 50 days. Only 2 percent of the label initially fixed from carbon-14--labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20 percent of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.
Amazon forests maintain consistent canopy structure and greenness during the dry season.
Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J
2014-02-13
The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.
Canepa, Antonio; Fuentes, Verónica; Bosch-Belmar, Mar; Acevedo, Melissa; Toledo-Guedes, Kilian; Ortiz, Antonio; Durá, Elia; Bordehore, César; Gili, Josep-Maria
2017-01-01
Jellyfish blooms cause important ecological and socio-economic problems. Among jellyfish, cubozoans are infamous for their painful, sometimes deadly, stings and are a major public concern in tropical to subtropical areas; however, there is little information about the possible causes of their outbreaks. After a bloom of the cubomedusa Carybdea marsupialis (Carybdeidae) along the coast of Denia (SW Mediterranean, Spain) in 2008 with negative consequences for local tourism, the necessity to understand the ecological restrictions on medusae abundance was evident. Here we use different models (GAM and zero-inflated models) to understand the environmental and human related factors influencing the abundance and distribution of C. marsupialis along the coast of Denia. Selected variables differed among medusae size classes, showing different environmental restriction associated to the developmental stages of the species. Variables implicated with dispersion (e.g. wind and current) affected mostly small and medium size classes. Sea surface temperature, salinity and proxies of primary production (chl a, phosphates, nitrates) were related to the abundances of small and large size classes, highlighting the roles of springtime salinity changes and increased primary production that may promote and maintain high densities of this species. The increased primary (and secondary) production due to anthropogenic impact is implicated as the factor enabling high numbers of C. marsupialis to thrive. Recommendations for monitoring blooms of this species along the study area and applicable to Mediterranean Sea include focus effort in coastal waters where productivity have been enriched by anthropogenic activities.
Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei
2015-09-15
The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.
MODIS Data from the GES DISC DAAC: Moderate-Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) is responsible for the distribution of the Level 1 data, and the higher levels of all Ocean and Atmosphere products (Land products are distributed through the Land Processes (LP) DAAC DAAC, and the Snow and Ice products are distributed though the National Snow and Ice Data Center (NSIDC) DAAC). Ocean products include sea surface temperature (SST), concentrations of chlorophyll, pigment and coccolithophores, fluorescence, absorptions, and primary productivity. Atmosphere products include aerosols, atmospheric water vapor, clouds and cloud masks, and atmospheric profiles from 20 layers. While most MODIS data products are archived in the Hierarchical Data Format-Earth Observing System (HDF-EOS 2.7) format, the ocean binned products and primary productivity products (Level 4) are in the native HDF4 format. MODIS Level 1 and 2 data are of the Swath type and are packaged in files representing five minutes of Files for Level 3 and 4 are global products at daily, weekly, monthly or yearly resolutions. Apart from the ocean binned and Level 4 products, these are in Grid type, and the maps are in the Cylindrical Equidistant projection with rectangular grid. Terra viewing (scenes of approximately 2000 by 2330 km). MODIS data have several levels of maturity. Most products are released with a provisional level of maturity and only announced as validated after rigorous testing by the MODIS Science Teams. MODIS/Terra Level 1, and all MODIS/Terra 11 micron SST products are announced as validated. At the time of this publication, the MODIS Data Support Team (MDST) is working with the Ocean Science Team toward announcing the validated status of the remainder of MODIS/Terra Ocean products. MODIS/Aqua Level 1 and cloud mask products are released with provisional maturity.
Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2
NASA Technical Reports Server (NTRS)
Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc
2015-01-01
We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.
Endurance of larch forest ecosystems in eastern Siberia under warming trends
NASA Astrophysics Data System (ADS)
Sato, H.; Iwahana, G.; Ohta, T.
2015-12-01
The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.
Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study
Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.; ...
2017-01-23
A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less
Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.
A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less
Motorization of China implies changes in Pacific air chemistry and primary production
NASA Astrophysics Data System (ADS)
Elliott, Scott; Blake, Donald R.; Duce, Robert A.; Lai, C. Aaron; McCreary, Iain; McNair, Laurie A.; Rowland, F. Sherwood; Russell, Armistead G.; Streit, Gerald E.; Turco, Richard P.
1997-11-01
The People's Republic of China, the world's most populous nation, is considering extensive development of its automotive transportation infrastructure. Upper limits to the associated pollution increases can be defined through scenarios with Western style vehicles and vehicle-to-person ratios. Here we construct estimates of fundamental changes to chemistry of the Pacific ocean/atmosphere system through simple budgeting procedures. Regional increases in tropospheric ozone could reach tens of parts per billion. Observations/experiments suggest that enhanced nitrogen oxides will react with sea salt aerosols to yield chlorine atoms in the marine boundary layer. Nitrate deposition onto the open sea surface would support several percent of exported North Pacific carbon production. Transport of biologically active iron to surface waters may follow from increases in mineral dust and acid sulfate aerosols. Altered plankton ecodynamics will feed back into climate processes through sea to air flux of reduced sulfur gases and through carbon dioxide drawdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, C.A.; Conant, R.A.; Golich, G.M.
1995-12-31
This paper summarizes the (preliminary) findings from extensive field studies of hydraulic fracture orientation in diatomite waterfloods and related efforts to monitor the induced surface subsidence. Included are case studies from the Belridge and Lost Hills diatomite reservoirs. The primary purpose of the paper is to document a large volume of tiltmeter hydraulic fracture orientation data that demonstrates waterflood-induced fracture reorientation--a phenomenon not previously considered in waterflood development planning. Also included is a brief overview of three possible mechanisms for the observed waterflood fracture reorientation. A discussion section details efforts to isolate the operative mechanism(s) from the most extensive casemore » study, as well as suggesting a possible strategy for detecting and possibly mitigating some of the adverse effects of production/injection induced reservoir stress changes--reservoir compaction and surface subsidence as well as fracture reorientation.« less
Life cycle assessment of mobile phone housing.
Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru
2004-01-01
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.
Global Patterns in Human Consumption of Net Primary Production
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence William T.
2004-01-01
The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, flows within food webs and the provision of important primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial ba!mce sheet of net primary production supply and demand for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production "imports" and suggest policy options for slowing future growth of human appropriation of net primary production.
Observations of Radical Precursors during TexAQS II: Findings and Implications
NASA Astrophysics Data System (ADS)
Olaguer, E. P.; Lefer, B. L.; Rappenglueck, B.; Pinto, J. P.
2009-12-01
The Texas Environmental Research Consortium (TERC) sponsored and helped organize significant components of the Second Texas Air Quality Study (TexAQS II). Some of the TERC-sponsored experiments, most notably those associated with the TexAQS II Radical and Aerosol Measurement Project (TRAMP) sited on top of the Moody Tower at the University of Houston, found evidence for the importance of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. During TRAMP, daytime HCHO pulses as large as 32 ppb were observed and attributed to industrial activities upwind in the Houston Ship Channel (HSC), and HCHO peaks as large as 52 ppb were detected by in-situ surface monitors in the HSC. In addition, an instrumented Piper Aztec aircraft observed plumes of apparent primary formaldehyde in flares from petrochemical facilities in the HSC. In one such combustion plume, depleted of ozone by large NOx emissions, the Piper Aztec measured an HCHO-to-CO ratio three times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares can increase peak ozone in Houston by up to 30 ppb, depending on conditions in the planetary boundary layer. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of night-time radicals (~30 ppt HO2). Additional HONO sources could increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the effectiveness of simulated control strategies, and thus make ozone attainment demonstrations easier. (This abstract does not necessarily reflect EPA policy.)
Reduced Gas Cycling in Microbial Mats: Implications for Early Earth
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
For more than half the history of life on Earth, biological productivity was dominated by photosynthetic microbial mats. During this time, mats served as the preeminent biological influence on earth's surface and atmospheric chemistry and also as the primary crucible for microbial evolution. We find that modern analogs of these ancient mat communities generate substantial quantities of hydrogen, carbon monoxide, and methane. Escape of these gases from the biosphere would contribute strongly to atmospheric evolution and potentially to the net oxidation of earth's surface; sequestration within the biosphere carries equally important implications for the structure, function, and evolution of anaerobic microbial communities within the context of mat biology.
NASA Astrophysics Data System (ADS)
Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen
2009-04-01
As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu
2012-12-15
The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions.more » We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.« less
NASA Astrophysics Data System (ADS)
Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.
2010-06-01
In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.
NASA Astrophysics Data System (ADS)
van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.
2014-05-01
Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references selection procedure on the retrieval product.
NASA Astrophysics Data System (ADS)
Lammers, M.
2016-12-01
Advancements in the capabilities of JavaScript frameworks and web browsing technology make online visualization of large geospatial datasets viable. Commonly this is done using static image overlays, pre-rendered animations, or cumbersome geoservers. These methods can limit interactivity and/or place a large burden on server-side post-processing and storage of data. Geospatial data, and satellite data specifically, benefit from being visualized both on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS, developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. It has entered the void left by the abandonment of the Google Earth Web API, and it serves as a capable and well-maintained platform upon which data can be displayed. This paper will describe the technology behind the two primary products developed as part of the NASA Precipitation Processing System STORM website: GPM Near Real Time Viewer (GPMNRTView) and STORM Virtual Globe (STORM VG). GPMNRTView reads small post-processed CZML files derived from various Level 1 through 3 near real-time products. For swath-based products, several brightness temperature channels or precipitation-related variables are available for animating in virtual real-time as the satellite observed them on and above the Earth's surface. With grid-based products, only precipitation rates are available, but the grid points are visualized in such a way that they can be interactively examined to explore raw values. STORM VG reads values directly off the HDF5 files, converting the information into JSON on the fly. All data points both on and above the surface can be examined here as well. Both the raw values and, if relevant, elevations are displayed. Surface and above-ground precipitation rates from select Level 2 and 3 products are shown. Examples from both products will be shown, including visuals from high impact events observed by GPM constellation satellites.
NASA Technical Reports Server (NTRS)
Lammers, Matthew
2016-01-01
Advancements in the capabilities of JavaScript frameworks and web browsing technology make online visualization of large geospatial datasets viable. Commonly this is done using static image overlays, prerendered animations, or cumbersome geoservers. These methods can limit interactivity andor place a large burden on server-side post-processing and storage of data. Geospatial data, and satellite data specifically, benefit from being visualized both on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS, developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. It has entered the void left by the abandonment of the Google Earth Web API, and it serves as a capable and well-maintained platform upon which data can be displayed. This paper will describe the technology behind the two primary products developed as part of the NASA Precipitation Processing System STORM website: GPM Near Real Time Viewer (GPMNRTView) and STORM Virtual Globe (STORM VG). GPMNRTView reads small post-processed CZML files derived from various Level 1 through 3 near real-time products. For swath-based products, several brightness temperature channels or precipitation-related variables are available for animating in virtual real-time as the satellite-observed them on and above the Earths surface. With grid-based products, only precipitation rates are available, but the grid points are visualized in such a way that they can be interactively examined to explore raw values. STORM VG reads values directly off the HDF5 files, converting the information into JSON on the fly. All data points both on and above the surface can be examined here as well. Both the raw values and, if relevant, elevations are displayed. Surface and above-ground precipitation rates from select Level 2 and 3 products are shown. Examples from both products will be shown, including visuals from high impact events observed by GPM constellation satellites.
Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols
NASA Astrophysics Data System (ADS)
Ahmed, Maaz S.
Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.
NASA Astrophysics Data System (ADS)
Drott, A.; Skyllberg, U.
2007-12-01
Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (p<0.001) positive relationship between the experimentally determined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.
Piper, D.Z.; Perkins, R.B.
2004-01-01
The sediment currently accumulating in the Cariaco Basin, on the continental shelf of Venezuela, has an elevated organic-carbon content of approximately 5%; is accumulating under O2-depleted bottom-water conditions (SO42- reduction); is composed dominantly of foraminiferal calcite, diatomaceous silica, clay, and silt; and is dark greenish gray in color. Upon lithification, it will become a black shale. Recent studies have established the hydrography of the basin and the level of primary productivity and bottom-water redox conditions. These properties are used to model accumulation rates of Cd, Cr, Cu, Mo, Ni, V, and Zn on the seafloor. The model rates agree closely with measured rates for the uppermost surface sediment.The model is applied to the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, a phosphate deposit of Permian age in the northwest United States. It too has all of the requisite properties of a black shale. Although the deposit is a world-class phosphorite, it is composed mostly of phosphatic mudstone and siltstone, chert, limestone, and dolomite. It has organic-carbon concentrations of up to 15%, is strongly enriched in several trace elements above a terrigenous contribution and is black. The trace-element accumulation defines a mean primary productivity in the photic zone of the Phosphoria Basin as moderate, at 500 g m-2 year-1 organic carbon, comparable to primary productivity in the Cariaco Basin. The source of nutrient-enriched water that was imported into the Phosphoria Basin, upwelled into the photic zone, and supported primary productivity was an O2 minimum zone of the open ocean. The depth range over which the water was imported would have been between approximately 100 and 600 m. The mean residence time of bottom water in the basin was approximately 4 years vs. 100 years in the Cariaco Basin. The bottom water was O2 depleted, but it was denitrifying, or NO3- reducing, rather than SO42- reducing. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.
1999-11-01
The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.
40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...
Terrestrial remote sensing science and algorithms planned for EOS/MODIS
Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen
1994-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.
Results and Validation of MODIS Aerosol Retrievals Over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, Lorraine; Einaudi, Franco (Technical Monitor)
2001-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Results and Validation of MODIS Aerosol Retrievals over Land and Ocean
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Ichoku, C.; Chu, D. A.; Mattoo, S.; Levy, R.; Martins, J. V.; Li, R.-R.; Einaudi, Franco (Technical Monitor)
2000-01-01
The MODerate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra spacecraft has been retrieving aerosol parameters since late February 2000. Initial qualitative checking of the products showed very promising results including matching of land and ocean retrievals at coastlines. Using AERONET ground-based radiometers as our primary validation tool, we have established quantitative validation as well. Our results show that for most aerosol types, the MODIS products fall within the pre-launch estimated uncertainties. Surface reflectance and aerosol model assumptions appear to be sufficiently accurate for the optical thickness retrieval. Dust provides a possible exception, which may be due to non-spherical effects. Over ocean the MODIS products include information on particle size, and these parameters are also validated with AERONET retrievals.
Structural brain aging and speech production: a surface-based brain morphometry study.
Tremblay, Pascale; Deschamps, Isabelle
2016-07-01
While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.
Phosphates at the Surface of Mars: Primary Deposits and Alteration Products
NASA Technical Reports Server (NTRS)
Yen, Albert S.; Gellert, Ralf; Clark, Benton C.; Ming, Douglas W.; Mittlefehldt, David W.; Arvidson, Raymond E.; McSween, Harry Y., Jr.; Schroder, Christian
2014-01-01
Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of approximately 10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed approximately 4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (approximately 3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering or secondary products of chemical weathering.
NASA Astrophysics Data System (ADS)
Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.
2017-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.
40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...
40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...
Bertrand, Erin M; McCrow, John P; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B; Delmont, Tom O; Post, Anton F; Sipler, Rachel E; Spackeen, Jenna L; Xu, Kai; Bronk, Deborah A; Hutchins, David A; Allen, Andrew E
2015-08-11
Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.
NASA Astrophysics Data System (ADS)
Shevyrnogov, A.; Vysotskaya, G.
To preserve biosphere and make its utilization expedient makes imperative to comprehend in depth long-standing dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. However, hard access and large size of the water surface make its investigation labor-consuming. Besides, the dependence of primary production on high variability of hydrophysical phenomena in the ocean (fluctuations of currents, frontal zones, etc.) makes the location of points for measuring the chlorophyll concentration dynamics significant. In this work the long-standing changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years and the SeaWiFS data from 1997 to 2003. It was shown that the average chlorophyll concentration calculated at all investigated area is varied moderately. However when analyzing spatially local trends, it was detected that areas exist with stable rise and fall of chlorophyll concentration. Some interesting features of the long-standing dynamics of chlorophyll concentration several interesting features were found. There are the various directions of long-term trends (constant increase or decrease) that cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings etc.). The next feature is a difference between the trends revealed by using the CZCS data and the trends based on the SeaWiFS data. Thus, the obtained results allow the possibility of identification of the ocean biota role in the global biospheric gas exchange.
A coastal surface seawater analyzer for nitrogenous nutrient mapping
NASA Astrophysics Data System (ADS)
Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.
2017-11-01
Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.
Bertrand, Erin M.; McCrow, John P.; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B.; Delmont, Tom O.; Post, Anton F.; Sipler, Rachel E.; Spackeen, Jenna L.; Xu, Kai; Bronk, Deborah A.; Hutchins, David A.; Allen, Andrew E.
2015-01-01
Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton–bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton–bacterial interactions in both positive and negative feedback loops. PMID:26221022
Lussi, A; Kohler, N; Zero, D; Schaffner, M; Megert, B
2000-04-01
The aim of this study was to compare the erosive potential of different beverages and foodstuffs in primary and permanent teeth. Sixty primary and 60 permanent human teeth were immersed for 3 min in the solution under study (5 teeth per treatment group). Surface microhardness was measured before and after exposure. Initial (baseline) surface microhardness was lower for primary teeth than for permanent teeth. In both primary and permanent teeth, Sprite showed the highest decrease in surface microhardness, whereas yogurt showed an increase in surface microhardness in the primary teeth. Overall decrease was 27.2 +/- 17.5 KHN (mean +/- SD) for primary and 25.9 +/- 15.6 KHN for permanent teeth. The comparison of the erosive susceptibility in this in vitro model showed that primary teeth were not more susceptible to erosion compared to permanent teeth.
Canfield, Don E; Rosing, Minik T; Bjerrum, Christian
2006-01-01
Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221
Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.
2013-01-01
Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.
The Turbulent Life of Phytoplankton
NASA Technical Reports Server (NTRS)
Ghosal, S.; Rogers, M.; Wray, A.
2000-01-01
Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.
Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.
2004-01-01
One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.
Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M
2017-08-01
Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hardisty, D. S.; Lu, Z.; Planavsky, N. J.; Osburn, M. R.; Bekker, A.; Lyons, T. W.
2013-12-01
Systematic increases in iodine-to-calcium ratios (I/Ca) in carbonates from both the Precambrian Lomagundi and Shuram carbonate carbon isotope (δ13Ccarb) excursion intervals suggest primary origins for these events. Iodate (IO3-), the oxidized iodine species, is the exclusive species incorporated into carbonates. The high redox sensitivity of IO3- to deoxygenation requires highly oxidizing fluids for IO3- production, making I/Ca in platform carbonates a simple indicator of the presence of oxidizing fluids in the surface ocean. Similarly, redox sensitivity makes the proxy host susceptible to diagenetic iodine loss during carbonate recrystallization in reducing pore fluids. Recent work has shown carbonates to experience near-complete iodine loss during dolomitization in the Permian, and work from our group evaluating modern and recent carbonates demonstrate the potential for diagenetic iodine loss during carbonate recrystallization. In some cases, however, such as meteoric aragonite-to-calcite transitions, oxidizing pore fluids have the potential to buffer IO3- concentrations, causing negligible alteration to primary I/Ca despite negative shifts in δ13Ccarb. These results highlight that diagenetic alterations to I/Ca and δ13Ccarb need not always be coupled, but importantly, no observed scenario promotes post-depositional addition of iodine to carbonates. This means that, independent of δ13Ccarb, systematic, stratigraphic increases in I/Ca ratios observed in the carbonate record are most easily interpreted as resulting from depositional controls such as surface ocean redox or shifts in the total marine iodine reservoir. From this, increasing I/Ca ratios coincident with rising and falling δ13Ccarb trends for the Paleoproterozic Lomagundi and Neoproterozoic Shuram events, respectively, support suggestions of a primary origin for the δ13Ccarb excursions. Significant increase in I/Ca in dolomites deposited during the Lomagundi excursion, rising from blank values in the Archean, suggest very early dolomitization in an oxidizing surface ocean promoting aerobic iodine cycling. This interpretation is consistent with earlier suggestions relating a >+10 ‰ δ13Ccarb shift to substantial organic carbon burial and associated oxygen production. Extremely negative δ13Ccarb (down to <-10 ‰) observed during the Shuram event have been linked to both diagenetic and primary mechanisms. We propose, however, that a marked increase in I/Ca ratios associated with the negative δ13Ccarb excursion in the Khufai Formation of Oman provides evidence for a primary origin for the Shuram. Such an increase could be interpreted as enhanced delivery of IO3- or total iodine from the deep ocean, perhaps driven by deep ocean ventilation and/or oxidation of a large pool of marine-derived organic matter. Overall, regardless of the individual primary controls driving increases in carbonate I/Ca during the Lomagundi and Shuram events, authigenic/diagenetic controls allowing for increased I/Ca are unlikely, suggesting a primary origin for the two largest δ13Ccarb excursions in Earth history.
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
Mars weathering analogs - Secondary mineralization in Antarctic basalts
NASA Technical Reports Server (NTRS)
Berkley, J. L.
1982-01-01
Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.
Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model
NASA Astrophysics Data System (ADS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-02-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10%) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34%, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model
NASA Technical Reports Server (NTRS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-01-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
Correlation of laboratory and production freeze drying cycles.
Kuu, Wei Y; Hardwick, Lisa M; Akers, Michael J
2005-09-30
The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase (LDH) formulation. The determined normalized dried layer mass transfer resistance for the LDH formulation is expressed as RpN=4.344+10.85l. The operational templates Tbmax and primary drying time were also generated by simulation. The cycle run for the LDH formulation using the Edwards production dryer verified that the cycle developed in a laboratory freeze-dryer was transferable at the production scale.
