Sample records for surface radar cross

  1. Relating the microwave radar cross section to the sea surface stress - Physics and algorithms

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Plant, William J.; Brown, Robert A.; Davidson, Kenneth L.; Shaw, William J.

    1991-01-01

    The FASINEX (Frontal Air-Sea Interaction Experiment) provided a unique data set with coincident airborne measurements of the ocean surface radar cross section (at Ku-band) and surface windstress. It is being analyzed to create new algorithms and to better understand the air-sea variables that can have a strong influence on the RCS (radar cross section). Several studies of portions of data from the FASINEX indicate that the RCS is more dependent on the surface stress than on the wind speed. Radar data have been acquired by the JPL and NRL groups. The data span 12 different flight days. Stress measurements can be inferred from ship-board instruments and from aircraft closely following the scatterometers.

  2. Detection and interpretation of ocean roughness variations across the Gulf Stream inferred from radar cross section observations

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Thompson, T. W.

    1977-01-01

    Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.

  3. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  4. Comparison of sigma(o) obtained from the conventional definition with sigma(o) appearing in the radar equation for randomly rough surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1981-01-01

    A comparison is made of the radar cross section of rough surface calculated in one case from the conventional definition and obtained in the second case directly from the radar equation. The validity of the conventional definition representing the cross section appearing in the radar equation is determined. The analysis is executed in the special case of perfectly conducting, randomly corrugated surfaces in the physical optics limit. The radar equation is obtained by solving for the radiation scattered from an arbitrary source back to a colocated antenna. The signal out of the receiving antenna is computed from this solution and the result put into a form recognizeable as the radar equation. The conventional definition is obtained by solving a similar problem but for backscatter from an incident planewave. It is shown that these tow forms for sigma are the same if the observer is far enough from the surface.

  5. Venus: estimates of the surface temperature and pressure from radio and radar measurements.

    PubMed

    Wood, A T; Wattson, R B; Pollack, J B

    1968-10-04

    The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres.

  6. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Astrophysics Data System (ADS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-05-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  7. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  8. Remote sensing data of SP Mountain and SP Lava flow in North-Central Arizona

    USGS Publications Warehouse

    Schaber, G.G.; Elachi, C.; Farr, T.G.

    1980-01-01

    Multifrequency airborne radar image data of SP Mountain [Official name of feature (U.S. Geological Survey, 1970)] and SP flow (and vicinity) in north-central Arizona were obtained in diverse viewing directions and direct and cross-polarization, then compared with surface and aerial photography, LANDSAT multispectral scanner data, airborne thermal infrared imagery, surface geology, and surface roughness statistics. The extremely blocky, basaltic andesite of SP flow is significantly brighter on direct-polarization K-band (0.9-cm wavelength) images than on cross-polarized images taken simultaneously. Conversely, for the longer wavelength (25 cm) L-band radar images, the cross-polarization image returns from SP flow are brighter than the direct-polarized image. This effect is explained by multiple scattering and the strong wavelength dependence of polarization effects caused by the rectilinear basaltic andesite scatters. Two distinct types of surface relief on SP flow, one extremely blocky, the other subdued, are found to be clearly discriminated on the visible and thermal wavelength images but are separable only on the longer wavelength L-band radar image data. The inability of the K- and X- (3-cm wavelength) band radars to portray the differences in roughness between the two SP flow surface units is attributed to the radar frequency dependence of the surface-relief scale, which, described as the Rayleigh criterion, represents the transition between quasispecular and primarily diffuse backscatter. ?? 1980.

  9. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  10. Almond-Shaped Test Body

    NASA Technical Reports Server (NTRS)

    Dominek, Allen; Wood, Richard; Gilreath, Mel

    1992-01-01

    Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.

  11. Looking to the Future: Non-contact Methods for Measuring Streamflow

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Spicer, K.R.; Plant, J.; Keller, W.C.; Hayes, K.; Wahl, T.L.; Pugh, C.A.; Oberg, K.A.; Vermeyen, T.B.

    2002-01-01

    We have conducted a series of proof-of-concept experiments to demonstrate whether it is possible to make completely non-contact open-channel discharge measurements. After an extensive evaluation of potential technologies, we concluded a combination of high-frequency (microwave) radar (for measuring surface velocity) and low-frequency radar (ground-penetrating radar) for measuring channel cross-section, had the best chance for success. The first experiment in 1999 on the Skagit River, Washington, using non-contact methods, produced a discharge value nearly exactly the same as from an ADCP and current meter. Surface-velocity data were converted to mean velocity based on measurements of the velocity profile (multiplied by 0.85), and radar signal speed in impure fresh water was measured to be 0.11-0.12 ft/ns. The weak link was thought to be the requirement to suspend the GPR antenna over the water, which required a bridge or cableway. Two contractors, expert with radar, were unsuccessful in field experiments to measure channel cross-section from the riverbank. Another series of experiments were designed to demonstrate whether both radar systems could be mounted on a helicopter, flown back and forth across a river, and provide data to compute flow. In Sept. 2000 and May 2001, a series of helicopter flights with mounted radar systems successfully measured surface velocity and channel cross-section of the Cowlitz River, Washington.

  12. Radar Observation of Large Attenuation in Convective Storms: Implications for the Dropsize Distribution

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.

    2000-01-01

    Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).

  13. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  14. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  15. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1984-07-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  16. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  17. Studies of the dependence of the microwave radar cross section on ocean surface variables during the FASINEX experiment

    NASA Technical Reports Server (NTRS)

    Weissman, D. A.; Li, Fuk

    1988-01-01

    The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.

  18. Studies of the dependence of the microwave radar cross section on ocean surface variables during the FASINEX experiment

    NASA Astrophysics Data System (ADS)

    Weissman, D. A.; Li, Fuk

    1988-08-01

    The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.

  19. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  20. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  1. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  2. Ku-band ocean radar backscatter observations during SWADE

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.

    1993-01-01

    We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten-flight of NUSCAT data is given. Wind velocities, air and sea surface temperature, ocean spectrum, and other variables measured from aircraft and buoys are also shown.

  3. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  4. Estimating the age of arid-zone alluvial fan surfaces using roughness measurements from spaceborne radar backscatter

    NASA Astrophysics Data System (ADS)

    Hetz, G.; Mushkin, A.; Blumberg, D. G.; Baer, G.; Trabelsky, E.

    2012-12-01

    Alluvial fan surfaces respond to geologic and climate changes as they record the deposition and erosion processes that govern their evolution, which amongst others is manifested in the micro and meso scale topography of the surface. Remote sensing provides a regional view that is very useful for mapping. Some previous publications have demonstrated that relative dating can also be achieved by remote sensing using techniques common in planetary geology such as overlap relationships. This work focuses on the use of radar backscatter as suggested originally by Evans et al., (1992) to map ages but here we will try to provide an absolute geologic age. The objective of this paper is to demonstrate the use of radar backscatter to constrain surface roughness as a calibrated proxy for estimating age of alluvial surfaces. With the unique regional spatial perspective provided by spaceborne imaging, we aim at providing a new and complementary regional perspective for studying neotectonic and recent landscape evolution processes as well as paleoclimate. Moreover, the method (by radar backscattering measure) can be applied to the geomorphology of other planets. The current study is located in the southeastern part of the Negev desert, Israel on the late Pleistocene - Holocene Shehoret alluvial fan sequence. High resolution (0.5 cm) 3D roughness measurements were collected using a ground-based LIDAR (Leica HDS 3000) and these show a robust relationship between independently obtained OSL surface age and surface roughness; the fan surfaces become smoother with time over 103-105 yr timescales. Spaceborne backscatter radar data respond primarily to surface slope, roughness at a scale comparable to the radar wavelength, and other parameters such as dielectric properties of the surface. Therefore, radar can provide a good quantitative indication of surface roughness in arid zones, where vegetation cover is low. Preliminary results show a relationship between surface age and roughness and the radar cross section extracted from polarimetric spaceborne data. The best result is found in cross polarization (HV), L-band measured at an incidence angle of 38°.

  5. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  6. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  7. Space configuration as an explanation for lithology-related cross-polarized radar image anomalies

    NASA Technical Reports Server (NTRS)

    Mccauley, J. R.

    1972-01-01

    Three rock types are described that produce dark cross-polarized images on Ka-band imagery: lava flows dating from Pleistocene and Holocene, some Tertiary volcanics, and certain massive sandstones. Their planar surfaces are large with respect to the wavelength of the Ka-band system, yet are small in comparison to the resolution. It is found that only outcrops with proper faceted surface orientations produce significant radar returns showing the dominance of specular reflectors. The omnidirectional attitude of the facets and their wide distribution on the outcrops explains the independence of look-direction that the flat-lying anomalous outcrops exhibit in production of darker cross-polarized images.

  8. Theoretical studies of the radar properties of the icy Galilean moons of Jupiter

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1993-01-01

    The icy Galilean satellites of Jupiter - Europa, Ganymede, and Callisto - have unusual radar scattering properties compared with those of the terrestrial planets or Earth's Moon. There are three main features of the data that distinguish these targets: (1) the radar cross-section normalized by the geometrical cross-section is an order of magnitude larger than that of any terrestrial planet; (2) the reflected power is almost evenly distributed between two orthogonal polarizations with more power being returned in the same circular polarization as was transmitted whereas virtually all of the power returned from the terrestrial planets is contained in the opposite circular polarization to the one that was transmitted; and (3) the echo power spectra have a broad shape indicating a nearly uniformly radar-bright surface in contrast to the spectra from the terrestrial planets that contain a strong quasi-specular component from the vicinity of the sub-radar point and very little reflected power from the rest of the surface. The normalized radar cross-sections decrease as the areal water ice coverage decreases from Europa to Ganymede to Callisto. Recently, radar echoes from the polar caps of Mars and Mercury, and from Saturn's satellite Titan imply similarly strong cross-sections and have classically unexpected polarization properties and it is also thought that this is due to the presence of ice on the surface. A model called the radar glory model is analyzed and it is shown that the main features of the radar echoes calculated from this model agree well with the observations from all three icy Galilean satellites. This model involves long radar paths in the ice below the surface and special structures in which the refractive index decreases abruptly at a hemispherical boundary. It is not known whether such structures exist or how they could be created, but possible scenarios can be imagined such as the formation of an impact crater followed by deposition of a frost layer followed by a resurfacing event in which a layer of solid ice is placed above the layer of frost. Regardless of the exact geophysical processes required to create such structures, the superior ability of this model to account for all of the important observations with very few adjustable parameters and with no ad hoc assumptions is a compelling argument in support of at least the electromagnetic model. The key features of the electromagnetic model are multiple subsurface scattering events, total internal reflection, and a low degree of randomness imposed on a deterministic geometry that strongly favors backscattering.

  9. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  10. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  11. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  12. Rhea's Surface: Ice Properties Measured by Radar.

    NASA Astrophysics Data System (ADS)

    Black, G.; Campbell, D.

    2004-11-01

    We obtained echoes from the leading and trailing hemispheres of Rhea in January 2004 using the Arecibo Observatory's 13-cm radar system. The transmitted signal was circularly polarized and strong echoes were received in both the opposite circular (OC) sense to that transmitted and the same circular (SC) sense. Rhea's mean total cross section normalized by projected area is 1.32±0.10 and the mean circular polarization ratio, the ratio of SC echo power to OC echo power, is 1.17±0.12. The reflectivity of the leading hemisphere may be slightly lower than that of the trailing hemisphere by about 10%, although the polarization ratio appears to vary less. The cross section and polarization ratio are similar to those of the icy Galilean satellites and closest to Ganymede's. For these bodies the high radar backscatter cross sections and high polarization ratios are due to an efficient multiple scattering mechanism in the cold, relatively clean water ice surfaces which have very low propagation loss at radio wavelengths. Rhea's surface appears to be exhibiting a similar effect. Rhea's echo spectra are broad, again similar to those of the icy Galilean satellites, and consistent with a multiple scattering mechanism. In contrast, the bright icy hemisphere of Rhea's sibling Iapetus is significantly more radar dark with a radar reflectivity roughly 10% of Rhea's (Black et al., Science, v304, 2004). On Iapetus this great reduction in scattering efficiency is most likely caused by a radar absorber in the ice, possibly ammonia compounds or buried non-ice material from its dark hemisphere. Rhea's surface ice must therefore be relatively free of contaminants, and have a purity similar to Ganymede's. These observations can constrain the concentration of ammonia in the near surface which would be a strong absorber even in amounts of only a few percent. We acknowledge support by NASA's PG&G program.

