Sample records for surface protein complex

  1. Shape Complementarity of Protein-Protein Complexes at Multiple Resolutions

    PubMed Central

    Zhang, Qing; Sanner, Michel; Olson, Arthur J.

    2010-01-01

    Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes in order to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. In spite of the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multi-resolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a non-redundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed “blobbyness”. Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein structures in their unbound conformation. The histograms calculated for the bound complex structures demonstrate that medium resolution smoothing (blobbyness=−0.9) can reproduce about 88% of the shape complementarity of atomic resolution surfaces. Complexes formed from the free component structures show a partial loss of shape complementarity (more overlaps and gaps) with the atomic resolution surfaces. For surfaces smoothed to low resolution (blobbyness=−0.3), we find more consistency of shape complementarity between the complexed and free cases. To further reduce bad contacts without significantly impacting the good contacts we introduce another blurred surface, in which the Gaussian densities of flexible atoms are reduced. From these results we discuss the use of shape complementarity in protein-protein docking. PMID:18837463

  2. Non-interacting surface solvation and dynamics in protein-protein interactions.

    PubMed

    Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J

    2015-03-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. © 2014 Wiley Periodicals, Inc.

  3. A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites.

    PubMed

    Paul, Gourab; Deshmukh, Arunaditya; Kaur, Inderjeet; Rathore, Sumit; Dabral, Surbhi; Panda, Ashutosh; Singh, Susheel Kumar; Mohmmed, Asif; Theisen, Michael; Malhotra, Pawan

    2017-02-16

    The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present study, a large complex of 6-Cys proteins: Pfs41, Pfs38 and Pfs12 and three other merozoite surface proteins: Glutamate-rich protein (GLURP), SERA5 and MSP-1 were identified on the Plasmodium falciparum merozoite surface. Recombinant 6-cys proteins i.e. Pfs38, Pfs12, Pfs41 as well as PfMSP-1 65 were expressed and purified using Escherichia coli expression system and antibodies were raised against each of these proteins. These antibodies were used to immunoprecipitate the native proteins and their associated partners from parasite lysate. ELISA, Far western, surface plasmon resonance and glycerol density gradient fractionation were carried out to confirm the respective interactions. Furthermore, erythrocyte binding assay with 6-cys proteins were undertaken to find out their possible role in host-parasite infection and seropositivity was assessed using Indian and Liberian sera. Immunoprecipitation of parasite-derived polypeptides, followed by LC-MS/MS analysis, identified a large Pfs38 complex comprising of 6-cys proteins: Pfs41, Pfs38, Pfs12 and other merozoite surface proteins: GLURP, SERA5 and MSP-1. The existence of such a complex was further corroborated by several protein-protein interaction tools, co-localization and co-sedimentation analysis. Pfs38 protein of Pfs38 complex binds to host red blood cells (RBCs) directly via glycophorin A as a receptor. Seroprevalence analysis showed that of the six antigens, prevalence varied from 40 to 99%, being generally highest for MSP-1 65 and GLURP proteins. Together the data show the presence of a large Pfs38 protein-associated complex on the parasite surface which is involved in RBC binding. These results highlight the complex molecular interactions among the P. falciparum merozoite surface proteins and advocate the development of a multi-sub-unit malaria vaccine based on some of these protein complexes on merozoite surface.

  4. Discrete structural features among interface residue-level classes.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2015-01-01

    Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.

  5. Discrete structural features among interface residue-level classes

    PubMed Central

    2015-01-01

    Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043

  6. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots.

    PubMed

    Kuttner, Yosef Y; Engel, Stanislav

    2018-02-01

    A rational design of protein complexes with defined functionalities and of drugs aimed at disrupting protein-protein interactions requires fundamental understanding of the mechanisms underlying the formation of specific protein complexes. Efforts to develop efficient small-molecule or protein-based binders often exploit energetic hot spots on protein surfaces, namely, the interfacial residues that provide most of the binding free energy in the complex. The molecular basis underlying the unusually high energy contribution of the hot spots remains obscure, and its elucidation would facilitate the design of interface-targeted drugs. To study the nature of the energetic hot spots, we analyzed the backbone dynamic properties of contact surfaces in several protein complexes. We demonstrate that, in most complexes, the backbone dynamic landscapes of interacting surfaces form complementary "stability patches," in which static areas from the opposing surfaces superimpose, and that these areas are predominantly located near the geometric center of the interface. We propose that a diminished enthalpy-entropy compensation effect augments the degree to which residues positioned within the complementary stability patches contribute to complex affinity, thereby giving rise to the energetic hot spots. These findings offer new insights into the nature of energetic hot spots and the role that backbone dynamics play in facilitating intermolecular recognition. Mapping the interfacial stability patches may provide guidance for protein engineering approaches aimed at improving the stability of protein complexes and could facilitate the design of ligands that target complex interfaces. © 2017 Wiley Periodicals, Inc.

  7. The RSV F and G glycoproteins interact to form a complex on the surface of infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, Kit-Wei; Tan, Timothy; Ng, Ken

    2008-02-08

    In this study, the interaction between the respiratory syncytial virus (RSV) fusion (F) protein, attachment (G) protein, and small hydrophobic (SH) proteins was examined. Immunoprecipitation analysis suggested that the F and G proteins exist as a protein complex on the surface of RSV-infected cells, and this conclusion was supported by ultracentrifugation analysis that demonstrated co-migration of surface-expressed F and G proteins. Although our analysis provided evidence for an interaction between the G and SH proteins, no evidence was obtained for a single protein complex involving all three of the virus proteins. These data suggest the existence of multiple virus glycoproteinmore » complexes within the RSV envelope. Although the stimulus that drives RSV-mediated membrane fusion is unknown, the association between the G and F proteins suggest an indirect role for the G protein in this process.« less

  8. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  9. Hidden complexity of free energy surfaces for peptide (protein) folding.

    PubMed

    Krivov, Sergei V; Karplus, Martin

    2004-10-12

    An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they could mask the complexity of the unprojected surface. Here we introduce an approach to determine the actual (unprojected) free energy surface and apply it to the second beta-hairpin of protein G, which has been used as a model system for protein folding. The surface is represented by a disconnectivity graph calculated from a long equilibrium folding-unfolding trajectory. The denatured state is found to have multiple low free energy basins. Nevertheless, the peptide shows exponential kinetics in folding to the native basin. Projected surfaces obtained from the present analysis have a simple form in agreement with other studies of the beta-hairpin. The hidden complexity found for the beta-hairpin surface suggests that the standard funnel picture of protein folding should be revisited.

  10. Toroidal surface complexes of bacteriophage {phi}12 are responsible for host-cell attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui

    2011-06-05

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage {phi}12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of {phi}12 demonstrates that the gene for the hexameric spike is located in {phi}12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimatesmore » derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: > Subtomogram averaging reveals enhanced detail of a {phi}12 cystovirus surface protein complex. > The surface protein complex has a toroidal shape and six-fold symmetry. > It is encoded by the medium-size genome segment. > The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.« less

  11. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis

    PubMed Central

    2010-01-01

    Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase), and were displayed with efficiencies approaching 104 complexes/cell. Conclusions We report the successful display of cellulosome-inspired recombinant complexes on the surface of Lactococcus lactis. Significant differences in display efficiency among constructs were observed and attributed to their structural characteristics including protein conformation and solubility, scaffold size, and the inclusion and exclusion of non-cohesin modules. The surface-display of functional scaffold proteins described here represents a key step in the development of recombinant microorganisms capable of carrying out a variety of metabolic processes including the direct conversion of cellulosic substrates into fuels and chemicals. PMID:20840763

  12. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface.

    PubMed

    Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J

    2014-07-15

    Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.

  13. 3D-SURFER 2.0: web platform for real-time search and characterization of protein surfaces.

    PubMed

    Xiong, Yi; Esquivel-Rodriguez, Juan; Sael, Lee; Kihara, Daisuke

    2014-01-01

    The increasing number of uncharacterized protein structures necessitates the development of computational approaches for function annotation using the protein tertiary structures. Protein structure database search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform for real-time protein surface comparison of a given protein structure against the entire PDB using 3D Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITE (csc) . The server is available at http://kiharalab.org/3d-surfer/.

  14. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

    PubMed

    Wieczorek, Andrew S; Martin, Vincent J J

    2012-12-15

    The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.

  15. Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking

    PubMed Central

    Madaoui, Hocine; Guerois, Raphaël

    2008-01-01

    Protein surfaces are under significant selection pressure to maintain interactions with their partners throughout evolution. Capturing how selection pressure acts at the interfaces of protein–protein complexes is a fundamental issue with high interest for the structural prediction of macromolecular assemblies. We tackled this issue under the assumption that, throughout evolution, mutations should minimally disrupt the physicochemical compatibility between specific clusters of interacting residues. This constraint drove the development of the so-called Surface COmplementarity Trace in Complex History score (SCOTCH), which was found to discriminate with high efficiency the structure of biological complexes. SCOTCH performances were assessed not only with respect to other evolution-based approaches, such as conservation and coevolution analyses, but also with respect to statistically based scoring methods. Validated on a set of 129 complexes of known structure exhibiting both permanent and transient intermolecular interactions, SCOTCH appears as a robust strategy to guide the prediction of protein–protein complex structures. Of particular interest, it also provides a basic framework to efficiently track how protein surfaces could evolve while keeping their partners in contact. PMID:18511568

  16. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    PubMed Central

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  17. iview: an interactive WebGL visualizer for protein-ligand complex.

    PubMed

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  18. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    PubMed

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. N/A. The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

    PubMed Central

    Fiorucci, Sébastien; Zacharias, Martin

    2010-01-01

    Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756

  20. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores.

    PubMed

    Ananth, Adithya; Genua, María; Aissaoui, Nesrine; Díaz, Leire; Eisele, Nico B; Frey, Steffen; Dekker, Cees; Richter, Ralf P; Görlich, Dirk

    2018-05-01

    The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    PubMed

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    NASA Astrophysics Data System (ADS)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  4. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  5. Prediction of protein-protein interaction sites using electrostatic desolvation profiles.

    PubMed

    Fiorucci, Sébastien; Zacharias, Martin

    2010-05-19

    Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    PubMed

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  7. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment.

    PubMed Central

    Mayor, S; Maxfield, F R

    1995-01-01

    A diverse set of cell surface eukaryotic proteins including receptors, enzymes, and adhesion molecules have a glycosylphosphoinositol-lipid (GPI) modification at the carboxy-terminal end that serves as their sole means of membrane anchoring. These GPI-anchored proteins are poorly solubilized in nonionic detergent such as Triton X-100. In addition these detergent-insoluble complexes from plasma membranes are significantly enriched in several cytoplasmic proteins including nonreceptor-type tyrosine kinases and caveolin/VIP-21, a component of the striated coat of caveolae. These observations have suggested that the detergent-insoluble complexes represent purified caveolar membrane preparations. However, we have recently shown by immunofluorescence and electron microscopy that GPI-anchored proteins are diffusely distributed at the cell surface but may be enriched in caveolae only after cross-linking. Although caveolae occupy only a small fraction of the cell surface (< 4%), almost all of the GPI-anchored protein at the cell surface becomes incorporated into detergent-insoluble low-density complexes. In this paper we show that upon detergent treatment the GPI-anchored proteins are redistributed into a significantly more clustered distribution in the remaining membranous structures. These results show that GPI-anchored proteins are intrinsically detergent-insoluble in the milieu of the plasma membrane, and their co-purification with caveolin is not reflective of their native distribution. These results also indicate that the association of caveolae, GPI-anchored proteins, and signalling proteins must be critically re-examined. Images PMID:7579703

  8. Complex lasso: new entangled motifs in proteins

    NASA Astrophysics Data System (ADS)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  9. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  10. The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane.

    PubMed

    Gunasinghe, Sachith D; Shiota, Takuya; Stubenrauch, Christopher J; Schulze, Keith E; Webb, Chaille T; Fulcher, Alex J; Dunstan, Rhys A; Hay, Iain D; Naderer, Thomas; Whelan, Donna R; Bell, Toby D M; Elgass, Kirstin D; Strugnell, Richard A; Lithgow, Trevor

    2018-05-29

    The β-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of ∼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  12. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  13. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  14. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.

    2007-10-25

    The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less

  15. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  16. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybridmore » FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  17. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE PAGES

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; ...

    2016-12-02

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  18. Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases

    PubMed Central

    Castillo, Virginia; Ventura, Salvador

    2009-01-01

    Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins. PMID:19696882

  19. Electrostatic rate enhancement and transient complex of protein-protein association.

    PubMed

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2008-04-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.

  20. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.

    PubMed

    Kharazian, B; Hadipour, N L; Ejtehadi, M R

    2016-06-01

    Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. Copyright © 2016. Published by Elsevier Ltd.

  1. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.

    PubMed

    Liang, Shide; Zhang, Jian; Zhang, Shicui; Guo, Huarong

    2004-11-15

    We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue. (c) 2004 Wiley-Liss, Inc.

  2. Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling

    PubMed Central

    McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.

    2018-01-01

    Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079

  3. Modulating surface rheology by electrostatic protein/polysaccharide interactions.

    PubMed

    Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H

    2006-11-21

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.

  4. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  5. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  6. Dissecting Arabidopsis G beta signal transduction on the protein surface

    USDA-ARS?s Scientific Manuscript database

    The heterotrimeric G protein complex provides signal amplification and target specificity. The Arabidopsis Gbeta subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its ta...

  7. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  8. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zunfeng; Voskamp, Patrick; Zhang, Yue; Chu, Fuqiang; Abrahams, Jan Pieter

    2013-04-01

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA- EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI-DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.

  9. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  10. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure

    PubMed Central

    Hauser, Christina T.; Tsien, Roger Y.

    2007-01-01

    Site-specific fluorescent labeling of proteins in vivo remains one of the most powerful techniques for imaging complex processes in live cells. Although fluorescent proteins in many colors are useful tools for tracking expression and localization of fusion proteins in cells, these relatively large tags (>220 aa) can perturb protein folding, trafficking and function. Much smaller genetically encodable domains (<15 aa) offer complementary advantages. We introduce a small fluorescent chelator whose membrane-impermeant complex with nontoxic Zn2+ ions binds tightly but reversibly to hexahistidine (His6) motifs on surface-exposed proteins. This live-cell label helps to resolve a current controversy concerning externalization of the stromal interaction molecule STIM1 upon depletion of Ca2+ from the endoplasmic reticulum. Whereas N-terminal fluorescent protein fusions interfere with surface exposure of STIM1, short His6 tags are accessible to the dye or antibodies, demonstrating externalization. PMID:17360414

  11. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  12. Generation of amyloid-β is reduced by the interaction of calreticulin with amyloid precursor protein, presenilin and nicastrin.

    PubMed

    Stemmer, Nina; Strekalova, Elena; Djogo, Nevena; Plöger, Frank; Loers, Gabriele; Lutz, David; Buck, Friedrich; Michalak, Marek; Schachner, Melitta; Kleene, Ralf

    2013-01-01

    Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.

  13. Mapping Protein Surface Accessibility via an Electron Transfer Dissociation Selectively Cleavable Hydrazone Probe*

    PubMed Central

    Vasicek, Lisa; O'Brien, John P.; Browning, Karen S.; Tao, Zhihua; Liu, Hung-Wen; Brodbelt, Jennifer S.

    2012-01-01

    A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C. PMID:22393264

  14. Bioengineering strategies to generate artificial protein complexes.

    PubMed

    Kim, Heejae; Siu, Ka-Hei; Raeeszadeh-Sarmazdeh, Maryam; Sun, Qing; Chen, Qi; Chen, Wilfred

    2015-08-01

    For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique. © 2015 Wiley Periodicals, Inc.

  15. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  16. Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Khomami, Bamin

    2011-03-01

    Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).

  17. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  18. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  19. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    PubMed

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  20. An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions

    NASA Astrophysics Data System (ADS)

    Brahmkhatri, Varsha P.; Chandra, Kousik; Dubey, Abhinav; Atreya, Hanudatta S.

    2015-07-01

    In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03047a

  1. Solution structure of the phosphoryl transfer complex between the cytoplasmic A domain of the mannitol transporter IIMannitol and HPr of the Escherichia coli phosphotransferase system.

    PubMed

    Cornilescu, Gabriel; Lee, Byeong Ryong; Cornilescu, Claudia C; Wang, Guangshun; Peterkofsky, Alan; Clore, G Marius

    2002-11-01

    The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.

  2. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    PubMed Central

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  3. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  4. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  5. Cyclophilin B mediates cyclosporin A incorporation in human blood T-lymphocytes through the specific binding of complexed drug to the cell surface.

    PubMed

    Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein located within intracellular vesicles and released in biological fluids. We recently reported the specific binding of this protein to T-cell surface receptor which is internalized even in the presence of CsA. These results suggest that CyPB might target the drug to lymphocytes and consequently modify its activity. To verify this hypothesis, we have first investigated the binding capacity and internalization of the CsA-CyPB complex in human peripheral blood T-lymphocytes and secondly compared the inhibitory effect of both free and CyPB-complexed CsA on the CD3-induced activation and proliferation of T-cells. Here, we present evidence that both the CsA-CyPB complex and free CyPB bind to the T-lymphocyte surface, with similar values of Kd and number of sites. At 37 degrees C, the complex is internalized but, in contrast to the protein, the drug is accumulated within the cell. Moreover, CyPB receptors are internalized together with the ligand and rapidly recycled to the cell surface. Finally, we demonstrate that CyPB-complexed CsA remains as efficient as uncomplexed CsA and that CyPB enhances the immunosuppressive activity of the drug. Taken together, our results support the hypothesis that surface CyPB receptors may be related to the selective and variable action of CsA, through specific binding and targeting of the CyPB-CsA complex to peripheral blood T-lymphocytes.

  6. DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo.

    PubMed

    Mayrhofer, Corina; Krieger, Sigurd; Allmaier, Günter; Kerjaschki, Dontscho

    2006-01-01

    Efficient methods for profiling of the cell surface proteome are desirable to get a deeper insight in basic biological processes, to localise proteins and to uncover proteins differentially expressed in diseases. Here we present a strategy to target cell surface exposed proteins via fluorescence labelling using CyDye DIGE fluors. This method has been applied to human cell lines in vitro as well as to a complex biological system in vivo. It allows detection of fluorophore-tagged cell surface proteins and visualisation of the accessible proteome within a single 2-D gel, simplifying subsequent UV MALDI-MS analysis.

  7. Adsorption of protein GlnB of Herbaspirillum seropedicae on Si(111) investigated by AFM and XPS.

    PubMed

    Lubambo, A F; Benelli, E M; Klein, J; Schreiner, W; Camargo, P C

    2006-01-01

    The protein GlnB-Hs (GlnB of Herbaspirillum seropedicae) in diazotroph micro-organisms signalizes levels of nitrogen, carbon, and energy for a series of proteins involved in the regulation of expression and control of the activity of nitrogenase complex that converts atmospheric nitrogen in ammonia, resulting in biological nitrogen fixation. Its structure has already been determined by X-ray diffraction, revealing a trimer of (36 kDa) with lateral cavities having hydrophilic boundaries. The interactions of GlnB-Hs with the well-known Si(111) surface were investigated for different incubation times, protein concentrations in initial solution, deposition conditions, and substrate initial state. The protein solution was deposited on Si(111) and dried under controlled conditions. An atomic force microscope operating in dynamic mode shows images of circular, linear, and more complex donut-shaped protein arrangement, and also filament types of organization, which vary from a few nanometers to micrometers. Apparently, the filament formation was favored because of protein surface polarity when in contact with the silicon surface, following some specific orientation. The spin-coating technique was successfully used to obtain more uniform surface covering.

  8. Molecular docking of superantigens with class II major histocompatibility complex proteins.

    PubMed

    Olson, M A; Cuff, L

    1997-01-01

    The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.

  9. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  10. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  11. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    PubMed

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  12. EARP, a multisubunit tethering complex involved in endocytic recycling

    PubMed Central

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S.

    2015-01-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061

  13. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasan, Neil; Hutagalung, Alex; Novick, Peter

    2010-08-13

    The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to threemore » other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.« less

  14. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers.

    PubMed

    Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C

    2017-10-01

    The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.

  15. Attachment dynamics of Photosystem I on nano-tailored surfaces for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Bruce, Barry D.; Khomami, Bamin

    2010-03-01

    Photosystem I (PSI), a biological photodiode, is a supra-molecular protein complex that charge separates upon exposure to light. Effective use of photo-electrochemical activities of PSI for hybrid photovoltaic (PV) device fabrications requires optimal encapsulation of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface attachment dynamics of PSI deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate/Au SAM substrates, thereby resulting in complex structural arrangements which affect the electron transfer and capture pathway of PSI. We present surface topographical, specific adsorption and polarization fluorescence characterizations of PSI/Au SAM substrates to elucidate the protein-surface interaction kinetics as well as the directional attachment dynamics of PSI. Our final goal is to enable site-specific homogeneous attachment of directionally aligned PSI onto chemically tailored nano-patterned substrates.

  16. Nanoscale Dewetting Transition in Protein Complex Folding

    PubMed Central

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  17. Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations.

    PubMed

    Ozboyaci, M; Kokh, D B; Wade, R C

    2016-04-21

    The addition of three N-terminal histidines to β-lactamase inhibitor protein was shown experimentally to increase its binding potency to an Au(111) surface substantially but the binding mechanism was not resolved. Here, we propose a complete adsorption mechanism for this fusion protein by means of a multi-scale simulation approach and free energy calculations. We find that adsorption is a three-step process: (i) recognition of the surface predominantly by the histidine fusion peptide and formation of an encounter complex facilitated by a reduced dielectric screening of water in the interfacial region, (ii) adsorption of the protein on the surface and adoption of a specific binding orientation, and (iii) adaptation of the protein structure on the metal surface accompanied by induced fit. We anticipate that the mechanistic features of protein adsorption to an Au(111) surface revealed here can be extended to other inorganic surfaces and proteins and will therefore aid the design of specific protein-surface interactions.

  18. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.

    PubMed

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2018-04-01

    Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion.

    PubMed

    Woehlbier, Ute; Epp, Christian; Hackett, Fiona; Blackman, Michael J; Bujard, Hermann

    2010-03-18

    Plasmodium falciparum merozoites expose at their surface a large protein complex, which is composed of fragments of merozoite surface protein 1 (MSP-1; called MSP-183, MSP-130, MSP-138, and MSP-142) plus associated processing products of MSP-6 and MSP-7. During erythrocyte invasion this complex, as well as an integral membrane protein called apical membrane antigen-1 (AMA-1), is shed from the parasite surface following specific proteolysis. Components of the MSP-1/6/7 complex and AMA-1 are presently under development as malaria vaccines. The specificities and effects of antibodies directed against MSP-1, MSP-6, MSP-7 on the growth of blood stage parasites were studied using ELISA and the pLDH-assay. To understand the mode of action of these antibodies, their effects on processing of MSP-1 and AMA-1 on the surface of merozoites were investigated. Antibodies targeting epitopes located throughout the MSP-1/6/7 complex interfere with shedding of MSP-1, and as a consequence prevent erythrocyte invasion. Antibodies targeting the MSP-1/6/7 complex have no effect on the processing and shedding of AMA-1 and, similarly, antibodies blocking the shedding of AMA-1 do not affect cleavage of MSP-1, suggesting completely independent functions of these proteins during invasion. Furthermore, some epitopes, although eliciting highly inhibitory antibodies, are only poorly recognized by the immune system when presented in the structural context of the intact antigen. The findings reported provide further support for the development of vaccines based on MSP-1/6/7 and AMA-1, which would possibly include a combination of these antigens.

  20. Topography of the Dictyostelium discoideum plasma membrane: analysis of membrane asymmetry and intermolecular disulfide bonds.

    PubMed

    Shiozawa, J A; Jelenska, M M; Jacobson, B S

    1987-07-28

    Through the application of a unique method for isolating plasma membranes, it was possible to specifically iodinate cytoplasm-exposed plasma membrane proteins in vegetative cells of the cellular slime mold Dictyostelium discoideum. The original procedure [Chaney, L. K., & Jacobson, B. S. (1983) J. Biol. Chem. 258, 10062] which involved coating cells with colloidal silica has been modified to yield a more pure preparation. The presence of the continuous and dense silica pellicle on the outside surface of the isolated plasma membrane permitted the specific labeling of cytoplasm-exposed membrane proteins. Lactoperoxidase-catalyzed iodination was employed to label cell-surface and cytoplasm-exposed membrane proteins. The isolated and radioiodinated membranes were then compared and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cell-surface and cytoplasmic face labeling patterns were distinct. A total of 65 proteins were found to be accessible to at least one surface of the membrane. Sixteen intermolecular disulfide bond complexes were observed in the plasma membrane of Dictyostelium; most of these complexes involved glycoproteins and, hence, were exposed to the cell surface.

  1. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    PubMed

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  2. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    PubMed

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  3. Atomic force microscopy – looking at mechanosensors on the cell surface

    PubMed Central

    Heinisch, Jürgen J.; Lipke, Peter N.; Beaussart, Audrey; El Kirat Chatel, Sofiane; Dupres, Vincent; Alsteens, David; Dufrêne, Yves F.

    2012-01-01

    Summary Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells. PMID:23077172

  4. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.

    PubMed

    Gong, Ping; Lee, Chi-Ying; Gamble, Lara J; Castner, David G; Grainger, David W

    2006-05-15

    Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats.

  6. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  7. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2018-06-05

    To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    PubMed Central

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  9. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria.

    PubMed

    Beeson, James G; Drew, Damien R; Boyle, Michelle J; Feng, Gaoqian; Fowkes, Freya J I; Richards, Jack S

    2016-05-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. © FEMS 2016.

  10. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2015-12-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.

  11. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Incorporation of organometallic Ru complexes into apo-ferritin cage.

    PubMed

    Takezawa, Yusuke; Böckmann, Philipp; Sugi, Naoki; Wang, Ziyue; Abe, Satoshi; Murakami, Tatsuya; Hikage, Tatsuo; Erker, Gerhard; Watanabe, Yoshihito; Kitagawa, Susumu; Ueno, Takafumi

    2011-03-14

    Spherical protein cages such as an iron storage protein, ferritin, have great potential as nanometer-scale capsules to assemble and store metal ions and complexes. We report herein the synthesis of a composite of an apo-ferritin cage and Ru(p-cymene) complexes. Ru complexes were efficiently incorporated into the ferritin cavity without degradation of its cage structure. X-Ray crystallography revealed that the Ru complexes were immobilized on the interior surface of the cage mainly by the coordination of histidine residues.

  13. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications.

    PubMed

    Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A

    1999-06-11

    The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.

  15. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  16. A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction

    PubMed Central

    Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C

    2010-01-01

    Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072

  17. Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions.