Fathi, Yasmin; Meloni, Giovanni
2017-09-21
The O-( 3 P)-initiated oxidation of 2-methylfuran (2-MF) was investigated using vacuum-ultraviolet synchrotron radiation from the Advanced Light Source at Lawrence Berkeley National Laboratory. Reaction species were studied by multiplexed photoionization mass spectrometry at 550 and 650 K. The oxygen addition pathway is favored in this reaction, forming four triplet diradicals that undergo intersystem crossing into singlet epoxide species that lead to the formation of products at m/z 30 (formaldehyde), 42 (propene), 54 (1-butyne, 1,3-butadiene, and 2-butyne), and 70 (2-butenal, methyl vinyl ketone, and 3-butenal). Mass-to-charge ratios, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identities. In addition, by means of electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined to further validate the primary chemistry occurring. Branching fractions for the formation of the primary products were calculated at the two temperatures and contribute 81.0 ± 21.4% at 550 K and 92.1 ± 25.5% at 650 K.
Yadav, Amita; Pandey, Jitendra
2017-07-01
Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.
Information systems - Issues in global habitability
NASA Technical Reports Server (NTRS)
Norman, S. D.; Brass, J. A.; Jones, H.; Morse, D. R.
1984-01-01
The present investigation is concerned with fundamental issues, related to information considerations, which arise in an interdisciplinary approach to questions of global habitability. Information system problems and issues are illustrated with the aid of an example involving biochemical cycling and biochemical productivity. The estimation of net primary production (NPP) as an important consideration in the overall global habitability issue is discussed. The NPP model requires three types of data, related to meteorological information, a land surface inventory, and the vegetation structure. Approaches for obtaining and processing these data are discussed. Attention is given to user requirements, information system requirements, workstations, network communications, hardware/software access, and data management.
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas
2015-01-01
During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.
Kim, Intae; Hahm, Doshik; Park, Keyhong; Lee, Youngju; Choi, Jung-Ok; Zhang, Miming; Chen, Liqi; Kim, Hyun-Cheol; Lee, SangHoon
2017-04-15
We investigated horizontal and vertical distributions of DMS in the upper water column of the Amundsen Sea Polynya and Pine Island Polynya during the austral summer (January-February) of 2016 using a membrane inlet mass spectrometer (MIMS) onboard the Korean icebreaker R/V Araon. The surface water concentrations of DMS varied from <1 to 400nM. The highest DMS (up to 300nM) were observed in sea ice-polynya transition zones and near the Getz ice shelf, where both the first local ice melting and high plankton productivity were observed. In other regions, high DMS concentration was generally accompanied by higher chlorophyll and ΔO 2 /Ar. The large spatial variability of DMS and primary productivity in the surface water of the Amundsen Sea seems to be attributed to melting conditions of sea ice, relative dominance of Phaeocystis Antarctica as a DMS producer, and timing differences between bloom and subsequent DMS productions. The depth profiles of DMS and ΔO 2 /Ar were consistent with the horizontal surface data, showing noticeable spatial variability. However, despite the large spatial variability, in contrast to the previous results from 2009, DMS concentrations and ΔO 2 /Ar in the surface water were indistinct between the two major domains: the sea ice zone and polynya region. The discrepancy may be associated with inter-annual variations of phytoplankton assemblages superimposed on differences in sea-ice conditions, blooming period, and spatial coverage along the vast surface area of the Amundsen Sea. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat
2016-04-01
Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC-LUE and VPM models has explained the maximum variances (>80%) in comparison to the other model. Study result has also showed that the BPP has explained the maximum model variances (>93%) followed by BCP (>65%) and ELP (>50%). Scaled WS, iWS, LST, VPD, NDVI was performed better in a minimum ELP condition whereas surface moisture and wetness was highly correlated with the AGB and NPP (R2 = 0.86 RMSE = 1.83). During this study period (2000-2013), it was found that there was a significantly declining trend (R2 = 0.32 P = 0.05) of annual NPP and the maximum decrease was found in the eastern part where built-up area was mainly accounted for reduction of NPP. BCP are explained higher variances (>80%) in the optimum climatic condition exist along the coastal stretches in comparison to the landward extent (>45%).
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
Mráček, David; Koci, Petr; Choi, Jae -Soon; ...
2015-09-08
Periodical regeneration of NO x storage catalyst (also known as lean NO x trap) by short rich pulses of CO, H 2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NO x is converted into N 2, but N 2O and NH 3 by-products can be formed as well, particularly at low-intermediate temperatures. The N 2 and N 2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH 3 product.more » In addition, the secondary N 2 and N 2O peaks then appear at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH 3, — NCO) and residual stored NO x under increasingly lean conditions.« less
Muramoto, Shin; Brison, Jeremy; Castner, David G.
2011-01-01
The surface sensitivity of Binq+ (n = 1, 3, 5, q = 1, 2) and C60q+ (q = 1, 2) primary ions in static time-of-flight secondary ion mass spectrometry (ToF-SIMS) experiments were investigated for molecular trehalose and polymeric tetraglyme organic films. Parameters related to surface sensitivity (impact crater depth, implantation depth, and molecular escape depths) were measured. Under static ToF-SIMS conditions (primary ion doses of 1 × 1012 ions/cm2), the 25 keV Bi1+ primary ions were the most surface sensitive with a molecular escape depth of 1.8 nm for protein films with tetraglyme overlayers, but they had the deepest implantation depth (~18 and 26 nm in trehalose and tetraglyme films, respectively). The 20 keV C60++ primary ions were the second most surface sensitive with a slightly larger molecular escape depth of 2.3 nm. The most important factor that determined the surface sensitivity of the primary ion was its impact crater depth, or the amount of surface erosion. The most surface sensitive primary ions, Bi1+ and C60++, created impact craters with depths of 0.3 and 1.0 nm, respectively, in tetraglyme films. In contrast, Bi5++ primary ions created impact craters with a depth of 1.8 nm in tetraglyme films and were the least surface sensitive with a molecular escape depth of 4.7 nm. PMID:22084828
Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export
NASA Astrophysics Data System (ADS)
Kaufman, Daniel E.; Friedrichs, Marjorie A. M.; Smith, Walker O.; Hofmann, Eileen E.; Dinniman, Michael S.; Hemmings, John C. P.
2017-03-01
The Ross Sea, a highly productive region of the Southern Ocean, is expected to experience warming during the next century along with reduced summer sea ice concentrations and shallower mixed layers. This study investigates how these climatic changes may alter phytoplankton assemblage composition, primary productivity, and export. Glider measurements are used to force a one-dimensional biogeochemical model, which includes diatoms and both solitary and colonial forms of Phaeocystis antarctica. Model performance is evaluated with glider observations, and experiments are conducted using projections of physical drivers for mid-21st and late-21st century. These scenarios reveal a 5% increase in primary productivity by midcentury and 14% by late-century and a proportional increase in carbon export, which remains approximately 18% of primary production. In addition, scenario results indicate diatom biomass increases while P. antarctica biomass decreases in the first half of the 21st century. In the second half of the century, diatom biomass remains relatively constant and P. antarctica biomass increases. Additional scenarios examining the independent contributions of expected future changes (temperature, mixed layer depth, irradiance, and surface iron inputs from melting ice) demonstrate that earlier availability of low light due to reduction of sea ice early in the growing season is the primary driver of productivity increases over the next century; shallower mixed layer depths additionally contribute to changes of assemblage composition and export. This study further demonstrates how glider data can be effectively used to facilitate model development and simulation, and inform interpretation of biogeochemical observations in the context of climate change.
Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter
2013-03-01
Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.
Madhu, N V; Jyothibabu, R; Balachandran, K K
2010-07-01
Changes in the autotrophic pico- (0.2-2 microm), nano- (2-20 microm), and microplankton (>20 microm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m(-3) and 432 mgC m(-3) day(-1)) as compared to the coastal waters (5.3 mg m(-3) and 224 mgC m(-3) day(-1)). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 +/- SD 8.3% and 81.2 +/- SD 3.2%) and the coastal waters (average 73.2 +/- SD 17.2% and 81.9 +/- 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 +/- SD 3.9 mgC mgChl a m(-3) h(-1)), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 +/- 7 mgC mgChl a m(-3) h(-1)). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes.
Karacan, C Özgen; Olea, Ricardo A
2013-04-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.
NASA Astrophysics Data System (ADS)
Plancq, Julien; Grossi, Vincent; Huguet, Carme; Pittet, Bernard; Rosell-Mele, Antoni; Mattioli, Emanuela
2014-05-01
The late Pliocene (Piacenzian; 3.6-2.6 Myr) in the Mediterranean region is characterized by the deposition of organic-rich sedimentary layers named sapropels. Sapropel formation has been related to the strengthening of the precessionally-controlled African monsoon, triggering enhanced primary productivity and/or improved organic matter preservation. However, the relative importance of surface-ocean productivity versus deep-water preservation for sapropel formation remains a long standing debate among the science community. Here, we used a multi-proxy approach to characterize long-term environmental conditions and to discuss sapropel formation during the late Pliocene at Punta Grande/Punta Piccola sections (southwest Sicily). Sea and air temperatures were reconstructed using all the lipid biomarker-based temperature proxies currently available: the alkenone unsaturation index (UK'37), the tetraether index (TEX86), the Long-chain Diol Index (LDI), and the degree of methylation/cyclization of branched tetraether (MBT/CBT). Results show that sea-surface temperatures (SSTs) were relatively stable throughout the late Pliocene, but that consistent increases are recorded in most sapropel layers. SST record was then compared with variations in total organic carbon proportions, lipid biomarkers contents and nannofossil assemblages. Based on these observations, two mechanisms of formation can be inferred for each sapropel. A first series of sapropels is likely due to a better preservation of organic matter, due to the development of a thermohaline stratification of the water column and to oxygen depleted bottom waters. The second series of sapropels is more likely due to enhanced primary productivity in a non-stratified water column.
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes
Karacan, C. Özgen; Olea, Ricardo A.
2013-01-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.
Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes
Karacan, C.Özgen; Olea, Ricardo A.
2015-01-01
Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests. PMID:26190930
Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben
2015-01-01
Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity.
Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben
2015-01-01
Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity. PMID:25923109
NASA Technical Reports Server (NTRS)
Johnson, Matthew Stephen
2017-01-01
A primary objective for TOLNet is the evaluation and validation of space-based tropospheric O3 retrievals from future systems such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite. This study is designed to evaluate the tropopause-based O3 climatology (TB-Clim) dataset which will be used as the a priori profile information in TEMPO O3 retrievals. This study also evaluates model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time (NRT) data assimilation model products (NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS-5) Forward Processing (FP) and Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2)) and full chemical transport model (CTM), GEOS-Chem, simulations. The TB-Clim dataset and model products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations to demonstrate the accuracy of the suggested a priori dataset and information which could potentially be used in TEMPO O3 algorithms. This study also presents the impact of individual a priori profile sources on the accuracy of theoretical TEMPO O3 retrievals in the troposphere and at the surface. Preliminary results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles observed by TOLNet, model-simulated profiles from a full CTM (GEOS-Chem is used as a proxy for CTM O3 predictions) resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly (diurnal cycle evaluation) and daily-averaged (daily variability evaluation) TOLNet observations. Furthermore, it was determined that when large daily-averaged surface O3 mixing ratios are observed (65 ppb), which are important for air quality purposes, TEMPO retrieval values at the surface display higher correlations and less bias when applying CTM a priori profile information compared to all other data products. The primary reason for this is that CTM predictions better capture the spatio-temporal variability of the vertical profiles of observed tropospheric O3 compared to the TB-Clim dataset and other NRT data assimilation models evaluated during this study.