  13. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.

  14. An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung; Liao, Liang; Jones, Jeffrey A.; Kwiatkowski, John M.

    2015-01-01

    It has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band-Ka-band combination. The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or sigma(0)) of the surface, the statistics of sigma(0) derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.

  15. Microwave and video sensor fusion for the shape extraction of 3D space objects

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1987-01-01

    A new system for the fusion of optical image data and polarized radar scattering cross-sections is presented. By considering the scattering data in conjunction with image data, the problem of ambiguity can be reduced. Only a small part of the surface needs to be reconstructed from the radar cross-sections; the remaining portion is constrained by the optical image.

  16. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  17. New very high resolution radar studies of the Moon

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Campbell, Bruce

    1987-01-01

    As part of an effort to further understand the geologic utility of radar studies of the terrestrial planets, investigators at the Hawaii Institute of Geophysics are collaborating with NEROC Haystack Observatory, MIT and the Jet Propulsion Laboratory in the analysis of existing 3.8 and 70 cm radar images of the Moon, and in the acquisition of new data for selected lunar targets. The intent is to obtain multi-polarization radar images at resolutions approaching 75 meters (3.8 cm wavelength) and 400 meters (70 cm wavelength) for the Apollo landing sites (thereby exploiting available ground truth) or regions covered by the metric camera and geochemical experiments onboard the command modules of Apollos 15, 16 and 17. These data were collected in both like- and cross-polarizations, and, in the case of the 70 cm data, permit the phase records to be used to assess the scattering properties of the surface. The distribution of surface units on the Moon that show a mismatch between the surface implied by like- and cross-polarized scattering data is being analyzed, based on the scattering models of Evans and Hagfors.

  18. The relationship between wind vector and normalized radar cross section used to derive Seasat-A Satellite Scatterometer winds

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Boggs, D. H.; Halberstam, I. M.; Dome, G.; Pierson, W. J.; Wentz, F. J.

    1982-01-01

    The Seasat-A Satellite Scatterometer (SASS) ocean normalized radar cross section (NRCS) dependence on the 19.5-m neutral stability wind vector may be specified as a function of radar incidence angle, the angle between wind direction and radar azimuth, and the neutral stability wind speed expressed in m/sec at a height of 19.5 m. An account is given of the development of models both expressing this relationship and providing the basis of inversion of NRCS to SASS winds, from initially aircraft scatterometer measurement-based forms to three Seasat field-validation experiments which furnish model NRCS versus surface windspeed data for comparison with SASS data.

  19. Ground-penetrating radar methods used in surface-water discharge measurements

    USGS Publications Warehouse

    Haeni, F.P.; Buursink, Marc L.; Costa, John E.; Melcher, Nick B.; Cheng, Ralph T.; Plant, William J.

    2000-01-01

    In 1999, an experiment was conducted to see if a combination of complementary radar methods could be used to calculate the discharge of a river without having any of the measuring equipment in the water. The cross-sectional area of the 183-meter wide Skagit River in Washington State was measured using a ground-penetrating radar (GPR) system with a single 100-MHz antenna. A van-mounted, side-looking pulsed-Doppler radar system was used to collect water-surface velocity data across the same section of the river. The combined radar data sets were used to calculate the river discharge and the results compared closely to the discharge measurement made by using the standard in-water measurement techniques.

  20. Use of borehole radar tomography to monitor steam injection in fractured limestone

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.

    2006-01-01

    Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.

  1. Wind Turbine Clutter Mitigation in Coastal UHF Radar

    PubMed Central

    Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness. PMID:24550709

  2. Wind turbine clutter mitigation in coastal UHF radar.

    PubMed

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  3. Initial river test of a monostatic RiverSonde streamflow measurement system

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,

    2003-01-01

    A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.

  4. An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Priester, R. W.

    1978-01-01

    The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.

  5. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  6. Reduced backscattering cross section (Sigma degree) data from the Skylab S-193 radar altimeter

    NASA Technical Reports Server (NTRS)

    Brown, G. S.

    1975-01-01

    Backscattering cross section per unit scattering area data, reduced from measurements made by the Skylab S-193 radar altimeter over the ocean surface are presented. Descriptions of the altimeter are given where applicable to the measurement process. Analytical solutions are obtained for the flat surface impulse response for the case of a nonsymmetrical antenna pattern. Formulations are developed for converting altimeter AGC outputs into values for the backscattering cross section. Reduced data are presented for Missions SL-2, 3 and 4 for all modes of the altimeter where sufficient calibration existed. The problem of interpreting land scatter data is also discussed. Finally, a comprehensive error analysis of the measurement is presented and worst case random and bias errors are estimated.

  7. Robust obstacle detection for unmanned surface vehicles

    NASA Astrophysics Data System (ADS)

    Qin, Yueming; Zhang, Xiuzhi

    2018-03-01

    Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.

  8. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Atlas, David

    1994-01-01

    Synthetic aperture radar (SAR) on board Seasat observed images of stormlike echoes on the sea in 1978. The core of these images is usually an echo-free hole which is attributed to the damping of the short (30-cm) radar detectable gravity waves by the intense rain in the storm core. Although 'the beating down of waves by rain' is consistent with observations by seafarers and with the first scientific explanation of the phenomenon by Reynolds (1875), neither theory nor experiment has provided definitive support. One experiment appears to provide the key; it shows that the kenetic energy of the rain produces sufficient turbulence in a thin fresh water layer to damp 30-cm waves in 10-20 s, thus producing the echo-free hole. A sequence of positive feedbacks then serves to damp the longer waves. The angular dependence of the sea surface echo cross sections seen by Seasat SAR outside the echo-free hole indicates winds diverging from the downdraft induced by the intense rain core. The wind-generated waves and associated echoes extend out to a sharply defined gust front. The sea surface footprint thus mimics the features of a storm microburst. The variations in surface radar cross section due to a combination of rain and wind effects impacts spaceborne measurements of surface winds by scatterometry and rainfall measurements by radar. Portions of this synthesis remain speculative but serve as hypotheses for further research.

  9. Remote sensing of rice fields and sea pollution by SIR-B

    NASA Technical Reports Server (NTRS)

    Fugono, N.; Furuhama, Y.; Takasugi, T.; Okamoto, K.; Fujita, M.; Yoshikado, S.; Masuko, H.; Shinozuka, T.; Inomata, H.; Shiro, I.

    1984-01-01

    Sensor calibration, rice fields, and sea pollution are to be investigated with respect to shuttle imaging radar-B (SIR-B). It is planned that the resolution characteristics of the SIR-B be evaluated, the sidelobe characteristics of the SIR-B be investigated, and the relationship between backscatter cross section and image intensity be established. The microwave-scattering characteristics of rice fields are to be studied using SIR-B data. The possibility of classifying crops from SIR-B data is to be explored. The characteristics of the radar image of oil-like surface films under several sea surface conditions are to be determined. The absolute measurement capability of the sea surface scattering cross section is to be estimated using the SIR.

  10. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  11. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we find in this data set.

  12. The Effect of Sea Surface Slicks on the Doppler Spectrum Width of a Backscattered Microwave Signal.

    PubMed

    Karaev, Vladimir; Kanevsky, Mikhail; Meshkov, Eugeny

    2008-06-06

    The influence of a surface-active substance (SAS) film on the Doppler spectrum width at small incidence angles is theoretically investigated for the first time for microwave radars with narrow-beam and knife-beam antenna patterns. It is shown that the requirements specified for the antenna system depend on the radar motion velocity. A narrow-beam antenna pattern should be used to detect slicks by an immobile radar, whereas radar with a knife-beam antenna pattern is needed for diagnostics from a moving platform. The study has revealed that the slick contrast in the Doppler spectrum width increases as the radar wavelength diminishes, thus it is preferable to utilize wavelengths not larger than 2 cm for solving diagnostic problems. The contrast in the Doppler spectrum width is generally weaker than that in the radar backscattering cross section; however, spatial and temporal fluctuations of the Doppler spectrum width are much weaker than those of the reflected signal power. This enables one to consider the Doppler spectrum as a promising indicator of slicks on water surface.

  13. Signature management of radar returns from wind turbine generators

    NASA Astrophysics Data System (ADS)

    Tennant, A.; Chambers, B.

    2006-04-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, but the Doppler shifts introduced by the WTG blades are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the radar cross section (RCS) of the blade return. The active blade can operate in one of two modes: first the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected; a second mode of operation is to introduce specific coding onto the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques developed for active radar absorbers. Results of theoretical and experimental work using a 10 GHz Doppler radar and scale-model WTG are presented.

  14. Cross-hole radar scanning of two vertical, permeable, reactive-iron walls at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Savoie, J.G.

    2001-01-01

    A pilot-scale study was conducted by the U.S. Army National Guard (USANG) at the Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts, to assess the use of a hydraulic-fracturing method to create vertical, permeable walls of zero-valent iron to passively remediate ground water contaminated with chlorinated solvents. The study was conducted near the source area of the Chemical Spill-10 (CS-10) plume, a plume containing chlorinated solvents that underlies the MMR. Ground-water contamination near the source area extends from about 24 m (meters) to 35 m below land surface. The USANG designed two reactive-iron walls to be 12 m long and positioned 24 to 37 m below land surface to intersect and remediate part of the CS-10 plume.Because iron, as an electrical conductor, absorbs electromagnetic energy, the US Geological Survey used a cross-hole common-depth, radar scanning method to assess the continuity and to estimate the lateral and vertical extent of the two reactive-iron walls. The cross-hole radar surveys were conducted in boreholes on opposite sides of the iron injection zones using electric-dipole antennas with dominant center frequencies of 100 and 250 MHz. Significant decreases in the radar-pulse amplitudes observed in scans that traversed the injection zones were interpreted by comparing field data to results of two-dimensional finite-difference time-domain numerical models and laboratory-scale physical models.The numerical and physical models simulate a wall of perfectly conducting material embedded in saturated sand. Results from the numerical and physical models show that the amplitude of the radar pulse transmitted across the edge of a conductive wall is about 43 percent of the amplitude of a radar pulse transmitted across background material. The amplitude of a radar pulse transmitted through a hole in a conductive wall increases as the aperture of the hole increases. The modeling results indicate that holes with an aperture of less than 40 percent of the dominant wavelength of the radar pulse are not likely to be detected.Based on the results of the numerical and physical modeling, the decreases in radar-pulse amplitudes observed in scans traversing the injection zones are interpreted as electrically conductive zones that outline the distribution of iron. The area interpreted as iron in the northern A-wall contains two zones -- an upper zone about 10 m wide, extending from about 25 to 31 m below land surface, and a lower zone about 8 m wide, extending from 31.5 to 34.5 m below land surface. The area interpreted as iron in the southern B-wall is about 9 m wide, extending from about 27 to 34.5 m below land surface. No discrete holes were interpreted in either the A- or B-wall zones.The interpretation of the field data suggests that (1) the hydraulic-fracturing method introduced iron into the subsurface, but not in the dimensions originally proposed; (2) the iron within the treatment zones is distributed in a generally continuous manner; and (3) excluding the discontinuity in the A-wall, holes within the iron treatment zone, if any, exist at scales smaller than about 10 cm, the resolution limit of the radar antennas and acquisition geometry used for this study. The cross-hole radar method appears to have been an effective method for delineating the distribution of iron in the two walls; however, the veracity of the results cannot be ascertained without excavation or drilling into the treatment zone.

  15. Dependence of the microwave radar cross section on ocean surface variables: Comparison of measurements and theory using data from the Frontal Air-Sea Interaction Experiment

    NASA Astrophysics Data System (ADS)

    Weissman, David E.

    1990-03-01

    The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal Air-Sea Interaction Experiment (FASINEX). This consisted of RCS data from the NASA-Jet Propulsion Laboratory Ku band scatterometer mounted on a C130 aircraft (10 separate flights), as well as a wide variety of atmospheric measurements (including stress) and sea conditions. Measurements across an ocean front demonstrated that the vertical polarization (V-pol) and horizontal polarization (H-pol) radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated. For example, the V-pol theory worked well in most cases studied, while the H-pol theory was usually too low by about a factor of 2 at incidence angles of 50° and 60°.