    PubMed

    Peterson, Lenna X; Shin, Woong-Hee; Kim, Hyungrae; Kihara, Daisuke

    2018-03-01

    We report our group's performance for protein-protein complex structure prediction and scoring in Round 37 of the Critical Assessment of PRediction of Interactions (CAPRI), an objective assessment of protein-protein complex modeling. We demonstrated noticeable improvement in both prediction and scoring compared to previous rounds of CAPRI, with our human predictor group near the top of the rankings and our server scorer group at the top. This is the first time in CAPRI that a server has been the top scorer group. To predict protein-protein complex structures, we used both multi-chain template-based modeling (TBM) and our protein-protein docking program, LZerD. LZerD represents protein surfaces using 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. Because 3DZD are a soft representation of the protein surface, LZerD is tolerant to small conformational changes, making it well suited to docking unbound and TBM structures. The key to our improved performance in CAPRI Round 37 was to combine multi-chain TBM and docking. As opposed to our previous strategy of performing docking for all target complexes, we used TBM when multi-chain templates were available and docking otherwise. We also describe the combination of multiple scoring functions used by our server scorer group, which achieved the top rank for the scorer phase. © 2017 Wiley Periodicals, Inc.

  18. Structure, dynamics and biophysics of the cytoplasmic protein–protein complexes of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clore, G. Marius; Venditti, Vincenzo

    2013-10-01

    The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein–protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein–protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We reviewmore » these approaches, highlighting the problems that can be tackled with these methods, and summarize the current findings on protein interactions.« less

  19. Protein-ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Zoete, V.; Michielin, O.; Karplus, M.

    2003-12-01

    A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SAS bur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, ΔGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC 50 without reparametrization.

  20. InterProSurf: a web server for predicting interacting sites on protein surfaces

    PubMed Central

    Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner

    2009-01-01

    Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856

  1. Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time

    PubMed Central

    Kiley, Patrick; Zhao, Xiaojun; Vaughn, Michael; Baldo, Marc A; Bruce, Barry D

    2005-01-01

    We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N2 on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at −196.15 °C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll−protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-β-D-maltoside and N-octyl-β-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl- AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl- AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins. PMID:15954800

  2. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    PubMed

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex*

    PubMed Central

    Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain

    2017-01-01

    The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754

  4. Quantitative Analysis of Endocytic Recycling of Membrane Proteins by Monoclonal Antibody-Based Recycling Assays.

    PubMed

    Blagojević Zagorac, Gordana; Mahmutefendić, Hana; Maćešić, Senka; Karleuša, Ljerka; Lučin, Pero

    2017-03-01

    In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Plasmodium falciparum MSP3 exists in a complex on the merozoite surface and generates antibody response during natural infection.

    PubMed

    Deshmukh, Arunaditya; Chourasia, Bishwanath Kumar; Mehrotra, Sonali; Kana, Ikhlaq Hussain; Paul, Gourab; Panda, Ashutosh; Kaur, Inderjeet; Singh, Susheel Kumar; Rathore, Sumit; Das, Aparup; Gupta, Priya; Md, Kalamuddin; Ghakar, S K; Mohmmed, Asif; Theisen, Michael; Malhotra, Pawan

    2018-05-14

    Plasmodium falciparum merozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a GPI anchor or a transmembrane domain. In the present study, we identified an MSP3 associated network on the Plasmodium merozoite surface by Immunoprecipitation of Plasmodium merozoite lysate using anti-MSP3N antibodies followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins; MSP1, MSP6, MSP7, RAP2 and SERA5. Protein-protein interaction studies by ELISA binding and SPR analysis showed that MSP3 complex consists of MSP1, MSP6 and MSP7 proteins, Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyper immune sera from African and Asian populations. Furthermore, we demonstrate that human antibodies affinity-purified against rMSP3N promote opsonic phagocytosis of merozoites in cooperation with monocytes. At non-physiological concentrations, anti-MSP3N antibodies inhibited the growth of P. falciparum in-vitro Together the data suggests that MSP3 and especially its N-terminal region containing known B/T-cell epitopes is a target of naturally acquired immunity against malaria and is also an important candidate for a multi-subunit malaria vaccine. Copyright © 2018 American Society for Microbiology.

  6. Surfactant titration of nanoparticle-protein corona.

    PubMed

    Maiolo, Daniele; Bergese, Paolo; Mahon, Eugene; Dawson, Kenneth A; Monopoli, Marco P

    2014-12-16

    Nanoparticles (NP), when exposed to biological fluids, are coated by specific proteins that form the so-called protein corona. While some adsorbing proteins exchange with the surroundings on a short time scale, described as a "dynamic" corona, others with higher affinity and long-lived interaction with the NP surface form a "hard" corona (HC), which is believed to mediate NP interaction with cellular machineries. In-depth NP protein corona characterization is therefore a necessary step in understanding the relationship between surface layer structure and biological outcomes. In the present work, we evaluate the protein composition and stability over time and we systematically challenge the formed complexes with surfactants. Each challenge is characterized through different physicochemical measurements (dynamic light scattering, ζ-potential, and differential centrifugal sedimentation) alongside proteomic evaluation in titration type experiments (surfactant titration). 100 nm silicon oxide (Si) and 100 nm carboxylated polystyrene (PS-COOH) NPs cloaked by human plasma HC were titrated with 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, zwitterionic), Triton X-100 (nonionic), sodium dodecyl sulfate (SDS, anionic), and dodecyltrimethylammonium bromide (DTAB, cationic) surfactants. Composition and density of HC together with size and ζ-potential of NP-HC complexes were tracked at each step after surfactant titration. Results on Si NP-HC complexes showed that SDS removes most of the HC, while DTAB induces NP agglomeration. Analogous results were obtained for PS NP-HC complexes. Interestingly, CHAPS and Triton X-100, thanks to similar surface binding preferences, enable selective extraction of apolipoprotein AI (ApoAI) from Si NP hard coronas, leaving unaltered the dispersion physicochemical properties. These findings indicate that surfactant titration can enable the study of NP-HC stability through surfactant variation and also selective separation of certain proteins from the HC. This approach thus has an immediate analytical value as well as potential applications in HC engineering.

  7. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  8. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  9. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction.

    PubMed

    Stafford, Amy J; Ensign, Daniel L; Webb, Lauren J

    2010-11-25

    Electrostatic fields at the interface of the Ras binding domain of the protein Ral guanine nucleotide dissociation stimulator (RalGDS) with the structurally analogous GTPases Ras and Rap1A were measured with vibrational Stark effect (VSE) spectroscopy. Eleven residues on the surface of RalGDS that participate in this protein-protein interaction were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe in the form of the thiocyanate (SCN) functional group. The measured SCN absorption energy on the monomeric protein was compared with solvent-accessible surface area (SASA) calculations and solutions to the Poisson-Boltzmann equation using Boltzmann-weighted structural snapshots from molecular dynamics simulations. We found a weak negative correlation between SASA and measured absorption energy, indicating that water exposure of protein surface amino acids can be estimated from experimental measurement of the magnitude of the thiocyanate absorption energy. We found no correlation between calculated field and measured absorption energy. These results highlight the complex structural and electrostatic nature of the protein-water interface. The SCN-labeled RalGDS was incubated with either wild-type Ras or wild-type Rap1A, and the formation of the docked complex was confirmed by measurement of the dissociation constant of the interaction. The change in absorption energy of the thiocyanate functional group due to complex formation was related to the change in electrostatic field experienced by the nitrile functional group when the protein-protein interface forms. At some locations, the nitrile experiences the same shift in field when bound to Ras and Rap1A, but at others, the change in field is dramatically different. These differences identify residues on the surface of RalGDS that direct the specificity of RalGDS binding to its in vivo binding partner, Rap1A, through an electrostatic mechanism.

  10. Studying the protein organization of the postsynaptic density by a novel solid phase- and chemical cross-linking-based technology.

    PubMed

    Liu, Szu-Heng; Cheng, Huei-Hsuan; Huang, San-Yuan; Yiu, Pei-Chun; Chang, Yen-Chung

    2006-06-01

    Agarose beads carrying a cleavable, fluorescent, and photoreactive cross-linking reagent on the surface were synthesized and used to selectively pull out the proteins lining the surface of supramolecules. A quantitative comparison of the abundances of various proteins in the sample pulled out by the beads from supramolecules with their original abundances could provide information on the spatial arrangement of these proteins in the supramolecule. The usefulness of these synthetic beads was successfully verified by trials using a synthetic protein complex consisting of three layers of different proteins on glass coverslips. By using these beads, we determined the interior or superficial locations of five major and 19 minor constituent proteins in the postsynaptic density (PSD), a large protein complex and the landmark structure of asymmetric synapses in the mammalian central nervous system. The results indicate that alpha,beta-tubulins, dynein heavy chain, microtubule-associated protein 2, spectrin, neurofilament H and M subunits, an hsp70 protein, alpha-internexin, dynamin, and PSD-95 protein reside in the interior of the PSD. Dynein intermediate chain, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, kainate receptors, N-cadherin, beta-catenin, N-ethylmaleimide-sensitive factor, an hsc70 protein, and actin reside on the surface of the PSD. The results further suggest that the N-methyl-d-aspartate receptors and the alpha-subunits of calcium/calmodulin-dependent protein kinase II are likely to reside on the surface of the PSD although with unique local protein organizations. Based on our results and the known interactions between various PSD proteins from data mining, a model for the molecular organization of the PSD is proposed.

  11. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    PubMed

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.

    PubMed

    Ritchie, David W

    2003-07-01

    This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of

  13. AnchorDock for Blind Flexible Docking of Peptides to Proteins.

    PubMed

    Slutzki, Michal; Ben-Shimon, Avraham; Niv, Masha Y

    2017-01-01

    Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for peptide docking to their target proteins are under active development. The "blind" docking problem, where the peptide-binding site on the protein surface is unknown, presents one of the current challenges in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.This protocol narrows the docking search to the most relevant parts of the conformational space. This is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the surface of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simulations are subsequently carried out, starting from pre-folded peptide conformations, constrained to the various precomputed anchoring spots.Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide conformation and binding region; a more challenging example is a complex between USP7 N-term and a p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible modifications where applicable.

  14. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  15. A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2010-10-15

    Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.

  16. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues

    DOE PAGES

    Nikolaienko, Roman M.; Hammel, Michal; Dubreuil, Véronique; ...

    2016-08-18

    Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptormore » cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.« less

  17. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome.

    PubMed

    Magro, Massimiliano; Zaccarin, Mattia; Miotto, Giovanni; Da Dalt, Laura; Baratella, Davide; Fariselli, Piero; Gabai, Gianfranco; Vianello, Fabio

    2018-05-01

    Surface active maghemite nanoparticles (SAMNs) are able to recognize and bind selected proteins in complex biological systems, forming a hard protein corona. Upon a 5-min incubation in bovine whey from mastitis-affected cows, a significant enrichment of a single peptide characterized by a molecular weight at 4338 Da originated from the proteolysis of a S1 -casein was observed. Notably, among the large number of macromolecules in bovine milk, the detection of this specific peptide can hardly be accomplished by conventional analytical techniques. The selective formation of a stable binding between the peptide and SAMNs is due to the stability gained by adsorption-induced surface restructuration of the nanomaterial. We attributed the surface recognition properties of SAMNs to the chelation of iron(III) sites on their surface by sterically compatible carboxylic groups of the peptide. The specific peptide recognition by SAMNs allows its easy determination by MALDI-TOF mass spectrometry, and a threshold value of its normalized peak intensity was identified by a logistic regression approach and suggested for the rapid diagnosis of the pathology. Thus, the present report proposes the analysis of hard protein corona on nanomaterials as a perspective for developing fast analytical procedures for the diagnosis of mastitis in cows. Moreover, the huge simplification of proteome complexity by exploiting the selectivity derived by the peculiar SAMN surface topography, due to the iron(III) distribution pattern, could be of general interest, leading to competitive applications in food science and in biomedicine, allowing the rapid determination of hidden biomarkers by a cutting edge diagnostic strategy. Graphical abstract The topography of iron(III) sites on surface active maghemite nanoparticles (SAMNs) allows the recognition of sterically compatible carboxylic groups on proteins and peptides in complex biological matrixes. The analysis of hard protein corona on SAMNs led to the determination of a biomarker for cow mastitis in milk by MALDI-TOF mass spectrometry.

  18. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis.

    PubMed

    Bai, Fang; Morcos, Faruck; Cheng, Ryan R; Jiang, Hualiang; Onuchic, José N

    2016-12-13

    Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.

  19. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  20. Selective staining of proteins with hydrophobic surface sites on a native electrophoretic gel.

    PubMed

    Bertsch, Martina; Kassner, Richard J

    2003-01-01

    Chemical proteomics aims to characterize all of the proteins in the proteome with respect to their function, which is associated with their interaction with other molecules. We propose the identification of a subproteomic library of expressed proteins whose native structures are typified by the presence of hydrophobic surface sites, which are often involved in interactions with small molecules, membrane lipids, and other proteins, pertaining to their functions. We demonstrate that soluble globular proteins with hydrophobic surface sites can be detected selectively by staining on an electrophoretic gel run under nondenaturing conditions. The application of these staining techniques may help elucidate new catalytic, transport, and regulatory functionalities in complex proteomic screenings.

  1. The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces

    PubMed Central

    Arbely, Eyal; Neuweiler, Hannes; Sharpe, Timothy D; Johnson, Christopher M; Fersht, Alan R

    2010-01-01

    Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier-limited apparent two-state transition, analogous to its bacterial homologues. The high positive surface-charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native-state movement. The electrostatic strain was alleviated at high solution-ionic-strength by Debye-Hückel screening. Differences in ionic-strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade-off between protein function and stability during protein evolution. PMID:20662005

  2. Differential Dynamic Engagement within 24 SH3 Domain: Peptide Complexes Revealed by Co-Linear Chemical Shift Perturbation Analysis

    PubMed Central

    Stollar, Elliott J.; Lin, Hong; Davidson, Alan R.; Forman-Kay, Julie D.

    2012-01-01

    There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences. PMID:23251481

  3. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  4. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-07

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.

  5. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    PubMed Central

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  6. Exploiting three kinds of interface propensities to identify protein binding sites.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2009-08-01

    Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.

  7. PRince: a web server for structural and physicochemical analysis of protein-RNA interface.

    PubMed

    Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad

    2012-07-01

    We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.

  8. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications.

    PubMed

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H

    2014-06-21

    Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.

  9. Visualization of DNA and Protein-DNA Complexes with Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Gall, Alexander A.; Shlyakhtenko, Luda S.

    2014-01-01

    This article describes sample preparation techniques for AFM imaging of DNA and protein–DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purifi cation of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein–DNA complexes. PMID:24357372

  10. Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor.

    PubMed

    Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J

    1999-09-07

    In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.

  11. A role for surface hydrophobicity in protein-protein recognition.

    PubMed Central

    Young, L.; Jernigan, R. L.; Covell, D. G.

    1994-01-01

    The role of hydrophobicity as a determinant of protein-protein interactions is examined. Surfaces of apo-protein targets comprising 9 classes of enzymes, 7 antibody fragments, hirudin, growth hormone, and retinol-binding protein, and their associated ligands with available X-ray structures for their complexed forms, are scanned to determine clusters of surface-accessible amino acids. Clusters of surface residues are ranked on the basis of the hydrophobicity of their constituent amino acids. The results indicate that the location of the co-crystallized ligand is commonly found to correspond with one of the strongest hydrophobic clusters on the surface of the target molecule. In 25 of 38 cases, the correspondence is exact, with the position of the most hydrophobic cluster coinciding with more than one-third of the surface buried by the bound ligand. The remaining 13 cases demonstrate this correspondence within the top 6 hydrophobic clusters. These results suggest that surface hydrophobicity can be used to identify regions of a protein's surface most likely to interact with a binding ligand. This fast and simple procedure may be useful for identifying small sets of well-defined loci for possible ligand attachment. PMID:8061602

  12. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages.

    PubMed

    Beatty, W L; Russell, D G

    2000-12-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.

  13. Latex-protein complexes from an acute phase recombinant antigen of Toxoplasma gondii for the diagnosis of recently acquired toxoplasmosis.

    PubMed

    Peretti, Leandro E; Gonzalez, Verónica D G; Marcipar, Iván S; Gugliotta, Luis M

    2014-08-01

    The synthesis and characterization of latex-protein complexes (LPC), from the acute phase recombinant antigen P35 (P35Ag) of Toxoplasma gondii and "core-shell" carboxylated or polystyrene (PS) latexes (of different sizes and charge densities) are considered, with the aim of producing immunoagglutination reagents able to detect recently acquired toxoplasmosis. Physical adsorption (PA) and chemical coupling (CC) of P35Ag onto latex particles at different pH were investigated. Greater amounts of adsorbed protein were obtained on PS latexes than on carboxylated latexes, indicating that hydrophobic forces govern the interactions between the protein and the particle surface. In the CC experiments, the highest amount of bound protein was obtained at pH 6, near the isoelectric point of the protein (IP=6.27). At this pH, it decreased both the repulsion between particle surface and protein, and the repulsion between neighboring molecules. The LPC were characterized and the antigenicity of the P35Ag protein coupled on the particles surface was evaluated by Enzyme-Linked ImmunoSorbent Assay (ELISA). Results from ELISA showed that the P35Ag coupled to the latex particles surface was not affected during the particles sensitization by PA and CC and the produced LPC were able to recognize specific anti-P35Ag antibodies present in the acute phase of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    PubMed

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Est3 protein associates with yeast telomerase through an OB-fold domain

    PubMed Central

    Lee, Jaesung S.; Mandell, Edward K.; Tucey, Timothy M.; Morris, Danna K.; Victoria, Lundblad

    2009-01-01

    The Est3 protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligo-saccharide/oligo-nucleotide binding) fold. Mutagenesis of predicted surface residues was used to generate a functional map of one surface of Est3, which identified a site that mediates association with the telomerase complex. Surprisingly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the mammalian TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere capping complex, respectively, perform functionally distinct tasks at chromosome ends. The analysis performed on Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1. PMID:19172754

  16. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs).

    PubMed

    Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun

    2015-01-23

    Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  18. Macroscopic modeling and simulations of supercoiled DNA with bound proteins

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Schlick, Tamar

    2002-11-01

    General methods are presented for modeling and simulating DNA molecules with bound proteins on the macromolecular level. These new approaches are motivated by the need for accurate and affordable methods to simulate slow processes (on the millisecond time scale) in DNA/protein systems, such as the large-scale motions involved in the Hin-mediated inversion process. Our approaches, based on the wormlike chain model of long DNA molecules, introduce inhomogeneous potentials for DNA/protein complexes based on available atomic-level structures. Electrostatically, treat those DNA/protein complexes as sets of effective charges, optimized by our discrete surface charge optimization package, in which the charges are distributed on an excluded-volume surface that represents the macromolecular complex. We also introduce directional bending potentials as well as non-identical bead hydrodynamics algorithm to further mimic the inhomogeneous effects caused by protein binding. These models thus account for basic elements of protein binding effects on DNA local structure but remain computational tractable. To validate these models and methods, we reproduce various properties measured by both Monte Carlo methods and experiments. We then apply the developed models to study the Hin-mediated inversion system in long DNA. By simulating supercoiled, circular DNA with or without bound proteins, we observe significant effects of protein binding on global conformations and long-time dynamics of the DNA on the kilo basepair length.

  19. Structure and interactions of the Bacillus subtilis sporulation inhibitor of DNA replication, SirA, with domain I of DnaA

    PubMed Central

    Jameson, Katie H; Rostami, Nadia; Fogg, Mark J; Turkenburg, Johan P; Grahl, Anne; Murray, Heath; Wilkinson, Anthony J

    2014-01-01

    Chromosome copy number in cells is controlled so that the frequency of initiation of DNA replication matches that of cell division. In bacteria, this is achieved through regulation of the interaction between the initiator protein DnaA and specific DNA elements arrayed at the origin of replication. DnaA assembles at the origin and promotes DNA unwinding and the assembly of a replication initiation complex. SirA is a DnaA-interacting protein that inhibits initiation of replication in diploid Bacillus subtilis cells committed to the developmental pathway leading to formation of a dormant spore. Here we present the crystal structure of SirA in complex with the N-terminal domain of DnaA revealing a heterodimeric complex. The interacting surfaces of both proteins are α-helical with predominantly apolar side-chains packing in a hydrophobic interface. Site-directed mutagenesis experiments confirm the importance of this interface for the interaction of the two proteins in vitro and in vivo. Localization of GFP–SirA indicates that the protein accumulates at the replisome in sporulating cells, likely through a direct interaction with DnaA. The SirA interacting surface of DnaA corresponds closely to the HobA-interacting surface of DnaA from Helicobacter pylori even though HobA is an activator of DnaA and SirA is an inhibitor. PMID:25041308

  20. Cytosolic proteins can exploit membrane localization to trigger functional assembly

    PubMed Central

    2018-01-01

    Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559

  1. Monolayers of derivatized poly(l-lysine)-grafted poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces

    PubMed Central

    Ruiz-Taylor, L. A.; Martin, T. L.; Zaugg, F. G.; Witte, K.; Indermuhle, P.; Nock, S.; Wagner, P.

    2001-01-01

    We report on the design and characterization of a class of biomolecular interfaces based on derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers adsorbed on negatively charged surfaces. As a model system, we synthesized biotin-derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers, PLL-g-[(PEGm)(1−x) (PEG-biotin)x], where x varies from 0 to 1. Monolayers were produced on titanium dioxide substrates and characterized by x-ray photoelectron spectroscopy. The specific biorecognition properties of these biotinylated surfaces were investigated with the use of radiolabeled streptavidin alone and within complex protein mixtures. The PLL-g-PEG-biotin monolayers specifically capture streptavidin, even from a complex protein mixture, while still preventing nonspecific adsorption of other proteins. This streptavidin layer can subsequently capture biotinylated proteins. Finally, with the use of microfluidic networks and protein arraying, we demonstrate the potential of this class of biomolecular interfaces for applications based on protein patterning. PMID:11158560

  2. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex.

    PubMed

    Chng, Shu-Sin; Gronenberg, Luisa S; Kahne, Daniel

    2010-06-08

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential lipopolysaccharide transport (Lpt) proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes and that they copurify. This constitutes the first evidence that the Lpt proteins form a transenvelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope.

  3. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.

  4. BiGGER: a new (soft) docking algorithm for predicting protein interactions.

    PubMed

    Palma, P N; Krippahl, L; Wampler, J E; Moura, J J

    2000-06-01

    A new computationally efficient and automated "soft docking" algorithm is described to assist the prediction of the mode of binding between two proteins, using the three-dimensional structures of the unbound molecules. The method is implemented in a software package called BiGGER (Bimolecular Complex Generation with Global Evaluation and Ranking) and works in two sequential steps: first, the complete 6-dimensional binding spaces of both molecules is systematically searched. A population of candidate protein-protein docked geometries is thus generated and selected on the basis of the geometric complementarity and amino acid pairwise affinities between the two molecular surfaces. Most of the conformational changes observed during protein association are treated in an implicit way and test results are equally satisfactory, regardless of starting from the bound or the unbound forms of known structures of the interacting proteins. In contrast to other methods, the entire molecular surfaces are searched during the simulation, using absolutely no additional information regarding the binding sites. In a second step, an interaction scoring function is used to rank the putative docked structures. The function incorporates interaction terms that are thought to be relevant to the stabilization of protein complexes. These include: geometric complementarity of the surfaces, explicit electrostatic interactions, desolvation energy, and pairwise propensities of the amino acid side chains to contact across the molecular interface. The relative functional contribution of each of these interaction terms to the global scoring function has been empirically adjusted through a neural network optimizer using a learning set of 25 protein-protein complexes of known crystallographic structures. In 22 out of 25 protein-protein complexes tested, near-native docked geometries were found with C(alpha) RMS deviations < or =4.0 A from the experimental structures, of which 14 were found within the 20 top ranking solutions. The program works on widely available personal computers and takes 2 to 8 hours of CPU time to run any of the docking tests herein presented. Finally, the value and limitations of the method for the study of macromolecular interactions, not yet revealed by experimental techniques, are discussed.

  5. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  6. Voroprot: an interactive tool for the analysis and visualization of complex geometric features of protein structure.

    PubMed

    Olechnovic, Kliment; Margelevicius, Mindaugas; Venclovas, Ceslovas

    2011-03-01

    We present Voroprot, an interactive cross-platform software tool that provides a unique set of capabilities for exploring geometric features of protein structure. Voroprot allows the construction and visualization of the Apollonius diagram (also known as the additively weighted Voronoi diagram), the Apollonius graph, protein alpha shapes, interatomic contact surfaces, solvent accessible surfaces, pockets and cavities inside protein structure. Voroprot is available for Windows, Linux and Mac OS X operating systems and can be downloaded from http://www.ibt.lt/bioinformatics/voroprot/.

  7. Plasma protein adsorption to zwitterionic poly (carboxybetaine methacrylate) modified surfaces: chain chemistry and end-group effects on protein adsorption kinetics, adsorbed amounts and immunoblots.

    PubMed

    Abraham, Sinoj; Bahniuk, Markian S; Unsworth, Larry D

    2012-12-01

    Protein-surface interactions are crucial to the overall biocompatability of biomaterials, and are thought to be the impetus towards the adverse host responses such as blood coagulation and complement activation. Only a few studies hint at the ultra-low fouling potential of zwitterionic poly(carboxybetaine methacrylate) (PCBMA) grafted surfaces and, of those, very few systematically investigate their non-fouling behavior. In this work, single protein adsorption studies as well as protein adsorption from complex solutions (i.e. human plasma) were used to evaluate the non-fouling potential of PCBMA grafted silica wafers prepared by nitroxide-mediated free radical polymerization. PCBMAs used for surface grafting varied in charge separating spacer groups that influence the overall surface charges, and chain end-groups that influence the overall hydrophilicity, thereby, allows a better understanding of these effects towards the protein adsorption for these materials. In situ ellipsometry was used to quantify the adsorbed layer thickness and adsorption kinetics for the adsorption of four proteins from single protein buffer solutions, viz, lysozyme, α-lactalbumin, human serum albumin and fibrinogen. Total amount of protein adsorbed on surfaces differed as a function of surface properties and protein characteristics. Finally, immunoblots results showed that human plasma protein adsorption to these surfaces resulted, primarily, in the adsorption of human serum albumin, with total protein adsorbed amounts being the lowest for PCBMA-3 (TEMPO). It was apparent that surface charge and chain hydrophilicity directly influenced protein adsorption behavior of PCBMA systems and are promising materials for biomedical applications.

  8. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein-protein binding at the interface of Ras and Ral.

    PubMed

    Walker, David M; Hayes, Ellen C; Webb, Lauren J

    2013-08-07

    Electrostatic fields at the interface of the GTPase H-Ras (Ras) docked with the Ras binding domain of the protein Ral guanine nucleoside dissociation stimulator (Ral) were measured with vibrational Stark effect (VSE) spectroscopy. Nine residues on the surface of Ras that participate in the protein-protein interface were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe into the protein-protein interface. The absorption energy of the nitrile was measured both on the surface of Ras in its monomeric state, then after incubation with the Ras binding domain of Ral to form the docked complex. Boltzmann-weighted structural snapshots of the nitrile-labeled Ras protein were generated both in monomeric and docked configurations from molecular dynamics simulations using enhanced sampling of the cyanocysteine side chain's χ2 dihedral angle. These snapshots were used to determine that on average, most of the nitrile probes were aligned along the Ras surface, parallel to the Ras-Ral interface. The average solvent-accessible surface areas (SASA) of the cyanocysteine side chain were found to be <60 Å(2) for all measured residues, and was not significantly different whether the nitrile was on the surface of the Ras monomer or immersed in the docked complex. Changes in the absorption energy of the nitrile probe at nine positions along the Ras-Ral interface were compared to results of a previous study examining this interface with Ral-based probes, and found a pattern of low electrostatic field in the core of the interface surrounded by a ring of high electrostatic field around the perimeter of the interface. These data are used to rationalize several puzzling features of the Ras-Ral interface.