NASA Astrophysics Data System (ADS)
Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi
2017-06-01
The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.
NASA Astrophysics Data System (ADS)
Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin
2017-06-01
The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.
Global Biogeochemical Cycle of Si: Its Coupling to the Perturbed C-N-P cycles in Industrial Time
NASA Astrophysics Data System (ADS)
Lerman, A.; Li, D. D.; MacKenzie, F. T.
2010-12-01
The importance of silicon (Si) in global biogeochemical cycles is demonstrated by its abundance in the land and aquatic biomass, where Si/C is 0.02 in land plants and 0.15 in marine organisms. Estimates show that Si-bioproduction accounts for ~1.5% of terrestrial primary production, and ~4.5% in the coastal ocean. Human land-use activities have substantially changed regional patterns of vegetation distribution, soil conditions, and nutrient fluxes via runoff to the coastal ocean. Anthropogenic chemical fertilization of the land has caused a significant increase in fluvial nitrogen (N) and phosphorus (P) transport, whereas land-use and vegetation mass changes have caused variations in the riverine Si input, all eventually affecting the cycling of nutrients in the marine environment. We developed a global biogeochemical model of the Si cycle as coupled to the global C-N-P cycle model, TOTEM II (Terrestrial-Ocean-aTmosphere-Ecosystem-Model). In the model analysis from year 1700, taken as the start of the Anthropocene, to 2050, the bioproduction of Si on land and in the ocean is coupled to the bioproduction of C, perturbed by the atmospheric CO2 rise, land-use changes, and chemical fertilization. Also, temperature rise affects the Si cycling on land through bioproduction rates, terrestrial organic matter remineralization, and weathering, thereby affecting its delivery to the coastal zone. The results show that biouptake and subsequent release of Si on land strongly affect the Si river flux to the coastal ocean. During the 350-year period, Si river discharge has increased by ~10% until ~1940, decreasing since then to below its 1700 value and continuing to drop, under the current IPCC IS92 projections of CO2, temperature and other forcings. From 1700 to ~1950, land-use changes, associated with slash and burn of large areas of high-productivity land, caused a decrease of global land vegetation. Dissolution of Si in soil humus and weathering of silicate minerals are the main dissolved Si sources for rivers and groundwater. The decrease in Si uptake by land biomass made more Si available for river discharge, causing an increase in the Si river input until an increase in the land primary production reversed the process. Around 1950, the use of fertilizer on land, especially N and P, increased, driving the growth of coastal marine primary producers, including such Si organisms as diatoms, silicoflagellates, and sponge spicules, and thus causing a decrease of dissolved Si in the surface ocean. The percent decrease of coastal dissolved Si due to increased primary production is greater than that of surface open ocean due to the shorter residence time of Si in coastal water (~2.7 years) compared to that of surface open ocean (~10 years. The combination of the relatively small size and location of the coastal ocean at the junction of the land, atmosphere, and open ocean make it important to changes in water chemistry, in situ biological production, and sedimentary storage. Its buffer effect and fast response to perturbations are also shown in the results of this coupling study of the C-N-P-Si cycles.
High concentration agglomerate dynamics at high temperatures.
Heine, M C; Pratsinis, S E
2006-11-21
The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.
NASA Astrophysics Data System (ADS)
Chiu, R.; Tinel, L.; Gonzalez, L.; Ciuraru, R.; Bernard, F.; George, C.; Volkamer, R.
2017-01-01
Photochemistry plays an important role in marine dissolved organic carbon (DOC) degradation, but the mechanisms that convert DOC into volatile organic compounds (VOCs) remain poorly understood. We irradiated carboxylic acids (C7-C9) on a simulated ocean surface with UV light (<320 nm) in a photochemical flow reactor and transferred the VOC products into a dark ozone reactor. Glyoxal was detected as a secondary product from heptanoic, octanoic, and nonanoic acid (NA) films, but not from octanol. Primary glyoxal emissions were not observed, nor was glyoxal formed in the absence of ozone. Addition of a photosensitizer had no noticeable effect. The concurrent detection of heptanal in the NA system suggests that the ozonolysis of 2-nonenal is the primary chemical mechanism that produces glyoxal. This source can potentially sustain tens of parts per trillion by volume (pptv) glyoxal over oceans, and helps to explain why glyoxal fluxes in marine air are directed from the atmosphere into the ocean.
Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization.
Rauch, Jason N
2010-08-01
With increasing consumption of material by human activity, the extent of human influence relative to nature in the mobilization of metals and other elements on Earth continues to grow. Recognizing people as modern geomorphic agents, I produced global data layers at 1 degreesx1 degrees of human-mediated mass flows (coal combustion, biomass burning, and mining) and nature-mediated mass flows (net primary productivity, sea salt aerosol emission, and denudation to the oceans) for the industrial metals of aluminum, iron, copper, and zinc for the year 2000. The major mobilization processes are denudation (natural) and mining (anthropic), though net primary productivity for Zn and Cu and coal combustion for Al are nearly as significant. All flows are subsequently combined into an index representing human versus nature flow dominance. As the first maps of mobilization flows of metals widely used by modern technology, they reveal that approximately 1-5% (depending upon the metal) of Earth's land surface now has metal flow dominated by human activity.
NASA Astrophysics Data System (ADS)
Fernandes, Veronica; Ramaiah, N.
2016-03-01
Mesozooplankton samples were collected from the mixed layer along a central (along 88°E) and a western transect in the Bay of Bengal during four seasons covered between 2001 and 2006 in order to investigate spatio-temporal variability in their biomass. At these stations, grazing and respiration rates were measured from live zooplankton hauled in from the surface during December 2005. Akin to the mesozooplankton "paradox" in the central and eastern Arabian Sea, biomass in the mixed layer was more or less invariant in the central and western Bay of Bengal, even as the chl a showed marginal temporal variation. By empirical equation, the mesozooplankton production rate calculated to be 70-246 mg C m- 2 d- 1 is on par with the Arabian Sea. Contrary to the conventional belief, mesozooplankton grazing impact was up to 83% on primary production (PP). Low PP coupled with very high zooplankton production (70% of PP) along with abundant bacterial production (50% of the PP; Ramaiah et al., 2009) is likely to render the Bay of Bengal net heterotrophic, especially during the spring intermonsoon. Greater estimates of fecal pellet-carbon egestion by mesozooplankton compared to the average particulate organic carbon flux in sediment traps, implies that much of the matter is recycled by heterotrophic communities in the mixed layer facilitating nutrient regeneration for phytoplankton growth. We also calculated that over a third of the primary production is channelized for basin-wide zooplankton respiration that accounts for 52 Mt C annually. In the current scenario of global warming, if low (primary) productive warm pools like the Bay of Bengal continue to be net heterotrophic, negative implications like enhanced emission of CO2 to the atmosphere, increased particulate flux to the deeper waters and greater utilization of dissolved oxygen resulting in expansion of the existing oxygen minimum zone are imminent.
Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno
2016-06-07
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.
Namib Desert primary productivity is driven by cryptic microbial community N-fixation.
Ramond, Jean-Baptiste; Woodborne, Stephan; Hall, Grant; Seely, Mary; Cowan, Don A
2018-05-02
Carbon exchange in drylands is typically low, but during significant rainfall events (wet anomalies) drylands act as a C sink. During these anomalies the limitation on C uptake switches from water to nitrogen. In the Namib Desert of southern Africa, the N inventory in soil organic matter available for mineralisation is insufficient to support the observed increase in primary productivity. The C4 grasses that flourish after rainfall events are not capable of N fixation, and so there is no clear mechanism for adequate N fixation in dryland ecosystems to support rapid C uptake. Here we demonstrate that N fixation by photoautotrophic hypolithic communities forms the basis for the N budget for plant productivity events in the Namib Desert. Stable N isotope (δ 15 N) values of Namib Desert hypolithic biomass, and surface and subsurface soils were measured over 3 years across dune and gravel plain biotopes. Hypoliths showed significantly higher biomass and lower δ 15 N values than soil organic matter. The δ 15 N values of hypoliths approach the theoretical values for nitrogen fixation. Our results are strongly indicative that hypolithic communities are the foundation of productivity after rain events in the Namib Desert and are likely to play similar roles in other arid environments.
Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice
Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.
2017-01-01
The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329
Fuentes, Verónica; Bosch-Belmar, Mar; Acevedo, Melissa; Toledo-Guedes, Kilian; Ortiz, Antonio; Durá, Elia; Bordehore, César; Gili, Josep-Maria
2017-01-01
Jellyfish blooms cause important ecological and socio-economic problems. Among jellyfish, cubozoans are infamous for their painful, sometimes deadly, stings and are a major public concern in tropical to subtropical areas; however, there is little information about the possible causes of their outbreaks. After a bloom of the cubomedusa Carybdea marsupialis (Carybdeidae) along the coast of Denia (SW Mediterranean, Spain) in 2008 with negative consequences for local tourism, the necessity to understand the ecological restrictions on medusae abundance was evident. Here we use different models (GAM and zero-inflated models) to understand the environmental and human related factors influencing the abundance and distribution of C. marsupialis along the coast of Denia. Selected variables differed among medusae size classes, showing different environmental restriction associated to the developmental stages of the species. Variables implicated with dispersion (e.g. wind and current) affected mostly small and medium size classes. Sea surface temperature, salinity and proxies of primary production (chl a, phosphates, nitrates) were related to the abundances of small and large size classes, highlighting the roles of springtime salinity changes and increased primary production that may promote and maintain high densities of this species. The increased primary (and secondary) production due to anthropogenic impact is implicated as the factor enabling high numbers of C. marsupialis to thrive. Recommendations for monitoring blooms of this species along the study area and applicable to Mediterranean Sea include focus effort in coastal waters where productivity have been enriched by anthropogenic activities. PMID:28746410
SOFIA primary mirror fabrication and testing
NASA Astrophysics Data System (ADS)
Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick
2001-12-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.
Role of surface and subsurface processes in scaling N2O emissions along riverine networks
Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Bellin, Alberto; Tank, Jennifer L.
2017-01-01
Riverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling N2O production precludes predictions of N2O emissions along riverine networks. Here, we analyze N2O emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions. We show that the primary source of N2O emissions varies with stream and river size and shifts from the hyporheic–benthic zone in headwater streams to the benthic–water column zone in rivers. This analysis reveals that N2O production is bounded between two N2O emission potentials: the upper N2O emission potential results from production within the benthic–hyporheic zone, and the lower N2O emission potential reflects the production within the benthic–water column zone. By understanding the scaling nature of N2O production along riverine networks, our framework facilitates predictions of riverine N2O emissions globally using widely accessible chemical and hydromorphological datasets and thus, quantifies the effect of human activity and natural processes on N2O production. PMID:28400514
Porewater inputs drive Fe redox cycling in the water column of a temperate mangrove wetland
NASA Astrophysics Data System (ADS)
Holloway, Ceylena J.; Santos, Isaac R.; Rose, Andrew L.