  16. Surface configuration as an explanation for lithology-related cross-polarized radar image anomalies

    NASA Technical Reports Server (NTRS)

    Mccauley, J. R.

    1973-01-01

    One problem that has persisted since the development of multipolarized radar is the cause or causes of differential depolarization which is expressed as tonal reversals between like- and cross-polarized images of certain outcrops. Rocks producing anomalously low returns on the cross-polarized image could be classed into three general types: (1) certain geologically recent lava flows (late Pleistocene and Holocene), (2) some tertiary volcanics and (3) certain massive sandstones. Differential depolarization has been produced by volcanic rocks of various compositions including rhyolite, rhyodacite, dacite, andesite, and basalt. This has led to the conclusion that differential depolarization is not directly caused by any compositional factor. However, the study of aerial photos and subsequent field observation have led to the conclusion that the weathering and other surface characteristics of the outcrops are responsible for their appearance on multipolarized imagery.

  17. Experimental study of dual polarized radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  18. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  19. On the angle and wavelength dependencies of the radar backscatter from the icy Galilean moons of Jupiter

    NASA Technical Reports Server (NTRS)

    Gurrola, Eric M.; Eshleman, Von R.

    1990-01-01

    This paper reports new developments in the buried crater model that has proved successful in explaining the anomalous strengths and polarizations of the radar echoes from the icy Galilean moons of Jupiter (Europa, Ganymede, and Callisto). The theory is extended to make predictions of the radar cross sections at all points on the surface of the moon, to compute the shape and strength of the power spectra, and to model a wavelength dependence that has been observed.

  20. Determination of mean surface position and sea state from the radar return of a short-pulse satellite altimeter

    NASA Technical Reports Server (NTRS)

    Barrick, D. E.

    1972-01-01

    Using the specular point theory of scatter from a very rough surface, the average backscatter cross section per unit area per radar cell width is derived for a cell located at a given height above the mean sea surface. This result is then applied to predict the average radar cross section observed by a short-pulse altimeter as a function of time for two modes of operation: pulse-limited and beam-limited configurations. For a pulse-limited satellite altimeter, a family of curves is calculated showing the distortion of the leading edge of the receiver output signal as a function of sea state (i.e., wind speed). A signal processing scheme is discussed that permits an accurate determination of the mean surface position--even in high seas--and, as a by-product, the estimation of the significant seawave height (or wind speed above the surface). Comparison of these analytical results with experimental data for both pulse-limited and beam-limited operation lends credence to the model. Such a model should aid in the design of short-pulse altimeters for accurate determination of the geoid over the oceans, as well as for the use of such altimeters for orbital sea-state monitoring.

  1. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  2. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  3. Modeling COSMO-SkyMed measurements of precipitating clouds over the sea using simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.

    2014-07-01

    Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.

  4. Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1997-01-01

    The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.

  5. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is presented. Focus is on the relationship of radar backscatter cross sections at multiple wavelengths, apparent diurnal temperature excursions identified in multi-temporal TIMS images, surface geometries related to weathering style, and parent bedrock lithology.

  6. Preliminary evaluation of the SIR-B response to soil moisture, surface roughness, and crop canopy cover

    NASA Technical Reports Server (NTRS)

    Dobson, M. C.; Ulaby, F. T.

    1986-01-01

    Two predawn ascending data-takes by the Shuttle Imaging Radar-B (SIR-B) were used to evaluate the effects of surface roughness, crop canopy, and soil moisture on radar backscatter. The two images, separated by three days, were both obtained at 30-deg local angle of incidence, but with opposite azimuth viewing directions. The imagery was externally calibrated with respect to the radar backscattering coefficient sigma(0) via response to arrays of point and area-extended targets of known radar cross section. Three land-cover classes: (1) corn, (2) corn stubble and plowed bare soil, and (3) disked bare soil, soybeans, soybean stubble, alfalfa, and clover could be readily separated for either observation date on the basis of image tone alone. The dependence of sigma(0) on the surface roughness and canopy brightness inhibits the capability of SIR to globally estimate the near-surface soil moisture from the value of sigma(0) for single date observations, unless the surface roughness or canopy cover conditions are accounted for. However, within given ranges of these conditions, the sigma(0) was found to be highly correlated with the soil moisture.

  7. Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.

    1992-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.

  8. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    This paper presents some of the results of five of the techniques: cross borehole complex resistivity (CR) also referred to as spectral induced polarization (SIP), cross borehole high resolution seismic (HRS), borehole self potential (SP), surface ground penetration radar (GPR), ...

  9. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part II: Trunk-Ground Double-Bounce Case

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.

  10. Radar cross section of human cardiopulmonary activity for recumbent subject.

    PubMed

    Kiriazi, John E; Boric-Lubecke, Olga; Lubecke, Victor M

    2009-01-01

    The radar cross section (RCS) corresponding to human cardio-respiratory motion is measured for a subject in two different recumbent positions. Lying face-up (supine), the subject showed an RCS of 0.326 m(2). But when lying face-down (prone), the RCS increased to 2.9 m(2). This is the first reported RCS measurement corresponding to human cardio-respiratory motion. The results obtained in this experiment suggest modeling the upper part of the human body as a half-cylinder where the front body corresponds to the cylindrical surface and the back corresponds to the rectangular one.

  11. Radar backscattering properties of corn and soybeans at frequencies of 1.6, 4.75, and 13.3. GHz

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1983-01-01

    The NASA Johnson Space Center made an observational study of the radar-backscattering properties of corn and soybeans in commercial fields in a test site in Webster County, IA. Aircraft-based radar scatterometers measured the backscattering coefficient of the crops at three frequencies, 1.6 GHz (L-band), 4.75 GHz (C-band), and 13.3 GHz (Ku-band), at 10 sensor look-angles (5 to 50 degrees from the nadir in steps of 5 degrees), and with several polarization combinations. Among other findings, it was determined that: (1) row direction differences among fields affected significantly the radar-backscattering coefficient of the fields when the radar system used like-polarization at look-angles from 5 to 25 degrees; (2) row-direction differences had no effect on radar backscattering when the system used either cross-polarization or look-angles greater than 25 degrees regardless of the polarization; (3) wet surface-soil moisture conditions resulted in significantly poorer spectral separability of the two crops as compared to dry-soil conditions; and (4) on the dry-soil date, the best channel for separating corn from soybeans was the C-band cross-polarized measurement at a look-angle of 50 degrees.

  12. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lane, John W.

    1995-01-01

    Four geophysical techniques were used to determine bedrock-fracture orientation and other site characteristics that can be used to determine ground-water movement and contaminant transport at a fractured crystalline bedrock site in Millville and Uxbridge, Massachusetts. Azimuthal seismic- refraction and azimuthal square-array direct-current resistivity surveys were conducted at three sites. Borehole-radar surveys were conducted in a cluster of three wells. Ground-penetrating radar surveys were conducted along roads in the study area. Azimuthal seismic-refraction data indicated a primary fracture strike between 56 and 101 degrees at three sites. Graphical and analytical analysis of azimuthal square-array resistivity data indicated a primary fracture strike from 45 to 90 degrees at three sites. Directional borehole-radar data from three wells indicated 46 fractures or fracture zones located as far as 147 feet from the surveyed wells. Patterns of low radar-wave velocity and high radar- wave attenuation from cross-hole radar surveys of two well pairs were interpreted as a planar fracture zone that strikes 297 degrees and dips 55 degrees south. Ground-penetrating radar surveys with 100-MHz antennas penetrated as much as 150 feet of bedrock where the bedrock surface was at or near land surface. Horizontal and subhorizontal fractures were observed on the ground-penetrating radar records at numerous locations. Correlation of data sets indicates good agreement and indicates primary high- angle fracturing striking east-northeast. Secondary bedrock porosity and average fracture aperture determined from square-array resistivity data averaged 0.0044 and 0.0071 foot. Depths to bedrock observed on the ground-penetrating radar records were 0 to 20 feet below land surface along most of the area surveyed. A bedrock depth from 45 to 50 feet below land surface was observed along one section of Conestoga Drive.

  13. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    NASA Astrophysics Data System (ADS)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  14. Fusion of Cross-Track TerraSAR-X PS Point Clouds over Las Vegas

    NASA Astrophysics Data System (ADS)

    Wang, Ziyun; Balz, Timo; Wei, Lianhuan; Liao, Mingsheng

    2014-11-01

    Persistent scatterer interferometry (PS-InSAR) is widely used in radar remote sensing. However, because the surface motion is estimated in the line-of-sight (LOS) direction, it is not possible to differentiate between vertical and horizontal surface motions from a single stack. Cross-track data, i.e. the combination of data from ascending and descending orbits, allows us to better analyze the deformation and to obtain 3d motion information. We implemented a cross-track fusion of PS-InSAR point cloud data, making it possible to separate the vertical and horizontal components of the surface motion.

  15. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  16. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  17. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. Furthermore, the TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in durationmore » (~10 µs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/µs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. One novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. Finally, we report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.« less

  18. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    DOE PAGES

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; ...

    2016-11-19

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. Furthermore, the TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in durationmore » (~10 µs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/µs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. One novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. Finally, we report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.« less

  19. Surface properties and surficial deposits on Venus: New results from Magellan radar altimeter data analysis

    NASA Astrophysics Data System (ADS)

    Bondarenko, Nataliya V.; Kreslavsky, Mikhail A.

    2018-07-01

    Microwave remote sensing data acquired with Magellan Venus orbiter are the main source of information about the surface of the planet. We analyze variability of the backscattering function (dependence of radar cross-section on incidence angle) for steep incidence angles 0.25°-4.75° in the 75°N-55°S latitude zone with data from the Magellan radar altimeter at 12.6 cm wavelength. We show that all variability of the backscattering function can be described by three parameters, describing (1) surface reflectivity, (2) relative proportion of horizontal facets, and (3) general roughness. Analysis of maps of these parameters revealed that surficial deposits, for example, microdune fields, are abundant on Venus even in places, where they are not readily seen in the synthetic aperture radar images. Properties of surficial deposits rather than original volcanic flow roughness define the shape of the backscattering function on the majority of regional plains. A large radar-dark flow in Bereghinia Planitia has anomalously high proportion of horizontal facets, which is consistent with it being formed by a relatively recent plain-forming volcanic episode. Some crater-associated radar-dark diffuse features and splotches are also characterized by increased proportion of horizontal faces, which indicate the presence of mantles deposited from fluidized granular material. The backscattering functions of the anomalous radar-bright material of mountaintops are more consistent with the strong internal scattering hypothesis rather than the exotic surficial material hypothesis. Obtained maps can be useful for planning future lander missions to sites with access to surface material with known provenance.

  20. Assessment of the Performance of a Dual-Frequency Surface Reference Technique

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang; Tanelli, Simone; Durden, Stephen

    2013-01-01

    The high correlation of the rain-free surface cross sections at two frequencies implies that the estimate of differential path integrated attenuation (PIA) caused by precipitation along the radar beam can be obtained to a higher degree of accuracy than the path-attenuation at either frequency. We explore this finding first analytically and then by examining data from the JPL dual-frequency airborne radar using measurements from the TC4 experiment obtained during July-August 2007. Despite this improvement in the accuracy of the differential path attenuation, solving the constrained dual-wavelength radar equations for parameters of the particle size distribution requires not only this quantity but the single-wavelength path attenuation as well. We investigate a simple method of estimating the single-frequency path attenuation from the differential attenuation and compare this with the estimate derived directly from the surface return.

  1. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  2. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band

    NASA Astrophysics Data System (ADS)

    Jang, Hong-Kyu; Lee, Won-Jun; Kim, Chun-Gon

    2011-01-01

    In this study, the authors developed a radar absorbing method to reduce the antenna radar cross section (RCS) without any loss of antenna performance. The new method was based upon an electromagnetic bandgap (EBG) absorber using conducting polymer (CP). First, a microstrip patch antenna was made by using a copper film and glass/epoxy composite materials, which are typically used for load-bearing structures, such as aircraft and other vehicles. Then, CP EBG patterns were also designed that had a 90% electromagnetic (EM) wave absorbing performance within the X-band (8.2-12.4 GHz). Finally, the CP EBG patterns were printed on the top surface of the microstrip patch antenna. The measured radar absorbing performance of the fabricated patch antenna showed that the frontal RCS of the antenna declined by nearly 95% at 10 GHz frequency while the CP EBG patterns had almost no effect on the antenna's performance.