  9. Structural Analysis of Der p 1–Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osinski, Tomasz; Pomés, Anna; Majorek, Karolina A.

    Der p 1 is a major allergen from the house dust mite, Dermatophagoides pteronyssinus, that belongs to the papain-like cysteine protease family. To investigate the antigenic determinants of Der p 1, we determined two crystal structures of Der p 1 in complex with the Fab fragments of mAbs 5H8 or 10B9. Epitopes for these two Der p 1–specific Abs are located in different, nonoverlapping parts of the Der p 1 molecule. Nevertheless, surface area and identity of the amino acid residues involved in hydrogen bonds between allergen and Ab are similar. The epitope for mAb 10B9 only showed a partialmore » overlap with the previously reported epitope for mAb 4C1, a cross-reactive mAb that binds Der p 1 and its homolog Der f 1 from Dermatophagoides farinae. Upon binding to Der p 1, the Fab fragment of mAb 10B9 was found to form a very rare α helix in its third CDR of the H chain. To provide an overview of the surface properties of the interfaces formed by the complexes of Der p 1–10B9 and Der p 1–5H8, along with the complexes of 4C1 with Der p 1 and Der f 1, a broad analysis of the surfaces and hydrogen bonds of all complexes of Fab–protein or Fab–peptide was performed. This work provides detailed insight into the cross-reactive and specific allergen–Ab interactions in group 1 mite allergens. The surface data of Fab–protein and Fab–peptide interfaces can be used in the design of conformational epitopes with reduced Ab binding for immunotherapy.« less

  10. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.

    PubMed

    Hahm, Jong-in

    2014-08-26

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.

  11. The Interaction of Streptococcal Enolase with Canine Plasminogen: The Role of Surfaces in Complex Formation

    PubMed Central

    Balhara, Vinod; Deshmukh, Sasmit S.; Kálmán, László; Kornblatt, Jack A.

    2014-01-01

    The enolase from Streptococcus pyogenes (Str enolase F137L/E363G) is a homo-octamer shaped like a donut. Plasminogen (Pgn) is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI) experiments coupled with atomic force microscopy (AFM), isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase. PMID:24520380

  12. The effects of tether placement on antibody stability on surfaces

    NASA Astrophysics Data System (ADS)

    Grawe, Rebecca W.; Knotts, Thomas A.

    2017-06-01

    Despite their potential benefits, antibody microarrays have fallen short of performing reliably and have not found widespread use outside of the research setting. Experimental techniques have been unable to determine what is occurring on the surface of an atomic level, so molecular simulation has emerged as the primary method of investigating protein/surface interactions. Simulations of small proteins have indicated that the stability of the protein is a function of the residue on the protein where a tether is placed. The purpose of this research is to see whether these findings also apply to antibodies, with their greater size and complexity. To determine this, 24 tethering locations were selected on the antibody Protein Data Bank (PDB) ID: 1IGT. Replica exchange simulations were run on two different surfaces, one hydrophobic and one hydrophilic, to determine the degree to which these tethering sites stabilize or destabilize the antibody. Results showed that antibodies tethered to hydrophobic surfaces were in general less stable than antibodies tethered to hydrophilic surfaces. Moreover, the stability of the antibody was a function of the tether location on hydrophobic surfaces but not hydrophilic surfaces.

  13. Structural Basis for Interactions Between Contactin Family Members and Protein-tyrosine Phosphatase Receptor Type G in Neural Tissues.

    PubMed

    Nikolaienko, Roman M; Hammel, Michal; Dubreuil, Véronique; Zalmai, Rana; Hall, David R; Mehzabeen, Nurjahan; Karuppan, Sebastian J; Harroch, Sheila; Stella, Salvatore L; Bouyain, Samuel

    2016-10-07

    Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane

    PubMed Central

    Salanenka, Yuliya; Verstraeten, Inge; Löfke, Christian; Tabata, Kaori; Naramoto, Satoshi; Glanc, Matouš; Friml, Jiří

    2018-01-01

    The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses. PMID:29463731

  15. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    PubMed

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  16. Studying protein structural changes based on surface plasmon resonance and surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Pin; Chen, Shean-Jen; Yih, Jenq-Nan; Lin, G.-Y.; Chang, Guan L.

    2004-06-01

    The ability to recognize the conformational changes and structural variations of a protein when immobilized in a solid surface is of great importance in a variety of applications. Surface plasmon resonance (SPR) sensing is an appropriate technique for investigating interfacial phenomena, and enables the conformational changes of proteins to be monitored through the variation in the SPR angle shift. Meanwhile, the surface-enhanced Raman scattering (SERS) system can also assist in clarifying the changes in protein structure. The present study utilizes a 1 mM CrO3 phosphate buffer solution (PBS) to induce conformational changes of human serum albumin (HSA). Monitoring the corresponding SPR angle shifts and the SPR reflectivity spectrum enables the relationships between the conformational changes of the surface-immobilized protein and the thickness and dielectric constants of the protein layer to be estimated. The experimental SPR results indicate that the Cr6+ ions cause significant conformational change of the protein. It is established that the ions are not merely absorbed into the protein as a result of electrostatic forces, but that complex protein refolding events also take place. Furthermore, the data acquired from the SERS system yield valuable information regarding the changes which take place in the protein structure.

  17. Surface plasmon resonance application for herbicide detection

    NASA Astrophysics Data System (ADS)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  18. Surface plasmon resonance application for herbicide detection

    NASA Astrophysics Data System (ADS)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1997-12-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  19. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.

    2015-03-01

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.

  20. Protein corona – from molecular adsorption to physiological complexity

    PubMed Central

    Docter, Dominic; Maskos, Michael

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs. PMID:25977856

  1. Protein corona - from molecular adsorption to physiological complexity.

    PubMed

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  2. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  3. Protein-protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes.

    PubMed

    Paul, Gourab; Deshmukh, Arunaditya; Kumar Chourasia, Bishwanath; Kalamuddin, Md; Panda, Ashutosh; Kumar Singh, Susheel; Gupta, Puneet K; Mohmmed, Asif; Chauhan, Virender S; Theisen, Michael; Malhotra, Pawan

    2018-03-29

    Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-1 65 ) encompassing part of p38 and p42 regions and PfMSP-1 19 PfMSP-1 65 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-1 19 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-1 65 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-1 19 In contrast, antibodies against PfMSP-1 19 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-1 65 fragment. Importantly, anti-PfMSP-1 19 antibodies recognized both recombinant proteins, PfMSP-1 19 and PfMSP-1 65 ; however, anti-PfMSP-1 65 antibody failed to recognize the PfMSP-1 19 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Stacking and T-shape competition in aromatic-aromatic amino acid interactions.

    PubMed

    Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo

    2002-05-29

    The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.

  5. Molecular architecture of protein-RNA recognition sites.

    PubMed

    Barik, Amita; C, Nithin; Pilla, Smita P; Bahadur, Ranjit Prasad

    2015-01-01

    The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2' position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.

  6. Endoglucanase Peripheral Loops Facilitate Complexation of Glucan Chains on Cellulose via Adaptive Coupling to the Emergent Substrate Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuchun; Beckham, Gregg T.; Himmel, Michael E.

    We examine how the catalytic domain of a glycoside hydrolase family 7 endoglucanase catalytic domain (Cel7B CD) facilitates complexation of cellulose chains from a crystal surface. With direct relevance to the science of biofuel production, this problem also represents a model system of biopolymer processing by proteins in Nature. Interactions of Cel7B CD with a cellulose microfibril along different paths of complexation are characterized by mapping the atomistic fluctuations recorded in free-energy simulations onto the parameters of a coarse-grain model. The resulting patterns of protein-biopolymer couplings also uncover the sequence signatures of the enzyme in peeling off glucan chains frommore » the microfibril substrate. We show that the semiopen active site of Cel7B CD exhibits similar barriers and free energies of complexation over two distinct routes; namely, scooping of a chain into the active-site cleft and threading from the chain end into the channel. On the other hand, the complexation energetics strongly depends on the surface packing of the targeted chain and the resulting interaction sites with the enzyme. A revealed principle is that Cel7B CD facilitates cellulose deconstruction via adaptive coupling to the emergent substrate. The flexible, peripheral segments of the protein outside of the active-site cleft are able to accommodate the varying features of cellulose along the simulated paths of complexation. The general strategy of linking physics-based molecular interactions to protein sequence could also be helpful in elucidating how other protein machines process biopolymers.« less

  7. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  8. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    USDA-ARS?s Scientific Manuscript database

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  9. Biofunctionalization of silica-coated magnetic particles mediated by a peptide

    NASA Astrophysics Data System (ADS)

    Care, Andrew; Chi, Fei; Bergquist, Peter L.; Sunna, Anwar

    2014-08-01

    A linker peptide sequence with affinity to silica-containing materials was fused to Streptococcus protein G', an antibody-binding protein. This recombinant fusion protein, linker-protein G (LPG) was produced in E. coli and exhibited strong affinity to silica-coated magnetic particles and was able to bind to them at different pHs, indicating a true pH-independent binding. LPG was used as an anchorage point for the oriented immobilization of antibodies onto the surface of the particles. These particle-bound "LPG-Antibody complexes" mediated the binding and recovery of different cell types (e.g., human stem cells, Legionella, Cryptosporidium and Giardia), enabling their rapid and simple visualization and identification. This strategy was used also for the efficient capture of Cryptosporidium oocysts from water samples. These results demonstrate that LPG can mediate the direct biofunctionalization of silica-coated magnetic particles without the need for complex surface chemical modification.

  10. Modeling the assembly order of multimeric heteroprotein complexes

    PubMed Central

    Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Shin, Woong-Hee

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes. PMID:29329283

  11. Modeling the assembly order of multimeric heteroprotein complexes.

    PubMed

    Peterson, Lenna X; Togawa, Yoichiro; Esquivel-Rodriguez, Juan; Terashi, Genki; Christoffer, Charles; Roy, Amitava; Shin, Woong-Hee; Kihara, Daisuke

    2018-01-01

    Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes.

  12. Fundamentals of Nanoscale Polymer–Protein Interactions and Potential Contributions to Solid-State Nanobioarrays

    PubMed Central

    2015-01-01

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein–surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein–surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format. PMID:24456577

  13. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  14. Polyamine binding to proteins in oat and Petunia protoplasts.

    PubMed

    Mizrahi, Y; Applewhite, P B; Galston, A W

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  15. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry.

    PubMed

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat

    2014-10-20

    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169

  17. Electrostatic complementarity at protein/protein interfaces.

    PubMed

    McCoy, A J; Chandana Epa, V; Colman, P M

    1997-05-02

    Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the epitopes of two monoclonal antibodies, NC10 and NC41, overlap. Although NC10 and NC41 both have quite high values of EC for their interaction with neuraminidase, the similarity in electrostatic potential generated by the two on the overlapping region of the epitopes is insignificant. Thus, it is possible for two antibodies to recognise the electrostatic surface of a protein in dissimilar ways.

  18. Quantitative study of protein-protein interactions by quartz nanopipettes

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions. Electronic supplementary information (ESI) available: Determination of nanopipette diameter; surface modification scheme; numerical simulation; noise analysis; SPR experiments. See DOI: 10.1039/c4nr02964j

  19. A Demonstration of Le Chatelier’s Principle on the Nanoscale

    PubMed Central

    2017-01-01

    Photothermal desorption of molecules from plasmonic nanoparticles is an example of a light-triggered molecular release due to heating of the system. However, this phenomenon ought to work only if the molecule–nanoparticle interaction is exothermic in nature. In this study, we compare protein adsorption behavior onto gold nanoparticles for both endothermic and exothermic complexation reactions, and demonstrate that Le Chatelier’s principle can be applied to predict protein adsorption or desorption on nanomaterial surfaces. Polyelectrolyte-wrapped gold nanorods were used as adsorption platforms for two different proteins, which we were able to adsorb/desorb from the nanorod surface depending on the thermodynamics of their interactions. Furthermore, we show that the behaviors hold up under more complex biological environments such as fetal bovine serum. PMID:29104926

  20. Dissecting Arabidopsis Gβ Signal Transduction on the Protein Surface1[W][OA

    PubMed Central

    Jiang, Kun; Frick-Cheng, Arwen; Trusov, Yuri; Delgado-Cerezo, Magdalena; Rosenthal, David M.; Lorek, Justine; Panstruga, Ralph; Booker, Fitzgerald L.; Botella, José Ramón; Molina, Antonio; Ort, Donald R.; Jones, Alan M.

    2012-01-01

    The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gβ-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gβ-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits. PMID:22570469

  1. Structural changes of cytochrome c(552) from Thermus thermophilus adsorbed on anionic and hydrophobic surfaces probed by FTIR and 2D-FTIR spectroscopy.

    PubMed

    Lecomte, S; Hilleriteau, C; Forgerit, J P; Revault, M; Baron, M H; Hildebrandt, P; Soulimane, T

    2001-03-02

    The structural changes of cytochrome c(552) bound to anionic and hydrophobic clay surfaces have been investigated by Fourier transform infrared spectroscopy. Binding to the anionic surface of montmorillonite is controlled by electrostatic interactions since addition of electrolyte (0.5 mol L(-1) KCl) causes desorption of more than 2/3 of the protein molecules. Electrostatic binding occurs through the back side of the protein (i.e., remote from the heme site) and is associated only with subtle changes of the secondary structure. In contrast, adsorption to the hydrophobic surface of talc leads to a decrease in alpha-helical structure by ca. 5% and an increase in beta-sheet structure by ca. 6%. These structural changes are attributed to a hydrophobic region on the front surface of cytochrome c(552) close to the partially exposed heme edge. This part on the protein surface is identified as the interaction domain for talc and most likely also serves for binding to the natural reaction partner, a ba(3)-oxidase. Fourier transform infrared spectra of cytochrome c(552) and the clay-cytochrome c(552) complexes have been measured as a function of time following dissolution and suspension in deuterated buffer, respectively. A two-dimensional correlation analysis was applied to these spectra to investigate the dynamics of the structural changes in the protein. For both complexes, adsorption and subsequent unfolding processes in the binding domains are faster than the time resolution of the spectroscopic experiments. Thus, the processes that could be monitored are refolding of peptide segments and side chain rearrangements following the adsorption-induced perturbation of the protein structure and the solvation of the adsorbed protein. In each case, side chain alterations of solvent-exposed tyrosine, aspartate, and glutamate residues were observed. For the cytochrome c(552)-talc complex, these changes are followed by a slow refolding of the peptide chain in the binding domain and, subsequently, a further H/D exchange of amide group protons.

  2. Virus interaction with the apical junctional complex.

    PubMed

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  3. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    PubMed

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  4. Identification of Mycobacterial Surface Proteins Released into Subcellular Compartments of Infected Macrophages

    PubMed Central

    Beatty, Wandy L.; Russell, David G.

    2000-01-01

    Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome. PMID:11083824

  5. Mapping flexible protein domains at subnanometer resolution with the atomic force microscope.

    PubMed

    Müller, D J; Fotiadis, D; Engel, A

    1998-06-23

    The mapping of flexible protein domains with the atomic force microscope is reviewed. Examples discussed are the bacteriorhodopsin from Halobacterium salinarum, the head-tail-connector from phage phi29, and the hexagonally packed intermediate layer from Deinococcus radiodurans which all were recorded in physiological buffer solution. All three proteins undergo reversible structural changes that are reflected in standard deviation maps calculated from aligned topographs of individual protein complexes. Depending on the lateral resolution (up to 0.8 nm) flexible surface regions can ultimately be correlated with individual polypeptide loops. In addition, multivariate statistical classification revealed the major conformations of the protein surface.

  6. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.

    PubMed

    Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard

    2017-05-01

    The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.

  7. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  8. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.

    PubMed

    Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil

    2016-06-21

    The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    PubMed

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  10. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules.

    PubMed

    Arosa, F A; de Jesus, O; Porto, G; Carmo, A M; de Sousa, M

    1999-06-11

    Calreticulin is an endoplasmic reticulum resident molecule known to be involved in the folding and assembly of major histocompatibility complex (MHC) class I molecules. In the present study, expression of calreticulin was analyzed in human peripheral blood T lymphocytes. Pulse-chase experiments in [35S]methionine-labeled T cell blasts showed that calreticulin was associated with several proteins in the endoplasmic reticulum and suggested that it was expressed at the cell surface. Indeed, the 60-kDa calreticulin was labeled by cell surface biotinylation and precipitated from the surface of activated T cells together with a protein with an apparent molecular mass of 46 kDa. Cell surface expression of calreticulin by activated T lymphocytes was further confirmed by immunofluorescence and flow cytometry, studies that showed that both CD8+ and CD4+ T cells expressed calreticulin in the plasma membrane. Low amounts of cell surface calreticulin were detected in resting T lymphocytes. By sequential immunoprecipitation using the conformation independent monoclonal antibody HC-10, we provided evidence that the cell surface 46-kDa protein co-precipitated with calreticulin is unfolded MHC I. These results show for the first time that after T cell activation, significant amounts of calreticulin are expressed on the T cell surface, where they are found in physical association with a pool of beta2-free MHC class I molecules.

  11. Tricomponent Immunopotentiating System as a Novel Molecular Design Strategy for Malaria Vaccine Development ▿

    PubMed Central

    Miyata, Takeshi; Harakuni, Tetsuya; Tsuboi, Takafumi; Sattabongkot, Jetsumon; Ikehara, Ayumu; Tachibana, Mayumi; Torii, Motomi; Matsuzaki, Goro; Arakawa, Takeshi

    2011-01-01

    The creation of subunit vaccines to prevent malaria infection has been hampered by the intrinsically weak immunogenicity of the recombinant antigens. We have developed a novel strategy to increase immune responses by creating genetic fusion proteins to target specific antigen-presenting cells (APCs). The fusion complex was composed of three physically linked molecular entities: (i) a vaccine antigen, (ii) a multimeric α-helical coiled-coil core, and (iii) an APC-targeting ligand linked to the core via a flexible linker. The vaccine efficacy of the tricomponent complex was evaluated using an ookinete surface protein of Plasmodium vivax, Pvs25, and merozoite surface protein-1 of Plasmodium yoelii. Immunization of mice with the tricomponent complex induced a robust antibody response and conferred substantial levels of P. vivax transmission blockade as evaluated by a membrane feed assay, as well as protection from lethal P. yoelii infection. The observed effect was strongly dependent on the presence of all three components physically integrated as a fusion complex. This system, designated the tricomponent immunopotentiating system (TIPS), onto which any recombinant protein antigens or nonproteinaceous substances could be loaded, may be a promising strategy for devising subunit vaccines or adjuvants against various infectious diseases, including malaria. PMID:21807905

  12. ClusPro: an automated docking and discrimination method for the prediction of protein complexes.

    PubMed

    Comeau, Stephen R; Gatchell, David W; Vajda, Sandor; Camacho, Carlos J

    2004-01-01

    Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu

  13. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  14. In-cell thermodynamics and a new role for protein surfaces.

    PubMed

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  15. Role of the Retromer Complex in Neurodegenerative Diseases

    PubMed Central

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases. PMID:26973516

  16. Deciphering the shape and deformation of secondary structures through local conformation analysis

    PubMed Central

    2011-01-01

    Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872

  17. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    PubMed

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  18. Inferring the microscopic surface energy of protein-protein interfaces from mutation data.

    PubMed

    Moal, Iain H; Dapkūnas, Justas; Fernández-Recio, Juan

    2015-04-01

    Mutations at protein-protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical ΔΔG values, yielding mean energies of -48 cal mol(-1) Å(-2) for interactions between hydrophobic surfaces, -51 to -80 cal mol(-1) Å(-2) for surfaces of complementary charge, and 66-83 cal mol(-1) Å(-2) for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at -24 cal mol(-1) Å(-2) . Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid-body interactions (r = 0.66). When used to rerank docking poses, it can place near-native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50-95% of the cohesive energy. The model is available open-source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/. © 2015 Wiley Periodicals, Inc.

  19. Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Busch, Nathan Adams

    1995-01-01

    The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.

  20. The crystal structure of DR6 in complex with the amyloid precursor protein provides insight into death receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Olsen, Olav; Tzvetkova-Robev, Dorothea

    The amyloid precursor protein (APP) has garnered considerable attention due to its genetic links to Alzheimer's disease. Death receptor 6 (DR6) was recently shown to bind APP via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Here, we report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6.

  1. The crystal structure of DR6 in complex with the amyloid precursor protein provides insight into death receptor activation

    DOE PAGES

    Xu, Kai; Olsen, Olav; Tzvetkova-Robev, Dorothea; ...

    2015-04-02

    The amyloid precursor protein (APP) has garnered considerable attention due to its genetic links to Alzheimer's disease. Death receptor 6 (DR6) was recently shown to bind APP via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Here, we report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6.

  2. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG-Au conjugates.

    PubMed

    Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  3. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  4. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction.

    PubMed

    Stenmark, Pål; Dupuy, Jérôme; Imamura, Akihiro; Kiso, Makoto; Stevens, Raymond C

    2008-08-15

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  5. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  6. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    PubMed

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database.

    PubMed

    Bourgeas, Raphaël; Basse, Marie-Jeanne; Morelli, Xavier; Roche, Philippe

    2010-03-09

    In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging. Here we describe this particular PPI chemical space through the presentation of 2P2I(DB), a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2I(DB) were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2I(DB) complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2I(DB) dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction. 2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess the potential druggability of their interfaces. The database can be accessed at http://2p2idb.cnrs-mrs.fr.

  8. Long-Range Superexchange in Electron Transport Proteins

    NASA Astrophysics Data System (ADS)

    Gruschus, James Michael

    A new Hamiltonian model for the calculation of long-range electronic couplings in complex molecular systems is presented. These couplings make possible the electron transfers occurring at several critical steps in photosynthesis and respiration. The couplings studied are demonstrated to arise from a mechanism known as superexchange, where the electrons of the insulating medium are intimately involved in the delocalization of the donor wavefunction tail, allowing significant interaction with the acceptor at much greater separations than could be achieved were the medium absent. Superexchange phenomena in molecules of moderate complexity are first compared to couplings calculated with the model Hamiltonian, with very encouraging results. The method is then applied to several cytochrome c proteins where electron transfer has been measured between a zinc-substituted porphyrin and a ruthenium complex ligated to several sites at the protein surface. The calculated couplings are in unprecedented agreement with experiment. Novel, analytical derivatives of the superexchange coupling with respect to the orbital energies and interactions are then carried out on these proteins yielding the general, chemically relevant result that the entire three-dimensional zone between redox sites is important in mediating the superexchange coupling, in contrast to the prevailing assumption that the coupling can be characterized by a one-dimensional pathway consisting primarily of chains of bonded atoms. In addition, the derivatives provide the most comprehensive ever, atom-by -atom visualization of the superexchange process. Using AMBER molecular dynamics trajectories of the cytochrome c proteins, the effect of structural fluctuations on superexchange is examined. The calculated couplings show a substantial variability, a result contrary to the constant coupling implicit in most present-day transfer rate theory. Couplings are also calculated on surfaces enveloping several variants of cytochrome c, as well as plastocyanin, cytochrome b _5, and cytochrome c peroxidase. The surfaces reveal important clues as to which conformations of the electron transport protein complexes actually give rise to electron transfer, a subject of broad biological interest.

  9. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  10. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  11. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape.

    PubMed

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-07-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek).

  12. Computational modeling of carbohydrate recognition in protein complex

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2017-11-01

    To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.

  13. Engineering of PDMS Surfaces for use in Microsystems for Capture and Isolation of Complex and Biomedically Important Proteins: Epidermal Growth Factor Receptor as a Model System

    PubMed Central

    Lowe, Aaron M.; Ozer, Byram H.; Wiepz, Gregory J.; Bertics, Paul J.; Abbott, Nicholas L.

    2009-01-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was 32P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (H11 and 111.6) and one phosphospecific EGF receptor antibody (pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82:1, exceeding the signal-to-background measured on the ELISA plate (<48:1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75–81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20:1 to 88:1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48:1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins. PMID:18651079

  14. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    PubMed

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the transmembrane protein from the PDMS surface was found to be 75-81%. However, the transfer of non-specifically bound protein was substantially less than 75%, thus leading to the important finding that mechanical transfer of the EGF receptor leads to an approximately four-fold increase in signal-to-background from 20 : 1 to 88 : 1. The signal-to-background obtained following mechanical transfer is also better than that obtained using ELISA plates and stripping buffer (<48 : 1). The EGF receptor is a clinically important protein and the target of numerous anticancer agents and thus these results, when combined, provide guidance for the design of PDMS-based microanalytical systems for the capture and isolation of complex and clinically important transmembrane proteins.

  15. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology.

    PubMed

    Horiuchi, Shohei; Winter, Gerhard

    2015-05-01

    Biological products often contain surfactants as stabilizers in their formulations to avoid surface adsorption, interfacial denaturation and aggregation of the protein drug and thereby improve the overall pharmaceutical quality of the product. On the other hand, when the surfactant concentration exceeds the critical micelle concentration (CMC) in a protein formulation, protein-loaded micelles could be formed which could potentially be the cause of immunogenicity. Therefore, the actual CMC and the presence of micelles generally need to be confirmed for each protein formulation because the CMC is affected by the presence of protein and other formulation factors. In this study, the ultrasonic resonance technology (URT) was applied to determine CMC of surfactants in pharmaceutical protein solutions in comparison with surface tensiometry (TE) and dynamic light scattering (DLS). According to our results, the ultrasonic resonance technology can easily and precisely provide CMCs of surfactants in protein formulations while it is not working for protein-free formulations. This indicates that the signal we measure with ultrasonic velocity comes from complex micelles composed of surfactant and protein molecules. DLS did not provide reliable data for protein/surfactant systems. Interestingly, a protein formulation with arginine and polysorbate 20 behaved differently when studied with TE and URT allowing us to see that arginine is bound to protein and that the complex interacts with the surfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. High-speed superresolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches

    PubMed Central

    Arasada, Rajesh; Sayyad, Wasim A.; Berro, Julien; Pollard, Thomas D.

    2018-01-01

    To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast. PMID:29212877

  17. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    USDA-ARS?s Scientific Manuscript database

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  18. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins.

    PubMed

    Gray, Christopher J; Sánchez-Ruíz, Antonio; Šardzíková, Ivana; Ahmed, Yassir A; Miller, Rebecca L; Reyes Martinez, Juana E; Pallister, Edward; Huang, Kun; Both, Peter; Hartmann, Mirja; Roberts, Hannah N; Šardzík, Robert; Mandal, Santanu; Turnbull, Jerry E; Eyers, Claire E; Flitsch, Sabine L

    2017-04-18

    The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.

  19. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  20. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation.