2018-07-01
Iron is a vital micronutrient within coastal marine ecosystems, playing an integral role in the scale and dynamics of primary production and carbon cycling in the world's oceans. We investigated the relative importance of in situ Fe(II) production from photochemical, microbial and thermal Fe reduction in the surface water column as well as advective porewater inputs in a temperate saline wetland in Australia containing mangrove and saltmarsh vegetation. The diel average concentration of Fe(II) (0.63 ± 0.21 μM, accounting for >70% of the total dissolved Fe present in surface water) was much higher than commonly reported in oxygenated marine waters despite high dissolved oxygen concentrations (81-112% saturation), pH (7.7-7.8) and salinity (33-36) that favor Fe oxidation. In situ production of Fe(II) in the surface water column was primarily driven by microbial processes rather than photochemical and thermal reduction, with a maximum production rate of 4.9 × 10-3 nM s-1. Advective porewater Fe(II) inputs to the wetland averaged over a diel cycle (3.0 × 10-1 nM s-1) were an order of magnitude greater than the combined Fe(II) production rate from autochthonous water column processes (1.0 × 10-2 nM s-1). A bottom up model based on the estimated individual fluxes was used to explain the high Fe(II) concentrations measured during a 24 h time series experiment. Combined, different lines of evidence suggest that advective porewater exchange provides significant quantities of Fe(II) to the estuarine wetland.
Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells
Kornete, Mara
2018-01-01
Adoptive cell transfer is an important approach for basic research and emerges as an effective treatment for various diseases, including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. In this article, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms in up to 25% of the transfected primary T cells. We used gene editing–mediated allele switching to quantify homology-directed repair, systematically optimize experimental parameters, and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells, with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Repairing the cause of the scurfy syndrome, a 2-bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells. PMID:29445007
NASA Astrophysics Data System (ADS)
Cuhel, R. L.; Aguilar, C.
2013-12-01
Deep biomass maxima, often identified through in vivo chlorophyll fluorescence profiles (DCM or deep chlorophyll maximum), have been common 'forever' in Lake Michigan. Usually present in the upper thermocline zone of 15-25m, summer DCM populations were characteristically dominated by diatoms. Increased light transmission in quagga mussel (QM) engineered Lake Michigan waters now has enabled phytoplankton to proliferate in discrete layers as deep as 50m. Instances of multiple fluorescence maxima and transmission minima, often not coincident, document the habitat diversity available in clear, often sequentially stratified offshore waters and MidLake Reef Complex locations. Phytoplankton population structure has also changed, and diatoms have become a much smaller component of algal biomass. Discrete layers of chromatically adapted picoplankton now dominate the deepest biomass maxima. Photosynthetic characteristics differ substantially among leading edge, principal biomass or fluorescence, and deep trailing edge populations. Saturation coefficients are often as low as 25 uEin/m2/sec, or 1% of midday summer surface radiance. In vivo fluorescence is only loosely related to biomass, which is greatest in shallower zones of beam transmission minima. On a daily basis, areal primary productivity post-QM is less than half of previous levels, and seasonality has been muted. Spring bloom enhancement no longer exists, and the depth zone of maximum productivity is 10-20m deeper than during the diatom epoch. Altered phytoplankton community structure and decreased productivity left strong signals in biogeochemical time series measurements. A clear discontinuity in silicate cycling indicates dampened diatom productivity and consequently lower silica loss through deposition and burial. Porewater analysis pre- and post-QM shows evidence of reduced organic sedimentation overall, with an especially strong signal in decreased potential silicate efflux. Biogeochemical consequences include weaker nutrient gradients in nearsurface upper thermocline zones. Subsurface minima for silicate and nitrate are common, but of small magnitude compared to pre-QM profiles. By late July of 2013, total CO2 in deep waters increased by nearly 5% compared to surface, but the biomass and productivity maxima are far below the thermocline defining 'surface water.' Phosphate remains in the range of 10-20nM throughout the water column. Particulate P, the primary component of total P, is maximal in 15-25m depths but rarely exceeds 80nM P. Phytoplankton favor ammonium as an N source and recycling plus mussel excretion reduce demand for nitrate. As a result, many cycles and/or inventories for biomass and nutrient parameters appear to have reached new conditions quite different from pre-QM lake characteristics. The 15-year time series includes meteorologically anomalous years that are biogeochemically distinct from bracketing years, but interannual continuity is rare.
Naval Air Systems Command Needs to Improve Management of Waiver Requests (REDACTED)
2015-05-15
Acquisition Category ID5 major defense acquisition program that had its final production decision on January 3, 2014. The Navy designed the P -8A...submarines, was the primary reason the Navy invested in the P -8A aircraft. The anti-surface warfare mission provides maritime superiority 5 Acquisition ...frigates (small, fast military ships) at 110 nautical miles, which was one of the critical technical parameters. Also, the P -8A aircraft that was
Surface or internal nucleation and crystallization of glass-ceramics
NASA Astrophysics Data System (ADS)
Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.
2013-07-01
Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.
Microbiological destruction of composite polymeric materials in soils
NASA Astrophysics Data System (ADS)
Legonkova, O. A.; Selitskaya, O. V.
2009-01-01
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.
Global patterns and predictions of seafloor biomass using random forests.
Wei, Chih-Lin; Rowe, Gilbert T; Escobar-Briones, Elva; Boetius, Antje; Soltwedel, Thomas; Caley, M Julian; Soliman, Yousria; Huettmann, Falk; Qu, Fangyuan; Yu, Zishan; Pitcher, C Roland; Haedrich, Richard L; Wicksten, Mary K; Rex, Michael A; Baguley, Jeffrey G; Sharma, Jyotsna; Danovaro, Roberto; MacDonald, Ian R; Nunnally, Clifton C; Deming, Jody W; Montagna, Paul; Lévesque, Mélanie; Weslawski, Jan Marcin; Wlodarska-Kowalczuk, Maria; Ingole, Baban S; Bett, Brian J; Billett, David S M; Yool, Andrew; Bluhm, Bodil A; Iken, Katrin; Narayanaswamy, Bhavani E
2010-12-30
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo
2015-01-01
To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656
Project CONVERGE: Initial Results From the Mapping of Surface Currents in Palmer Deep
NASA Astrophysics Data System (ADS)
Statscewich, H.; Kohut, J. T.; Winsor, P.; Oliver, M. J.; Bernard, K. S.; Cimino, M. A.; Fraser, W.
2016-02-01
The Palmer Deep submarine canyon on the Western Antarctic Peninsula provides a conduit for upwelling of relatively warm, nutrient rich waters which enhance local primary production and support a food web productive enough to sustain a large top predator biomass. In an analysis of ten years of satellite-tagged penguins, Oliver et al. (2013) showed that circulation features associated with tidal flows may be a key driver of nearshore predator distributions. During diurnal tides, the penguins feed close to their breeding colonies and during semi-diurnal tides, the penguins make foraging trips to the more distant regions of Palmer Deep. It is hypothesized that convergent features act to concentrate primary producers and aggregate schools of krill that influence the behavior of predator species. The initial results from a six month deployment of a High Frequency Radar network in Palmer Deep are presented in an attempt to characterize and quantify convergent features. During a three month period from January through March 2015, we conducted in situ sampling consisting of multiple underwater glider deployments, small boat acoustic surveys of Antarctic krill, and penguin ARGOS-linked satellite telemetry and time-depth recorders (TDRs). The combination of real-time surface current maps with adaptive in situ sampling introduces High Frequency Radar to the Antarctic in a way that allows us to rigorously and efficiently test the influence of local tidal processes on top predator foraging ecology.
Jones, B.F.; Herman, J.S.
2008-01-01
Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.
Global Patterns and Predictions of Seafloor Biomass Using Random Forests
Wei, Chih-Lin; Rowe, Gilbert T.; Escobar-Briones, Elva; Boetius, Antje; Soltwedel, Thomas; Caley, M. Julian; Soliman, Yousria; Huettmann, Falk; Qu, Fangyuan; Yu, Zishan; Pitcher, C. Roland; Haedrich, Richard L.; Wicksten, Mary K.; Rex, Michael A.; Baguley, Jeffrey G.; Sharma, Jyotsna; Danovaro, Roberto; MacDonald, Ian R.; Nunnally, Clifton C.; Deming, Jody W.; Montagna, Paul; Lévesque, Mélanie; Weslawski, Jan Marcin; Wlodarska-Kowalczuk, Maria; Ingole, Baban S.; Bett, Brian J.; Billett, David S. M.; Yool, Andrew; Bluhm, Bodil A.; Iken, Katrin; Narayanaswamy, Bhavani E.
2010-01-01
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management. PMID:21209928
Electrophoretic separation of kidney and pituitary cells on STS-8
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Nachtwey, D. S.; Barlow, G. H.; Cleveland, C.; Lanham, J. W.; Farrington, M. A.; Hatfield, J. M.; Hymer, W. C.; Grindeland, R.; Lewis, M. L.
1984-01-01
Specific secretory cells were separated from suspensions of cultured primary human embryonic cells and rat pituitary cells in microgravity conditions, with an objective of isolating the subfractions of kidney cells that produce the largest amount of urakinase, and the subfractions of rat pituitary cells that secrete growth hormones (GH), prolactin (PRL), and other hormones. It is inferred from the experimental observations that the surface charge distributions of the GH-containing cells differ from those of the PRL-containing cells, which is explained by the presence of secretory products on the surface of pituitary cells. For kidney cells, the electrophoretic mobility distributions in flight experiments were spread more than the ground controls.
Vanderas, Apostole P; Kavvadia, Katerina; Papagiannoulis, Lisa
2004-01-01
This study investigated the effect of the primary second molars' distal surface caries on the incidence of the permanent first molars' mesial surface caries in 613 paired tooth surfaces of children ages 6 to 8 years at baseline examination. Proximal caries and its progression were diagnosed by bite-wing radiographs taken at a 1-year interval over a period of 4 years. The permanent first molars' mesial surfaces and primary second molars' distal surfaces were examined. Recorded were: (1) sound surfaces; (2) carious lesions on the enamel's external and internal half and on the dentin's external, middle, and internal third; (3) filled, extracted, and exfoliated teeth. The logistic model for panel data was employed to estimate the effect of proximal caries of the primary second molars' distal surfaces on the incidence of the permanent first molars' mesial surface caries. The 95% confidence interval probability was used. Sensitivity and specificity as well as the positive and negative predictive rates were computed. The results showed that the presence of proximal caries on each primary second molars' distal surfaces significantly affected the development of proximal caries on the corresponding permanent first molar's mesial surfaces. Age was estimated to exert a positive and highly significant impact, while gender had no effect. The odds ratio values ranged from 4.86 to 63.43. The values of sensitivity and specificity ranged from 45% to 97% and 80% to 89%, respectively, while the positive and negative rates ranged from 40% to 56% and 90% to 99%, respectively. Proximal caries present on the primary second molars' distal surfaces increases the risk of developing caries on the permanent first molars' mesial surfaces. This risk, however, is different among the paired surfaces studied.
Mick, Enrico
2014-01-01
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants. PMID:25295270
Markhoff, Jana; Mick, Enrico; Mitrovic, Aurica; Pasold, Juliane; Wegner, Katharina; Bader, Rainer
2014-01-01
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.