  3. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images

    NASA Astrophysics Data System (ADS)

    Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.

    2016-03-01

    A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.

  4. Bell's twin rockets non-inertial length enigma resolved by real geometry

    NASA Astrophysics Data System (ADS)

    Coleman, Brian

    A priori uniformity and monotonicity of the 'non-inertial length' expansion of a uniformly co-accelerating medium, uniquely yield an unfamiliar 'hemicoid' real-values metric surface ϒ in R3 . ϒ (τ, l) hosts congruent helicoidally distributed fixed-l 'hemix world-lines' tracing medium increments' clock times τ and crossed by fixed- τ medium helices of parameterized length λ sharing comoving 'non-inertial frames'. Radar intervals and expansion factor ∂λ / ∂l = √ (1 +v2 /c2) conform to requirements established in Coleman, Results in Physics,6, 2016-Minkowski spacetime does not apply to a homogeneously accelerating medium. Co-directional radar paths on ϒ mapped from home frame chart diagonals crossing hyperbolic world-lines, surf 'horizon' increment hemices, whereas counter-directional radar paths tend to 'overlap' horizon medium helices. They also traverse each medium expansion helix at respectively identical angles and geodesic curvatures, independently of differing rocket emission times. Surface ϒ 's real metric is: ds2 = dτ2 + dλ2 +[ 2 tanhτ . (tanhτ - 1 / coshτ) / √ (1 +tanh2 τ) ] dτ . dλ .

  5. Chinese HJ-1C SAR And Its Wind Mapping Capability

    NASA Astrophysics Data System (ADS)

    Huang, Weigen; Chen, Fengfeng; Yang, Jingsong; Fu, Bin; Chen, Peng; Zhang, Chan

    2010-04-01

    Chinese Huan Jing (HJ)-1C synthetic aperture radar (SAR) satellite has been planed to be launched in 2010. HJ-1C satellite will fly in a sun-synchronous polar orbit of 500-km altitude. SAR will be the only sensor on board the satellite. It operates in S band with VV polarization. Its image mode has the incidence angles 25°and 47°at the near and far sides of the swath respectively. There are two selectable SAR modes of operation, which are fine resolution beams and standard beams respectively. The sea surface wind mapping capability of the SAR has been examined using M4S radar imaging model developed by Romeiser. The model is based on Bragg scattering theory in a composite surface model expansion. It accounts for contributions of the full ocean wave spectrum to the radar backscatter from ocean surface. The model reproduces absolute normalized radar cross section (NRCS) values for wide ranges of wind speeds. The model results of HJ-1C SAR have been compared with the model results of Envisat ASAR. It shows that HJ-1C SAR is as good as Envisat ASAR at sea surface wind mapping.

  6. Oil Slick Observation at Low Incidence Angles in Ku-Band

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  7. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  8. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  9. Tectonic geomorphology of the Andes with SIR-A and SIR-B

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Fielding, Eric J.

    1986-01-01

    Data takes from SIR-A and SIR-B (Shuttle Imaging Radar) crossed all of the principal geomorphic provinces of the central Andes between 17 and 34 S latitude. In conjunction with Thematic Mapping images and photographs from hand-held cameras as well as from the Large Format Camera that was flown with SIR-B, the radar images give an excellent sampling of Andean geomorphology. In particular, the radar images show new details of volcanic rocks and landforms of late Cenozoic age in the Puna, and the exhumed surfaces of tilted blocks of Precambrian crystalline basement in the Sierras Pampeanas.

  10. Guide to Magellan image interpretation

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Plaut, Jeffrey J.; Weitz, Catherine M.; Farr, Tom G.; Senske, David A.; Stofan, Ellen R.; Michaels, Gregory; Parker, Timothy J.; Fulton, D. (Editor)

    1993-01-01

    An overview of Magellan Mission requirements, radar system characteristics, and methods of data collection is followed by a description of the image data, mosaic formats, areal coverage, resolution, and pixel DN-to-dB conversion. The availability and sources of image data are outlined. Applications of the altimeter data to estimate relief, Fresnel reflectivity, and surface slope, and the radiometer data to derive microwave emissivity are summarized and illustrated in conjunction with corresponding SAR image data. Same-side and opposite-side stereo images provide examples of parallax differences from which to measure relief with a lateral resolution many times greater than that of the altimeter. Basic radar interactions with geologic surfaces are discussed with respect to radar-imaging geometry, surface roughness, backscatter modeling, and dielectric constant. Techniques are described for interpreting the geomorphology and surface properties of surficial features, impact craters, tectonically deformed terrain, and volcanic landforms. The morphologic characteristics that distinguish impact craters from volcanic craters are defined. Criteria for discriminating extensional and compressional origins of tectonic features are discussed. Volcanic edifices, constructs, and lava channels are readily identified from their radar outlines in images. Geologic map units are identified on the basis of surface texture, image brightness, pattern, and morphology. Superposition, cross-cutting relations, and areal distribution of the units serve to elucidate the geologic history.

  11. Surface Properties of the Moon, Venus and Small Bodies from Radar Observations

    NASA Technical Reports Server (NTRS)

    Campbell, Donald B.

    1997-01-01

    Studies of the moon during the period of the grant revolved around the issues of the possible presence of ice at the lunar poles and the determination of the electrical properties of the maria regoliths. The search for ice at the poles was conducted using measurements of the radar backscatter cross sections and circular polarization ratios measured from 125 m resolution Arecibo radar imagery at 13 cm wavelength obtained by Nicholas Stacy. No clear indication of the presence of ice was found in areas thought to be in permanent shadow from solar radiation. Then Cornell graduate student Greg Black modeled the radar backscattering behavior of the icy Galilean satellites using three wavelength measurements of their radar backscattering properties obtained with the Arecibo and Goldstone radars. The radar scattering properties of Europa, Ganymede, and Callisto are unlike those of any other object observed with planetary radars. They are strongly backscattering with specific radar cross sections that can exceed unity. Polarization ratios are also high, approx. 1.5, indicative of multiple scattering, and the echos follow a diffuse scattering law at all incident angles with no indication of quasi-specular reflections. 3) Most of our effort on small bodies went into developing and investigating methods for long baseline radar synthesis imaging of near-earth asteroids and comets. At X-band, the width of the synthesized beam of the Very Long Baseline Array (VLBA) is approximately 15 m at 0.03AU, a typical close approach distance for near-earth asteroids. A small amount of work was done analyzing Venus data from Arecibo and the Magellan mission.

  12. Fundamental studies of radar scattering from water surfaces: The Lake Washington experiment

    NASA Technical Reports Server (NTRS)

    Salam, A.; Bush, D.; Gogineni, S.; Zaide, A.

    1991-01-01

    The University of Kansas and the University of Washington conducted a series of experiments during July and August of 1989, and July and August of 1990, to study the effects of various geophysical parameters on radar backscatter. The experiments were conducted from a platform in Lake Washington. Measurements of backscattered power and radar range were made by the University of Kansas, and environmental data such as wind speed, wind direction, and air and water temperature were measured by the University of Washington. Results of preliminary data processing are described. Radar data were acquired using two radars, one that operated at C and X bands and another at Ka band. Measurements were made at W and HH antenna polarizations, at different angles of incidence and under various wind conditions. Plots of backscattered power, normalized radar cross section, and wave height, and the Modulation Transfer Functions of selected data are presented.

  13. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    NASA Astrophysics Data System (ADS)

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  14. SASS measurements of the Ku-band radar signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Grantham, W. L.; Mitchell, J. L.; Sweet, J. L.

    1982-01-01

    SeaSat-A Satellite Scatterometer (SASS) measurements of normalized radar cross section (NRCS) have been merged with high quality surface-wind fields based on in situ, to create a large data base of NRCS-wind signature data. These data are compared to the existing NRCS-wind model used by the SASS to infer winds. Falso-color maps of SASS NRCS and ocean winds from multiple orbits show important synoptic trends.

  15. XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays

    NASA Astrophysics Data System (ADS)

    Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.

    1995-06-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.

  16. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  17. Method and apparatus for sensor fusion

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Inventor); Shaw, Scott (Inventor); Defigueiredo, Rui J. P. (Inventor)

    1991-01-01

    Method and apparatus for fusion of data from optical and radar sensors by error minimization procedure is presented. The method was applied to the problem of shape reconstruction of an unknown surface at a distance. The method involves deriving an incomplete surface model from an optical sensor. The unknown characteristics of the surface are represented by some parameter. The correct value of the parameter is computed by iteratively generating theoretical predictions of the radar cross sections (RCS) of the surface, comparing the predicted and the observed values for the RCS, and improving the surface model from results of the comparison. Theoretical RCS may be computed from the surface model in several ways. One RCS prediction technique is the method of moments. The method of moments can be applied to an unknown surface only if some shape information is available from an independent source. The optical image provides the independent information.

  18. Theory and measure of certain image norms in SAR

    NASA Technical Reports Server (NTRS)

    Raney, R. K.

    1984-01-01

    The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.

  19. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  20. Bird radar validation in the field by time-referencing line-transect surveys.

    PubMed

    Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.

  1. Use of radars to monitor stream discharge by noncontact methods

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.

  2. Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition

    NASA Astrophysics Data System (ADS)

    Hong, Sang-Hoon; Wdowinski, Shimon

    2013-08-01

    Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.

  3. Radar Cross Section Prediction for Coated Perfect Conductors with Arbitrary Geometries.

    DTIC Science & Technology

    1986-01-01

    equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the boundary surfaces. The method of...matrix inversion for the unknown surface current coefficients. Huygens’ principle is again applied to calculate the scattered electric field produced...differential equations with the equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the

  4. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  5. Shielded loaded bowtie antenna incorporating the presence of paving structure for improved GPR pipe detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Jansen, Ronald; Schoebel, Joerg

    2014-12-01

    In civil engineering Ground Penetrating Radar becomes more and more a considerable tool for nondestructive testing and exploration of the underground. For example, the detection of existence of utilization pipe networks prior to construction works or detection of damaged spot beneath a paved street is a highly advantageous application. However, different surface conditions as well as ground bounce reflection and antenna cross-talk may seriously affect the detection capability of the entire radar system. Therefore, proper antenna design is an essential part in order to obtain radar data of high quality. In this paper we redesign a given loaded bowtie antenna in order to reduce strong and unwanted signal contributions such as ground bounce reflection and antenna cross-talk. During the optimization process we also review all parameters of our existing antenna in order to maximize energy transfer into ground. The entire process incorporating appropriate simulations along with running measurements on our GPR test site where we buried different types of pipes and cables for testing and developing radar hardware and software algorithms under quasi-real conditions is described in this paper.

  6. Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys

    PubMed Central

    Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103

  7. Application of ground-penetrating-radar methods in hydrogeologic studies

    USGS Publications Warehouse

    Beres, Milan; Haeni, F.P.

    1991-01-01

    A ground-penetrating-radar system was used to study selected stratified-drift deposits in Connecticut. Ground-penetrating radar is a surface-geophysical method that depends on the emission, transmission, reflection, and reception of an electromagnetic pulse and can produce continuous high-resolution profiles of the subsurface rapidly and efficiently. Traverse locations on land included a well field in the town of Mansfield, a sand and gravel pit and a farm overlying a potential aquifer in the town of Coventry, and Haddam Meadows State Park in the town of Haddam. Traverse locations on water included the Willimantic River in Coventry and Mansfield Hollow Lake in Mansfield. The penetration depth of the radar signal ranged from about 20 feet in fine-grained glaciolacustrine sediments to about 70 feet in coarse sand and gravel. Some land records in coarse-grained sediments show a distinct, continuous reflection from the water table about 5 to 11 feet below land surface. Parallel reflectors on the records are interpreted as fine-grained sediments. Hummocky or chaotic reflectors are interpreted as cross-bedded or coarse-grained sediments. Other features observed on some of the radar records include the till and bedrock surface. Records collected on water had distinct water-bottom multiples (more than one reflection) and diffraction patterns from boulders. The interpretation of the radar records, which required little or no processing, was verified by using lithologic logs from test holes located along some of the land traverses and near the water traverses.