    PubMed

    Kari, Otto K; Rojalin, Tatu; Salmaso, Stefano; Barattin, Michela; Jarva, Hanna; Meri, Seppo; Yliperttula, Marjo; Viitala, Tapani; Urtti, Arto

    2017-04-01

    When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the "protein corona" associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent "hard" and "soft" coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.

  1. A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.

    PubMed

    Lubin, Joseph H; Pacella, Michael S; Gray, Jeffrey J

    2018-05-08

    Although structures have been determined for many soluble proteins and an increasing number of membrane proteins, experimental structure determination methods are limited for complexes of proteins and solid surfaces. An economical alternative or complement to experimental structure determination is molecular simulation. Rosetta is one software suite that models protein-surface interactions, but Rosetta is normally benchmarked on soluble proteins. For surface interactions, the validity of the energy function is uncertain because it is a combination of independent parameters from energy functions developed separately for solution proteins and mineral surfaces. Here, we assess the performance of the RosettaSurface algorithm and test the accuracy of its energy function by modeling the adsorption of leucine/lysine (LK)-repeat peptides on methyl- and carboxy-terminated self-assembled monolayers (SAMs). We investigated how RosettaSurface predictions for this system compare with the experimental results, which showed that on both surfaces, LK-α peptides folded into helices and LK-β peptides held extended structures. Utilizing this model system, we performed a parametric analysis of Rosetta's Talaris energy function and determined that adjusting solvation parameters offered improved predictive accuracy. Simultaneously increasing lysine carbon hydrophilicity and the hydrophobicity of the surface methyl head groups yielded computational predictions most closely matching the experimental results. De novo models still should be interpreted skeptically unless bolstered in an integrative approach with experimental data.

  2. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  3. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-07-29

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  4. The role played by alternative splicing in antigenic variability in human endo-parasites.

    PubMed

    Hull, Rodney; Dlamini, Zodwa

    2014-01-28

    Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host's immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.

  5. Functional cell-surface display of a lipase-specific chaperone.

    PubMed

    Wilhelm, Susanne; Rosenau, Frank; Becker, Stefan; Buest, Sebastian; Hausmann, Sascha; Kolmar, Harald; Jaeger, Karl-Erich

    2007-01-02

    Lipases are important enzymes in biotechnology. Extracellular bacterial lipases from Pseudomonads and related species require the assistance of specific chaperones, designated "Lif" proteins (lipase specific foldases). Lifs, a unique family of steric chaperones, are anchored to the periplasmic side of the inner membrane where they convert lipases into their active conformation. We have previously shown that the autotransporter protein EstA from P. aeruginosa can be used to direct a variety of proteins to the cell surface of Escherichia coli. Here we demonstrate for the first time the functional cell-surface display of the Lif chaperone and FACS (fluorescence-activated cell sorting)-based analysis of bacterial cells that carried foldase-lipase complexes. The model Lif protein, LipH from P. aeruginosa, was displayed at the surface of E. coli cells. Surface exposed LipH was functional and efficiently refolded chemically denatured lipase. The foldase autodisplay system reported here can be used for a variety of applications including the ultrahigh-throughput screening of large libraries of foldase variants generated by directed evolution.

  6. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  7. Protein stains to detect antigen on membranes.

    PubMed

    D'souza, Anil; Scofield, R Hal

    2009-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after electrophoresis. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. Detection is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  8. From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes

    PubMed Central

    Kaftan, David; Brumfeld, Vlad; Nevo, Reinat; Scherz, Avigdor; Reich, Ziv

    2002-01-01

    Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3–5 nm and vertical resolution of ∼0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment– protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIα effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function. PMID:12426386

  9. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    PubMed

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Exploiting Free-Energy Minima to Design Novel EphA2 Protein-Protein Antagonists: From Simulation to Experiment and Return.

    PubMed

    Russo, Simonetta; Callegari, Donatella; Incerti, Matteo; Pala, Daniele; Giorgio, Carmine; Brunetti, Jlenia; Bracci, Luisa; Vicini, Paola; Barocelli, Elisabetta; Capoferri, Luigi; Rivara, Silvia; Tognolini, Massimiliano; Mor, Marco; Lodola, Alessio

    2016-06-06

    The free-energy surface (FES) of protein-ligand binding contains information useful for drug design. Here we show how to exploit a free-energy minimum of a protein-ligand complex identified by metadynamics simulations to design a new EphA2 antagonist with improved inhibitory potency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

    PubMed Central

    Gründel, Anne; Friedrich, Kathleen; Pfeiffer, Melanie; Jacobs, Enno; Dumke, Roger

    2015-01-01

    The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen. PMID:25978044

  12. Computational and theoretical approaches for studies of a lipid recognition protein on biological membranes

    PubMed Central

    Yamamoto, Eiji

    2017-01-01

    Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:29159013

  13. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  14. Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells.

    PubMed

    Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie

    2017-06-01

    Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  17. Structure and function of complex I in animals and plants - a comparative view.

    PubMed

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-09-01

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms. © 2017 Scandinavian Plant Physiology Society.

  18. Insights into the Specificity of Lysine Acetyltransferases

    DOE PAGES

    Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; ...

    2014-11-07

    Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. In this paper, we report the structure of a GNATmore » in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Finally, our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.« less

  19. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    PubMed Central

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  20. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies.

    PubMed

    Palma, P N; Moura, I; LeGall, J; Van Beeumen, J; Wampler, J E; Moura, J J

    1994-05-31

    Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical ternary complex, formed between one molecule of Desulfovibrio salexigens flavodoxin and two molecules of cytochrome c3, is proposed. These molecular models of the complexes were constructed on the basis of complementarity of Coulombic electrostatic surface potentials, using the available X-ray structures of the isolated proteins and, when required, model structures (D. salexigens flavodoxin and Desulfovibrio desulfuricans ATCC 27774 cytochrome c3) predicted by homology modeling.

  1. Gi- and Gs-coupled GPCRs show different modes of G-protein binding.

    PubMed

    Van Eps, Ned; Altenbach, Christian; Caro, Lydia N; Latorraca, Naomi R; Hollingsworth, Scott A; Dror, Ron O; Ernst, Oliver P; Hubbell, Wayne L

    2018-03-06

    More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G s , and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G i , using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-G i complex, G i engages rhodopsin in a manner distinct from previous GPCR-G s structures, providing insight into specificity determinants. Copyright © 2018 the Author(s). Published by PNAS.

  2. Proteopedia: A Collaborative, Virtual 3D Web-Resource for Protein and Biomolecule Structure and Function

    ERIC Educational Resources Information Center

    Hodis, Eran; Prilusky, Jaime, Sussman, Joel L.

    2010-01-01

    Protein structures are hard to represent on paper. They are large, complex, and three-dimensional (3D)--four-dimensional if conformational changes count! Unlike most of their substrates, which can easily be drawn out in full chemical formula, drawing every atom in a protein would usually be a mess. Simplifications like showing only the surface of…

  3. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    PubMed

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  4. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface

    PubMed Central

    Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha

    2015-01-01

    Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence. PMID:26696967

  5. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking.

    PubMed

    Fedoseienko, Alina; Wijers, Melinde; Wolters, Justina C; Dekker, Daphne; Smit, Marieke; Huijkman, Nicolette; Kloosterhuis, Niels; Klug, Helene; Schepers, Aloys; Willems van Dijk, Ko; Levels, Johannes H M; Billadeau, Daniel D; Hofker, Marten H; van Deursen, Jan; Westerterp, Marit; Burstein, Ezra; Kuivenhoven, Jan Albert; van de Sluis, Bart

    2018-06-08

    COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. Using liver-specific Commd1 , Commd6 , or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans. © 2018 American Heart Association, Inc.

  6. Complex of a Protective Antibody with its Ebola Virus GP Peptide Epitope: Unusual Features of a Vlambdalx Light Chain

    DTIC Science & Technology

    2008-01-01

    Bioinformatics, 19, ii246–ii255. 52. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at protein / protein interfaces . J. Mol. Biol. 234, 946...envelope spike, which is the sole protein expressed on the surface of the Ebola virus and is involved in receptor binding, tropism, and viral entry.6–9 It...variable light chain/heavy chain (VL/VH) interface of 13F6-1-2, ∼1025 Å2 surface area is buried on VL Fig. 1. Nucleotide and translated amino acid

  7. Complex of a Protective Antibody with its Ebola Virus GP Peptide Epitope: Unusual Features of a V lambda x Light Chain

    DTIC Science & Technology

    2007-10-01

    twists. Bioinformatics, 19, ii246–ii255. 52. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at protein / protein interfaces . J. Mol. Biol...envelope spike, which is the sole protein expressed on the surface of the Ebola virus and is involved in receptor binding, tropism, and viral entry.6–9 It...26 At the variable light chain/heavy chain (VL/VH) interface of 13F6-1-2, ∼1025 Å2 surface area is buried on VL Fig. 1. Nucleotide and translated amino

  8. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

    PubMed Central

    Tatlybaeva, Elena B; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    Summary The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations. PMID:24367742

  9. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenmark, P.; Dupuy, J.; Inamura, A.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in themore » toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.« less

  10. Fabrication of nanometer- and micrometer-scale protein structures by site-specific immobilization of histidine-tagged proteins to aminosiloxane films with photoremovable protein-resistant protecting groups

    DOE PAGES

    Xia, Sijing; Cartron, Michael; Morby, James; ...

    2016-01-28

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni 2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scalemore » patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. As a result, this simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.« less

  11. Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups

    PubMed Central

    2016-01-01

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378

  12. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    PubMed

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  13. On the dynamics of water molecules at the protein solute interfaces.

    PubMed

    Bernini, A; Spiga, O; Ciutti, A; Chiellini, S; Menciassi, N; Venditti, V; Niccolai, N

    2004-10-01

    Proteins, with the large variety of chemical groups they present at their molecular surface, are a class of molecules which can be very informative on most of the possible solute-solvent interactions. Hen egg white lysozyme has been used as a probe to investigate the complex solvent dynamics occurring at the protein surface, by analysing the results obtained from Nuclear Magnetic Resonance, X-ray diffractometry and Molecular Dynamics simulations. A consistent overall picture for the dynamics of water molecules close to the protein is obtained, suggesting that a rapid exchange occurs, in a picosecond timescale, among all the possible hydration surface sites both in solution and the solid state, excluding the possibility that solvent molecules can form liquid-crystal-like supramolecular adducts, which have been proposed as a molecular basis of 'memory of water'.

  14. Tuning structure of oppositely charged nanoparticle and protein complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-04-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).

  15. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  16. Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    PubMed Central

    Kozakova, Lucie; Liao, Chunyan; Guerineau, Marc; Colnaghi, Rita; Vidot, Susanne; Marek, Jaromir; Bathula, Sreenivas R.; Lehmann, Alan R.; Palecek, Jan

    2011-01-01

    Background The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6–8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors. Methodology/Principal Findings Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins. Conclusions/Significance We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins. PMID:21364888

  17. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.

    PubMed

    Rhinehardt, Kristen L; Vance, Stephen A; Mohan, Ram V; Sandros, Marinella; Srinivas, Goundla

    2018-06-01

    Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (R g ), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.

  18. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.

    PubMed

    Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C

    2015-07-01

    Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis

    PubMed Central

    Zheng, Xiangdong; Gooi, Li Ming; Wason, Arpit; Gabriel, Elke; Mehrjardi, Narges Zare; Yang, Qian; Zhang, Xingrun; Debec, Alain; Basiri, Marcus L.; Avidor-Reiss, Tomer; Pozniakovsky, Andrei; Poser, Ina; Šarić, Tomo; Hyman, Anthony A.; Li, Haitao; Gopalakrishnan, Jay

    2014-01-01

    Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4’s tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of β-sheets fold. This unique feature of the TCP domain suggests that it could provide an “extended surface-like” platform to tether the Sas-4–PCM scaffold to a centriole. Functional studies in Drosophila, human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9–10th β-strands (β9–10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 β9–10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the β9–10 surface in mediating protein–protein interactions for efficient Sas-4–PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication. PMID:24385583

  20. Interaction of Tim23 with Tim50 Is essential for protein translocation by the mitochondrial TIM23 complex.

    PubMed

    Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2009-02-20

    The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.

  1. RNA-dependent RNA polymerase complex of Brome mosaic virus: analysis of the molecular structure with monoclonal antibodies.

    PubMed

    Dohi, Koji; Mise, Kazuyuki; Furusawa, Iwao; Okuno, Tetsuro

    2002-11-01

    Viral RNA-dependent RNA polymerase (RdRp) plays crucial roles in the genomic replication and subgenomic transcription of Brome mosaic virus (BMV), a positive-stranded RNA plant virus. BMV RdRp is a complex of virus-encoded 1a and 2a proteins and some cellular factors, and associates with the endoplasmic reticulum at an infection-specific structure in the cytoplasm of host cells. In this study, we investigate the gross structure of the active BMV RdRp complex using monoclonal antibodies raised against the 1a and 2a proteins. Immunoprecipitation experiments showed that the intermediate region between the N-terminal methyltransferase-like domain and the C-terminal helicase-like domain of 1a protein, and the N terminus region of 2a protein are exposed on the surface of the solubilized RdRp complex. Inhibition assays for membrane-bound RdRp suggested that the intermediate region between the methyltransferase-like and the helicase-like domains of 1a protein is located at the border of the region buried within a membrane structure or with membrane-associated material.

  2. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  3. Quantitative study of protein-protein interactions by quartz nanopipettes.

    PubMed

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-09-07

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.

  4. Formation of Ordered Arrays of Proteins on Surfaces

    NASA Technical Reports Server (NTRS)

    Lenhoff, A. M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. While the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation and crystal growth.

  5. Five Genes Encoding Surface-Exposed LPXTG Proteins Are Enriched in Hospital-Adapted Enterococcus faecium Clonal Complex 17 Isolates▿

    PubMed Central

    Hendrickx, Antoni P. A.; van Wamel, Willem J. B.; Posthuma, George; Bonten, Marc J. M.; Willems, Rob J. L.

    2007-01-01

    Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation. PMID:17873043

  6. Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II.

    PubMed

    Innes, J B; Brudvig, G W

    1989-02-07

    Dipolar interactions with neighboring metal ions can cause enhanced spin-lattice relaxation of free radicals. We have applied the theory of dipolar relaxation enhancement and shown that the dependence of the enhanced relaxation on the protein structure surrounding the free radical can be used to obtain distances from the free radical to the protein surface. To test the theoretical predictions, we have examined the effect of added Dy3+ complexes on the microwave power saturation of free radicals in two protein complexes of known structure: myoglobin nitroxide and the reaction center from Rhodobacter sphaeroides. Three cases have been considered: (1) metal ions bound to a specific site, (2) metal ions bound randomly over the protein surface, and (3) metal ions distributed randomly in solution. Only case 3, which assumes no specific binding, gave good agreement between the distances obtained by using the two model systems. The effect of added Dy3+ complexes on the microwave power saturation of signal IIslow from photosystem II (PSII) was used to determine the location of the stable tyrosine radical giving rise to signal IIslow. Assuming that the surface of a membrane-bound protein can be approximated as planar, we have obtained distances from the tyrosine radical to the membrane surface in thylakoids, in PSII membranes, and in Tris-washed PSII membranes. The distances we have determined are in good agreement with those predicted on the basis of a structural homology between the D1 and D2 subunits of PSII and the structurally characterized L and M subunits of the reaction center from purple non-sulfur bacteria. We have also examined the temperature dependence of the microwave power at half-saturation (P1/2) of signal IIslow from 4 to 200 K in dark-adapted PSII membranes. Above 70 K, the P1/2 increases as T2.5, which is consistent with a Raman relaxation mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Protein Corona Influences Cell-Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds.

    PubMed

    Serpooshan, Vahid; Mahmoudi, Morteza; Zhao, Mingming; Wei, Ke; Sivanesan, Senthilkumar; Motamedchaboki, Khatereh; Malkovskiy, Andrey V; Gladstone, Andrew B; Cohen, Jeffrey E; Yang, Phillip C; Rajadas, Jayakumar; Bernstein, Daniel; Woo, Y Joseph; Ruiz-Lozano, Pilar

    2015-07-22

    Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.g. pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as 'protein corona', onto the surface of nanoparticles and its effect on cell-particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell-extracellular matrix interactions. Here, we report that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context-specific manner ex-vivo , demonstrating their role in regulating scaffold-cellular interactions. Together, these findings underscore the importance of custom-designing personalized nanostructured biomaterials, according to the biological milieu and disease state. We propose the use of protein corona as in situ biosensor of temporal and local biomarkers.

  8. Protein Kinase WNK1 Promotes Cell Surface Expression of Glucose Transporter GLUT1 by Regulating a Tre-2/USP6-BUB2-Cdc16 Domain Family Member 4 (TBC1D4)-Rab8A Complex*

    PubMed Central

    Mendes, Ana Isabel; Matos, Paulo; Moniz, Sónia; Jordan, Peter

    2010-01-01

    One mechanism by which mammalian cells regulate the uptake of glucose is the number of glucose transporter proteins (GLUT) present at the plasma membrane. In insulin-responsive cells types, GLUT4 is released from intracellular stores through inactivation of the Rab GTPase activating protein Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein complex with protein kinase WNK1 in human embryonic kidney (HEK293) cells. We show that WNK1 phosphorylates TBC1D4 in vitro and that the expression levels of WNK1 in these cells regulate surface expression of the constitutive glucose transporter GLUT1. WNK1 was found to increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its interaction with the exocytic small GTPase Rab8A. These effects were dependent on the catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe a pathway regulating constitutive glucose uptake via GLUT1, the expression level of which is related to several human diseases. PMID:20937822

  9. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    PubMed

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Nano-Bio Interactions of Porous and Nonporous Silica Nanoparticles of Varied Surface Chemistry: A Structural, Kinetic, and Thermodynamic Study of Protein Adsorption from RPMI Culture Medium.

    PubMed

    Lehman, Sean E; Mudunkotuwa, Imali A; Grassian, Vicki H; Larsen, Sarah C

    2016-01-26

    Understanding complex chemical changes that take place at nano-bio interfaces is of great concern for being able to sustainably implement nanomaterials in key applications such as drug delivery, imaging, and environmental remediation. Typical in vitro assays use cell viability as a proxy to understanding nanotoxicity but often neglect how the nanomaterial surface can be altered by adsorption of solution-phase components in the medium. Protein coronas form on the nanomaterial surface when incubated in proteinaceous solutions. Herein, we apply a broad array of techniques to characterize and quantify protein corona formation on silica nanoparticle surfaces. The porosity and surface chemistry of the silica nanoparticles have been systematically varied. Using spectroscopic tools such as FTIR and circular dichroism, structural changes and kinetic processes involved in protein adsorption were evaluated. Additionally, by implementing thermogravimetric analysis, quantitative protein adsorption measurements allowed for the direct comparison between samples. Taken together, these measurements enabled the extraction of useful chemical information on protein binding onto nanoparticles in solution. Overall, we demonstrate that small alkylamines can increase protein adsorption and that even large polymeric molecules such as poly(ethylene glycol) (PEG) cannot prevent protein adsorption in these systems. The implications of these results as they relate to further understanding nano-bio interactions are discussed.

  11. Expression of full-length HER2 protein in Sf9 insect cells and its presentation on the surface of budded virus-like particles.

    PubMed

    Nika, Lisa; Wallner, Jakob; Palmberger, Dieter; Koczka, Krisztina; Vorauer-Uhl, Karola; Grabherr, Reingard

    2017-08-01

    Biomarkers of cancer are often glycosylated membrane receptor proteins present on the cellular surface. In order to develop new antibodies for cancer diagnostics or treatment, it is a main pre-requisite that these target proteins are available in a native conformation. However, membrane receptor proteins are notoriously difficult to produce due to their hydrophobic nature and complex architecture. Here, we used the baculovirus-insect cell expression system to produce budded virus-like particles (VLPs) as the scaffold for the presentation of complex membrane proteins. Since the human epidermal growth factor receptor 2 (HER2) is known to be overexpressed in a number of cancers it was chosen as model for a tumor antigen. VLPs displaying full-length HER2 on the surface were produced in Spodoptera frugiperda 9 (Sf9) insect cells and purified by sucrose gradient ultracentrifugation. The number of secreted particles was quantified by nanoparticle tracking analysis. To confirm the presence of HER2 protein on the surface, VLPs were labeled with gold-conjugated antibodies and analyzed by transmission electron microscopy. Functionality of displayed HER2 was investigated by ELISA and a newly established biolayer interferometry based technique. Detection was accomplished using the specific monoclonal antibody Herceptin and filamentous phages displaying a single-chain variable fragment of an anti-HER2 antibody. Significant stronger binding of Herceptin and anti-HER2 phages to HER2-displaying VLPs as compared to control VLPs was demonstrated. Thus, we suggest that Sf9 insect cells are highly feasible for the fast and easy production of various budded VLPs that serve as a platform for full-length membrane receptor presentation. Copyright © 2017. Published by Elsevier Inc.

  12. Models of S/π interactions in protein structures: Comparison of the H2S–benzene complex with PDB data

    PubMed Central

    Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David

    2007-01-01

    S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371

  13. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  15. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.

    PubMed

    Fujita, Satomi; Cho, Su-Hee; Yoshida, Ayako; Hasebe, Fumihito; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2017-09-16

    LysK is an M20 peptidase family enzyme that hydrolyzes the isopeptide bond between the carrier protein LysW and lysine in order to release lysine, which is the last step of lysine biosynthesis in Thermus thermophilus. In the present study, we determined the crystal structure of LysK in complex with lysine at a resolution of 2.4 Å. The α-amino group of the bound lysine was oriented toward the catalytic center, which was composed of the residues coordinating divalent metal ions for the hydrolysis of the isopeptide bond. An 11 Å-long path was observed from the active site binding lysine to the protein surface, which may be responsible for recognizing the C-terminal extension domain of LysW with the conserved EDWGE sequence. A positively-charged surface region was detected around the exit of the path, similar to other lysine biosynthetic enzymes using LysW as the carrier protein. Mutational studies of the surface residues provided a plausible model for the electrostatic interaction with LysW. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins.

    PubMed

    Olmeda, Bárbara; García-Álvarez, Begoña; Pérez-Gil, Jesús

    2013-03-01

    Pulmonary surfactant is a lipid-protein complex secreted by the respiratory epithelium of mammalian lungs, which plays an essential role in stabilising the alveolar surface and so reducing the work of breathing. The surfactant protein SP-B is part of this complex, and is strictly required for the assembly of pulmonary surfactant and its extracellular development to form stable surface-active films at the air-liquid alveolar interface, making the lack of SP-B incompatible with life. In spite of its physiological importance, a model for the structure and the mechanism of action of SP-B is still needed. The sequence of SP-B is homologous to that of the saposin-like family of proteins, which are membrane-interacting polypeptides with apparently diverging activities, from the co-lipase action of saposins to facilitate the degradation of sphingolipids in the lysosomes to the cytolytic actions of some antibiotic proteins, such as NK-lysin and granulysin or the amoebapore of Entamoeba histolytica. Numerous studies on the interactions of these proteins with membranes have still not explained how a similar sequence and a potentially related fold can sustain such apparently different activities. In the present review, we have summarised the most relevant features of the structure, lipid-protein and protein-protein interactions of SP-B and the saposin-like family of proteins, as a basis to propose an integrated model and a common mechanistic framework of the apparent functional versatility of the saposin fold.

  17. Emulsifying and foaming properties of amaranth seed protein isolates.

    PubMed

    Fidantsi, A; Doxastakis, G

    2001-07-01

    The emulsifying and foaming properties of amaranth seed protein isolates prepared by wet extraction methods, such as isoelectric precipitation and dialysis, were investigated. The various isolates differ from each other in many ways. The isolate prepared by isoelectric precipitation mainly contains the globulin but not the albumin fraction and a considerable amount of polysaccharides, while the other isolate prepared by the dialysis method contains all the globulin and albumin fractions. The protein-polysaccharide complexes enhance emulsion stability due to steric repulsion effects. Measurements of the emulsion stability show that the studied protein isolates act as effective stabilizing agents. Foam expansion is dominated by the surface activity and availability of protein in the solution, while foam stability is determined by the properties of the interfacial layer. The results show that amaranth protein isolates act as an effective foaming agent. Both foaming properties intensified from the presence of protein-polysaccharide complexes.

  18. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  19. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  20. Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations†

    PubMed Central

    Liang, Shide; Li, Liwei; Hsu, Wei-Lun; Pilcher, Meaghan N.; Uversky, Vladimir; Zhou, Yaoqi; Dunker, A. Keith; Meroueh, Samy O.

    2009-01-01

    The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes. PMID:19113835

  1. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide).

    PubMed

    Cho, Woo Kyung; Kong, Bokyung; Choi, Insung S

    2007-05-08

    This work describes the formation of highly efficient non-biofouling polymeric thin films of poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide), (poly(MPDSAH)). The poly(MPDSAH) films were generated from the self-assembled monolayers terminating in an initiator of atom transfer radical polymerization (ATRP) by the surface-initiated ATRP of MPDSAH. The poly(MPDSAH) films on a gold surface were characterized by ellipsometry, FT-IR spectroscopy, contact angle goniometery, and X-ray photoelectron spectroscopy. The copper complexes and unpolymerized monomers trapped inside the polymer brushes were completely washed out by soaking the poly(MPDSAH)-coated substrate in water at 40 degrees C for 4 days. The amount of proteins nonspecifically adsorbed onto the poly(MPDSAH) films was evaluated by surface plasmon resonance spectroscopy: the adsorption of proteins was <0.6 ng/cm(2) on the surfaces for all the model proteins. The ability of the poly(MPDSAH) films to resist the nonspecific adsorption of proteins was comparable to that of the best known systems.

  2. Chemical and physical effects on the adhesion, maturation, and survival of monocytes, macrophages, and foreign body giant cells

    NASA Astrophysics Data System (ADS)

    Collier, Terry Odell, III

    Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface modified polyurethane materials to control macrophage adhesion indicates the complexity of macrophage adhesion and protein adsorption onto a surface. These studies have indicated components and adhesive mechanisms which can be utilized to create materials with enhanced resistance to macrophage adhesion and/or degradative abilities.

  3. Interaction surface and topology of Get3-Get4-Get5 protein complex, involved in targeting tail-anchored proteins to endoplasmic reticulum.

    PubMed

    Chang, Yi-Wei; Lin, Tai-Wen; Li, Yi-Chuan; Huang, Yu-Shan; Sun, Yuh-Ju; Hsiao, Chwan-Deng

    2012-02-10

    Recent work has uncovered the "GET system," which is responsible for endoplasmic reticulum targeting of tail-anchored proteins. Although structural information and the individual roles of most components of this system have been defined, the interactions and interplay between them remain to be elucidated. Here, we investigated the interactions between Get3 and the Get4-Get5 complex from Saccharomyces cerevisiae. We show that Get3 interacts with Get4-Get5 via an interface dominated by electrostatic forces. Using isothermal titration calorimetry and small-angle x-ray scattering, we further demonstrate that the Get3 homodimer interacts with two copies of the Get4-Get5 complex to form an extended conformation in solution.

  4. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  5. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface.

    PubMed

    Settem, Rajendra P; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2013-10-17

    Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.