24 CFR 3282.362 - Production Inspection Primary Inspection Agencies (IPIAs).
Code of Federal Regulations, 2010 CFR
2010-04-01
... in production which fails to conform to the design or where the design is not specific, to the... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Production Inspection Primary... REGULATIONS Primary Inspection Agencies § 3282.362 Production Inspection Primary Inspection Agencies (IPIAs...
David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon
2005-01-01
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...
Low rates of nitrogen fixation in eastern tropical South Pacific surface waters
Knapp, Angela N.; Casciotti, Karen L.; Berelson, William M.; Prokopenko, Maria G.; Capone, Douglas G.
2016-01-01
An extensive region of the Eastern Tropical South Pacific (ETSP) Ocean has surface waters that are nitrate-poor yet phosphate-rich. It has been proposed that this distribution of surface nutrients provides a geochemical niche favorable for N2 fixation, the primary source of nitrogen to the ocean. Here, we present results from two cruises to the ETSP where rates of N2 fixation and its contribution to export production were determined with a suite of geochemical and biological measurements. N2 fixation was only detectable using nitrogen isotopic mass balances at two of six stations, and rates ranged from 0 to 23 µmol N m−2 d−1 based on sediment trap fluxes. Whereas the fractional importance of N2 fixation did not change, the N2-fixation rates at these two stations were several-fold higher when scaled to other productivity metrics. Regardless of the choice of productivity metric these N2-fixation rates are low compared with other oligotrophic locations, and the nitrogen isotope budgets indicate that N2 fixation supports no more than 20% of export production regionally. Although euphotic zone-integrated short-term N2-fixation rates were higher, up to 100 µmol N m−2 d−1, and detected N2 fixation at all six stations, studies of nitrogenase gene abundance and expression from the same cruises align with the geochemical data and together indicate that N2 fixation is a minor source of new nitrogen to surface waters of the ETSP. This finding is consistent with the hypothesis that, despite a relative abundance of phosphate, iron may limit N2 fixation in the ETSP. PMID:26976587
Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols
NASA Astrophysics Data System (ADS)
Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.
2012-04-01
Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with possible deposition in the context of global biogeocycling.
Properties of HTLV-I transformed CD8+ T-cells in response to HIV-1 infection.
Gulzar, N; Shroff, A; Buberoglu, B; Klonowska, D; Kim, J E; Copeland, K F T
2010-10-25
HIV-1 infection studies of primary CD8(+) T-cells are hampered by difficulty in obtaining a significant number of targets for infection and low levels of productive infection. Further, there exists a paucity of CD8-expressing T-cell lines to address questions pertaining to the study of CD8(+) T-cells in the context of HIV-1 infection. In this study, a set of CD8(+) T-cell clones were originated through HTLV-I transformation in vitro, and the properties of these cells were examined. The clones were susceptible to T-cell tropic strains of the virus and exhibited HIV-1 production 20-fold greater than primary CD4(+) T-cells. Productive infection resulted in a decrease in expression of CD8 and CXCR4 molecules on the surface of the CD8(+) T-cell clones and antibodies to these molecules abrogated viral binding and replication. These transformed cells provide an important tool in the study of CD8(+) T-cells and may provide important insights into the mechanism(s) behind HIV-1 induced CD8(+) T-cell dysfunction. Copyright © 2010 Elsevier Inc. All rights reserved.
Distribution of ferromanganese nodules in the Pacific Ocean.
Piper, D.Z.; Swint-Iki, T.R.; McCoy, F.W.
1987-01-01
The occurrence and distribution of deep-ocean ferromanganese nodules are related to the lithology of pelagic surface-sediment, sediment accumulation rates, sea-floor bathymetry, and benthic circulation. Nodules often occur in association with both biosiliceous and pelagic clay, and less often with calcareous sediment. Factors which influence the rather complex patterns of sediment lithology and accumulation rates include the supply of material to the sea-floor and secondary processes in the deep ocean which alter or redistribute that supply. The supply is largely controlled by: 1) proximity to a source of alumino-silicate material and 2) primary biological productivity in the photic zone of the ocean. Primary productivity controls the 'rain' to the sea-floor of biogenic detritus, which consists mostly of siliceous and calcareous tests of planktonic organisms but also contains smaller proportions of phosphatic material and organic matter. The high accumulation rate (5 mm/1000 yr) of sediment along the equator is a direct result of high productivity in this region of the Pacific. Secondary processes include the dissolution of particulate organic matter at depth in the ocean, notably CaCO3, and the redistribution of sedimentary particles by deep-ocean currents. -J.M.H.
HO(x) Measurements in PEM Tropics B with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)
NASA Technical Reports Server (NTRS)
Brune, William H.
2001-01-01
The primary objective of PEM Tropics B was to study the processes responsible for the production and loss of tropospheric ozone over the tropical Pacific. This region of the globe contains very clean air as well as aged, polluted air that was advected from both the Asian and American continents. Understanding ozone requires understanding of HO(x) (HO(x) = OH + HO2) chemistry, since the reaction between H02 and NO leads to ozone production and the production of OH often requires ozone loss. In addition, OH is the atmosphere's primary oxidant. Since most atmospheric oxidation is thought to occur in the tropical lower troposphere, measurements during PEM Tropics B should provide an important test of the OH abundances and distributions. Thus, understanding and thoroughly testing HO(x) processes was an important objective of PEM Tropics B. Several issues need to be tested, One is HO, production rates and sources, since HO,, production directly affects ozone production and loss. Another is HO(x) behavior in and around clouds, since HO(x) is lost to cloud particles, but convection may bring HO(x) precursors from near the surface to the upper troposphere. A third is the rise and fall of HO(x) at sunrise and sunset, since these variations give strong indications of the important sources and sinks of HO(x). Making and interpreting high-quality OH and H02 measurements from the NASA DC-8 during PEM Tropics B is the objective of this research effort.
Patziger, Miklos; Günthert, Frank Wolfgang; Jardin, Norbert; Kainz, Harald; Londong, Jörg
2016-11-01
In state of the art wastewater treatment, primary settling tanks (PSTs) are considered as an integral part of the biological wastewater and sludge treatment process, as well as of the biogas and electric energy production. Consequently they strongly influence the efficiency of the entire wastewater treatment plant. However, in the last decades the inner physical processes of PSTs, largely determining their efficiency, have been poorly addressed. In common practice PSTs are still solely designed and operated based on the surface overflow rate and the hydraulic retention time (HRT) as a black box. The paper shows the results of a comprehensive investigation programme, including 16 PSTs. Their removal efficiency and inner physical processes (like the settling process of primary sludge), internal flow structures within PSTs and their impact on performance were investigated. The results show that: (1) the removal rates of PSTs are generally often underestimated in current design guidelines, (2) the removal rate of different PSTs shows a strongly fluctuating pattern even in the same range of the HRT, and (3) inlet design of PSTs becomes highly relevant in the removal efficiency at rather high surface overflow rates, above 5 m/h, which is the upper design limit of PSTs for dry weather load.
Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale
NASA Technical Reports Server (NTRS)
Rousseaux, Cecile Severine; Gregg, Watson W.
2014-01-01
We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.
Interannual Variation in Phytoplankton Primary Production at a Global Scale
NASA Technical Reports Server (NTRS)
Rousseaux, Cecile Severine; Gregg, Watson W.
2013-01-01
We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on group-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.
Die-target for dynamic powder consolidation
Flinn, J.E.; Korth, G.E.
1985-06-27
A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.
Die-target for dynamic powder consolidation
Flinn, John E.; Korth, Gary E.
1986-01-01
A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block.
9 CFR 113.51 - Requirements for primary cells used for production of biologics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...
9 CFR 113.51 - Requirements for primary cells used for production of biologics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...
9 CFR 113.51 - Requirements for primary cells used for production of biologics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...
9 CFR 113.51 - Requirements for primary cells used for production of biologics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...
9 CFR 113.51 - Requirements for primary cells used for production of biologics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Requirements for primary cells used... VECTORS STANDARD REQUIREMENTS Ingredient Requirements § 113.51 Requirements for primary cells used for production of biologics. Primary cells used to prepare biological products shall be derived from normal...
Le Cann, Sophie; Galland, Alexandre; Rosa, Benoît; Le Corroller, Thomas; Pithioux, Martine; Argenson, Jean-Noël; Chabrand, Patrick; Parratte, Sébastien
2014-09-01
Most acetabular cups implanted today are press-fit impacted cementless. Anchorage begins with the primary stability given by insertion of a slightly oversized cup. This primary stability is key to obtaining bone ingrowth and secondary stability. We tested the hypothesis that primary stability of the cup is related to surface roughness of the implant, using both an experimental and a numerical models to analyze how three levels of surface roughness (micro, macro and combined) affect the primary stability of the cup. We also investigated the effect of differences in diameter between the cup and its substrate, and of insertion force, on the cups' primary stability. The results of our study show that primary stability depends on the surface roughness of the cup. The presence of macro-roughness on the peripheral ring is found to decrease primary stability; there was excessive abrasion of the substrate, damaging it and leading to poor primary stability. Numerical modeling indicates that oversizing the cup compared to its substrate has an impact on primary stability, as has insertion force. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces
NASA Technical Reports Server (NTRS)
Marinelli, W. J.; Green, B. D.
1988-01-01
Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... entering the ear. This includes devices of which hearing protection may not be the primary function, but... -carrying case. (u) Primary Panel. The surface that is considered to be the front surface or that surface...
Code of Federal Regulations, 2014 CFR
2014-07-01
... entering the ear. This includes devices of which hearing protection may not be the primary function, but... -carrying case. (u) Primary Panel. The surface that is considered to be the front surface or that surface...
Code of Federal Regulations, 2013 CFR
2013-07-01
... entering the ear. This includes devices of which hearing protection may not be the primary function, but... -carrying case. (u) Primary Panel. The surface that is considered to be the front surface or that surface...
Razeq, Fakhria M; Kosma, Dylan K; Rowland, Owen; Molina, Isabel
2014-10-01
Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Model of a coral reef ecosystem
NASA Astrophysics Data System (ADS)
Atkinson, Marlin J.; Grigg, Richard W.
1984-08-01
The ECOPATH model for French Frigate Shoals estimates the benthic plant production (net primary production in kg wet weight) required to support the atoll food chain. In this section we estimate the benthic net primary production and net community production of the atoll based on metabolism studies of reef flat, knolls, and lagoon communities at French Frigate Shoals Hawaii. Community metabolism was measured during winter and summer. The reef communities at French Frigate Shoals exhibited patterns and rates of organic carbon production and calcification similar to other reefs in the world. The estimate of net primary production is 6.1·106 kg wet weight km-2 year-1±50%, a value remarkably close to the estimate by the ECOPATH model of 4.3·106 kg wet weight km-2 year-1. Our estimate of net community production or the amount of carbon not consumed by the benthos was high; approximately 15% of the net primary production. Model results indicate that about 5% of net primary production is passed up the food chain to mobile predators. This suggests about 10% of net primary production (˜6% of gross primary production) may be permanently lost to the system via sediment burial or export offshore.