  8. Radar observation of an along-front jet and transverse flow convergence associated with a North Sea front

    NASA Astrophysics Data System (ADS)

    Matthews, J. P.; Fox, A. D.; Prandle, D.

    1993-01-01

    This paper describes the first synoptic mapping of surface currents across a strong and stable tidal mixing front by HF radar. The radar deployment took place along the coast of northeast England during August and early September 1988 in parallel with extensive ship based CTD density and ADCP (Acoustic Doppler Current Profiler) measurements which provided data in the vertical plane to complement those of the HF radar. We describe two main results. Firstly, during a spring-tide period of strengthening inshore density gradients, an along-front jet with speeds of up to 14 cm s -1 was detected in the long term IIF radar residual field. The location and spatial form of this jet correspond with estimates of geostrophic currents derived from the measured density field. Secondly, a transverse "double-sided" surface flow convergence centred close to the frontal boundary and of net magnitude 4 cm s -1 accompanied the large along-front jet. Such a weaker cross-frontal component has been anticipated on theoretical grounds but never previously observed in this detailed fashion. The experiment underlines the power of a synergistic approach, based on HF remote sensing radar and ADCP, for the study of frontal circulation in coastal zones.

  9. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  10. 2nd Generation Airborne Precipitation Radar (APR-2)

    NASA Technical Reports Server (NTRS)

    Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.

    2012-01-01

    Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .

  11. Airborne ROWS data report for the high resolution experiment, June 1993

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Hines, D.; Bailey, S.; Stewart, K.

    1994-01-01

    Airborne radar ocean wave spectrometer (ROWS) data collected during the Office of Naval Research's High Resolution Remote Sensing Experiment of June 1993 are presented. This data summary covers six flights made using NASA's T-39 aircraft over a region of the North Atlantic off the coast of North Carolina and includes multiple crossings of the gulf stream. The Ku-band ROWS was operated in a configuration which continuously switched between an altimeter and a spectrometer channel. Data derived from the two channels include altimeter radar cross section, altimeter-derived sea surface mean square slope and wind speed, and directional and nondirectional longwave spectra. Discussion is provided for several events of particular interest.

  12. Radar, visual and thermal characteristics of Mars: Rough planar surfaces

    USGS Publications Warehouse

    Schaber, G.G.

    1980-01-01

    High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249-4291), were found to possess such a recent mantle. At predawn residual temperatures ??? -10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin. ?? 1980.

  13. Nonprincipal plane scattering of flat plates and pattern control of horn antennas

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng

    1989-01-01

    Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.

  14. Impact of frequency and polarization diversity on a terahertz radar's imaging performance

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria

    2011-05-01

    The Jet Propulsion Laboratory's 675 GHz, 25 m standoff imaging radar can achieve >1 Hz real time frame rates over 40x40 cm fields of view for rapid detection of person-borne concealed weapons. In its normal mode of operation, the radar generates imagery based solely on the time-of-flight, or range, between the radar and target. With good clothing penetration at 675 GHz, a hidden object will be detectable as an anomaly in the range-to-surface profile of a subject. Here we report on results of two modifications in the radar system that were made to asses its performance using somewhat different detection approaches. First, the radar's operating frequency and bandwidth were cut in half, to 340 GHz and 13 GHz, where there potential system advantages include superior transmit power and clothing penetration, as well as a lower cost of components. In this case, we found that the twofold reduction in range and cross-range resolution sharply limited the quality of through-clothes imagery, although some improvement is observed for detection of large targets concealed by very thick clothing. The second radar modification tested involved operation in a fully polarimetric mode, where enhanced image contrast might occur between surfaces with different material or geometric characteristics. Results from these tests indicated that random speckle dominates polarimetric power imagery, making it an unattractive approach for contrast improvement. Taken together, the experiments described here underscore the primary importance of high resolution imaging in THz radar applications for concealed weapons detection.

  15. Temporal Stability of Surface Roughness Effects on Radar Based Soil Moisture Retrieval During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.

    2008-01-01

    A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.

  16. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  17. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer (friction velocity and roughness height) were retrieved by velocity profiling and subsequent data processing based on self-similarity of the turbulent boundary layer and 10-m wind speed was calculated. The wind wave field parameters in the flume were measured by three wire gauges. The measured data on wind waves were used for estimation of the short wave spectra and slope probability density function for "long waves" within composite Bragg theory of microwave radar return. Estimations showed that for co-polarized radar returns the difference between measurements and the predictions of the model is about 1-2 dB and it can be explained by our poor knowledge about the short wave part of the spectrum. For cross-polarized return the difference exceeds 10 dB, and it indicates that some non-Bragg mechanisms (short-crested waves, foam, sprays, etc) are responsible for the depolarization of the returned signal. It seems reasonable then to suppose that the cross-polarized radar return in X- and C-bands will demonstrate similar dependence on wind speed. We compared the dependence of cross-polarized X-band radar cross-section on 10-m wind speed obtained in laboratory conditions with the similar dependence obtained in [2] from the field data for C-band radar cross-section and found out that the laboratory data follow the median of the field data with the constant bias -11 dB. Basing on laboratory data an empirical polynomial geophysical model function was suggested for retrieving wind speed up to 40 m/s from cross-polarized microwave return, which is in good agreement with the direct measurements. This work was carried out under financial support of the RFBR (project codes ¹ 13-05-00865, 12-05-12093) and by grant from the Government of the Russian Federation (project code 11.G34.31.0048). References [1] B. Zhang, W. Perrie Bull. Amer. Meteor. Soc., 93, 531-541, 2012. [2] G.-J. van Zadelhoff, et.al. Atmos. Meas. Tech. Discuss., 6, 7945-7984, doi:10.5194/amtd-6-7945-2013, 2013.

  18. External calibration of polarimetric radar images using distributed targets

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    A new technique is presented for calibrating polarimetric synthetic aperture radar (SAR) images using only the responses from natural distributed targets. The model for polarimetric radars is assumed to be X = cRST where X is the measured scattering matrix corresponding to the target scattering matrix S distorted by the system matrices T and R (in general T does not equal R(sup t)). To allow for the polarimetric calibration using only distributed targets and corner reflectors, van Zyl assumed a reciprocal polarimetric radar model with T = R(sup t); when applied for JPL SAR data, a heuristic symmetrization procedure is used by POLCAL to compensate the phase difference between the measured HV and VH responses and then take the average of both. This heuristic approach causes some non-removable cross-polarization responses for corner reflectors, which can be avoided by a rigorous symmetrization method based on reciprocity. After the radar is made reciprocal, a new algorithm based on the responses from distributed targets with reflection symmetry is developed to estimate the cross-talk parameters. The new algorithm never experiences problems in convergence and is also found to converge faster than the existing routines implemented for POLCAL. When the new technique is implemented for the JPL polarimetric data, symmetrization and cross-talk removal are performed on a line-by-line (azimuth) basis. After the cross-talks are removed from the entire image, phase and amplitude calibrations are carried out by selecting distributed targets either with azimuthal symmetry along the looking direction or with some well-known volume and surface scattering mechanisms to estimate the relative phases and amplitude responses of the horizontal and vertical channels.

  19. Titan's "Hot Cross Bun": A Titan Laccolith?

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Stofan, E. R.; Wall, S. D.; Wood, C.; Kirk, R. L.; Lucas, A.; Mitchell, K. L.; Lunine, J. I.; Turtle, E. P.; Radebaugh, J.; Malaska, M.; Cassini RADAR Team

    2012-10-01

    Cassini’s RADAR instrument acquired Synthetic Aperture Radar data during the T83 flyby on May 22, 2012. The data showed a feature centered at 38.5N, 203W that resembles a “hot cross bun”. This type of feature has not been seen on Titan before, even though 52% of Titan’s surface has been imaged using SAR. The feature, approximately 100 km across, is mostly radar bright but the cross pattern, interpreted to be extensional fractures, located roughly at the center of the brighter area, appears darker at radar wavelengths (2.3 cm). Radar illumination of the image indicates that the fractures are lower in elevation than the surrounding bright region. The morphology of the region is markedly similar to that of a 30-km dome-shaped feature on Venus that lies at the summit of the Kunapipi volcano. The Venus feature is interpreted to be the result of intrusion of magma at the summit of the volcano [1]. A similar feature, interpreted as a laccolith, is seen on the Moon near the crater Ramsden [2]. The lunar feature, imaged by the Lunar Reconnaissance Orbiter, shows the cross-shaped depression over a 300 m high rise. No topographic data for the feature on Titan are available at this time, but the morphology seen by the SAR data suggests that the feature may have been formed by material pushing up from below. Laccoliths form when an igneous intrusion splits apart two strata, resulting in a domeline structure. This previously unknown type of structure on Titan may be yet another indication of cryovolcanism. [1] Stofan, E.R., et al, Icarus, 152, 75-95, 2001. [2] Wichman, R.W. and Schultz, P. H. (1996). Icarus, 122, Issue 1, July 1996, pages 193-199. doi:10.1006/icar.1996.0118

  20. The relationship among sea surface roughness variations, oceanographic analyses, and airborne remote sensing analyses

    NASA Technical Reports Server (NTRS)

    Oertel, G. F.; Wade, T. L.

    1981-01-01

    The synthetic aperture radar (SAR) was studied to determine whether it could image large scale estuaries and oceanic features such as fronts and to explain the electromagnetic interaction between SAR and the individual surface front features. Fronts were observed to occur at the entrance to the Chesapeake Bay. The airborne measurements consisted of data collection by SAR onboard an F-4 aircraft and real aperture side looking radar (SLAR) in Mohawk aircraft. A total of 89 transects were flown. Surface roughness and color as well as temperature and salinity were evaluated. Cross-frontal surveys were made. Frontal shear and convergence flow were obtained. Surface active organic materials, it was indicated, are present at the air-sea interface. In all, 2000 analyses were conducted to characterize the spatial and temporal variabilities associated with water mass boundaries.

  1. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  2. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  3. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  4. Are the Viking Lander sites representative of the surface of Mars?

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Christensen, P. R.

    1986-01-01

    Global remote sensing data of the Martian surface, collected by earth- and satellite-based instruments, are compared with data from the two Viking Landers to determine if the Lander data are representative of the Martian surface. The landing sites are boulder-strewn and feature abundant fine material and evidence of strong eolian forces. One site (VL-1) is in a plains-covered basin which is associated with volcanic activity; the VL-2 site is in the northern plains. Thermal IR, broadband albedo, color imaging and radar remote sensing has been carried out of the global Martian surface. The VL-1 data do not fit a general correlation observed between increases in 70-cm radar cross-sections and thermal inertia. A better fit is found with 12.5-cm cross sections, implying the presence of a thinner or discontinuous duricrust at the VL-1 site, compared to other higher-inertia regions. A thin dust layer is also present at the VL-2 site, based on the Lander reflectance data. The Lander sites are concluded to be among the three observed regions of anomalous reflectivity, which can be expected in low regions selected for the landings. Recommendations are furnished for landing sites of future surface probes in order to choose sites more typical of the global Martian surface.

  5. Radar backscatter from the sea: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. K.

    1992-04-01

    The subwindowing method of modelling synthetic-aperture-radar (SAR) imaging of ocean waves was extended to allow wave propagation in arbitrary directions. Simulated images show that the SAR image response to swells that are imaged by velocity bunching is reduced by random smearing due to wind-generated waves. The magnitude of this response is not accurately predicted by introducing a finite coherence time in the radar backscatter. The smearing does not affect the imaging of waves by surface radar cross-section modulation, and is independent of the wind direction. Adjusting the focus of the SAR processor introduces an offset in the image response of the surface scatters. When adjusted by one-half the azimuthal phase velocity of the wave, this compensates the incoherent advance of the wave being imaged, leading to a higher image contrast. The azimuthal cut-off and range rotation of the spectral peak are predicted when the imaging of wind-generated wave trains is simulated. The simulated images suggest that velocity bunching and azimuthal smearing are strongly interdependent, and cannot be included in a model separately.

  6. Radar observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Shapiro, I. I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity.

  7. Planning for VRM: Radar and sonar studies of volcanic terrains on Earth, Venus and Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.; Gaddis, L. R.; Blake, P. L.; Fryer, P.; Ferrall, C.