  6. Protein-protein docking using region-based 3D Zernike descriptors

    PubMed Central

    2009-01-01

    Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å) within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods. PMID:20003235

  7. Protein-protein docking using region-based 3D Zernike descriptors.

    PubMed

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD < or = 2.5 A) within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  8. Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands

    PubMed Central

    1991-01-01

    Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864

  9. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona.

    PubMed

    Ahsan, Saad Mohammad; Rao, Chintalagiri Mohan; Ahmad, Md Faiz

    2018-01-01

    The physico-chemical properties of nanoparticles, as characterized under idealized laboratory conditions, have been suggested to differ significantly when studied under complex physiological environments. A major reason for this variation has been the adsorption of biomolecules (mainly proteins) on the nanoparticle surface, constituting the so-called "biomolecular corona". The formation of biomolecular corona on the nanoparticle surface has been reported to influence various nanoparticle properties viz. cellular targeting, cellular interaction, in vivo clearance, toxicity, etc. Understanding the interaction of nanoparticles with proteins upon administration in vivo thus becomes important for the development of effective nanotechnology-based platforms for biomedical applications. In this chapter, we describe the formation of protein corona on nanoparticles and the differences arising in its composition due to variations in nanoparticle properties. Also discussed is the influence of protein corona on various nanoparticle activities.

  10. RNA polymerase II conserved protein domains as platforms for protein-protein interactions

    PubMed Central

    García-López, M Carmen

    2011-01-01

    RNA polymerase II establishes many protein-protein interactions with transcriptional regulators to coordinate gene expression, but little is known about protein domains involved in the contact with them. We use a new approach to look for conserved regions of the RNA pol II of S. cerevisiae located at the surface of the structure of the complex, hypothesizing that they might be involved in the interaction with transcriptional regulators. We defined five different conserved domains and demonstrate that all of them make contact with transcriptional regulators. PMID:21922063

  11. Detection of retromer assembly in Plasmodium falciparum by immunosensing coupled to Surface Plasmon Resonance.

    PubMed

    Iqbal, Mohd Shameel; Siddiqui, Asim Azhar; Banerjee, Chinmoy; Nag, Shiladitya; Mazumder, Somnath; De, Rudranil; Saha, Shubhra Jyoti; Karri, Suresh Kumar; Bandyopadhyay, Uday

    Retromer complex plays a crucial role in intracellular protein trafficking and is conserved throughout the eukaryotes including malaria parasite, Plasmodium falciparum, where it is partially conserved. The assembly of retromer complex in RBC stages of malarial parasite is extremely difficult to explore because of its complicated physiology, small size, and intra-erythrocytic location. Nonetheless, understanding of retromer assembly may pave new ways for the development of novel antimalarials targeting parasite-specific protein trafficking pathways. Here, we investigated the assembly of retromer complex in P. falciparum, by an immunosensing method through highly sensitive Surface Plasmon Resonance (SPR) technique. After taking leads from the bioinformatics search and literature, different interacting proteins were identified and specific antibodies were raised against them. The sensor chip was prepared by covalently linking antibody specific to one component and the whole cell lysate was passed through it in order to trap the interacting complex. Antibodies raised against other interacting components were used to detect them in the trapped complex on the SPR chip. We were able to detect three different components in the retromer complex trapped by the immobilized antibody specific against a different component on a sensor chip. The assay was reproduced and validated in a different two-component CD74-MIF system in mammalian cells. We, thus, illustrate the assembly of retromer complex in P. falciparum through a bio-sensing approach that combines SPR with immunosensing requiring a very small amount of sample from the native source. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A.

    PubMed

    Daughdrill, Gary W; Buchko, Garry W; Botuyan, Maria V; Arrowsmith, Cheryl; Wold, Marc S; Kennedy, Michael A; Lowry, David F

    2003-07-15

    Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1-326 (hRPA70(1-326)), and a fragment of the human XPA protein, residues 98-219 (XPA-MBD). Intensity changes were observed for amide resonances in the (1)H-(15)N correlation spectrum of uniformly (15)N-labeled hRPA70(1-326) after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA70(1-326) fragment. The hRPA70(1-326) residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA70(1-326) suggests that a competitive binding mechanism mediates the formation of the RPA-XPA complex. To determine whether a ternary complex could form between hRPA70(1-326), XPA-MBD and ssDNA, a (1)H-(15)N correlation spectrum was acquired for uniformly (15)N-labeled hRPA70(1-326) after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA70(1-326) in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA70(1-326) suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA70(1-326) may be modulated by ssDNA.

  13. Chemical shift changes provide evidence for overlapping single-stranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A

    PubMed Central

    Daughdrill, Gary W.; Buchko, Garry W.; Botuyan, Maria V.; Arrowsmith, Cheryl; Wold, Marc S.; Kennedy, Michael A.; Lowry, David F.

    2003-01-01

    Replication protein A (RPA) is a heterotrimeric single-stranded DNA- (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV-damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, nuclear magnetic resonance (NMR) spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1–326 (hRPA701–326), and a fragment of the human XPA protein, residues 98–219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H–15N correlation spectrum of uniformly 15N-labeled hRPA701–326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA-binding domain that is between residues 183 and 296 of the hRPA701–326 fragment. The hRPA701–326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA-binding domain to identify the binding surface with XPA-MBD. The XPA-MBD-binding surface showed significant overlap with an ssDNA-binding surface that was previously identified using NMR spectroscopy and X-ray crystallography. Overlapping XPA-MBD- and ssDNA-binding sites on hRPA701–326 suggests that a competitive binding mechanism mediates the formation of the RPA–XPA complex. To determine whether a ternary complex could form between hRPA701–326, XPA-MBD and ssDNA, a 1H–15N correlation spectrum was acquired for uniformly 15N-labeled hRPA701–326 after the simultaneous addition of unlabeled XPA-MBD and ssDNA. In this experiment, the same chemical shift perturbations were observed for hRPA701–326 in the presence of XPA-MBD and ssDNA as was previously observed in the presence of ssDNA alone. The ability of ssDNA to compete with XPA-MBD for an overlapping binding site on hRPA701–326 suggests that any complex formation between RPA and XPA that involves the interaction between XPA-MBD and hRPA701–326 may be modulated by ssDNA. PMID:12853635

  14. Cell surface retention sequence binding protein-1 interacts with the v-sis gene product and platelet-derived growth factor beta-type receptor in simian sarcoma virus-transformed cells.

    PubMed

    Boensch, C; Huang, S S; Connolly, D T; Huang, J S

    1999-04-09

    The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.

  15. Measles virus attachment proteins with impaired ability to bind CD46 interact more efficiently with the homologous fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corey, Elizabeth A.; Iorio, Ronald M.; Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655

    2009-01-05

    Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation ofmore » fusion by these two paramyxoviruses.« less

  16. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    PubMed

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  17. DARC 2.0: Improved Docking and Virtual Screening at Protein Interaction Sites

    PubMed Central

    Gowthaman, Ragul; Lyskov, Sergey; Karanicolas, John

    2015-01-01

    Over the past decade, protein-protein interactions have emerged as attractive but challenging targets for therapeutic intervention using small molecules. Due to the relatively flat surfaces that typify protein interaction sites, modern virtual screening tools developed for optimal performance against “traditional” protein targets perform less well when applied instead at protein interaction sites. Previously, we described a docking method specifically catered to the shallow binding modes characteristic of small-molecule inhibitors of protein interaction sites. This method, called DARC (Docking Approach using Ray Casting), operates by comparing the topography of the protein surface when “viewed” from a vantage point inside the protein against the topography of a bound ligand when “viewed” from the same vantage point. Here, we present five key enhancements to DARC. First, we use multiple vantage points to more accurately determine protein-ligand surface complementarity. Second, we describe a new scheme for rapidly determining optimal weights in the DARC scoring function. Third, we incorporate sampling of ligand conformers “on-the-fly” during docking. Fourth, we move beyond simple shape complementarity and introduce a term in the scoring function to capture electrostatic complementarity. Finally, we adjust the control flow in our GPU implementation of DARC to achieve greater speedup of these calculations. At each step of this study, we evaluate the performance of DARC in a “pose recapitulation” experiment: predicting the binding mode of 25 inhibitors each solved in complex with its distinct target protein (a protein interaction site). Whereas the previous version of DARC docked only one of these inhibitors to within 2 Å RMSD of its position in the crystal structure, the newer version achieves this level of accuracy for 12 of the 25 complexes, corresponding to a statistically significant performance improvement (p < 0.001). Collectively then, we find that the five enhancements described here – which together make up DARC 2.0 – lead to dramatically improved speed and performance relative to the original DARC method. PMID:26181386

  18. Detection of biomolecules in complex media using surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Malone, Michael R.; Masson, Jean-Francois; Barhnart, Margaret; Beaudoin, Stephen; Booksh, Karl S.

    2005-11-01

    Detection of multiple biologically relevant molecules was accomplished at sub-ng/mL levels in highly fouling media using fiber- optic based surface plasmon resonance sensors. Myocardial infarction markers, myoglobin and cTnI, were quantified in full serum with limits of detection below 1 ng/mL. Biologically relevant levels are between 15-30 ng/mL and 1-5 ng/mL for myoglobin and cTnI respectively. Cytokines involved in chronic wound healing, Interleukin 1, Interleukin 6, and tumor necrosis factor α, were detected at around 1 ng/mL in cell culture media. Preliminary results in monitoring these cytokines in cell cultures expressing the cytokines were obtained. The protein diagnostic of spinal muscular atrophy, survival motor neuron protein, was quantified from cell lysate. To obtain such results in complex media, the sensor's stability to non-specific protein adsorption had to be optimized. A layer of the N-hydroxysuccinimide ester of 16-mercaptohexadecanoic acid is attached to the sensor. This layer optimizes the antibody attachment to the sensor while minimizing the non-specific signal from serum proteins.

  19. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes.

    PubMed

    Xu, Qingping; Traag, Bjørn A; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Grzechnik, Slawomir K; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A Mieke; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A; van Wezel, Gilles P

    2009-09-11

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.

  20. Structural model of the p14/SF3b155 · branch duplex complex.

    PubMed

    Schellenberg, Matthew J; Dul, Erin L; MacMillan, Andrew M

    2011-01-01

    Human p14 (SF3b14), a component of the spliceosomal U2 snRNP, interacts directly with the pre-mRNA branch adenosine within the context of the bulged duplex formed between the pre-mRNA branch region and U2 snRNA. This association occurs early in spliceosome assembly and persists within the fully assembled spliceosome. Analysis of the crystal structure of a complex containing p14 and a peptide derived from p14-associated SF3b155 combined with the results of cross-linking studies has suggested that the branch nucleotide interacts with a pocket on a non-canonical RNA binding surface formed by the complex. Here we report a structural model of the p14 · bulged duplex interaction based on a combination of X-ray crystallography of an adenine p14/SF3b155 peptide complex, biochemical comparison of a panel of disulfide cross-linked protein-RNA complexes, and small-angle X-ray scattering (SAXS). These studies reveal specific recognition of the branch adenosine within the p14 pocket and establish the orientation of the bulged duplex RNA bound on the protein surface. The intimate association of one surface of the bulged duplex with the p14/SF3b155 peptide complex described by this model buries the branch nucleotide at the interface and suggests that p14 · duplex interaction must be disrupted before the first step of splicing.

  1. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  2. Split green fluorescent protein as a modular binding partner for protein crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.

    2013-12-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was testedmore » by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.« less

  3. A Graph Approach to Mining Biological Patterns in the Binding Interfaces.

    PubMed

    Cheng, Wen; Yan, Changhui

    2017-01-01

    Protein-RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein-RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein-RNA interfaces. We represented known protein-RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near-native protein-RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.

  4. Is it the shape of the cavity, or the shape of the water in the cavity?

    NASA Astrophysics Data System (ADS)

    Snyder, Phillip W.; Lockett, Matthew R.; Moustakas, Demetri T.; Whitesides, George M.

    2014-04-01

    Historical interpretations of the thermodynamics characterizing biomolecular recognition have marginalized the role of water. An important (even, perhaps, dominant) contribution to molecular recognition in water comes from the "hydrophobic effect," in which non-polar portions of a ligand interact preferentially with non-polar regions of a protein. Water surrounds the ligand, and water fills the binding pocket of the protein: when the protein-ligand complex forms, and hydrophobic surfaces of the binding pocket and the ligand approach one another, the molecules (and hydrogen-bonded networks of molecules) of water associated with both surfaces rearrange and, in part, entirely escape into the bulk solution. It is now clear that neither of the two most commonly cited rationalizations for the hydrophobic effect-an entropy-dominated hydrophobic effect, in which ordered waters at the surface of the ligand, and water at the surface of the protein, are released to the bulk upon binding, and a "lock-and-key" model, in which the surface of a ligand interacts directly with a surface of a protein having a complementary shape-can account for water-mediated interactions between the ligand and the protein, and neither is sufficient to account for the experimental observation of both entropy- andenthalpy-dominated hydrophobic effects. What is now clear is that there is no single hydrophobic effect, with a universally applicable, common, thermodynamic description: different processes (i.e., partitioning between phases of different hydrophobicity, aggregation in water, and binding) with different thermodynamics, depend on the molecular-level details of the structures of the molecules involved, and of the aggregates that form. A "water-centric" description of the hydrophobic effect in biomolecular recognition focuses on the structures of water surrounding the ligand, and of water filling the binding pocket of the protein, both before and after binding. This view attributes the hydrophobic effect to changes in the free energy of the networks of hydrogen bonds that are formed, broken, or re-arranged when two hydrophobic surfaces approach (but do not necessarily contact) one another. The details of the molecular topography (and the polar character) of the mole- cular surfaces play an important role in determining the structure of these networks of hydrogen-bonded waters, and in the thermodynamic description of the hydrophobic effect(s). Theorists have led the formulation of this "water-centric view", although experiments are now supplying support for it. It poses complex problems for would-be "designers" of protein-ligand interactions, and for so-called "rational drug design".

  5. The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers.

    PubMed

    Pleshakova, T O; Kaysheva, A L; Bayzyanova, J М; Anashkina, А S; Uchaikin, V F; Ziborov, V S; Konev, V A; Archakov, A I; Ivanov, Y D

    2018-01-01

    In the present study, the possibility of hepatitis C virus core antigen (HCVcoreAg) detection in buffer solution, using atomic force microscope chip (AFM-chip) with immobilized aptamers, has been demonstrated. The target protein was detected in 1mL of solution at concentrations from 10 -10 М to 10 -13 М. The registration of aptamer/antigen complexes on the chip surface was carried out by atomic force microscopy (AFM). The further mass-spectrometric (MS) identification of AFM-registered objects on the chip surface allowed reliable identification of HCVcoreAg target protein in the complexes. Aptamers, which were designed for therapeutic purposes, have been shown to be effective in HCVcoreAg detection as probe molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  7. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGES

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  8. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  9. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  10. An analytical method for computing atomic contact areas in biomolecules.

    PubMed

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  11. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  12. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.

  13. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-09-01

    How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.

  14. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  15. Protein-protein interactions between SWCNT/chitosan/EGF and EGF receptor: a model of drug delivery system.

    PubMed

    Rungnim, Chompoonut; Rungrotmongkol, Thanyada; Kungwan, Nawee; Hannongbua, Supot

    2016-09-01

    Epidermal growth factor (EGF) was used as the targeting ligand to enhance the specificity of a cancer drug delivery system (DDS) via its specific interaction with the EGF receptor (EGFR) that is overexpressed on the surface of some cancer cells. To investigate the intermolecular interaction and binding affinity between the EGF-conjugated DDS and the EGFR, 50 ns molecular dynamics simulations were performed on the complex of tethered EGFR and EGF linked to single-wall carbon nanotube (SWCNT) through a biopolymer chitosan wrapping the tube outer surface (EGFR·EGF-CS-SWCNT-Drug complex), and compared to the EGFR·EGF complex and free EGFR. The binding pattern of the EGF-CS-SWCNT-Drug complex to the EGFR was broadly comparable to that for EGF, but the binding affinity of the EGF-CS-SWCNT-Drug complex was predicted to be somewhat better than that for EGF alone. Additionally, the chitosan chain could prevent undesired interactions of SWCNT at the binding pocket region. Therefore, EGF connected to SWCNT via a chitosan linker is a seemingly good formulation for developing a smart DDS served as part of an alternative cancer therapy.

  16. Exploring interaction of TNF and orthopoxviral CrmB protein by surface plasmon resonance and free energy calculation.

    PubMed

    Ivanisenko, Nikita V; Tregubchak, Tatiana V; Saik, Olga V; Ivanisenko, Vladimir A; Shchelkunov, Sergei N

    2014-01-01

    Inhibition of the activity of the tumor necrosis factor (TNF) has become the main strategy for treating inflammatory diseases. The orthopoxvirus TNF-binding proteins can bind and efficiently neutralize TNF. To analyze the mechanisms of the interaction between human (hTNF) or mouse (mTNF) TNF and the cowpox virus N-terminal binding domain (TNFBD-CPXV), also the variola virus N-terminal binding domain (TNFBD-VARV) and to define the amino acids most importantly involved in the formation of complexes, computer models, derived from the X-ray structure of a homologous hTNF/TNFRII complex, were used together with experiments. The hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV, and mTNF/TNFBD-VARV complexes were used in the molecular dynamics (MD) simulations and MM/GBSA free energy calculations. The complexes were ordered as hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV and mTNF/TNFBD-VARV according to increase in the binding affinity. The calculations were in agreement with surface plasmon resonance (SPR) measurements of the binding constants. Key residues involved in complex formation were identified.

  17. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    PubMed

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  18. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion

    PubMed Central

    Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340

  19. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    PubMed

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.

    PubMed

    Chouchane, Karim; Vendrely, Charlotte; Amari, Myriam; Moreaux, Katie; Bruckert, Franz; Weidenhaupt, Marianne

    2015-08-20

    Soluble proteins are constantly in contact with material or cellular surfaces, which can trigger their aggregation and therefore have a serious impact on the development of stable therapeutic proteins. In contact with hydrophobic material surfaces, human insulin aggregates readily into amyloid fibers. The kinetics of this aggregation can be accelerated by small peptides, forming stable beta-sheets on hydrophobic surfaces. Using a series of (LK)nL peptides with varying length, we show that these peptides, at low, substoichiometric concentrations, have a positive, cooperative effect on insulin aggregation. This effect is based on a cooperative adsorption of (LK)nL peptides at hydrophobic surfaces, where they form complexes that help the formation of aggregation nuclei. At higher concentrations, they interfere with the formation of an aggregative nucleus. These effects are strictly dependent on the their adsorption on hydrophobic material surfaces and highlight the importance of the impact of materials on protein stability. (LK)nL peptides prove to be valuable tools to investigate the mechanism of HI aggregation nuclei formation on hydrophobic surfaces.

  1. Identification of protein–protein interfaces by decreased amide proton solvent accessibility

    PubMed Central

    Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.

    1998-01-01

    Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953

  2. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    PubMed

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  3. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  4. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution.

    PubMed

    Buckle, A M; Schreiber, G; Fersht, A R

    1994-08-02

    We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar involve two charged residues, and a third involve one charged partner. The electrostatic contribution to the overall binding energy is considerably greater than for other protein-protein interactions. Consequently, the very high rate constant for the barnase-barstar association (10(8) s-1 M-1) is most likely due to electrostatic steering effects. The barnase active-site residue His102 is located in a pocket on the surface of barstar, and its hydrogen bonds with Asp39 and Gly31 residues of barstar are directly responsible for the pH dependence of barnase-barstar binding. There is a high degree of complementarity both of the shape and of the charge of the interacting surfaces, but neither is perfect. The surface complementarity is slightly poorer than in protease-inhibitor complexes but a little better than in antibody-antigen interactions. However, since the burial of solvent in the barnase-barstar interface improves the fit significantly by filling in the majority of gaps, as well as stabilizing unfavorable electrostatic interactions, its role seems to be more important than in other protein-protein complexes. The electrostatic interactions between barnase and barstar are very similar to those between barnase and the tetranucleotide d(CGAC). In the barnase-barstar complex, the two phosphate-binding sites in the barnase active site are occupied by Asp39 and Gly43 of barstar. However, barstar has no equivalent for a guanine base of an RNA substrate, resulting in the occupation of the guanine recognition site in the barnase-barstar complex by nine ordered water molecules. Upon barnase-barstar binding, entropy losses resulting from the immobilization of segments of the protein chain and the energetic costs of conformational changes are minimized due to the essentially preformed active site of barnase. However, a certain degree of flexibility within the barnase active site is required to allow for the structural differences between barnase-barstar binding and barnase-RNA binding. A comparison between the bound and the free barstar structure shows that the overall structural response to barnase-binding is significant. This response can be best described as outwardly oriented, rigid-body movements of the four alpha-helices of barstar, resulting in the structure of bound barstar being somewhat expanded.

  5. Interaction between casein micelles and whey protein/κ-casein complexes during renneting of heat-treated reconstituted skim milk powder and casein micelle/serum mixtures.

    PubMed

    Kethireddipalli, Prashanti; Hill, Arthur R; Dalgleish, Douglas G

    2011-02-23

    Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.

  6. Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6.

    PubMed

    Vo, Tam; Wang, Shuo; Poon, Gregory M K; Wilson, W David

    2017-08-11

    To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.

    PubMed

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-12-27

    Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.

  8. Structural and motional contributions of the Bacillus subtilis ClpC N-domain in adaptor protein interactions

    PubMed Central

    Kojetin, Douglas J.; McLaughlin, Patrick D.; Thompson, Richele J.; Dubnau, David; Prepiak, Peter; Rance, Mark; Cavanagh, John

    2009-01-01

    Summary The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. PMID:19361434

  9. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  10. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    PubMed Central

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  11. Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein.

    PubMed

    Park, Keun-Yong; Kim, Min-Suk; Choi, Sie-Young

    2005-04-15

    A metal oxide silicon field effect transistor (MOSFET) protein chip for the easy detection of protein was fabricated and its characteristics were investigated. Generally, the drain current of the MOSFET is varied by the gate potential. It is expected that the formation of an antibody-antigen complex on the gate of MOSFET would lead to a detectable change in the charge distribution and thus, directly modulate the drain current of MOSFET. As such, the drain current of the MOSFET protein chip can be varied by ribosomal proteins absorbed by the self-assembled monolayer (SAM) immobilized on the gate (Au) surface, as ribosomal protein has positive charge, and these current variations then used as the response of the protein chip. The gate of MOSFET protein chip is not directly biased by an external voltage source, so called open gate or floating gate MOSFET, but rather chemically modified by immobilized molecular receptors called self-assembled monolayer (SAM). In our experiments, the current variation in the proposed protein chip was about 8% with a protein concentration of 0.7 mM. As the protein concentration increased, the drain current also gradually increased. In addition, there were some drift of the drain current in the device. It is considered that these drift might be caused by the drift from the MOSFET itself or protein absorption procedures that are relied on the facile attachment of thiol (-S) ligands to the gate (Au) surface. We verified the formation of SAM on the gold surface and the absorption of protein through the surface plasmon resonance (SPR) measurement.

  12. Encounter complexes and dimensionality reduction in protein-protein association.

    PubMed

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-04-08

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.

  13. Split green fluorescent protein as a modular binding partner for protein crystallization.

    PubMed

    Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-12-01

    A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.

  14. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    PubMed

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  15. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    NASA Astrophysics Data System (ADS)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  16. Structure of D-AKAP2:PKA RI complex: Insights into AKAP specificity and selectivity

    PubMed Central

    Sarma, Ganapathy N.; Kinderman, Francis S.; Kim, Choel; von Daake, Sventja; Chen, Lirong; Wang, Bi-Cheng; Taylor, Susan S.

    2011-01-01

    Summary A-kinase anchoring proteins (AKAPs) regulate cyclic AMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP 2 (D-AKAP2) binds to the dimerization/docking (D/D) domain of both RI and RII regulatory subunits of PKA with high affinity. Here, we have determined the structures of the RIα D/D domain alone and in complex with D-AKAP2. The D/D domain presents an extensive surface for binding through a well-formed N-termina helix and this surface restricts the diversity of AKAPs that can interact. The structures also underscore the importance of a redox-sensitive disulfide in affecting AKAP binding. An unexpected shift in the helical register of D-AKAP2 compared to the RIIα:D-AKAP2 complex structure makes the mode of binding to RIα novel. Finally, the comparison allows us to deduce a molecular explanation for the sequence and spatial determinants of AKAP specificity. PMID:20159461

  17. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  18. Introduction of a specific binding domain on myoglobin surface by new chemical modification.

    PubMed

    Hayashi, T; Ando, T; Matsuda, T; Yonemura, H; Yamada, S; Hisaeda, Y

    2000-11-01

    A new myoglobin, reconstituted with a modified zinc protoporphyrin, having a total of four ammonium groups at the terminal of the two propionate side chains was constructed to introduce a substrate binding site. The protein with a positively charged patch on the surface formed a stable complex with negatively charged substrates, such as hexacyanoferrate(III) and anthraquinonesulfonate via an electrostatic interaction. The complexation was monitored by fluorescence quenching due to singlet electron transfer from the photoexcited reconstituted zinc myoglobin to the substrates. The binding properties were evaluated by Stern-Volmer plots from the fluorescence quenching of the zinc myoglobin by a quencher. Particularly, anthraquinone-2,7-disulfonic acid showed a high affinity with a binding constant of 1.5 x 10(5) M(-1) in 10 mM phosphate buffer, pH 7.0. In contrast, the plots upon the addition of anthraquinone-2-sulfonic acid at different ionic strengths indicated that the complex was formed not only by an electrostatic interaction but also by a hydrophobic contact. The findings from the fluorescence studies conclude that the present system is a useful model for discussion of electron transfer via non-covalently linked donor-acceptor pairing on the protein surface.

  19. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    PubMed

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  20. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  1. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE PAGES

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...

    2016-09-30

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  2. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008

  3. Targeting of polyplex to human hepatic cells by bio-nanocapsules, hepatitis B virus surface antigen L protein particles.

    PubMed

    Somiya, Masaharu; Yoshimoto, Nobuo; Iijima, Masumi; Niimi, Tomoaki; Dewa, Takehisa; Jung, Joohee; Kuroda, Shun'ichi

    2012-06-15

    We have previously demonstrated that lipoplex, a complex of cationic liposomes and DNA, could be targeted to human hepatic cells in vitro and in vivo by conjugation with bio-nanocapsules (BNCs) comprising hepatitis B virus (HBV) surface antigen L protein particles. Because the BNC-lipoplex complexes were endowed with the human hepatic cell-specific infection machinery from HBV, the complexes showed excellent specific transfection efficiency in human hepatic cells. In this study, we have found that polyplex (a complex of polyethyleneimine (PEI) and DNA) could form stable complexes with BNCs spontaneously. The diameter and ζ-potential of BNC-polyplex complexes are about 240 nm and +3.54 mV, respectively, which make them more suitable for in vivo use than polyplex alone. BNC-polyplex complexes with an N/P ratio (the molar ratio of the amine group of PEI to the phosphate group of DNA) of 40 showed excellent transfection efficiency in human hepatic cells. When acidification of endosomes was inhibited by bafilomycin A1, the complexes showed higher transfection efficiency than polyplex itself, strongly suggesting that the complexes escaped from endosomes by both fusogenic activity of BNCs and proton sponge activity of polyplex. Furthermore, the cytotoxicity is comparable to that of polyplex of the same N/P value. Thus, BNC-polyplex complexes would be a promising gene delivery carrier for human liver-specific gene therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model.