Differential effects of biochar on soils within an eroded field
NASA Astrophysics Data System (ADS)
Schumacher, Thomas; Chintala, Rajesh; Sandhu, Saroop; Kumar, Sandeep; Clay, Dave; Gelderman, Ron; Papiernik, Sharon; Malo, Douglas; Clay, Sharon; Julson, Jim
2015-04-01
Future uses of biochar will in part be dependent not only on the effects of biochar on soil processes but also on the availability and economics of biochar production. If pyrolysis for production of bio-oil and syngas becomes wide-spread, biochar as a by-product of bio-oil production will be widely available and relatively inexpensive compared to the production of biochar as primary product. Biochar produced as a by-product of optimized bio-oil production using regionally available feedstocks was examined for properties and for use as an amendment targeted to contrasting soils within an eroded field in an on-farm study initiated in 2013 at Brookings, South Dakota, USA. Three plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The cropping system within this agricultural landscape was a corn (Zea mays L.) and soybean (Glycine max L.) rotation. Biochar physical and chemical properties for each of the feedstocks were determined including pH, surface area, surface charge potential, C-distribution, ash content, macro and micro nutrient composition. Yields, nutrient content, and carbon isotope ratio measurements were made on the harvested seed. Soil physical properties measured included water retention, bulk density, and water infiltration from a ponded double ring infiltrometer. Laboratory studies were conducted to determine the effects of biochar on partitioning of nitrate and phosphorus at soil surface exchange complex and the extracellular enzymes activity of C and N cycles. Crop yields were increased only in the Maddock soil. Biochar interacted with each soil type to alter physical and chemical properties. However the pattern of interaction depended on soil and biochar type.
Jin, Peng; Gao, Guang; Liu, Xin; Li, Futian; Tong, Shanying; Ding, Jiancheng; Zhong, Zhihai; Liu, Nana; Gao, Kunshan
2016-01-01
The growth of phytoplankton and thus marine primary productivity depend on photophysiological performance of phytoplankton cells that respond to changing environmental conditions. The South China Sea (SCS) is the largest marginal sea of the western Pacific and plays important roles in modulating regional climate and carbon budget. However, little has been documented on photophysiological characteristics of phytoplankton in the SCS. For the first time, we investigated photophysiological characteristics of phytoplankton assemblages in the northern South China Sea (NSCS) using a real-time in-situ active chlorophyll a fluorometry, covering 4.0 × 105 km2. The functional absorption cross section of photosystem II (PSII) in darkness (σPSII) or under ambient light (σPSII') (A2 quanta-1) increased from the surface to deeper waters at all the stations during the survey period (29 July to 23 August 2012). While the maximum (Fv/Fm, measured in darkness) or effective (Fq'/Fm', measured under ambient light) photochemical efficiency of PSII appeared to increase with increasing depth at most stations, it showed inverse relationship with depth in river plume areas. The functional absorption cross section of PSII changes could be attributed to light-adapted genotypic feature due to niche-partition and the alteration of photochemical efficiency of PSII could be attributed to photo-acclimation. The chlorophyll a fluorometry can be taken as an analog to estimate primary productivity, since areas of higher photochemical efficiency of PSII coincided with those of higher primary productivity reported previously in the NSCS.
Gani, Khalid Muzamil; Tyagi, Vinay Kumar; Kazmi, Absar Ahmad
2017-07-01
Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.
A two stream radiative transfer model for scaling solar induced fluorescence from leaf to canopy
NASA Astrophysics Data System (ADS)
Quaife, T. L.
2017-12-01
Solar induced fluorescence (SIF) is becoming widely used as a proxy for gross primary productivity (GPP), in particular with the advent of its measurement by Earth Observation satellites such as OCO and GOSAT. A major attraction of SIF is that it is independent of the assumptions embedded in light use efficiency based GPP products derived from satellite missions such as MODIS. The assumptions in such products are likely not compatible with any given land surface model and hence comparing the two is problematic. On the other hand to compare land surface model predictions of GPP to satellite based SIF data requires either (a) translation of SIF into estimates of GPP, or (b) direct predictions of SIF from the land surface model itself. The former typically relies on empirical relationships, whereas the latter can make direct use of our physiological understanding of the link between photosynthesis and fluorescence at the leaf scale and is therefore preferable. Here I derive a two stream model for fluorescence that is capable of translating between leaf scale models of SIF and the canopy leaving radiance taking into account all levels of photon scattering. Other such models have been developed previously but the model described here is physically consistent with the Sellers' two stream radiative transfer scheme which is widely used in modern land surface models. Consequently any model that already employs the Sellers's scheme can use the new model without requiring modification. This includes, for example, JULES, the land surface model of the new UK Earth System Model (UKESM) and CLM, the US Community Land Model (part of the NCAR Earth System Model). The new canopy SIF model is extremely computationally efficient and can be applied to vertically inhomogeneous canopies.
NASA Technical Reports Server (NTRS)
Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.
2015-01-01
In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.
Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.
Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H
2011-04-01
Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.
Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik
2012-03-01
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.
Effects of In Vitro Hemodilution, Hypothermia and rFVIIa Addition on Coagulation in Human Blood
2012-03-30
primary fluids used by many trauma units and the US Army for pre-hospital resuscitation [17]. HX, a hetastarch-based product in a balanced electro...and has been associated with dilution of coagulation factors and hypothermia. Recombinant activated Factor VII (rFVIIa) has been used, often as a...of rFVIIa results in an enhancement of thrombin generation on the platelet surface at the site of injury independent of the presence of Factor VIII
Metal matrix composite fabrication processes for high performance aerospace structures
NASA Astrophysics Data System (ADS)
Ponzi, C.
A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.
The effect of dryer load on freeze drying process design.
Patel, Sajal M; Jameel, Feroz; Pikal, Michael J
2010-10-01
Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).
The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure
NASA Astrophysics Data System (ADS)
Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.
2018-04-01
The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.
NASA Astrophysics Data System (ADS)
Schwartz, V.; Barron, J. A.; Addison, J. A.; Bukry, D.
2016-12-01
The 1100-km-long Gulf of California (GOC) is separated from the cool waters of the eastern North Pacific by Baja California, and experiences both a temperate and sub-tropical climatology. In the eastern GOC, extensive diatom blooms are generated by strong northwest winds that upwell nutrient-rich waters during the winter. Slackening of these upwelling-favorable winds during the late spring allows for northward flow of tropical waters up the axis of the Gulf, prompting the flow of tropical moisture into northwestern Mexico and Arizona. Similar to the eastern bias during winter upwelling, northward flowing surface currents transporting tropical waters into the GOC during summer are also strongest on the eastern side of the Gulf. This study utilizes strew slide and biogenic silica (opal) analyses of diatoms and silicoflagellates to examine changes in primary productivity, over the past 2000 years from three marine sediment cores from Guaymas Basin in the central GOC. The cores include the eastern BAM80 E-17 (27.920° N, 111.610°W, 620 m water depth); the western MD02-2517c2 at 27.485° N, 112.074°W, water depth 887 m); and the southwestern DR373-VC-214 (26.879°N, 111.339°W, 1860 m water depth). This detailed productivity transect will test the hypothesis that the surface water productivity of the eastern and western portions of the Guaymas Basin responded differently to late Holocene climatic forcings. These records document distinct changes in the east-to-west productivity gradient during the Medieval Climate Anomaly (MCA) ( 850-1250 CE) and the Little Ice Age (LIA) ( 1300-1850 CE). Diatom and silicoflagellate assemblages suggest that the MCA was characterized by a reduced east- west productivity gradient and generally warm surface water conditions. The LIA appeared to be more similar to that of modern GOC surface water conditions, with a stronger east- west productivity gradient. The data also show that a warmer interval similar to that of the MCA occurred between 1450 and 1550 CE. Ongoing collaborative alkenone SST studies on MD02-2517 by Erin McClymont (Durham University) should help to further resolve the character of the MCA and LIA in the GOC.
Yamamoto, Yoko; Kobayashi, Yukiko; Matsumoto, Hideaki
2001-01-01
Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation. PMID:11154329
PRIMARY PRODUCTION ESTIMATES IN CHESAPEAKE BAY USING SEAWIFS
The temporal and spatial variability in primary production along the main stem of Chesapeake Bay was examined from 1997 through 2000. Primary production estimates were determined from the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski, 1997) using chloro...
Ensuring Safety of Navigation: A Three-Tiered Approach
NASA Astrophysics Data System (ADS)
Johnson, S. D.; Thompson, M.; Brazier, D.
2014-12-01
The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.
Walker, Tiffany N.; Cimakasky, Lisa M.; Coleman, Ebony M.; Madison, M. Nia
2013-01-01
Abstract HIV-1 infection induces formation of a virological synapse wherein CD4, chemokine receptors, and cell-adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1) form localized domains on the cell surface. Studies show that LFA-1 on the surface of HIV-1 particles retains its adhesion function and enhances virus attachment to susceptible cells by binding its counterreceptor intercellular adhesion molecule 1 (ICAM-1). This virus–cell interaction augments virus infectivity by facilitating binding and entry events. In this study, we demonstrate that inhibition of the LFA-1/ICAM-1 interaction by a monoclonal antibody leads to decreased virus production and spread in association with increased apoptosis of HIV-infected primary T cells. The data indicate that the LFA-1/ICAM-1 interaction may limit apoptosis in HIV-1-infected T cells. This phenomenon appears similar to anoikis wherein epithelial cells are protected from apoptosis conferred by ligand-bound integrins. These results have implications for further understanding HIV pathogenesis and replication in peripheral compartments and lymphoid organs. PMID:22697794
Gilbert, Kenneth; Joseph, Raphael; Vo, Alex; Patel, Trusha; Chaudhry, Samiya; Nguyen, Uyen; Trevor, Amy; Robinson, Erica; Campbell, Margaret; McLennan, John; Houran, Farielle; Wong, Tristan; Flann, Kendra; Wages, Melissa; Palmer, Elizabeth A; Peterson, John; Engle, John; Maier, Tom; Machida, Curtis A
2014-01-01
Mutans streptococci (MS) are one of the major microbiological determinants of dental caries. The objectives of this study are to identify distinct MS and non-MS streptococci strains that are located at carious sites and non-carious enamel surfaces in children with severe early childhood caries (S-ECC), and assess if cariogenic MS and non-cariogenic streptococci might independently exist as primary bacterial strains on distinct sites within the dentition of individual children. Dental plaque from children (N=20; aged 3-6) with S-ECC was collected from carious lesions (CLs), white spot lesions (WSLs) and non-carious enamel surfaces. Streptococcal isolates (N=10-20) from each site were subjected to polymerase chain reaction (PCR) to identify MS, and arbitrarily primed-PCR for assignment of genetic strains. Primary strains were identified as ≥50% of the total isolates surveyed at any site. In several cases, strains were characterized for acidurity using ATP-driven bioluminescence and subjected to PCR-determination of potential MS virulence products. Identification of non-MS was determined by 16S rRNA gene sequencing. Sixty-four independent MS or non-MS streptococcal strains were identified. All children contained 1-6 strains. In many patients (N=11), single primary MS strains were identified throughout the dentition. In other patients (N=4), primary MS strains were identified within CLs that were distinct from primary strains found on enamel. Streptococcus gordonii strains were identified as primary strains on enamel or WSLs in four children, and in general were less aciduric than MS strains. Many children with S-ECC contained only a single primary MS strain that was present in both carious and non-carious sites. In some cases, MS and non-cariogenic S. gordonii strains were found to independently exist as dominant strains at different locations within the dentition of individual children, and the aciduric potential of these strains may influence susceptibility in the development of CLs.
Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission
NASA Technical Reports Server (NTRS)
Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.;
2013-01-01
Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
Spilmont, Nicolas; Denis, Lionel; Artigas, Luis Felipe; Caloin, Frédéric; Courcot, Lucie; Créach, Anne; Desroy, Nicolas; Gevaert, François; Hacquebart, Pascal; Hubas, Cédric; Janquin, Marie-Andrée; Lemoine, Yves; Luczak, Christophe; Migné, Aline; Rauch, Mathieu; Davoult, Dominique
2009-01-01
From 1999 to 2005, studies carried out in the frame of regional and national French programs aimed to determine whether the Phaeocystis globosa bloom affected the intertidal benthic communities of the French coast of the eastern English Channel in terms of composition and/or functioning. Study sites were chosen to cover most of the typical shore types encountered on this coast (a rocky shore, an exposed sandy beach and a small estuary). Both the presence of active Phaeocystis cells and their degradation product (foam) did have a significant impact on the studied shores. The primary production and growth rates of the kelp Saccharina latissima decreased during the bloom because of a shortage of light and nutrient for the macroalgae. On sandy sediments, the benthic metabolism (community respiration and community primary production), as well as the nitrification rate, were enhanced during foam deposits, in relation with the presence of bacteria and active pelagic cells within the decaying colonies. In estuarine sediments, the most impressive impact was the formation of a crust at the sediment surface due to drying foam. This led to anoxic conditions in the surface sediment and resulted in a high mortality among the benthic community. Some organisms also tended to migrate upward and were then directly accessible to the higher trophic level represented by birds. Phaeocystis then created a shortcut in the estuarine trophic network. Most of these modifications lasted shortly and all the systems considered came back to their regular properties and activities a few weeks after the end of the bloom, except for the most impacted estuarine area.
Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre
NASA Astrophysics Data System (ADS)
Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.
2016-12-01
The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.
Energy release properties of amorphous boron and boron-based propellant primary combustion products
NASA Astrophysics Data System (ADS)
Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu
2015-07-01
The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.
The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John
2010-01-01
The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture that are informed by and consistent with SMAP observations. Such estimates are obtained by merging SMAP observations with estimates from a land surface model in a soil moisture data assimilation system. The land surface model component of the assimilation system is driven with observations-based surface meteorological forcing data, including precipitation, which is the most important driver for soil moisture. The model also encapsulates knowledge of key land surface processes, including the vertical transfer of soil moisture between the surface and root zone reservoirs. Finally, the model interpolates and extrapolates SMAP observations in time and in space. The L4_SM product thus provides a comprehensive and consistent picture of land surface hydrological conditions based on SMAP observations and complementary information from a variety of sources. The assimilation algorithm considers the respective uncertainties of each component and yields a product that is superior to satellite or model data alone. Error estimates for the L4_SM product are generated as a by-product of the data assimilation system.
Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L
2013-01-01
The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.
NASA Astrophysics Data System (ADS)
Ruggieri, Nicoletta; Kaiser, Jérôme; Arz, Helge W.; Hefter, Jens; Siegel, Herbert; Mollenhauer, Gesine; Lamy, Frank
2014-05-01
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. The interest for the Gulf of Genoa lies in its contrasting coastal and central areas in terms of terrestrial input, oligotrophy, primary production and surface temperature gradient. Moreover, the Gulf of Genoa contains a large potential for climate reconstruction as it is one of the four major Mediterranean centres for cyclogenesis and the ultra high sedimentation rates on the shelf make this area suitable for high resolution environmental reconstruction. Initial results from sediment cores in the coastal area indeed reveal the potential for Holocene environmental reconstruction on up to decadal timescales (see Poster "Reconstruction of late Holocene flooding events in the Gulf of Genoa, Ligurian Sea" by Lamy et al.). During R/V Poseidon cruise P413 (May 2011), ca. 60 sediment cores were taken along the Ligurian shelf, continental slope, and in the basin between off Livorno and the French border. Results based on surface sediments suggest that some biomarker-based proxies are well-suited to reconstruct sea surface temperature (SST), the input of terrestrial organic material (TOM), and marine primary productivity (PP). The estimated UK'37 SST reflects very closely the autumnal mean satellite-based SST distribution, while TEXH86 SSTs correspond to summer SST at offshore sites and to winter SST for the nearshore sites. Using both SST proxies together may thus allow reconstructing past seasonality changes. Proxies for TOM input (terrestrial n-alkane and n-alkanol concentrations, BIT index) have higher values close to the major river mouths and decrease offshore suggesting that these may be used as proxy for the variability in TOM input by runoff. Interestingly, high n-alkane average chain length in the most offshore sites may result from aeolian input from northern Africa. Finally, high concentrations of crenarchaeol and isoprenoid GDGTs in the open basin illustrate the preference of Thaumarchaeota for oligotrophic waters. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.
Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.; ...
2017-06-22
Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.
Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less
Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea
Arthur, M.A.; Dean, W.E.
1998-01-01
Dating of sediments collected in gravity cores during Leg 1 of the 1988 R/V Knorr expedition to the Black Sea suggests that the onset of water-column anoxia at ???7.5 ka was virtually synchronous across the basin over a depth range of ???200 - 2250 m. A finely laminated, organic carbon (OC) rich sapropel (unit II) was produced as a result of this anoxia. The trigger for increased OC production and development of anoxia was the spillover of saline waters through the Bosporus that probably began at ???9.0 ka and peaked between ???7.0 and 5.5 ka. This spillover enhanced vertical mixing and nutrient cycling and caused a short-term (2-3 kyr) burst in surface-water productivity during the early part of unit II deposition. Continued incursion of saline waters enhanced vertical stability and inhibited mixing of nutrients into surface waters, thus limiting primary production and decreasing the OC flux to sediments beginning ???5.5 ka. Concentration, accumulation rate, and degree of preservation of organic matter all decreased in the upper part of unit II as a result of decreasing productivity, but anoxia persisted throughout most of the water column. The end of unit II sapropel deposition was synchronous across the Black Sea as the result of the first blooms of the coccolith Emiliania huxleyi, which presumably marked an increase in surface-water salinity above 11 and the beginning of unit I deposition. The high coccolith-carbonate fluxes that occurred during deposition of unit I diluted the OC concentration in the sediments, but OC accumulation rates are about the same as those in upper part of unit II.
NASA Astrophysics Data System (ADS)
Isada, Tomonori; Hirawake, Toru; Nakada, Satoshi; Kobayashi, Tsukuru; Sasaki, Ken'ichi; Tanaka, Yoshiyuki; Watanabe, Shuichi; Suzuki, Koji; Saitoh, Sei-Ichi
2017-03-01
Phytoplankton community structures and primary productivity were assessed in relation to the oceanographic conditions in the coastal waters of Funka bay and the eastern end of the Tsugaru Strait, adjacent to southwestern Hokkaido, Japan, from April 2010 to January 2012. Phytoplankton community compositions, as estimated from chemotaxonomic analysis based on high-performance liquid chromatography of pigments, showed diatom blooms during spring in both 2010 and 2011. However, spatial heterogeneity of chlorophyll a (Chl a) concentration and primary productivity were found between regions investigated within and outside of Funka Bay during the spring diatom blooms in April 2010. The low Chl a concentrations within Funka Bay in April 2010 were related to the depletion of dissolved inorganic macronutrients, which implies that this difference was related to both the small inflow of the cold Coastal Oyashio Current (COW) into the bay and the development of clockwise circulation caused by discharge of fresh water into the bay. After the spring diatom blooms, the major phytoplankton groups in the study area were Chl b-containing phytoplanktons (chlorophytes and prasinophytes) because of changes in salinity associated with river discharge during the melting season. The results indicate that these phytoplanktons play an important role in the carbon cycle after the spring bloom in Funka Bay and the eastern end of the Tsugaru Strait. The thermohaline fronts created by the COW and the Tsugaru Warm Water in late February produced north-south differences in phytoplankton community structures in the eastern end of the Tsugaru Strait. Diatoms with high Chl a concentrations dominated in the northern section of the front. In the southern section, the proportions of chlorophytes and cryptophytes were high. Increases in cyanobacterial abundance and temperature were detected in both regions. Additionally, the contribution of pico- plus nano-sized phytoplankton productivity to the total primary productivity at the surface was concomitant with increases in temperature. Our results suggest that small-sized phytoplankton become more important part of the food web during summer, even in the coastal waters.
NASA Astrophysics Data System (ADS)
Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of frontal zones.
Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A
2014-07-01
The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Characterizing potential water quality impacts from soils treated with dust suppressants.
Beighley, R Edward; He, Yiping; Valdes, Julio R
2009-01-01
Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.
Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.
Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.
1997-01-01
A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net photosynthesis and respiration. Stands subjected to water stress during the growing season may exist on the edge between being annual sources or sinks for atmospheric carbon.
Radiation Shielding Optimization on Mars
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.
2013-01-01
Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.
Cryptic oxygen cycling in anoxic marine zones.
Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-08-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.
NASA Astrophysics Data System (ADS)
O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto
2015-10-01
Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.
Góbi, Sándor; Crandall, Parker B; Maksyutenko, Pavlo; Förstel, Marko; Kaiser, Ralf I
2018-03-08
(D 3 -)Methanol-nitrogen monoxide (CH 3 OH/CD 3 OH-NO) ices were exposed to ionizing radiation to facilitate the eventual determination of the CH 3 NO 2 potential energy surface (PES) in the condensed phase. Reaction intermediates and products were monitored via infrared spectroscopy (FTIR) and photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the irradiation and temperature controlled desorption (TPD) phase, respectively. Distinct photoionization energies were utilized to discriminate the isomer(s) formed in these processes. The primary methanol radiolysis products were the methoxy (CH 3 O) and hydroxymethyl (CH 2 OH) radicals along with atomic hydrogen. The former was found to react barrierlessly with nitrogen monoxide resulting in the formation of cis- and trans-methyl nitrite (CH 3 ONO), which is the most abundant product that can be observed in the irradiated samples. On the other hand, the self-recombination of hydroxymethyl radicals yielding ethylene glycol (HO(CH 2 ) 2 OH) and glycerol (HOCH 2 CH 2 (OH)CH 2 OH) is preferred over the recombination with nitrogen monoxide to nitrosomethanol (HOCH 2 NO).
NASA Technical Reports Server (NTRS)
Vorosmarty, C.; Grace, A.; Moore, B.; Choudhury, B.; Willmott, C. J.
1990-01-01
A strategy is presented for integrating scanning multichannel microwave radiometer data from the Nimbus-7 satellite with meteorological station records and computer simulations of land surface hydrology, terrestrial nutrient cycling, and trace gas emission. Analysis of the observations together with radiative transfer analysis shows that in the tropics the temporal and spatial variations of the polarization difference are determined primarily by the structure and phenology of vegetation and seasonal inundations of major rivers and wetlands. It is concluded that the proposed surface hydrology model, along with climatological records, and, potentially, 37-GHz data for phenology, will provide inputs to a terrestrial ecosystem model that predicts regional net primary production and CO2 gas exchange.