    1985-01-01

    Venera 15 and 16 radar images of Venus, together with Earth based data from the Arecibo Observatory, indicate that volcanism has played an important role in the evolution of the Venusian landscape. At the end of this decade, NASA's Venus Radar Mapper (VRM) spacecraft will return near global information that will further constrain the planet's geologic history. Due to the diversity of volcano/tectonic features that have already been identified on Venus, and the intrinsic differences between radar images and conventional photography, additional expertise is being developed with which to interpret the VRM images of this unusual environment. Several attempts to better understand the physical characteristics of volcanic terrains are described here. Pioneer Venus radar altimeter measurements of topographic variability and surface roughness are compared with Goldstone radar measurements of volcanic terrains on Mars. Synthetic aperture radar images obtained by the SIR-B Space Shuttle experiment over Kilauea Volcano, Hawaii, are employed to investigate the differences in radar returns from pahoehoe, aa and sheet lava flows. Four polarization, multiple incidence angle, aircraft radar images of the Medicine Lake area of N. California are used to address the unusually high cross-polarization ratio of lobate flows around Beta Regio on Venus, as measured by the Arecibo radar.

  8. Measuring Directional Wave Spectra and Wind Speed with a Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D.; Wright, C. W.; Swift, R. N.; Scott, J. F.; Hines, D. E.

    1999-01-01

    The geometry for the NASA Scanning Radar Altimeter (SRA) is shown. It transmits a 8-ns duration pulse at Ka-band (8.3 mm) and measures time of flight as it scans a 1 degree (two-way) beam from left to right across the aircraft ground track. The most recent configuration determines the surface elevation at 64 points spaced at uniform angular intervals of about 0.7 across a swath whose width is about 0.8 times the aircraft altitude. The system generates these raster lines of the surface topography beneath the aircraft at about a 10 Hz rate. In postflight processing the SRA wave topographic data are transformed with a two-dimensional Fast Fourier Transformation (FFT) and Doppler corrected to produce directional wave spectra. The SRA is not absolutely calibrated in power, but by measuring the relative fall-off of backscatter with increasing incidence angle, the SRA can also determine the mean square slope (mss) of the sea surface, a surrogate for wind speed. For the slope-dependent specular point model of radar sea surface scattering, an expression approximated by a geometric optics form, for the relative variation with incidence angle of the normalized backscatter radar cross section would be sigma (sup 0) (sub rel) = sec (exp 4) theta exp (-tan squared theta/mss) where theta is the off-nadir incidence angle.

  9. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH, and VV polarizations to estimate wind speed and directional wave spectra, cross-polarized cross-sections and parameters derived from the full polarimetric matrix will be analyzed to investigate their relation with the environmental conditions (wind, waves), using co-located in situ measurements. With this combination of measurements we will first assess the performance of the ASAR products and inversion scheme to estimate the 2D wave spectra and wind in various configurations of polarization state. In addition, we expect new results on the parameters related to the full polarimetric matrix and their relation with environmental conditions. During this workshop, first results of this experiment will be presented.

  10. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves

    NASA Astrophysics Data System (ADS)

    Voronovich, A. G.; Zavorotny, V. U.

    2001-07-01

    A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for various wind speeds and incident angles. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The calculations were made by assuming the surface-height spectrum of Elfouhaily et al for fully developed seas. Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experimental data represented by the empirical models, with the exception of HH-polarization in the upwind direction. It was assumed that steep breaking waves are responsible for this effect, and the probability density function of large slopes was calculated based on this assumption. The logarithm of this function in the upwind direction can be approximated by a linear combination of wind speed and the appropriate slope. The resulting backscattering cross section for upwind, downwind and cross-wind directions, for winds ranging between 5 and 15 m s-1, and for both polarizations in both wave bands corresponds to experimental results within 1-2 dB accuracy.

  11. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    NASA Astrophysics Data System (ADS)

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  12. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).

  13. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  14. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  15. Simulation and Assessment of a Ku-Band Full-Polarized Radar Scatterometer for Ocean Surface Vector Wind Measurement

    NASA Astrophysics Data System (ADS)

    Dong, X.; Lin, W.; Zhu, D.; Song, Z.

    2011-12-01

    Spaceborne radar scatterometry is the most important tool for global ocean surface wind vector (OSVW) measurement. Performances under condition of high-wind speed and accuracy of wind direction retrievals are two very important concerns for the development of OSVW measurement techniques by radar scatterometry. Co-polarized sigma 0 measurements are employed, for all the spaceborne radar scatterometers developed in past, and future planned missions. The main disadvantages of co-polarized only radar scatterometers for OSVW measurement are: firstly, wind vector retrieval performances varies with the position of the wind vector cells (WVC) within the swath, where WVCs with small incident angels with weaker modulation effect between sigma0 and azimuth incident angle, and the WVCs located in the outer part of the swath with lower signal-to-noise ratio and lower radiometric accuracies, have worse retrieval performances; secondly, for co-polarization measurements, Sigma 0 is the even function of the azimuth incident angle with respect to the real wind direction, which can results in directional ambiguity, and more additional information is need for the ambiguity removal. Theoretical and experimental results show that the cross-polarization measurement can provide complementary directional information to the co-polarization measurements, which can provide useful improvement to the wind vector retrieval performances. In this paper, the simulation and performance assessment of a full-polarized Ku-band radar scatterometer are provided. Some important conclusions are obtained: (1) Compared with available dual co-polarized radar scatterometer, the introduction of cross-polarization information can significantly improve the OSVW retrieval accuracies, where a relatively identical performance can be obtained within the whole swath. Simulation show that without significantly power increase, system design based on rotating-pencil beam design has much better performances than rotation fan-beam system due to its higher antenna gain and signal-to-noise ratio; (2) The performances of the full-polarized measurement, where all the 9 element covariant coefficient elements will be measurement, only have a little improvement compared with the "dual-co-polarization+HVVV" design, which is because of the almost identical characteristics of HVVV and VHHH measurement due to reciprocity; (3) The propagation error of rotation pencil-beam system is obviously much smaller than that of the rotation fan-beam system, which is due to the significant difference of antenna gains and signal-to-noise ratios; (4) Introduction of cross-polarized HVVV measurement can lead to almost identical wind direction retrieval performance for both the rotation pencil-beam and rotation fan-beam systems, which show that the cross-polarization information can significantly improve the wind direction retrieval performances by increasing the number of look angles, compared with the available fixed-fan-beam systems.

  16. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    NASA Astrophysics Data System (ADS)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses the normalized radar cross sections of the surface,σ0, at each frequency and incidence angle to generate the radar return power from the surface. The simulated σ0 data are modeled as realizations from jointly Gaussian random variables with means, variances and correlations obtained from measurements of σ0 from the JPL APR2 (2nd generation Airborne Precipitation Radar) data, which operates at approximately the same frequencies as the DPR. We will discuss the general capabilities of the radar simulator, present some sample results and show how they can be used to assess the performance of the radar retrieval algorithms proposed for the Dual-Frequency GPM radar. In addition, we will report on updates to the simulator using inputs from cloud models with spectral bin microphysics.

  17. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  18. A new low-cost 10 ns pulsed K(a)-band radar.

    PubMed

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor K(a)-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  19. Surface Lagrangian transport in the Adriatic Sea (Mediterranean Sea) from drifters, HF radar and models: implications for fishery and Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Griffa, Annalisa; Carlson, Daniel; Berta, Maristella; Sciascia, Roberta; Corgnati, Lorenzo; Mantovani, Carlo; Fredji, Erick; Magaldi, Marcello; Zambianchi, Enrico; Poulain, Pierre Marie; Russo, Aniello; Carniel, Sandro

    2017-04-01

    Surface transport in the Adriatic Sea is investigated using data from historic drifter data, HF radar and virtual particles computed from a numerical model. Alongshore coastal currents and cyclonic gyres are the primary circulation features that connect regions in the Adriatic Sea. Their strength is highly dependent on the wind, with Southeasterly Sirocco winds driving eastward cross-Adriatic transport from the Italian coasts and Northwesterly Mistral winds enhancing east-to-west transport. Results from the analysis show that Cross-Adriatic connection percentages were higher for east-to-west transport, with westward (eastward) transport observed mostly in the northern (southern) arms of the central and southern gyres. These pathways of patterns influence the connection between Marine Protected Areas (MPAs) and between spawning and nursery areas for small pelagic fish. Percentage connections between MPAs are computed, showing that while the highest percentages occur through boundary currents, significant percentages also occur through cross-gyre transport, suggesting the concept of cell-based ecosystems. The nursery area of the Manfredonia Gulf has limited retention properties, and eggs and larvae are likely to reach the Gulf mostly from remote spawning areas through current transport

  20. Multistatic GNSS Receiver Array for Passive Air Surveillance

    NASA Astrophysics Data System (ADS)

    Wachtl, Stefan; Koch, Volker; Westphal, Robert; Schmidt, Lorenz-Peter

    2016-03-01

    The performance of a passive air surveillance sensor based on Global Navigation Satellite Systems (GNSS) is mainly limited by the receiver noise efficiency, the achievable signal processing gain and the radar cross section (RCS) of an airplane. For surveillance applications large detection ranges as well as a high probability of detection are crucial parameters. Due to the very low GNSS signal powers received on the earth's surface, high radar cross sections are mandatory to achieve detection ranges for airplanes at some kilometers distance. This paper will discuss a multistatic transmitter and receiver arrangement, which is indispensable to get a reasonable detection rate with respect to a hemispheric field of view. The strong performance dependency of such a sensor on the number of transmitters and receivers will be shown by means of some exemplary simulation results.

  1. Metal radomes for reduced RCS performance

    NASA Astrophysics Data System (ADS)

    Wahid, M.; Morris, S. B.

    A frequency selective surface (FSS) comprising a square grid and a hexagonal array of disks is proposed as a means of reducing the Radar Cross Section (RCS) of a radar bay over a wide (2 GHz to 14.6 GHz) frequency bandwidth. Results are presented in terms of transmission loss for an 'A'-type sandwich radome consisting of two FSS layers for normal and non-normal incidence. A single FSS layer on a GRP flat panel is also considered. Good agreement is found between the predicted and measured results. The proposed FSS shows good performance and is relatively insensitive to angle of incidence between 3.8 GHz and 10.1 GHz. Predicted Insertion Phase Delay (IPD) and cross-polar performances are also given. Parametric studies have indicated the versatility of the proposed structure.

  2. Comparison of Image Processing Techniques using Random Noise Radar

    DTIC Science & Technology

    2014-03-27

    detection UWB ultra-wideband EM electromagnetic CW continuous wave RCS radar cross section RFI radio frequency interference FFT fast Fourier transform...several factors including radar cross section (RCS), orientation, and material makeup. A single monostatic radar at some position collects only range and...Chapter 2 is to provide the theory behind noise radar and SAR imaging. Section 2.1 presents the basic concepts in transmitting and receiving random

  3. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  4. Xpatch prediction improvements to support multiple ATR applications

    NASA Astrophysics Data System (ADS)

    Andersh, Dennis J.; Lee, Shung W.; Moore, John T.; Sullivan, Douglas P.; Hughes, Jeff A.; Ling, Hao

    1998-08-01

    This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time-domain signature sand synthetic aperture radar (SAR) images of realistic 3D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, IGES curved surfaces, or solid geometries.The computer code, Xpatch, based on the shooting-and-bouncing-ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. Xpatch computers the first- bounce physical optics (PO) plus the physical theory of diffraction (PTD) contributions. Xpatch calculates the multi-bounce ray contributions by using geometric optics and PO for complex vehicles with materials. It has been found that the multi-bounce calculations, the radar return in typically 10 to 15 dB too low. Examples of predicted range profiles, SAR, imagery, and RCS for several different geometries are compared with measured data to demonstrate the quality of the predictions. Recent enhancements to Xpatch include improvements for millimeter wave applications and hybridization with finite element method for small geometric features and augmentation of additional IGES entities to support trimmed and untrimmed surfaces.

  5. Silicon containing electroconductive polymers and structures made therefrom

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Distefano, Salvador (Inventor); Liang, Ranty H. (Inventor)

    1991-01-01

    An electropolymerized film comprised of polymers and copolymers of a monomer is formed on the surface of an anode. The finished structures have superior electrical and mechanical properties for use in applications such as electrostatic dissipation and for the reduction of the radar cross section of advanced aircraft.