    PubMed

    Warwicker, J

    1989-03-20

    A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.

  5. Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins

    NASA Astrophysics Data System (ADS)

    Pownall, Henry J.; Homan, Reynold; Massey, John B.

    1987-01-01

    Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.

  6. Physicochemical code for quinary protein interactions in Escherichia coli

    PubMed Central

    Mu, Xin; Choi, Seongil; Lang, Lisa; Mowray, David; Danielsson, Jens; Oliveberg, Mikael

    2017-01-01

    How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical−chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein’s behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics. PMID:28536196

  7. Remodeling of the plasma membrane in preparation for sperm–egg recognition: roles of acrosomal proteins

    PubMed Central

    Tanphaichitr, Nongnuj; Kongmanas, Kessiri; Kruevaisayawan, Hathairat; Saewu, Arpornrad; Sugeng, Clarissa; Fernandes, Jason; Souda, Puneet; Angel, Jonathan B; Faull, Kym F; Aitken, R John; Whitelegge, Julian; Hardy, Daniel; Berger, Trish; Baker, Mark

    2015-01-01

    The interaction of sperm with the egg's extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm–ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm–ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm–ZP binding step. PMID:25994642

  8. Characterization of protein hydration by solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wand, Joshua

    A comprehensive understanding of the interactions between protein molecules and hydration water remains elusive. Solution nuclear magnetic resonance (NMR) spectroscopy has been proposed as a means to characterize these interactions but is plagued with artifacts when employed in bulk aqueous solution. Encapsulation of proteins in reverse micelles prepared in short chain alkane solvents can overcome these technical limitations. Application of this approach has revealed that the interaction of water with the surface of protein molecules is quite heterogeneous with some regions of the protein having long-lived interactions while other regions show relatively transient hydration. Results from several proteins will be presented including ubiquitin, staphylococcal nuclease, interleukin 1beta, hen egg white lysozyme (HEWL) and T4 lysozyme. Ubiquitin and interleukin 1beta are signaling proteins and interact with other proteins through formation of dry protein-protein interfaces. Interestingly, the protein surfaces of the free proteins show relatively slowed (restricted) motion at the surface, which is indicative of low residual entropy. Other regions of the protein surface have relatively high mobility water. These results are consistent with the idea that proteins have evolved to maximize the hydrophobic effect in optimization of binding with protein partners. As predicted by simulation and theory, we find that hydration of internal hydrophobic cavities of interleukin 1beta and T4 lysozyme is highly disfavored. In contrast, the hydrophilic polar cavity of HEWL is occupied by water. Initial structural correlations suggest that hydration of alpha helical structure is characterized by relatively mobile water while those of beta strands and loops are more ordered and slowed. These and other results from this set of proteins reveals that the dynamical and structural character of hydration of proteins is heterogeneous and complex. Supported by the National Science Foundation.

  9. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    PubMed

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.

  10. Surface reengineering of RPA70N enables cocrystallization with an inhibitor of the replication protein A interaction motif of ATR interacting protein.

    PubMed

    Feldkamp, Michael D; Frank, Andreas O; Kennedy, J Phillip; Patrone, James D; Vangamudi, Bhavatarini; Waterson, Alex G; Fesik, Stephen W; Chazin, Walter J

    2013-09-17

    Replication protein A (RPA) is the primary single-stranded DNA (ssDNA) binding protein in eukaryotes. The N-terminal domain of the RPA70 subunit (RPA70N) interacts via a basic cleft with a wide range of DNA processing proteins, including several that regulate DNA damage response and repair. Small molecule inhibitors that disrupt these protein-protein interactions are therefore of interest as chemical probes of these critical DNA processing pathways and as inhibitors to counter the upregulation of DNA damage response and repair associated with treatment of cancer patients with radiation or DNA-damaging agents. Determination of three-dimensional structures of protein-ligand complexes is an important step for elaboration of small molecule inhibitors. However, although crystal structures of free RPA70N and an RPA70N-peptide fusion construct have been reported, RPA70N-inhibitor complexes have been recalcitrant to crystallization. Analysis of the P61 lattice of RPA70N crystals led us to hypothesize that the ligand-binding surface was occluded. Surface reengineering to alter key crystal lattice contacts led to the design of RPA70N E7R, E100R, and E7R/E100R mutants. These mutants crystallized in a P212121 lattice that clearly had significant solvent channels open to the critical basic cleft. Analysis of X-ray crystal structures, target peptide binding affinities, and (15)N-(1)H heteronuclear single-quantum coherence nuclear magnetic resonance spectra showed that the mutations do not result in perturbations of the RPA70N ligand-binding surface. The success of the design was demonstrated by determining the structure of RPA70N E7R soaked with a ligand discovered in a previously reported molecular fragment screen. A fluorescence anisotropy competition binding assay revealed this compound can inhibit the interaction of RPA70N with the peptide binding motif from the DNA damage response protein ATRIP. The implications of the results are discussed in the context of ongoing efforts to design RPA70N inhibitors.

  11. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.

    2013-01-01

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  12. Flexible docking-based molecular dynamics/steered molecular dynamics calculations of protein-protein contacts in a complex of cytochrome P450 1A2 with cytochrome b5.

    PubMed

    Jeřábek, Petr; Florián, Jan; Stiborová, Marie; Martínek, Václav

    2014-10-28

    Formation of transient complexes of cytochrome P450 (P450) with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates the catalytic activities of several P450s. Therefore, we examined formation and binding modes of the complex of human P450 1A2 with cyt b5. Docking of soluble domains of these proteins was performed using an information-driven flexible docking approach implemented in HADDOCK. Stabilities of the five unique binding modes of the P450 1A2-cyt b5 complex yielded by HADDOCK were evaluated using explicit 10 ns molecular dynamics (MD) simulations in aqueous solution. Further, steered MD was used to compare the stability of the individual P450 1A2-cyt b5 binding modes. The best binding mode was characterized by a T-shaped mutual orientation of the porphyrin rings and a 10.7 Å distance between the two redox centers, thus satisfying the condition for a fast electron transfer. Mutagenesis studies and chemical cross-linking, which, in the absence of crystal structures, were previously used to deduce specific P450-cyt b5 interactions, indicated that the negatively charged convex surface of cyt b5 binds to the positively charged concave surface of P450. Our simulations further elaborate structural details of this interface, including nine ion pairs between R95, R100, R138, R362, K442, K455, and K465 side chains of P450 1A2 and E42, E43, E49, D65, D71, and heme propionates of cyt b5. The universal heme-centric system of internal coordinates was proposed to facilitate consistent classification of the orientation of the two porphyrins in any protein complex.

  13. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    PubMed Central

    Yu, Naiyin; Hagan, Michael F.

    2012-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509

  14. Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community.

    PubMed

    Ciric, Milica; Moon, Christina D; Leahy, Sinead C; Creevey, Christopher J; Altermann, Eric; Attwood, Graeme T; Rakonjac, Jasna; Gagic, Dragana

    2014-05-12

    In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.

  15. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.

    PubMed

    Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-03

    Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ±   1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).

  16. Composition and immunoreactivity of the A60 complex and other cell fractions from Mycobacterium bovis BCG.

    PubMed

    Cocito, C; Vanlinden, F

    1995-02-01

    Surface static cultures of Mycobacterium bovis BCG contained cells embedded in an extracellular matrix, whose mechanical removal yielded free cells that were pressure disrupted and fractionated into cytoplasm and walls. Cell envelopes were either mechanically disrupted or extracted with detergents. Intracellular and extracellular fractions were analysed for proteins, polysaccharides, and antigen 6O (A60), a major complex immunodominant in tuberculosis. A60 was present in extracellular matrix, cytoplasm and walls: it represented a substantial portion of the proteins and polysaccharides of these fractions. While the protein/polysaccharide ratio varied according to the origin of A60 preparations, the electrophoretic patterns of A60 proteins (which accounted for the immunogenicity of the complex) remained unchanged. Western blots pointed to the proteins present within the 29-45 kDa range as the A60 components endowed with the highest immunogenicity level. Since the most heavily stained protein bands in SDS-PAGE patterns were located outside the region best recognized by antisera, a striking discordance was found between concentration and immunogenicity patterns of A60 proteins. The electrophoretic patterns of A60- and non-A60-proteins from cytoplasm were also different. A60 complexes in dot blots and some electrophoresed A60 proteins reacted with monoclonal antibodies directed against lipoarabinomannan (LAM), a highly immunogenic polymer of cell envelope. This contaminating compound was removed from A60 with organic solvents and detergents. SDS-PAGE and Western blot patterns of proteins from delipidated A60 were similar to those of native A60 proteins.

  17. A RecA Protein Surface Required for Activation of DNA Polymerase V

    PubMed Central

    Gruber, Angela J.; Erdem, Aysen L.; Sabat, Grzegorz; Karata, Kiyonobu; Jaszczur, Malgorzata M.; Vo, Dan D.; Olsen, Tayla M.; Woodgate, Roger; Goodman, Myron F.; Cox, Michael M.

    2015-01-01

    DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis. PMID:25811184

  18. A closer look at the complex hydrophilic/hydrophobic interactions forces at the human hair surface

    NASA Astrophysics Data System (ADS)

    Baghdadli, N.; Luengo, G. S.; Recherche, L.

    2008-03-01

    The complex chemical structure of the hair surface is far from being completely understood. Current understanding is based on Rivett's model1 that was proposed to explain the macroscopic hydrophobic nature of the surface of natural hair. In this model covalently-linked fatty acids are chemically grafted to the amorphous protein (keratin) through a thio-ester linkage2,3. Nevertheless, experience like wetting and electrical properties of human hair surface4 shows that the complexity of the hair surface is not fully understand based on this model in literature. Recent studies in our laboratory show for the first time microscopic evidence of the heterogeneous physico-chemical character of the hair surface. By using Chemical Force Microscopy, the presence of hydrophobic and ionic species are detected and localized, before and after a cosmetic treatment (bleaching). Based on force curve analysis the mapping of the local distribution of hydrophilic and hydrophobic groups of hair surface is obtained. A discussion on a more plausible hair model and its implications will be presented based on these new results.

  19. Neutron reflectivity measurement of protein A-antibody complex at the solid-liquid interface.

    PubMed

    Mazzer, Alice R; Clifton, Luke A; Perevozchikova, Tatiana; Butler, Paul D; Roberts, Christopher J; Bracewell, Daniel G

    2017-05-26

    Chromatography is a ubiquitous unit operation in the purification of biopharmaceuticals yet few studies have addressed the biophysical characterisation of proteins at the solution-resin interface. Chromatography and other adsorption and desorption processes have been shown to induce protein aggregation which is undesirable in biopharmaceutical products. In order to advance understanding of how adsorption processes might impact protein stability, neutron reflectivity was used to characterise the structure of adsorbed immunoglobulin G (IgG) on model surfaces. In the first model system, IgG was adsorbed directly to silica and demonstrated a side-on orientation with high surface contact. A maximum dimension of 60Å in the surface normal direction and high density surface coverage were observed under pH 4.1 conditions. In chromatography buffers, pH was found to influence IgG packing density and orientation at the solid-liquid interface. In the second model system, which was designed to mimic an affinity chromatography surface, protein A was attached to a silica surface to produce a configuration representative of a porous glass chromatography resin. Interfacial structure was probed during sequential stages from ligand attachment, through to IgG binding and elution. Adsorbed IgG structures extended up to 250Å away from the surface and showed dependence on surface blocking strategies. The data was suggestive of two IgG molecules bound to protein A with a somewhat skewed orientation and close proximity to the silica surface. The findings provide insight into the orientation of adsorbed antibody structures under conditions encountered during chromatographic separations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Recent advances of mesoporous materials in sample preparation.

    PubMed

    Zhao, Liang; Qin, Hongqiang; Wu, Ren'an; Zou, Hanfa

    2012-03-09

    Sample preparation has been playing an important role in the analysis of complex samples. Mesoporous materials as the promising adsorbents have gained increasing research interest in sample preparation due to their desirable characteristics of high surface area, large pore volume, tunable mesoporous channels with well defined pore-size distribution, controllable wall composition, as well as modifiable surface properties. The aim of this paper is to review the recent advances of mesoporous materials in sample preparation with emphases on extraction of metal ions, adsorption of organic compounds, size selective enrichment of peptides/proteins, specific capture of post-translational peptides/proteins and enzymatic reactor for protein digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Carbohydrate-protein interactions investigated on plastic chips statically coated with hydrophobically modified hydroxyethylcellulose.

    PubMed

    Dang, Fuquan; Maeda, Eiki; Osafune, Tomo; Nakajima, Kazuki; Kakehi, Kazuaki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2009-12-15

    We developed a novel method for rapid screening of carbohydrate-protein interactions using poly(methyl methacrylate) (PMMA) channels statically coated with hydrophobically modified hydroxyethylcellulose (HM-HEC). We found that a self-assembled monolayer (SAM) of HM-HEC on a PMMA surface intact by water allows rapid and reproducible separations of glycan samples using a 20 mM phosphate without HM-HEC. The underlying mechanism for dynamic and static coatings on the PMMA surface is discussed. Simultaneous analysis of the molecular interaction between a complex mixture of carbohydrates from alpha1-acid glycoprotein and proteins has been successfully achieved in PMMA channels statically coated with a SAM of HM-HEC.

  2. Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy†

    PubMed Central

    Tan, Yih Horng; Schallom, John R.; Ganesh, N. Vijaya; Fujikawa, Kohki; Demchenko, Alexei V.

    2011-01-01

    Nanoporous gold (NPG), made by dealloying low carat gold alloys, is a relatively new nanomaterial finding application in catalysis, sensing, and as a support for biomolecules. NPG has attracted considerable interest due to its open bicontinuous structure, high surface-to-volume ratio, tunable porosity, chemical stability and biocompatibility. NPG also has the attractive feature of being able to be modified by self-assembled monolayers. Here we use scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize a highly efficient approach for protein immobilization on NPG using N-hydroxysuccinimide (NHS) ester functionalized self-assembled monolayers on NPG with pore sizes in the range of tens of nanometres. Comparison of coupling under static versus flow conditions suggests that BSA (Bovine Serum Albumin) and IgG (Immunoglobulin G) can only be immobilized onto the interior surfaces of free standing NPG monoliths with good coverage under flow conditions. AFM is used to examine protein coverage on both the exterior and interior of protein modified NPG. Access to the interior surface of NPG for AFM imaging is achieved using a special procedure for cleaving NPG. AFM is also used to examine BSA immobilized on rough gold surfaces as a comparative study. In principle, the general approach described should be applicable to many enzymes, proteins and protein complexes since both pore sizes and functional groups present on the NPG surfaces are controllable. PMID:21750834

  3. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.

  4. Gold nanoparticle should understand protein corona for being a clinical nanomaterial.

    PubMed

    Charbgoo, Fahimeh; Nejabat, Mojgan; Abnous, Khalil; Soltani, Fatemeh; Taghdisi, Seyed Mohammad; Alibolandi, Mona; Thomas Shier, W; Steele, Terry W J; Ramezani, Mohammad

    2018-02-28

    Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as "bio-identity". These proteins attach onto the AuNPs surface forming protein corona that makes the first step of nano-bio interface and dictates the subsequent AuNPs fate. Protein corona formation even stealth active targeting effect of AuNPs. Manipulating the protein corona identity based on the researcher goal is the way to employ corona to achieve maximum effect in therapy or other applications. In this review, we provide details on the biological identity of AuNPs under various environmental- and/or physiological conditions. We also highlight how the particular corona can direct the biodistribution of AuNPs. We further discuss the strategies available for controlling or reducing corona formation on AuNPs surface and achieving desired effects using AuNPs in vivo by engineering protein corona on their surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel.

    PubMed

    Liu, Yun; Wang, Huixiang; Liu, Qingping; Qu, Haiyun; Liu, Baohong; Yang, Pengyuan

    2010-11-07

    A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.

  6. Folding energy landscape and network dynamics of small globular proteins

    PubMed Central

    Hori, Naoto; Chikenji, George; Berry, R. Stephen; Takada, Shoji

    2009-01-01

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties. PMID:19114654

  7. Folding energy landscape and network dynamics of small globular proteins.

    PubMed

    Hori, Naoto; Chikenji, George; Berry, R Stephen; Takada, Shoji

    2009-01-06

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties.

  8. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.

    PubMed

    Valdés-Tresanco, Mario E; Valdés-Tresanco, Mario S; Valiente, Pedro A; Cocho, Germinal; Mansilla, Ricardo; Nieto-Villar, J M

    2018-01-01

    The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R 2  = 0.76; <|error|> =0.55 kcal/mol; SD error  = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  10. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection.

    PubMed Central

    Bour, S; Geleziunas, R; Wainberg, M A

    1995-01-01

    Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established. PMID:7708013

  11. Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Slavov, Chavdar; Piano, Dario

    2018-01-17

    Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.

  12. Regulation of a Viral Proteinase by a Peptide and DNA in One-dimensional Space

    PubMed Central

    Blainey, Paul C.; Graziano, Vito; Pérez-Berná, Ana J.; McGrath, William J.; Flint, S. Jane; San Martín, Carmen; Xie, X. Sunney; Mangel, Walter F.

    2013-01-01

    Precursor proteins used in the assembly of adenovirus virions must be processed by the virally encoded adenovirus proteinase (AVP) before the virus particle becomes infectious. An activated adenovirus proteinase, the AVP-pVIc complex, was shown to slide along viral DNA with an extremely fast one-dimensional diffusion constant, 21.0 ± 1.9 × 106 bp2/s. In principle, one-dimensional diffusion can provide a means for DNA-bound proteinases to locate and process DNA-bound substrates. Here, we show that this is correct. In vitro, AVP-pVIc complexes processed a purified virion precursor protein in a DNA-dependent reaction; in a quasi in vivo environment, heat-disrupted ts-1 virions, AVP-pVIc complexes processed five different precursor proteins in DNA-dependent reactions. Sliding of AVP-pVIc complexes along DNA illustrates a new biochemical mechanism by which a proteinase can locate its substrates, represents a new paradigm for virion maturation, and reveals a new way of exploiting the surface of DNA. PMID:23043138

  13. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes

    PubMed Central

    Reis, Helena; Schwebs, Marie; Dietz, Sabrina; Janzen, Christian J; Butter, Falk

    2018-01-01

    Abstract During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation. PMID:29385523

  14. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.

    PubMed

    Fernández-Higuero, Jose Angel; Aguado, Alejandra; Perales-Calvo, Judit; Moro, Fernando; Muga, Arturo

    2018-04-11

    The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.

  15. A Comparison of Blood Factor XII Autoactivation in Buffer, Protein Cocktail, Serum, and Plasma Solutions

    PubMed Central

    Golas, Avantika; Yeh, Chyi-Huey Josh; Pitakjakpipop, Harit; Siedlecki, Christopher A.; Vogler, Erwin A.

    2012-01-01

    Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a “mechanochemical” reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway. PMID:23117212

  16. Klebsiella aerogenes UreF: Identification of the UreG Binding Site and Role in Enhancing the Fidelity of Urease Activation†

    PubMed Central

    Boer, Jodi L.; Hausinger, Robert P.

    2012-01-01

    The Ni-containing active site of Klebsiella aerogenes urease is assembled through the concerted action of the UreD, UreE, UreF, and UreG accessory proteins. UreE functions as a metallochaperone that delivers Ni to a complex of UreD—UreF—UreG bound to urease apoprotein, with UreG serving as a GTPase during enzyme activation. The present study focuses on the role of UreF, previously proposed to act as a GTPase activating protein (GAP) of UreG. Sixteen conserved UreF surface residues that may play roles in protein:protein interactions were independently changed to Ala. When produced in the context of the entire urease gene cluster, cell-free extracts of nine site-directed mutants had less than 10% of the wild-type urease activity. Enrichment of the variant forms of UreF, as the UreE-F fusion proteins, uniformly resulted in co-purification of UreD and urease apoprotein; whereas UreG bound to only a subset of the species. Notably, reduced interaction with UreG correlated with the low activity mutants. The affected residues in UreF map to a distinct surface on the crystal structure, defining the UreG binding site. In contrast to the hypothesis that UreF is a GAP, the UreD—UreF—UreG—urease apoprotein complex containing K165A UreF exhibited significantly greater levels of GTPase activity than that containing the wild-type protein. Additional studies demonstrated the UreG GTPase activity was largely uncoupled from urease activation for the complex containing this UreF variant. Further experiments with these complexes provided evidence that UreF gates the GTPase activity of UreG to enhance the fidelity of urease metallocenter assembly, especially in the presence of the non-cognate metal Zn. PMID:22369361

  17. beta'-COP, a novel subunit of coatomer.

    PubMed Central

    Stenbeck, G; Harter, C; Brecht, A; Herrmann, D; Lottspeich, F; Orci, L; Wieland, F T

    1993-01-01

    Several lines of evidence favour the hypothesis that intracellular biosynthetic protein transport in eukaryotes is mediated by non-clathrin-coated vesicles (for a review see Rothman and Orci, 1992). The vesicles have been isolated and a set of their surface proteins has been characterized as coat proteins (COPs). These COPs exist in the cytosol as a preformed complex, the coatomer, which was prior to this study known to contain six subunits: four (alpha-, beta-, gamma- and delta-COP) with molecular weights between 160 and 58 kDa, and two additional proteins of approximately 36 and 20 kDa, epsilon- and xi-COP. Here we describe a novel subunit of the coatomer complex, beta'-COP. This subunit occurs in amounts stoichiometric to the established COPs both in the coatomer and in nonclathrin-coated vesicles and shows homology to the beta-subunits of trimeric G proteins. Images PMID:8334999

  18. Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2.

    PubMed

    Stokes, Alexander J; Wakano, Clay; Del Carmen, Kimberly A; Koblan-Huberson, Murielle; Turner, Helen

    2005-03-01

    The transient receptor potential, sub-family Vanilloid (TRPV)(2) cation channel is activated in response to extreme temperature elevations in sensory neurons. However, TRPV2 is widely expressed in tissues with no sensory function, including cells of the immune system. Regulation of GRC, the murine homolog of TRPV2 has been studied in insulinoma cells and myocytes. GRC is activated in response to certain growth factors and neuropeptides, via a mechanism that involves regulated access of the channel to the plasma membrane. This is likely to be an important primary control mechanism for TRPV2 outside the CNS. Here, we report that a regulated trafficking step controls the access of TRPV2 to the cell surface in mast cells. In mast cells, elevations in cytosolic cAMP are sufficient to drive plasma membrane localization of TRPV2. We have previously proposed that the recombinase gene activator protein (RGA), a four-transmembrane domain, intracellular protein, associates with TRPV2 during the biosynthesis and early trafficking of the channel. We use a polyclonal antibody to RGA to confirm the formation of a physiological complex between RGA and TRPV2. Finally, we show that over-expression of the RGA protein potentiates the basal surface localization of TRPV2. We propose that trafficking and activation mechanisms intersect for TRPV2, and that cAMP mobilizing stimuli may regulate TRPV2 localization in non-sensory cells. RGA participates in the control of TRPV2 surface levels, and co-expression of RGA may be a key component of experimental systems that seek to study TRPV2 physiology.

  19. Exploration of the Energy Landscape of Acetylcholinesterase by Molecular Dynamics Simulation.

    NASA Astrophysics Data System (ADS)

    McCammon, J. Andrew

    2002-03-01

    Proteins have rough energy landscapes. Often more states than just the ground state are occupied and have biological functions. It is essential to study these conformational substates and the dynamical transitions among them. Acetylcholinesterase (AChE) is an important enzyme that has biological functions including the termination of synaptic transmission signals. X-ray structures show that it has an active site that is accessible only via a long and narrow channel from its surface. Therefore the fact that acetylcholine and larger ligands can reach the active site is believed to reflect the protein's structural fluctuation. We carried out long molecular dynamics simulations to investigate the dynamics of AChE and its relation to biological function, and compared our results with experiments. The results reveal several "doors" that open intermittantly between the active site and the surface. Instead of having simple exponential decay correlation functions, the time series of these channels reveal complex, fractal gating between conformations. We also compared the AChE dynamics data with those from an AchE-fasciculin complex. (Fasciculin is a small protein that is a natural inhibitor of AChE.) The results show remarkable effects of the protein-protein interaction, including allosteric and dynamical inhibition by fasciculin besides direct steric blocking. More information and images can be found at http://mccammon.ucsd.edu

  20. Entropy in molecular recognition by proteins.

    PubMed

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  1. The role of surface electrostatics on the stability, function and regulation of human cystathionine β-synthase, a complex multidomain and oligomeric protein.

    PubMed

    Pey, Angel L; Majtan, Tomas; Kraus, Jan P

    2014-09-01

    Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes*

    PubMed Central

    Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.

    2009-01-01

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners. PMID:19567872

  3. The TOC complex: preprotein gateway to the chloroplast.

    PubMed

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  4. Ferritins: dynamic management of biological iron and oxygen chemistry.

    PubMed

    Liu, Xiaofeng; Theil, Elizabeth C

    2005-03-01

    Ferritins are spherical, cage-like proteins with nanocavities formed by multiple polypeptide subunits (four-helix bundles) that manage iron/oxygen chemistry. Catalytic coupling yields diferric oxo/hydroxo complexes at ferroxidase sites in maxi-ferritin subunits (24 subunits, 480 kDa; plants, animals, microorganisms). Oxidation occurs at the cavity surface of mini-ferritins/Dps proteins (12 subunits, 240 kDa; bacteria). Oxidation products are concentrated as minerals in the nanocavity for iron-protein cofactor synthesis (maxi-ferritins) or DNA protection (mini-ferritins). The protein cage and nanocavity characterize all ferritins, although amino acid sequences diverge, especially in bacteria. Catalytic oxidation/di-iron coupling in the protein cage (maxi-ferritins, 480 kDa; plants, bacteria and animal cell-specific isoforms) or on the cavity surface (mini-ferritins/Dps proteins, 280 kDa; bacteria) initiates mineralization. Gated pores (eight or four), symmetrically arranged, control iron flow. The multiple ferritin functions combine pore, channel, and catalytic functions in compact protein structures required for life and disease response.

  5. Application of Ring-Closing Metathesis to Grb2 SH3 Domain-Binding Peptides | Center for Cancer Research

    Cancer.gov

    In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic

  6. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Insertional inactivation of Eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts.