  6. Wind turbine generators with active radar signature control blades

    NASA Astrophysics Data System (ADS)

    Tennant, Alan; Chambers, Barry

    2004-07-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.

  7. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  8. Research into Influence of Gaussian Beam on Terahertz Radar Cross Section of a Semicircular Boss

    NASA Astrophysics Data System (ADS)

    Li, Hui-Yu; Li, Qi; She, Jian-Yu; Zhao, Yong-Peng; Chen, De-Ying; Wang, Qi

    2013-08-01

    In radar cross section (RCS) calculation of a rough surface, the model can be simplified into the scattering of geometrically idealized bosses on a surface. Thus the problem of the RCS calculation of a rough surface is changed to the RCS calculation of the semicircular boss. The RCS measurement of scale model can help save time and money. The utilization of terahertz in RCS is attractive because of its special properties: the wavelength of the terahertz wave can help limit the size of the model in a suitable range in the measurement of the scale model and get more detailed data in the measurement of the real object. However, usually the incident beam of a terahertz source is a Gaussian beam; in the theoretical RCS estimation, usually a plane wave is assumed as the incident beam for sake of simplicity which may lead to an error between the measurement and calculation results. In this paper, the method of images is used to calculate the RCS of a semicircular boss at 2.52 THz and the results are compared to the one calculated when the incident beam is a plane wave.

  9. Interpretation of lunar and planetary electromagnetic scattering using the full wave solutions

    NASA Technical Reports Server (NTRS)

    Bahar, E.; Haugland, M.

    1993-01-01

    Bistatic radar experiments carried out during the Apollo 14, 15, and 16 missions provide a very useful data set with which to compare theoretical models and experimental data. Vesecky, et al. report that their model for near grazing angles compares favorably with experimental data. However, for angles of incidence around 80 degrees, all the analytical models considered by Vesecky, et al. predict values for the quasi-specular cross sections that are about half the corresponding values taken from the Apollo 16 data. In this work, questions raised by this discrepancy between the reported analytical and experimental results are addressed. The unified full wave solutions are shown to be in good agreement with the bistatic radar taken during Apollo 14 and 16 missions. Using the full wave approach, the quasi-specular contributions to the scattered field from the large scale surface roughness as well as the diffuse Bragg-like scattering from the small scale surface roughness are accounted for in a unified self-consistent manner. Since the full wave computer codes for the scattering cross sections contain ground truth data only, it is shown how it can be reliably used to predict the rough surface parameters of planets based on the measured data.

  10. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  11. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  12. Aercibo S-band radar program

    NASA Technical Reports Server (NTRS)

    Campbell, Donald B.

    1988-01-01

    The high powered 12.6 cm wavelength radar on the 1000-ft Arecibo reflector is utilized for a number of solar system studies. Chief among these are: (1) surface reflectivity mapping of Venus, Mercury and the Moon. Resolutions achievable on Venus are less than 1.5 km over some areas, for Mercury about 30 km and for the Moon 200 m at present, (2) high time resolution ranging measurements to the surfaces of the terrestrial planets. These measurements are used to obtain profiles and scattering parameters in the equatorial region. They can also be used to test relativistic and gravitational theories by monitoring the rate of advance of the perihelion of the orbit of Mercury and placing limits on the stability of the gravitational constant, (3) measurements of the orbital parameters, figure, spin vector and surface properties of asteroids and comets, and (4) observations of the Galilean Satellites of Jupiter and the satellites of Mars, Phobos and Deimos. The Galilean Satellites of Jupiter were re-observed with the 12.6 cm radar for the first time since 1981. Much more accurate measurements of the scattering properties of the three icy satellites were obtained that generally confirmed previous observations. Unambiguous measurements of the cross section and circular polarizations ratio of Io were also obtained for the first time. The radar scattering properties of four mainbelt asteroids and one near-earth asteroid were studied.

  13. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.

  14. Measurement of sea ice backscatter characteristics at 36 GHz using the surface contour radar

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1985-01-01

    Scattering studies of sea ice off the coast of Greenland were performed in January 1984 using the 36-GHz Surface Contour Radar (SCR) aboard the NASA P-3 aircraft. An oscillating mirror scans an actual half-power width of 0.96 degrees laterally to measure the surface at 51 evenly spaced points. By banking the aircraft, real-time topographical mapping and relative backscattered power are obtained at incidence angles between 0 and 30 degrees off-nadar, achieving at 175 m altitude a 2.9 by 4.4 m spatial resolution at nadir. With an aircraft ground speed of 100 m/s, 5-m successive scan line spacing and 1.8-m cross-track direction spacing is provided. By circling the aircraft in the 15 degree bank, the azimuthal anisotropy of the scattering is investigated along with the incidence angle dependence.

  15. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  16. Electromagnetic absorption properties of spacecraft and space debris

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Santoni, F.; Giusti, A.; Delfini, A.; Pastore, R.; Vricella, A.; Albano, M.; Arena, L.; Piergentili, F.; Marchetti, M.

    2017-04-01

    Aim of the work is to present a method to evaluate the electromagnetic absorption properties of spacecraft and space debris. For these objects, the radar detection ability depends mainly on volume, shape, materials type and other electromagnetic reflecting behaviour of spacecraft surface components, such as antennas or thermal blankets, and of metallic components in space debris. The higher the electromagnetic reflection coefficient of such parts, the greater the radar detection possibility. In this research an electromagnetic reverberation chamber is used to measure the absorption cross section (ACS) of four objects which may represent space structure operating components as well as examples of space debris: a small satellite, a composite antenna dish, a Thermal Protection System (TPS) tile and a carbon-based composite missile shell. The ACS mainly depends on geometrical characteristics like apertures, face numbers and bulk porosity, as well as on the type of the material itself. The ACS, which is an electromagnetic measurement, is expressed in squared meters and thus can be compared with the objects geometrical cross section. A small ACS means a quite electromagnetic reflective tendency, which is beneficial for radar observations; on the contrary, high values of ACS indicate a strong absorption of the electromagnetic field, which in turn can result a critical hindering of radar tracking.

  17. Rough surface scattering based on facet model

    NASA Technical Reports Server (NTRS)

    Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.

    1974-01-01

    A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.

  18. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector. The transmitter is under the direct control of experimenters, and in a radio-quiet area isolated from other radio frequency (RF) sources. The power and radiation pattern are known at all times. Forward power up to 40 kW and gain exceeding 20 dB maximize energy density in the radar field. Continuous wave (CW) transmission gives 100% duty cycle, as opposed to pulsed radar. TARA utilizes a high sample rate DAQ (250 MS/s). TARA is colocated with a large state-of-the-art conventional CR observatory, allowing the radar data stream to be sampled at the arrival times of known cosmic ray events. Each of these attributes of the TARA detector has been discussed in detail in the literature [8]. A map showing the TA SD array and the location of the TARA transmitter and receiver is shown in Fig. 1.Section 2 of this paper includes a description of air shower plasmas and possible radio scattering mechanisms. Theoretical and experimental parameters that influence radio scattering are presented and discussed. We justify use of the thin wire model in a radar echo simulation that predicts echo waveforms, which we will subsequently (Section 6) use in placing limits on the air shower radar cross section (RCS). Sections 3 and 4 describe TARA data and offline processing techniques. In Section 5, we describe the signal search using simulated waveforms as matched filter (MF) templates in order to maximize sensitivity. Section 6 describes the procedure for calculating a scale factor to the RCS model described in Section 2, the results of which are used in placing the first quantitative upper limit on the EAS radar cross-section (RCS). In Section 7 we summarize these results and discuss the viability of radar detection of cosmic rays in light of the TARA findings.

  19. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.

  20. Parametric bicubic spline and CAD tools for complex targets shape modelling in physical optics radar cross section prediction

    NASA Astrophysics Data System (ADS)

    Delogu, A.; Furini, F.

    1991-09-01

    Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.

  1. Measuring stream discharge by non-contact methods: A proof-of-concept experiment

    USGS Publications Warehouse

    Costa, J.E.; Spicer, K.R.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Thurman, E.M.; Plant, W.J.; Keller, W.C.

    2000-01-01

    This report describes an experiment to make a completely non-contact open-channel discharge measurement. A van-mounted, pulsed doppler (10GHz) radar collected surface-velocity data across the 183-m wide Skagit River, Washington at a USGS streamgaging station using Bragg scattering from short waves produced by turbulent boils on the surface of the river. Surface velocities were converted to mean velocities for 25 sub-sections by assuming a normal open-channel velocity profile (surface velocity times 0.85). Channel cross-sectional area was measured using a 100 MHz ground-penetrating radar antenna suspended from a cableway car over the river. Seven acoustic doppler current profiler discharge measurements and a conventional current-meter discharge measurement were also made. Three non-contact discharge measurements completed in about a 1-hour period were within 1 % of the gaging station rating curve discharge values. With further refinements, it is thought that open-channel flow can be measured reliably by non-contact methods.

  2. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  3. Surface processes on Venus

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.

    1992-01-01

    Magellan synthetic aperture radar (SAR) and altimetry data were analyzed to determine the nature and extent of surface modification for venusian plains in the Sedna Planitia, Alpha Regio, and western Ovda Regio areas. Specific cross sections derived from the SAR data were also compared to similar data for dry terrestrial basaltic lava flows (Lunar Crater and Cima volcanic fields) and playas (Lunar and Lavic Lakes) for which microtopographic profiles (i.e., quantitative roughness information) were available.

  4. Simultaneous ocean cross-section and rainfall measurements from space with a nadir-pointing radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Atlas, D.

    1984-01-01

    A method to determine simultaneously the rainfall rate and the normalized backscattering cross section of the surface was evaluated. The method is based on the mirror reflected power, p sub m which corresponds to the portion of the incident power scattered from the surface to the precipitation, intercepted by the precipitation, and again returned to the surface where it is scattered a final time back to the antenna. Two approximations are obtained for P sub m depending on whether the field of view at the surface is either much greater or much less than the height of the reflection layer. Since the dependence of P sub m on the backscattering cross section of the surface differs in the two cases, two algorithms are given by which the path averaged rain rate and normalized cross section are deduced. The detectability of P sub m, the relative strength of other contributions to the return power arriving simultaneous with P sub m, and the validity of the approximations used in deriving P sub m are discussed.

  5. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.

  6. The line integral approach to radarclinometry

    USGS Publications Warehouse

    Wildey, R.L.

    1987-01-01

    Radarclinometry, the invention of which has been previously reported, is a technique for deriving a topographic map from a single radar image by using the dependence upon terrain-surface orientation of the integrated signal of an individual image pixel. The radiometric calibration required for precise operation and testing does not yet exist, but the imminence of important applications justifies parallel, rather than serial, development of radarclinometry and radiometrically calibrated radar. The present investigation reports three developmental advances: (1) The solid angle of integration of back-scattered specific intensity constituting a pixel signal is more accurately accounted for in its dependence on surface orientation than in previous work. (2) The local curvature hypothesis, which removes the requirement of a ground-truth profile as a boundary condition and enables the formulation of the theory in terms of a line integral, has been expanded to include the three possibilities of Local Cylindricity, Local Biaxial Ellipsoidal Hyperbolicity, and Least-Squares Local Sphericity. (3) The theory is integrated in the cross-ground-range direction, which is ill-conditioned compared to the ground-range direction, whereas the original formulation was based on enforced isotropy in the two-dimensional power spectrum of the topography. It was found necessary to prohibit the hypothesis of Local Biaxial Ellipsoidal Hyperbolicity in the cross-range stepping, for reasons not completely clear. Variation in the proportioning between curvature assumptions had produced topographic maps that are in good mutual agreement but not realistic in appearance. They are severely banded parallel to the ground-range direction, most especially at small radar zenith angles. Numerical experimentation with the falsification of topography through incorrect decalibration as performed on a Gaussian hill suggests that the banding and its exaggeration at high radar incidence angles could easily be due to our lack of radiometric calibration. ?? 1987 D. Reidel Publishing Company.

  7. A radar vehicle detection system for four-quadrant gate warning systems and blocked crossing detection.

    DOT National Transportation Integrated Search

    2012-12-01

    The Wavetronix Matrix Radar was adapted for use at four-quadrant gate railroad crossings for the purpose of influencing exit gate behavior upon the detection of vehicles, as an alternative to buried inductive loops. Two radar devices were utilized, o...