    PubMed

    Hussain, Muzaffar; Haggar, Axana; Heilmann, Christine; Peters, Georg; Flock, Jan-Ingmar; Herrmann, Mathias

    2002-06-01

    To initiate invasive infection, Staphylococcus aureus must adhere to host substrates, such as the extracellular matrix or eukaryotic cells, by virtue of different surface proteins (adhesins). Recently, we identified a 60-kDa cell-secreted extracellular adherence protein (Eap) of S. aureus strain Newman with broad-spectrum binding characteristics (M. Palma, A. Haggar, and J. I. Flock, J. Bacteriol. 181:2840-2845, 1999), and we have molecularly confirmed Eap to be an analogue of the previously identified major histocompatibility complex class II analog protein (Map) (M. Hussain, K. Becker, C. von Eiff, G. Peter, and M. Herrmann, Clin. Diagn. Lab. Immunol. 8:1281-1286, 2001). Previous analyses of the Eap/Map function performed with purified protein did not allow dissection of its precise role in the complex situation of the staphylococcal whole cell presenting several secreted and wall-bound adhesins. Therefore, the role of Eap was investigated by constructing a stable eap::ermB deletion in strain Newman and by complementation of the mutant. Patterns of extracted cell surface proteins analyzed both by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western ligand assays with various adhesive matrix molecules clearly confirmed the absence of Eap in the mutant. However, binding and adhesion tests using whole staphylococcal cells demonstrated that both the parent and mutant strains bound equally well to fibronectin- and fibrinogen-coated surfaces, possibly due to their recognition by other staphylococcal adhesins. Furthermore, Eap mediated staphylococcal agglutination of both wild-type and mutant cells. In contrast, the mutant adhered to a significantly lesser extent to cultured fibroblasts (P < 0.001) than did the wild type, while adherence was restorable upon complementation. Furthermore, adherence to both epithelial cells (P < 0.05) and fibroblasts (not significant) could be blocked with antibodies against Eap, whereas preimmune serum was not active. In conclusion, Eap may contribute to pathogenicity by promoting adhesion of whole staphylococcal cells to complex eukaryotic substrates.

  8. Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER.

    PubMed

    Sobering, Andrew K; Watanabe, Reika; Romeo, Martin J; Yan, Benjamin C; Specht, Charles A; Orlean, Peter; Riezman, Howard; Levin, David E

    2004-05-28

    The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT. We propose that diminished GPI-anchor protein production contributes to hyperactive Ras phenotypes.

  9. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155

    PubMed Central

    2010-01-01

    Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases. PMID:20412585

  10. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells

    PubMed Central

    2016-01-01

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  11. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin.

    PubMed

    Dursun, Erdinç; Gezen-Ak, Duygu

    2017-01-01

    Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.

  12. Sunitinib: from charge-density studies to interaction with proteins.

    PubMed

    Malińska, Maura; Jarzembska, Katarzyna N; Goral, Anna M; Kutner, Andrzej; Woźniak, Krzysztof; Dominiak, Paulina M

    2014-05-01

    Protein kinases are targets for the treatment of a number of diseases. Sunitinib malate is a type I inhibitor of tyrosine kinases and was approved as a drug in 2006. This contribution constitutes the first comprehensive analysis of the crystal structures of sunitinib malate and of complexes of sunitinib with a series of protein kinases. The high-resolution single-crystal X-ray measurement and aspherical atom databank approach served as a basis for reconstruction of the charge-density distribution of sunitinib and its protein complexes. Hirshfeld surface and topological analyses revealed a similar interaction pattern in the sunitinib malate crystal structure to that in the protein binding pockets. Sunitinib forms nine preserved bond paths corresponding to hydrogen bonds and also to the C-H···O and C-H···π contacts common to the VEGRF2, CDK2, G2, KIT and IT kinases. In general, sunitinib interacts with the studied proteins with a similar electrostatic interaction energy and can adjust its conformation to fit the binding pocket in such a way as to enhance the electrostatic interactions, e.g. hydrogen bonds in ligand-kinase complexes. Such behaviour may be responsible for the broad spectrum of action of sunitinib as a kinase inhibitor.

  13. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  14. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation.

    PubMed

    Kurimoto, Eiji; Satoh, Tadashi; Ito, Yuri; Ishihara, Eri; Okamoto, Kenta; Yagi-Utsumi, Maho; Tanaka, Keiji; Kato, Koichi

    2017-05-01

    The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets. © 2017 The Protein Society.

  15. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders

    PubMed Central

    Cohen-Khait, Ruth; Schreiber, Gideon

    2016-01-01

    Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635

  16. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    NASA Astrophysics Data System (ADS)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  17. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  18. New methods for the analysis of the protein-solvent interface

    NASA Astrophysics Data System (ADS)

    Goodfellow, Julia M.; Pitt, William R.; Smart, Oliver S.; Williams, Mark A.

    1995-09-01

    The protein-solvent interface is complex and may include solvent channels and cavities as well as the normal surface water molecules. We describe several algorithms for investigating the intra- and inter-molecular interactions of proteins in general but with the aim of developing methods to accurately and definitively characterise the interactions of water and other small ligands with proteins. Specifically, we present the methods which underlie three programs (AQUARIUS2, HOLE and PRO_ACT) which can be used to to look at different aspects of these interactions.

  19. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    PubMed

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  20. Protein corona and nanoparticles: how can we investigate on?

    PubMed

    Pederzoli, Francesca; Tosi, Giovanni; Vandelli, Maria Angela; Belletti, Daniela; Forni, Flavio; Ruozi, Barbara

    2017-11-01

    Nanoparticles (NPs) represent one of the most promising tools for drug-targeting and drug-delivery. However, a deeper understanding of the complex dynamics that happen after their in vivo administration is required. Particularly, plasma proteins tend to associate to NPs, forming a new surface named the 'protein corona' (PC). This surface is the most exposed as the 'visible side' of NPs and therefore, can have a strong impact on NP biodistribution, targeting efficacy and also toxicity. The PC consists of two poorly delimited layers, known as 'hard corona' (HC) and 'soft corona' (SC), that are affected by the complexity of the environment and the formed protein-surface equilibrium during in vivo blood circulation. The HC corona is formed by proteins strongly associated to the NPs, while the SC is an outer layer consisting of loosely bound proteins. Several studies attempted to investigate the HC, which is easier to be isolated, but yielded poor reproducibility, due to varying experimental conditions. As a consequence, full mapping of the HC for different NPs is still lacking. Moreover, the current knowledge on the SC, which may play a major role in the 'first' interaction of NPs once in vivo, is very limited, mainly due to the difficulties in preserving it after purification. Therefore, multi-disciplinary approaches leading to the obtainment of a major number of information about the PC and its properties is strongly needed to fully understand its impact and to better support a more safety and conscious application of nanotechnology in medicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1467. doi: 10.1002/wnan.1467 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  1. Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond

    PubMed Central

    Qin, Sanbo; Zhou, Huan-Xiang

    2013-01-01

    Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496

  2. A pivotal role for reductive methylation in the de novo crystallization of a ternary complex composed of Yersinia pestis virulence factors YopN, SycN and YscB.

    PubMed

    Schubot, Florian D; Waugh, David S

    2004-11-01

    Structural studies of a ternary complex composed of the Yersina pestis virulence factors YopN, SycN and YscB were initially hampered by poor solubility of the individual proteins. Co-expression of all three proteins in Escherichia coli yielded a well behaved complex, but this sample proved to be recalcitrant to crystallization. As crystallization efforts remained fruitless, even after the proteolysis-guided engineering of a truncated YopN polypeptide, reductive methylation of lysine residues was employed to alter the surface properties of the complex. The methylated complex yielded crystals that diffracted X-rays to a maximal resolution of 1.8 A. The potential utility of reductive methylation as a remedial strategy for high-throughput structural biology was further underscored by the successful modification of a selenomethionine-substituted sample.

  3. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  4. A T-Cell Receptor Breaks the Rules | Center for Cancer Research

    Cancer.gov

    Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their

  5. Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme

    PubMed Central

    Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy

    2012-01-01

    Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950

  6. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.

    PubMed

    Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara

    2013-10-01

    In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure. © 2013.

  7. Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface

    PubMed Central

    Yamamoto, Eiji; Kalli, Antreas C.; Akimoto, Takuma; Yasuoka, Kenji; Sansom, Mark S. P.

    2015-01-01

    Pleckstrin homology (PH) domains are lipid-binding modules present in peripheral membrane proteins which interact with phosphatidyl-inositol phosphates (PIPs) in cell membranes. We use multiscale molecular dynamics simulations to characterize the localization and anomalous dynamics of the DAPP1 PH domain on the surface of a PIP-containing lipid bilayer. Both translational and rotational diffusion of the PH domain on the lipid membrane surface exhibit transient subdiffusion, with an exponent α ≈ 0.5 for times of less than 10 ns. In addition to a PIP3 molecule at the canonical binding site of the PH domain, we observe additional PIP molecules in contact with the protein. Fluctuations in the number of PIPs associated with the PH domain exhibit 1/f noise. We suggest that the anomalous diffusion and long-term correlated interaction of the PH domain with the membrane may contribute to an enhanced probability of encounter with target complexes on cell membrane surfaces. PMID:26657413

  8. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  9. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  10. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  11. Isolation of integrin-based adhesion complexes.

    PubMed

    Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J

    2015-03-02

    The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.

  12. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Identification of Collagen-Binding Proteins in Lactobacillus spp. with Surface-Enhanced Laser Desorption/Ionization–Time of Flight ProteinChip Technology

    PubMed Central

    Howard, Jeffrey C.; Heinemann, Christine; Thatcher, Bradley J.; Martin, Brian; Gan, Bing Siang; Reid, Gregor

    2000-01-01

    Biosurfactants produced by Lactobacillus fermentum RC-14, L. rhamnosus GR-1 and 36, and L. casei Shirota were found to contain proteins that bind to both collagen types III and VI, as determined by surface-enhanced laser desorption/ionization (SELDI)–time of flight mass spectrometry. Both collagen types III and VI immobilized on SELDI preactivated ProteinChip arrays detected several different sizes (2 to 48 kDa) of collagen-binding proteins. Overall, the RC-14-produced biosurfactant contained the greatest number of collagen-binding proteins (RC-14 > GR-1 > 36 > Shirota), including the mature form of a previously cloned 29-kDa collagen-binding protein (referred to in its mature 26-kDa form). Although biosurfactants isolated from L. casei Shirota and L. rhamnosus 36 and GR-1 also contain several collagen-binding proteins, they do not contain the 26-kDa collagen-binding protein. Together, these results demonstrate the utility of the SELDI system as a means of rapidly characterizing clinically important but complex biosurfactant solutions. PMID:11010889

  14. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  15. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    PubMed Central

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324

  16. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    PubMed

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans

    PubMed Central

    Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony

    2012-01-01

    Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559

  18. Proteins required for lipopolysaccharide assembly in Escherichia coli form a trans-envelope complex†

    PubMed Central

    Chng, Shu-Sin; Gronenberg, Luisa S.; Kahne, Daniel

    2010-01-01

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential Lpt proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes, and that they co-purify. This constitutes the first evidence that the Lpt proteins form a trans-envelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope. PMID:20446753

  19. [The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].

    PubMed

    Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M

    2016-01-01

    Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.

  20. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.

    PubMed

    Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin

    2009-06-02

    Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.

  1. Encounter complexes and dimensionality reduction in protein–protein association

    PubMed Central

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-01-01

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491

  2. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones.

    PubMed

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-08-14

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.

  3. Major proteins of boar seminal plasma as a tool for biotechnological preservation of spermatozoa.

    PubMed

    Caballero, I; Vazquez, J M; García, E M; Parrilla, I; Roca, J; Calvete, J J; Sanz, L; Martínez, E A

    2008-11-01

    Boar seminal plasma is a complex mixture of secretions from the testes, epididymides, and the male accessory reproductive organs which bathe the spermatozoa at ejaculation. The seminal plasma contains factors, mostly proteins, which influence the spermatozoa, the female genital tract, and the ovum. In boars, most of the proteins belong to the spermadhesin family and bind to the sperm surface. Spermadhesins are multifunctional proteins with a wide range of ligand-binding abilities to heparin, phospholipids, protease inhibitors and carbohydrates; the family can be roughly divided into heparin-binding (AQN-1, AQN-3, AWN) and non-heparin-binding spermadhesins (PSP-I/PSP-II heterodimer). These proteins have various effects promoting or inhibiting sperm functions including motility, oviduct binding, zona binding/penetration, and ultimately fertilization. The complexity of the environmental signals that influence these actions have implications for the uses of these proteins in vivo and in vitro, and may lead to uses in improving sperm storage.

  4. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms

    NASA Astrophysics Data System (ADS)

    Rana, Subinoy; Le, Ngoc D. B.; Mout, Rubul; Saha, Krishnendu; Tonga, Gulen Yesilbag; Bain, Robert E. S.; Miranda, Oscar R.; Rotello, Caren M.; Rotello, Vincent M.

    2015-01-01

    Screening methods that use traditional genomic, transcriptional, proteomic and metabonomic signatures to characterize drug mechanisms are known. However, they are time consuming and require specialized equipment. Here, we present a high-throughput multichannel sensor platform that can profile the mechanisms of various chemotherapeutic drugs in minutes. The sensor consists of a gold nanoparticle complexed with three different fluorescent proteins that can sense drug-induced physicochemical changes on cell surfaces. In the presence of cells, fluorescent proteins are rapidly displaced from the gold nanoparticle surface and fluorescence is restored. Fluorescence ‘turn on’ of the fluorescent proteins depends on the drug-induced cell surface changes, generating patterns that identify specific mechanisms of cell death induced by drugs. The nanosensor is generalizable to different cell types and does not require processing steps before analysis, offering an effective way to expedite research in drug discovery, toxicology and cell-based sensing.

  5. Amyloid Precursor-like Protein 2 Increases the Endocytosis, Instability, and Turnover of the H2-Kd MHC Class I Molecule1

    PubMed Central

    Tuli, Amit; Sharma, Mahak; McIlhaney, Mary M.; Talmadge, James E.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to cytotoxic T lymphocytes by cell surface major histocompatibility complex (MHC) class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule Kd. In the current study, APLP2 was found to associate with folded Kd molecules following their endocytosis and to increase the amount of endocytosed Kd. In addition, increased expression of APLP2 was shown to decrease Kd surface expression and thermostability. Correspondingly, Kd thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of Kd molecules. PMID:18641335

  6. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone

    PubMed Central

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-01-01

    Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389

  7. Unconventional secretory processing diversifies neuronal ion channel properties

    PubMed Central

    Hanus, Cyril; Geptin, Helene; Tushev, Georgi; Garg, Sakshi; Alvarez-Castelao, Beatriz; Sambandan, Sivakumar; Kochen, Lisa; Hafner, Anne-Sophie; Langer, Julian D; Schuman, Erin M

    2016-01-01

    N-glycosylation – the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus – is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane. DOI: http://dx.doi.org/10.7554/eLife.20609.001 PMID:27677849

  8. Structural basis for spectrin recognition by ankyrin.

    PubMed

    Ipsaro, Jonathan J; Mondragón, Alfonso

    2010-05-20

    Maintenance of membrane integrity and organization in the metazoan cell is accomplished through intracellular tethering of membrane proteins to an extensive, flexible protein network. Spectrin, the principal component of this network, is anchored to membrane proteins through the adaptor protein ankyrin. To elucidate the atomic basis for this interaction, we determined a crystal structure of human betaI-spectrin repeats 13 to 15 in complex with the ZU5-ANK domain of human ankyrin R. The structure reveals the role of repeats 14 to 15 in binding, the electrostatic and hydrophobic contributions along the interface, and the necessity for a particular orientation of the spectrin repeats. Using structural and biochemical data as a guide, we characterized the individual proteins and their interactions by binding and thermal stability analyses. In addition to validating the structural model, these data provide insight into the nature of some mutations associated with cell morphology defects, including those found in human diseases such as hereditary spherocytosis and elliptocytosis. Finally, analysis of the ZU5 domain suggests it is a versatile protein-protein interaction module with distinct interaction surfaces. The structure represents not only the first of a spectrin fragment in complex with its binding partner, but also that of an intermolecular complex involving a ZU5 domain.

  9. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  10. DNA-based probes for flow cytometry analysis of endocytosis and recycling.

    PubMed

    Dumont, Claire; Czuba, Ewa; Chen, Moore; Villadangos, Jose A; Johnston, Angus P R; Mintern, Justine D

    2017-04-01

    The internalization of proteins plays a key role in cell development, cell signaling and immunity. We have previously developed a specific hybridization internalization probe (SHIP) to quantitate the internalization of proteins and particles into cells. Herein, we extend the utility of SHIP to examine both the endocytosis and recycling of surface receptors using flow cytometry. SHIP was used to monitor endocytosis of membrane-bound transferrin receptor (TFR) and its soluble ligand transferrin (TF). SHIP enabled measurements of the proportion of surface molecules internalized, the internalization kinetics and the proportion and rate of internalized molecules that recycle to the cell surface with time. Using this method, we have demonstrated the internalization and recycling of holo-TF and an antibody against the TFR behave differently. This assay therefore highlights the implications of receptor internalization and recycling, where the internalization of the receptor-antibody complex behaves differently to the receptor-ligand complex. In addition, we observe distinct internalization patterns for these molecules expressed by different subpopulations of primary cells. SHIP provides a convenient and high throughput technique for analysis of trafficking parameters for both cell surface receptors and their ligands. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  12. Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy.

    PubMed

    Johnson; Yuan; Lenhoff

    2000-03-15

    The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.

  13. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  14. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    PubMed

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  16. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization.

    PubMed

    Jinek, Martin; Eulalio, Ana; Lingel, Andreas; Helms, Sigrun; Conti, Elena; Izaurralde, Elisa

    2008-10-01

    The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.

  17. Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution.

    PubMed

    Ding, Shi-You; Xu, Qi; Ali, Mursheda K; Baker, John O; Bayer, Edward A; Barak, Yoav; Lamed, Raphael; Sugiyama, Junji; Rumbles, Garry; Himmel, Michael E

    2006-10-01

    The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.

  18. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    PubMed

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.

  20. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less

  1. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy

    PubMed Central

    Allen, David G.; Whitehead, Nicholas P.; Froehner, Stanley C.

    2015-01-01

    Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca2+-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca2+ entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145

  2. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.

    PubMed

    Karkov, Hanne Sophie; Krogh, Berit Olsen; Woo, James; Parimal, Siddharth; Ahmadian, Haleh; Cramer, Steven M

    2015-11-01

    In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site-directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation-exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation-exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules. © 2015 Wiley Periodicals, Inc.

  3. Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen

    PubMed Central

    Gründel, Anne; Pfeiffer, Melanie; Jacobs, Enno

    2015-01-01

    In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract. PMID:26667841

  4. The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution.

    PubMed

    Veit, Sebastian; Nagadoi, Aritaka; Rögner, Matthias; Rexroth, Sascha; Stoll, Raphael; Ikegami, Takahisa

    2016-06-01

    PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. PAPERS DEVOTED TO THE MEMORY OF ACADEMICIAN A M PROKHOROV: Immunosensor systems with the Langmuir-film-based fluorescence detection

    NASA Astrophysics Data System (ADS)

    Chudinova, G. K.; Nagovitsyn, I. A.; Karpov, R. E.; Savranskii, V. V.

    2003-09-01

    A method is developed for detecting protein antigens for fluorescent immunoassay using a model system based on the technique for preparation of Langmuir films. Fluorescein isothiocyanate and donor-acceptor energy-transfer pairs of markers (the Yb complex of tetraphenyl porphyrin — benzoyl trifluoroacetoneisothiocyanate and derivatives of tetra(carboxyphenyl) porphyrin — cyanine dye containing a five-membered polyene chain), which were nor studied earlier, were used as markers for detecting the binding of an antigen on the surface of Langmuir films of antibodies. Fluorescence was detected in the near-IR region (for the first pair) and in the visible spectral range (for the second pair). To reduce the nonspecific sorption of a protein (antigen), a method was proposed for the preparation of a nonpolar surface by applying an even number of layers of stearic acid as a substrate for the Langmuir — Blodgett film. A high sensitivity of model systems to a protein antigen in solution was achieved (~10-11 M), the assay time being 6 — 8 min. The model system with the first donor — acceptor pair was tested in analysis of the blood plasma. The fluorescence of the Dy3+, Tm3+, and Yb3+ complexes of tetraphenyl porphyrin sensitised by diketonate complexes of lanthanides was studied for the first time and the enhancement of the IR fluorescence of these complexes in a Langmuir film was demonstrated.

  6. The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry.

    PubMed

    Williams, Jason G; Tomer, Kenneth B; Hioe, Catarina E; Zolla-Pazner, Susan; Norris, Philip J

    2006-11-01

    In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.

  7. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    PubMed Central

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-01-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA–protein conjugation still limit true emulation of natural host–guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA–protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host–guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging. PMID:28205515

  8. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    NASA Astrophysics Data System (ADS)

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-02-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

  9. Features of Protein-Protein Interactions that Translate into Potent Inhibitors: Topology, Surface Area and Affinity

    PubMed Central

    Smith, Matthew C.; Gestwicki, Jason E.

    2013-01-01

    Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, may influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of “druggable” protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favor discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets. PMID:22831787

  10. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.

    PubMed

    Nilofer, Christina; Sukhwal, Anshul; Mohanapriya, Arumugam; Kangueane, Pandjassarame

    2017-01-01

    Several catalysis, cellular regulation, immune function, cell wall assembly, transport, signaling and inhibition occur through Protein- Protein Interactions (PPI). This is possible with the formation of specific yet stable protein-protein interfaces. Therefore, it is of interest to understand its molecular principles using structural data in relation to known function. Several interface features have been documented using known X-ray structures of protein complexes since 1975. This has improved our understanding of the interface using structural features such as interface area, binding energy, hydrophobicity, relative hydrophobicity, salt bridges and hydrogen bonds. The strength of binding between two proteins is dependent on interface size (number of residues at the interface) and thus its corresponding interface area. It is known that large interfaces have high binding energy (sum of (van der Waals) vdW, H-bonds, electrostatics). However, the selective role played by each of these energy components and more especially that of vdW is not explicitly known. Therefore, it is important to document their individual role in known protein-protein structural complexes. It is of interest to relate interface size with vdW, H-bonds and electrostatic interactions at the interfaces of protein structural complexes with known function using statistical and multiple linear regression analysis methods to identify the prominent force. We used the manually curated non-redundant dataset of 278 hetero-dimeric protein structural complexes grouped using known functions by Sowmya et al. (2015) to gain additional insight to this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck (Anshul and Sowdhamini, 2015). This dataset consists of obligatory (enzymes, regulator, biological assembly), immune and nonobligatory (enzyme and regulator inhibitors) complexes. Results show that the total binding energy is more for large interfaces. However, this is not true for its individual energy factors. Analysis shows that vdW energies contribute to about 75% ± 11% on average among all complexes and it also increases with interface size (r2 ranging from 0.67 to 0.89 with p<0.01) at 95% confidence limit irrespective of molecular function. Thus, vdW is both dominant and proportional at the interface independent of molecular function. Nevertheless, H bond energy contributes to 15% ± 6.5% on average in these complexes. It also moderately increases with interface size (r2 ranging from 0.43 to 0.61 with p<0.01) only among obligatory and immune complexes. Moreover, there is about 11.3% ± 8.7% contribution by electrostatic energy. It increases with interface size specifically among non-obligatory regulator-inhibitors (r2 = 0.44). It is implied that both H-bonds and electrostatics are neither dominant nor proportional at the interface. Nonetheless, their presence cannot be ignored in binding. Therefore, H-bonds and (or) electrostatic energy having specific role for improved stability in complexes is implied. Thus, vdW is common at the interface stabilized further with selective H-bonds and (or) electrostatic interactions at an atomic level in almost all complexes. Comparison of this observation with residue level analysis of the interface is compelling. The role by H-bonds (14.83% ± 6.5% and r2 = 0.61 with p<0.01) among obligatory and electrostatic energy (8.8% ± 4.77% and r2 = 0.63 with p <0.01) among non-obligatory complexes within interfaces (class A) having more non-polar residues than surface is influencing our inference. However, interfaces (class B) having less non-polar residues than surface show 1.5 fold more electrostatic energy on average. The interpretation of the interface using inter-atomic (vdW, H-bonds, electrostatic) interactions combined with inter-residue predominance (class A and class B) in relation to known function is the key to reveal its molecular principles with new challenges.

  11. A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis.

    PubMed

    Nury, Catherine; Redeker, Virginie; Dautrey, Sébastien; Romieu, Anthony; van der Rest, Guillaume; Renard, Pierre-Yves; Melki, Ronald; Chamot-Rooke, Julia

    2015-02-03

    The variety of protein cross-linkers developed in recent years illustrates the current requirement for efficient reagents optimized for mass spectrometry (MS) analysis. To date, the most widely used strategy relies on commercial cross-linkers that bear an isotopically labeled tag and N-hydroxysuccinimid-ester (NHS-ester) moieties. Moreover, an enrichment step using liquid chromatography is usually performed after enzymatic digestion of the cross-linked proteins. Unfortunately, this approach suffers from several limitations. First, it requires large amounts of proteins. Second, NHS-ester cross-linkers are poorly efficient because of their fast hydrolysis in water. Finally, data analysis is complicated because of uneven fragmentation of complex isotopic cross-linked peptide mixtures. We therefore synthesized a new type of trifunctional cross-linker to overrule these limitations. This reagent, named NNP9, comprises a rigid core and bears two activated carbamate moieties and an azido group. NNP9 was used to establish intra- and intermolecular cross-links within creatine kinase, then to map the interaction surfaces between α-Synuclein (α-Syn), the aggregation of which leads to Parkinson's disease, and the molecular chaperone Hsc70. We show that NNP9 cross-linking efficiency is significantly higher than that of NHS-ester commercial cross-linkers. The number of cross-linked peptides identified was increased, and a high quality of MS/MS spectra leading to high sequence coverage was observed. Our data demonstrate the potential of NNP9 for an efficient and straightforward characterization of protein-protein interfaces and illustrate the power of using different cross-linkers to map thoroughly the surface interfaces within protein complexes.

  12. A Family of G Protein βγ Subunits Translocate Reversibly from the Plasma Membrane to Endomembranes on Receptor Activation*S

    PubMed Central

    Saini, Deepak Kumar; Kalyanaraman, Vani; Chisari, Mariangela; Gautam, Narasimhan

    2008-01-01

    The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein γ subunit family translocate specifically from the PM to endomembranes. The γ subunits translocate as βγ complexes, whereas the α subunit is retained on the PM. Depending on the γ subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the γ subunit type. Different γ subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various γ subunits and their translocation properties. γ subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092–24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein βγ subunits to intracellular membranes. PMID:17581822

  13. Structure of the Polycomb Group protein PCGF1 (NSPC1) in complex with BCOR reveals basis for binding selectivity of PCGF homologs

    PubMed Central

    Junco, Sarah E.; Wang, Renjing; Gaipa, John C.; Taylor, Alexander B.; Schirf, Virgil; Gearhart, Micah D.; Bardwell, Vivian J.; Demeler, Borries; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    Summary Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and 6) are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes. Here we identify a protein interaction domain in BCL6 co-repressor, BCOR, which binds the ubiquitin-like RAWUL domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold Discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals 1. that PUFD binds to the same surfaces as observed for a different Polycomb Group RAWUL domain and 2. the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data are the first to show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly. PMID:23523425

  14. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

    PubMed Central

    Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.

    2004-01-01

    Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896

  15. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.

    PubMed

    Szefler, Beata; Diudea, Mircea V; Putz, Mihai V; Grudzinski, Ireneusz P

    2016-10-27

    Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H₂O₂). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.

  16. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.

    PubMed

    Brayer, Kathryn J; Segal, David J

    2008-01-01

    Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.

  17. Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.

    PubMed

    Numata, Tomoyuki; Inanaga, Hideko; Sato, Chikara; Osawa, Takuo

    2015-01-30

    Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci play a pivotal role in the prokaryotic host defense system against invading genetic materials. The CRISPR loci are transcribed to produce CRISPR RNAs (crRNAs), which form interference complexes with CRISPR-associated (Cas) proteins to target the invading nucleic acid for degradation. The interference complex of the type III-A CRISPR-Cas system is composed of five Cas proteins (Csm1-Csm5) and a crRNA, and targets invading DNA. Here, we show that the Csm1, Csm3, and Csm4 proteins from Methanocaldococcus jannaschii form a stable subcomplex. We also report the crystal structure of the M. jannaschii Csm3-Csm4 subcomplex at 3.1Å resolution. The complex structure revealed the presence of a basic concave surface around their interface, suggesting the RNA and/or DNA binding ability of the complex. A gel retardation analysis showed that the Csm3-Csm4 complex binds single-stranded RNA in a non-sequence-specific manner. Csm4 structurally resembles Cmr3, a component of the type III-B CRISPR-Cas interference complex. Based on bioinformatics, we constructed a model structure of the Csm1-Csm4-Csm3 ternary complex, which provides insights into its role in the Csm interference complex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An initial event in the insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein.

    PubMed

    Dai, Huaien; Hiromasa, Yasuaki; Takahashi, Daisuke; VanderVelde, David; Fabrick, Jeffrey A; Kanost, Michael R; Krishnamoorthi, Ramaswamy

    2013-01-08

    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the nuclear magnetic resonance (NMR) solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone (15)N-(1)H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-βGRP-laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-βGRP-laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of an X-ray crystallographic structure of the N-βGRP-laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements conducted with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of the N-βGRP-laminarin macro complex and that a decreased stability is accompanied by a reduced level of activation of the proPO pathway. An increased level of β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of the βGRP-β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway.

  19. Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion

    PubMed Central

    Fabrichny, Igor P.; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T.; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2009-01-01

    SUMMARY The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a β-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an α/β-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism. PMID:18093521

  20. Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces.

    PubMed

    Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B

    2006-02-01

    Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.

  1. HIV-1 Vpu Antagonizes CD317/Tetherin by Adaptor Protein-1-Mediated Exclusion from Virus Assembly Sites

    PubMed Central

    Pujol, François M.; Laketa, Vibor; Schmidt, Florian; Mukenhirn, Markus; Müller, Barbara; Boulant, Steeve; Grimm, Dirk; Keppler, Oliver T.

    2016-01-01

    ABSTRACT The host cell restriction factor CD317/tetherin traps virions at the surface of producer cells to prevent their release. The HIV-1 accessory protein Vpu antagonizes this restriction. Vpu reduces the cell surface density of the restriction factor and targets it for degradation; however, these activities are dispensable for enhancing particle release. Instead, Vpu has been suggested to antagonize CD317/tetherin by preventing recycling of internalized CD317/tetherin to the cell surface, blocking anterograde transport of newly synthesized CD317/tetherin, and/or displacing the restriction factor from virus assembly sites at the plasma membrane. At the molecular level, antagonism relies on the physical interaction of Vpu with CD317/tetherin. Recent findings suggested that phosphorylation of a diserine motif enables Vpu to bind to adaptor protein 1 (AP-1) trafficking complexes via two independent interaction motifs and to couple CD317/tetherin to the endocytic machinery. Here, we used a panel of Vpu proteins with specific mutations in individual interaction motifs to define which interactions are required for antagonism of CD317/tetherin. Impairing recycling or anterograde transport of CD317/tetherin to the plasma membrane was insufficient for antagonism. In contrast, excluding CD317/tetherin from HIV-1 assembly sites depended on Vpu motifs for interaction with AP-1 and CD317/tetherin and correlated with antagonism of the particle release restriction. Consistently, interference with AP-1 function or its expression blocked these Vpu activities. Our results define displacement from HIV-1 assembly sites as active principle of CD317/tetherin antagonism by Vpu and support a role of tripartite complexes between Vpu, AP-1, and CD317/tetherin in this process. IMPORTANCE CD317/tetherin poses an intrinsic barrier to human immunodeficiency virus type 1 (HIV-1) replication in human cells by trapping virus particles at the surface of producer cells and thereby preventing their release. The viral protein Vpu antagonizes this restriction, and molecular interactions with the restriction factor and adaptor protein complex 1 (AP-1) were suggested to mediate this activity. Vpu modulates intracellular trafficking of CD317/tetherin and excludes the restriction factor from HIV-1 assembly sites at the plasma membrane, but the relative contribution of these effects to antagonism remain elusive. Using a panel of Vpu mutants, as well as interference with AP-1 function and expression, we show here that Vpu antagonizes CD317/tetherin by blocking its recruitment to viral assembly sites in an AP-1-dependent manner. These results refine our understanding of the molecular mechanisms of CD317/tetherin antagonism and suggest complexes of Vpu with the restriction factor and AP-1 as targets for potential therapeutic intervention. PMID:27170757

  2. Preparation of the cortical reaction: maturation-dependent migration of SNARE proteins, clathrin, and complexin to the porcine oocyte's surface blocks membrane traffic until fertilization.

    PubMed

    Tsai, Pei-Shiue; van Haeften, Theo; Gadella, Bart M

    2011-02-01

    The cortical reaction is a calcium-dependent exocytotic process in which the content of secretory granules is released into the perivitellin space immediately after fertilization, which serves to prevent polyspermic fertilization. In this study, we investigated the involvement and the organization of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins in the docking and fusion of the cortical granule membrane with the oolemma in porcine oocytes. During meiotic maturation, secretory vesicles that were labeled with a granule-specific binding lectin, peanut agglutinin (PNA), migrated toward the oocyte's surface. This surface-orientated redistribution behavior was also observed for the oocyte-specific SNARE proteins SNAP23 and VAMP1 that colocalized with the PNA-labeled structures in the cortex area just under the oolemma and with the exclusive localization area of complexin (a trans-SNARE complex-stabilizing protein). The coming together of these proteins serves to prevent the spontaneous secretion of the docked cortical granules and to prepare the oocyte's surface for the cortical reaction, which should probably be immediately compensated for by a clathrin-mediated endocytosis. In vitro fertilization resulted in the secretion of the cortical granule content and the concomitant release of complexin and clathrin into the oocyte's cytosol, and this is considered to stimulate the observed endocytosis of SNARE-containing membrane vesicles.

  3. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates.

    PubMed

    Zitterbart, Robert; Krumrey, Michael; Seitz, Oliver

    2017-07-01

    The chemical synthesis of proteins typically involves the solid-phase peptide synthesis of unprotected peptide fragments that are stitched together in solution by native chemical ligation (NCL). The process is slow, and throughput is limited because of the need for repeated high performance liquid chromatography purification steps after both solid-phase peptide synthesis and NCL. With an aim to provide faster access to functional proteins and to accelerate the functional analysis of synthetic proteins by parallelization, we developed a method for the high performance liquid chromatography-free synthesis of proteins on the surface of microtiter plates. The method relies on solid-phase synthesis of unprotected peptide fragments, immobilization of the C-terminal fragment and on-surface NCL with an unprotected peptide thioester in crude form. Herein, we describe the development of a suitable immobilization chemistry. We compared (i) formation of nickel(II)-oligohistidine complexes, (ii) Cu-based [2 + 3] alkine-azide cycloaddition and (iii) hydrazone ligation. The comparative study identified the hydrazone ligation as most suitable. The sequence of immobilization via hydrazone ligation, on-surface NCL and radical desulfurization furnished the targeted SH3 domains in near quantitative yield. The synthetic proteins were functional as demonstrated by an on-surface fluorescence-based saturation binding analysis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  4. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  5. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  6. Binding regularities in complexes of transcription factors with operator DNA: homeodomain family.

    PubMed

    Chirgadze, Yu N; Zheltukhin, E I; Polozov, R V; Sivozhelezov, V S; Ivanov, V V

    2009-06-01

    In order to disclose general regularities of binding in homeodomain-DNA complexes we considered five of them and extended the observed regularities over the entire homeodomain family. The five complexes have been selected by similarity of protein structures and patterns of contacting residues. Their long range interactions and interfaces were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstrom away from molecular surfaces of protein or DNA. For proteins, clear positive potential is displayed only at the side contacting the DNA. The double-chained DNA molecule displays a rather strong negative potential, especially in their grooves. Thus, a functional role of electrostatics is a guiding of the protein into the DNA major groove, so the protein and DNA could form a loose non-specific complex. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in the formation of protein-DNA atomic contacts in the interface. The recognizing alpha-helix of protein was shown to form both invariant and variable groups of contacts with DNA by means of certain specific side groups. The invariant contacts included highly specific protein-DNA hydrogen bonds between asparagine and adenine, nonpolar contacts of hydrophobic amino acids serving as a stereochemical barrier for fixing the protein factor on DNA, and an interface cluster of water molecules providing local conformational mobility necessary for the dissociation process. There is a unique water molecule within the interface that is conservative and located at the interface center. Invariant contacts of the proteins are mostly formed with the TAAT motif of the promoter DNA forward strand. While the invariant contacts specify the family of homeodomains, the variable contacts that are formed with the reverse strand of DNA provide specificity of individual complexes within the homeodomain family.

  7. The creation of a biomimetic interface between boron-doped diamond and immobilized proteins.

    PubMed

    Hoffmann, René; Kriele, Armin; Obloh, Harald; Tokuda, Norio; Smirnov, Waldemar; Yang, Nianjun; Nebel, Christoph E

    2011-10-01

    Immobilization of proteins on a solid electrode is to date done by chemical cross-linking or by addition of an adjustable intermediate. In this paper we introduce a concept where a solid with variable surface properties is optimized to mediate binding of the electron-transfer protein Cytochrome c (Cyt c) by mimicking the natural binding environment. It is shown that, as a carbon-based material, boron-doped diamond can be adjusted by simple electrochemical surface treatments to the specific biochemical requirements of Cyt c. The structure and functionality of passively adsorbed Cyt c on variously terminated diamond surfaces were characterized in detail using a combination of electrochemical techniques and atomic force microscopy with single-molecule resolution. Partially oxidized diamond allowed stable immobilization of Cyt c together with high electron transfer activity, driven by a combination of electrostatic and hydrophobic interactions. This surface mimics the natural binding partner, where coarse orientation is governed by electrostatic interaction of the protein's dipole and hydrophobic interactions assist in formation of the electron transfer complex. The optimized surface mediated electron transfer kinetics around 100 times faster than those reported for other solids and even faster kinetics than on self-assembled monolayers of alkanethiols. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    PubMed

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  9. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Bärbel; Vogt, Matthew R.; Goudsmit, Jaap

    2010-11-15

    Many flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy. The outer glycoprotein shell of a mature WNV particle is formed by 30 rafts of three homodimers of the viral surface protein E. CR4354 binds to a discontinuous epitope formed by protein segments from two neighboring E molecules, but does notmore » cause any detectable structural disturbance on the viral surface. The epitope occurs at two independent positions within an icosahedral asymmetric unit, resulting in 120 binding sites on the viral surface. The cross-linking of the six E monomers within one raft by four CR4354 Fab fragments suggests that the antibody neutralizes WNV by blocking the pH-induced rearrangement of the E protein required for virus fusion with the endosomal membrane.« less

  10. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.

  11. Investigating the binding behaviour of two avidin-based testosterone binders using molecular recognition force spectroscopy.

    PubMed

    Rangl, Martina; Leitner, Michael; Riihimäki, Tiina; Lehtonen, Soili; Hytönen, Vesa P; Gruber, Hermann J; Kulomaa, Markku; Hinterdorfer, Peter; Ebner, Andreas

    2014-02-01

    Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand-receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin-based proteins called sbAvd-1 and sbAvd-2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone-binding protein was immobilized on the surface. Repeated formation and rupture of the ligand-receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex-rupturing force. In this way, we obtained the molecular dissociation rate (k(off)) and energy landscape distances (x(β)) of the four possible complexes: sbAvd-1-biotin, sbAvd-1-testosterone, sbAvd-2-biotin and sbAvd-2-testosterone. It was found that the kinetic off-rates for both proteins and both ligands are similar. In contrast, the x(β) values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone-binding proteins, implying a decreased cross-reactivity of sbAvd-2. Unravelling the binding behaviour of the investigated testosterone-binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications.

    PubMed

    Yang, Jiang; Wang, Bo; You, Youngsang; Chang, Woo-Jin; Tang, Ke; Wang, Yi-Cheng; Zhang, Wenzhao; Ding, Feng; Gunasekaran, Sundaram

    2017-11-23

    Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical. In this work, we provide molecular insights and structural characterizations of the bio-nano interface of a popular food-based protein, namely bovine beta-lactoglobulin (β-LG), with gold nanoparticles (AuNPs) and report on our investigations of the formation of corona complexes by combined molecular simulations and complementary experiments. Two major binding sites in β-LG were identified as being driven by citrate-mediated electrostatic interactions, while the associated binding kinetics and conformational changes in the secondary structures were also characterized. More importantly, the superior stability of the corona led us to further explore its biomedical applications, such as in the smartphone-based point-of-care biosensing of Escherichia coli (E. coli) and in the computed tomography (CT) of the gastrointestinal (GI) tract through oral administration to probe GI tolerance and functions. Considering their biocompatibility, edible nature, and efficient excretion through defecation, AuNPs-β-LG corona complexes have shown promising perspectives for future in vitro and in vivo clinical settings.

  13. Negative regulation of BMP signaling by the ski oncoprotein.

    PubMed

    Luo, Kunxin

    2003-01-01

    The bone morphogenetic proteins (BMPs) play important roles in the regulation of multiple aspects of vertebrate development. BMPs signal through the cell surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. The activity of this signal pathway can be modulated both by extracellular factors that regulate the binding of BMPs to the receptor and by intracellular proteins that interact with the Smad proteins. We have shown that Ski is an important negative regulator of the Smad proteins. Ski can bind to the BMP-Smad protein complexes in response to BMP and repress their ability to activate BMP target genes through disruption of a functional Smad complex and through recruitment of transcriptional co-repressors. The antagonism of BMP signaling by Ski results in neural specification in Xenopus embryos and inhibition of osteoblast differentiation in mouse bone-marrow stromal progenitor cells. This ability to modulate BMP signaling by Ski may play an important role in the regulation of craniofacial, neuronal, and skeletal muscle development.

  14. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-03

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility.

  15. Up-regulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 (HCN3) by Specific Interaction with K+ Channel Tetramerization Domain-containing Protein 3 (KCTD3)*

    PubMed Central

    Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin

    2013-01-01

    Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:23382386

  16. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  17. An SH2 domain-based tyrosine kinase assay using biotin ligase modified with a terbium(III) complex.

    PubMed

    Sueda, Shinji; Shinboku, Yuki; Kusaba, Takeshi

    2013-01-01

    Src homology 2 (SH2) domains are modules of approximately 100 amino acids and are known to bind phosphotyrosine-containing sequences with high affinity and specificity. In the present work, we developed an SH2 domain-based assay for Src tyrosine kinase using a unique biotinylation reaction from archaeon Sulfolobus tokodaii. S. tokodaii biotinylation has a unique property that biotin protein ligase (BPL) forms a stable complex with its biotinylated substrate protein (BCCP). Here, an SH2 domain from lymphocyte-specific tyrosine kinase was genetically fused to a truncated BCCP, and the resulting fusion protein was labeled through biotinylation with BPL carrying multiple copies of a luminescent Tb(3+) complex. The labeled SH2 fusion proteins were employed to detect a phosphorylated peptide immobilized on the surface of the microtiter plate, where the phosphorylated peptide was produced by phosphorylation to the substrate peptide by Src tyrosine kinase. Our assay allows for a reliable determination of the activity of Src kinase lower than 10 pg/μL by a simple procedure.

  18. The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis

    PubMed Central

    Palma, Leopoldo; Scott, David J.; Harris, Gemma; Din, Salah-Ud; Williams, Thomas L.; Roberts, Oliver J.; Young, Mark T.; Caballero, Primitivo; Berry, Colin

    2017-01-01

    The Vip3 proteins produced during vegetative growth by strains of the bacterium Bacillus thuringiensis show insecticidal activity against lepidopteran insects with a mechanism of action that may involve pore formation and apoptosis. These proteins are promising supplements to our arsenal of insecticidal proteins, but the molecular details of their activity are not understood. As a first step in the structural characterisation of these proteins, we have analysed their secondary structure and resolved the surface topology of a tetrameric complex of the Vip3Ag4 protein by transmission electron microscopy. Sites sensitive to proteolysis by trypsin are identified and the trypsin-cleaved protein appears to retain a similar structure as an octomeric complex comprising four copies each of the ~65 kDa and ~21 kDa products of proteolysis. This processed form of the toxin may represent the active toxin. The quality and monodispersity of the protein produced in this study make Vip3Ag4 a candidate for more detailed structural analysis using cryo-electron microscopy. PMID:28505109

  19. Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects.

    PubMed

    Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L

    2017-01-01

    Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.

  20. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.

    PubMed

    Peters, Katrin; Niessen, Markus; Peterhänsel, Christoph; Späth, Bettina; Hölzle, Angela; Binder, Stefan; Marchfelder, Anita; Braun, Hans-Peter

    2012-06-01

    In most studies, amounts of protein complexes of the oxidative phosphorylation (OXPHOS) system in different organs or tissues are quantified on the basis of isolated mitochondrial fractions. However, yield of mitochondrial isolations might differ with respect to tissue type due to varying efficiencies of cell disruption during organelle isolation procedures or due to tissue-specific properties of organelles. Here we report an immunological investigation on the ratio of the OXPHOS complexes in different tissues of Arabidopsis thaliana which is based on total protein fractions isolated from five Arabidopsis organs (leaves, stems, flowers, roots and seeds) and from callus. Antibodies were generated against one surface exposed subunit of each of the five OXPHOS complexes and used for systematic immunoblotting experiments. Amounts of all complexes are highest in flowers (likewise with respect to organ fresh weight or total protein content of the flower fraction). Relative amounts of protein complexes in all other fractions were determined with respect to their amounts in flowers. Our investigation reveals high relative amounts of complex I in green organs (leaves and stems) but much lower amounts in non-green organs (roots, callus tissue). In contrast, complex II only is represented by low relative amounts in green organs but by significantly higher amounts in non-green organs, especially in seeds. In fact, the complex I-complex II ratio differs by factor 37 between callus and leaf, indicating drastic differences in electron entry into the respiratory chain in these two fractions. Variation in amounts concerning complexes III, IV and V was less pronounced in different Arabidopsis tissues (quantification of complex V in leaves was not meaningful due to a cross-reaction of the antibody with the chloroplast form of this enzyme). Analyses were complemented by in gel activity measurements for the protein complexes of the OXPHOS system and comparative 2D blue native/SDS PAGE analyses using isolated mitochondria. We suggest that complex I has an especially important role in the context of photosynthesis which might be due to its indirect involvement in photorespiration and its numerous enzymatic side activities in plants.

  1. HotRegion: a database of predicted hot spot clusters.

    PubMed

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  2. HIV Nef-mediated cellular phenotypes are differentially expressed as a function of intracellular Nef concentrations.

    PubMed

    Liu, X; Schrager, J A; Lange, G D; Marsh, J W

    2001-08-31

    Nef is a regulatory protein encoded by the genome of both human and simian immunodeficiency virus. Its expression in T cells leads to CD4 and major histocompatibility complex class I modulation and either enhancement or suppression of T cell activation. How this viral protein achieves multiple and at times opposing activities has been unclear. Through direct measurements of Nef and the Nef-GFP fusion protein, we find that these events are mediated by different Nef concentrations. Relative to the intracellular concentration that down-modulates surface CD4, an order of magnitude increase in Nef-GFP expression is required for a comparable modulation of major histocompatibility complex class I, and a further 3-fold increase is necessary to suppress T cell activation.

  3. Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains

    PubMed Central

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.

    2003-01-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812

  4. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.

    PubMed

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T

    2003-04-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.

  5. A comparative study of fibrinogen adsorption onto metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.

    2013-10-01

    One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.

  6. Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.

    PubMed

    van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K

    2010-03-02

    The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  8. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  9. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase Mnx from Bacillus sp. PL-12 has been successfully overexpressed in active form, unexpectedly, as a protein complex with a molecular weight of 211 kDa with no homology to known proteins in the database. We have recently used surface induced dissociation (SID) and ion mobility – mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data frommore » the native mass spectrometry experiment led to a plausible model of this unknown multicopper oxidase which has been difficult to study by conventional structural biology methods. However, because each subunit of Mnx binds copper ions as cofactor at varying ratios, there were remaining ambiguities in assigning some of the observed peaks to metal-binding species because of the sample heterogeneity and limited mass resolution. In this study, we performed SID in a modified Fourier transform – ion cyclotron resonance (FT-ICR) mass spectrometer for obtaining the ultimate resolution on the released subcomplexes of Mnx. The high mass accuracy and resolution unveiled unexpected artificial modifications in the protein that have been previously thought to be iron bound species based on lower resolution data. Additionally, most released subcomplexes were isotopically resolved for defining metal binding stoichiometry at each structural level. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes.« less

  10. Novel "anchor modification" of polymeric biomaterial surfaces by the utilization of cyclodextrin inclusion complex supramolecules.

    PubMed

    Zhao, Xiaobin; Courtney, James M

    2009-07-01

    In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.

  11. Structural assembly of the signaling competent ERK2–RSK1 heterodimeric protein kinase complex

    PubMed Central

    Alexa, Anita; Gógl, Gergő; Glatz, Gábor; Garai, Ágnes; Zeke, András; Varga, János; Dudás, Erika; Jeszenői, Norbert; Bodor, Andrea; Hetényi, Csaba; Reményi, Attila

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase–kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 “docking” groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they “readjust,” whereas generic kinase domain surface contacts bring them into a catalytically competent state. PMID:25730857

  12. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  13. Zeta Potential Measurements on Solid Surfaces for in Vitro Biomaterials Testing: Surface Charge, Reactivity Upon Contact With Fluids and Protein Absorption

    PubMed Central

    Ferraris, Sara; Cazzola, Martina; Peretti, Veronica; Stella, Barbara; Spriano, Silvia

    2018-01-01

    Surface properties of biomaterials (e.g., roughness, chemical composition, charge, wettability, and hydroxylation degree) are key features to understand and control the complex interface phenomena that happens upon contact with physiological fluids. Numerous physico-chemical techniques can be used in order to investigate in depth these crucial material features. Among them, zeta potential measurements are widely used for the characterization of colloidal suspensions, but actually poorly explored in the study of solid surfaces, even if they can give significant information about surface charge in function of pH and indirectly about surface functional groups and reactivity. The aim of the present research is application of zeta potential measurements of solid surfaces for the in vitro testing of biomaterials. In particular, bare and surface modified Ti6Al4V samples have been compared in order to evaluate their isoelectric points (IEPs), surface charge at physiological pH, in vitro bioactivity [in simulated body fluid (SBF)] and protein absorption. Zeta potential titration was demonstrated as a suitable technique for the surface characterization of surface treated Ti6Al4V substrates. Significant shift of the isoelectric point was recorded after a chemical surface treatment (because of the exposition of hydroxyl groups), SBF soaking (because of apatite precipitation IEP moves close to apatite one) and protein absorption (IEP moves close to protein ones). Moreover, the shape of the curve gives information about exposed functional groups (e.g., a plateau in the basic range appears due to the exposition of acidic OH groups and in the acidic range due to exposition of basic NH2 groups). PMID:29868575

  14. Supramolecular Structures with Blood Plasma Proteins, Sugars and Nanosilica

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gun'ko, V. M.; Galagan, N. P.; Rugal, A. A.; Barvinchenko, V. M.; Gorbyk, P. P.

    Supramolecular structures with blood plasma proteins (albumin, immunoglobulin and fibrinogen (HPF)), protein/water/silica and protein/water/ silica/sugar (glucose, fructose and saccharose) were studied by NMR, adsorption, IR and UV spectroscopy methods. Hydration parameters, amounts of weakly and strongly bound waters and interfacial energy (γ S) were determined over a wide range of component concentrations. The γ S(C protein,C silica) graphs were used to estimate the energy of protein-protein, protein-surface and particle-particle interactions. It was shown that interfacial energy of self-association (γ as) of protein molecules depends on a type of proteins. A large fraction of water bound to proteins can be displaced by sugars, and the effect of disaccharide (saccharose) was greater than that of monosugars. Changes in the structural parameters of cavities in HPF molecules and complexes with HPF/silica nanoparticles filled by bound water were analysed using NMR-cryoporometry showing that interaction of proteins with silica leads to a significant decrease in the amounts of water bound to both protein and silica surfaces. Bionanocomposites with BSA/nanosilica/sugar can be used to influence states of living cells and tissues after cryopreservation or other treatments. It was shown that interaction of proteins with silica leads to strong decrease in the volume of all types of internal cavities filled by water.

  15. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    PubMed Central

    Lindin, Inger; Wuxiuer, Yimingjiang; Ravna, Aina Westrheim; Moens, Ugo; Sylte, Ingebrigt

    2014-01-01

    The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding. PMID:24651460

  16. Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus

    PubMed Central

    2011-01-01

    Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a serum marker for several inflammatory diseases. Furthermore, S100A8 and S100A9 have many pro-inflammatory properties such as binding to Toll-like receptor 4 (TLR4). In this study we investigated if aberrant cell surface S100A8/A9 could be seen in SLE and if plasmacytoid dendritic cells (pDCs) could synthesize S100A8/A9. Methods Flow cytometry, confocal microscopy and real-time PCR of flow cytometry-sorted cells were used to measure cell surface S100A8/A9, intracellular S100A8/A9 and mRNA levels of S100A8 and S100A9, respectively. Results Cell surface S100A8/A9 was detected on all leukocyte subpopulations investigated except for T cells. By confocal microscopy, real-time PCR and stimulation assays, we could demonstrate that pDCs, monocytes and PMNs could synthesize S100A8/A9. Furthermore, pDC cell surface S100A8/A9 was higher in patients with active disease as compared to patients with inactive disease. Upon immune complex stimulation, pDCs up-regulated the cell surface S100A8/A9. SLE patients had also increased serum levels of S100A8/A9. Conclusions Patients with SLE had increased cell surface S100A8/A9, which could be important in amplification and persistence of inflammation. Importantly, pDCs were able to synthesize S100A8/A9 proteins and up-regulate the cell surface expression upon immune complex-stimulation. Thus, S100A8/A9 may be a potent target for treatment of inflammatory diseases such as SLE. PMID:21492422

  17. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    DTIC Science & Technology

    2016-08-05

    immunogenicity loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus inactivation. Thus, we...bacteria Deinococcus radiodurans) in the present study which selectively protects proteins but not the nucleic acid from the radiation - induced...presence of MDP have significant epitope preservation even at supra-lethal doses of radiation . Irradiated viruses were found to be completely

  18. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes.

    PubMed

    Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C

    2018-02-01

    Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  20. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

Top