  8. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    NASA Astrophysics Data System (ADS)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are <1 m to ranging > 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  9. Calibration of polarimetric radar systems with good polarization isolation

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.; Tassoudji, M. Ali

    1990-01-01

    A practical technique is proposed for calibrating single-antenna polarimetric radar systems using a metal sphere plus any second target with a strong cross-polarized radar cross section. This technique assumes perfect isolation between antenna ports. It is shown that all magnitudes and phases (relative to one of the like-polarized linear polarization configurations) of the radar transfer function can be calibrated without knowledge of the scattering matrix of the second target. Comparison of the values measured (using this calibration technique) for a tilted cylinder at X-band with theoretical values shows agreement within + or - 0.3 dB in magnitude and + or - 5 degrees in phase. The radar overall cross-polarization isolation was 25 dB. The technique is particularly useful for calibrating a radar under field conditions, because it does not require the careful alignment of calibration targets.

  10. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  11. Investigation of radar backscattering from second-year sea ice

    NASA Technical Reports Server (NTRS)

    Lei, Guang-Tsai; Moore, Richard K.; Gogineni, S. P.

    1988-01-01

    The scattering properties of second-year ice were studied in an experiment at Mould Bay in April 1983. Radar backscattering measurements were made at frequencies of 5.2, 9.6, 13.6, and 16.6 GHz for vertical polarization, horizontal polarization and cross polarizations, with incidence angles ranging from 15 to 70 deg. The results indicate that the second-year ice scattering characteristics were different from first-year ice and also different from multiyear ice. The fading properties of radar signals were studied and compared with experimental data. The influence of snow cover on sea ice can be evaluated by accounting for the increase in the number of independent samples from snow volume with respect to that for bare ice surface. A technique for calculating the snow depth was established by this principle and a reasonable agreement has been observed. It appears that this is a usable way to measure depth in snow or other snow-like media using radar.

  12. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  13. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  14. Dual-polarization characteristics of the radar ocean return in the presence of rain

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Kumagai, H.; Kozu, T.

    1992-01-01

    Experimental data are presented on the polarimetric and dual-wavelength characteristics of the ocean surface in the presence of rain. To explain a portion of the variability observed in scatter plots under rain conditions, a storm model is used that incorporates measured drop size distributions. The fairly large variability indicates that effects of drop size distribution and the presence of partially melted particles can introduce a significant error in the estimate of attenuation. This effect is especially significant in the case of a 10-GHz radar under high rain rates. A surface reference method at this frequency will tend to overestimate the rain attenuation unless melting layer attenuation is properly taken into account. Observations of the cross-polarization return in stratiform rain over an ocean surface show three distinct components. Two of these correspond to aspherical, nonaligned particles in the melting layer seen in the direct and mirror-image returns. The remaining part depends both on the off-nadir depolarization by the surface and on the rain medium. A possible mechanism for this latter effect is the bistatic scattering from the rain to the surface.

  15. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  16. Engineering studies related to geodetic and oceanographic remote sensing using short pulse techniques

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Brown, G. S.; Hayne, G. S.

    1973-01-01

    For the Skylab S-193 radar altimeter, data processing flow charts and identification of calibration requirements and problem areas for defined S-193 altimeter experiments are presented. An analysis and simulation of the relationship between one particular S-193 measurement and the parameter of interest for determining the sea surface scattering cross-section are considered. For the GEOS-C radar altimeter, results are presented for system analyses pertaining to signal-to-noise ratio, pulse compression threshold behavior, altimeter measurement variance characteristics, desirability of onboard averaging, tracker bandwidth considerations, and statistical character of the altimeter data in relation to harmonic analysis properties of the geodetic signal.

  17. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  18. Technical background, chapter 3, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A description is given of the physics of electromagnetic scattering from the sea and a guideline is presented to relate an observable (such as the radar cross section) to the hydrodynamics or physical properties of the sea. As specific examples of the interdisciplinary science of electromagnetics and geophysical oceanography, the physics is discussed in connection with data provided by three instruments: namely, the scatterometer, the altimeter, and the imaging radar. The data provided by each instrument are discussed in context with specular point and Bragg scattering theories. Finally, the degrading effect of extraneous sources of noise is discussed as a limiting mechanism of the accuracy of the ocean surface measurement.

  19. Pixelated Checkerboard Metasurface for Ultra-Wideband Radar Cross Section Reduction.

    PubMed

    Haji-Ahmadi, Mohammad-Javad; Nayyeri, Vahid; Soleimani, Mohammad; Ramahi, Omar M

    2017-09-12

    In this paper we designed and fabricated a metasurface working as a radar cross section (RCS) reducer over an ultra wide band of frequency from 3.8 to 10.7 GHz. The designed metasurface is a chessboard-like surface made of alternating tiles, with each tile composed of identical unit cells. We develop a novel, simple, highly robust and fully automated approach for designing the unit cells. First, a topology optimization algorithm is used to engineer the shape of the two unit cells. The area of each unit cell is pixelated. A particle swarm optimization algorithm is applied wherein each pixel corresponds to a bit having a binary value of 1 or 0 indicating metallization or no metallization. With the objective of reducing the RCS over a specified frequency range, the optimization algorithm is then linked to a full wave three-dimensional electromagnetic simulator. To validate the design procedure, a surface was designed, fabricated and experimentally tested showing significantly enhanced performance than previous works. Additionally, angular analysis is also presented showing good stability and wide-angle behavior of the designed RCS reducer. The automated design procedure has a wide range of applications and can be easily extended to design surfaces for antennas, energy harvesters, noise mitigation in electronic circuit boards amongst others.

  20. Mapping Near-Surface Salinization Using Long-wavelength AIRSAR

    NASA Technical Reports Server (NTRS)

    Paine, Jeffery G.

    2003-01-01

    In May 1999, NASA's Jet Propulsion Laboratory acquired airborne synthetic aperture radar (AIRSAR) data over the Hatchel and Montague Test Sites in Texas. We analyzed P- and L-band polarimetric radar data from these AIRSAR missions to assess whether AIRSAR could be used as a rapid and remote platform for screening large areas at risk for near-surface soil and water salinization. Ongoing geological, geophysical, and hydrological studies at the Hatchel Test Site in Runnels County and the Montague Test Site in Montague County have demonstrated the utility of high-resolution airborne electromagnetic (EM) induction in mapping electrical conductivity changes that accompany shallow natural and oil-field related salinization at these sites in the Colorado and Red River basins. We compared AIRSAR and airborne EM data quantitatively by (1) selecting representative flight lines from airborne EM surveys of the Hatchel and Montague sites, (2) extracting measurement locations and apparent conductivities at the highest available EM frequency, (3) identifying and extracting all P- and L-band backscatter intensities for all locations within 5 m of an airborne EM measurement, and (4) examining the spatial and magnitude relationships between apparent conductivity and all radar polarization and polarization-ratio combinations. For both test sites, backscatter intensity in all individual P- and L-band polarizations was slightly negatively correlated with apparent conductivity. In most modes this was manifested as a decrease in the range and magnitude of backscatter intensity as apparent conductivity increased. Select single-band and cross-band polarization ratios exhibited somewhat higher correlation with apparent conductivity by partly diminishing the dominance of the vegetation contribution to V backscatter intensity. The highest correlation with conductivity was obtained using the L-band vertical- to cross-polarization ratio, the P-band vertical- to L-band cross-polarization ratio, and the P-band vertical-to cross-polarization ratio. These correlations were higher for the more arid (and less electrically conductive) Hatchel Test Site than they were for the Montague Test Site.

  1. Scientific visualization of volumetric radar cross section data

    NASA Astrophysics Data System (ADS)

    Wojszynski, Thomas G.

    1992-12-01

    For aircraft design and mission planning, designers, threat analysts, mission planners, and pilots require a Radar Cross Section (RCS) central tendency with its associated distribution about a specified aspect and its relation to a known threat, Historically, RCS data sets have been statically analyzed to evaluate a d profile. However, Scientific Visualization, the application of computer graphics techniques to produce pictures of complex physical phenomena appears to be a more promising tool to interpret this data. This work describes data reduction techniques and a surface rendering algorithm to construct and display a complex polyhedron from adjacent contours of RCS data. Data reduction is accomplished by sectorizing the data and characterizing the statistical properties of the data. Color, lighting, and orientation cues are added to complete the visualization system. The tool may be useful for synthesis, design, and analysis of complex, low observable air vehicles.

  2. The First Results of Monitoring the Formation and Destruction of the Ice Cover in Winter 2014-2015 on Ilmen Lake according to the Measurements of Dual-Frequency Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Andreeva, Z. V.

    2017-12-01

    The launch of the Dual-frequency Precipitation Radar (DPR) opens up new opportunities for studying and monitoring the land and inland waters. It is the first time radar with a swath (±65°) covering regions with cold climate where waters are covered with ice and land with snow for prolonged periods of time has been used. It is also the first time that the remote sensing is carried out at small incidence angles (less than 19°) at two frequencies (13.6 and 35.5 GHz). The high spatial resolution (4-5 km) significantly increases the number of objects that can be studied using the new radar. Ilmen Lake is chosen as the first test object for the development of complex programs for processing and analyzing data obtained by the DPR. The problem of diagnostics of ice-cover formation and destruction according to DPR data has been considered. It is shown that the dependence of the radar backscatter cross section on the incidence angle for autumn ice is different from that of spring ice, and can be used for classification. A comparison with scattering on the water surface has shown that, at incidence angles exceeding 10°, it is possible to discern all three types of reflecting surfaces: open water, autumn ice, and spring ice, under the condition of making repeated measurements to avoid possible ambiguity caused by wind.

  3. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  4. Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.

    2015-12-01

    The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the grid for snow thickness. A total of 15 grids 5-20 km wide (cross-track) by 10-30 km long (along-track) centered on ice illuminated by CryoSat-2 were collected north of Barrow, AK. This occured over three field seasons which took place from 2013-15. Data from the grids are shown here and are being used to examine the relationship of the tracked satellite waveform data to the actual surface.

  5. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk; College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073; Hu, Zhirun

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of themore » screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.« less

  6. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  7. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  8. The Western Hemisphere of Venus: 3.5 CM Dual Circular-Polarization Radar Images

    NASA Astrophysics Data System (ADS)

    Haldemann, Albert F. C.; Muhleman, Duane O.; Butler, Bryan J.; Slade, Martin A.

    1997-08-01

    We present new dual circular-polarization radar maps of the western hemisphere of Venus. The results are from a 1993 experiment imaging Venus with 3.5 cm radar. Continuous-wave right circularly polarized flux was transmitted toward Venus from the 70 m Deep Space Network antenna in Goldstone, California. The echo was received in both the same sense (SS) and the opposite sense (OS) of circular polarization at the Very Large Array in New Mexico. By spatially reconstructing the echo with the interferometer, maps of Venusian radar albedo were made for each of two days of observation in both OS (echo principally due to specular reflection) and SS (diffuse echo) channels. On both days, the sub-earth longitude was near 300 E. The SS maps are dominated by a significant component of diffuse backscatter from the 285 E longitude highlands: Beta, Phoebe, and Themis Regiones. Beta Regio includes radar-anomalous regions with high reflectivity and low emissivity. The nature of these altitude-related electrical properties on Venus is one of the outstanding surface process questions that remain after Magellan. Our experiment adds the first full-disk polarization ratio (μc) maps to the discussion. The data show that different geology determines different radar scattering properties within Beta. Diffuse scattering is very important in Beta, and may be due to either surface or volume scattering. We find a strong correlation of the SS albedo σSSwith altitudeRp(km) in Beta, σSS∝ 0.3Rp. Also, σOS∝ 0.7Rp. The onset of this relationship is at theRp∼ 6054 km planetary radius contour. The nature and morphology of the highland radar anomalies in Beta is consistent with a diffuse scattering mechanism. In Beta Regio we find μc> 0.5 in general, with μcas high as 0.8 between Rhea and Theia Montes, to the west of Devana Chasma. These values are compatible with measurements of blocky terrestrial lava flows if surface scattering dominates. If volume scattering is important, the high RCP cross-sections may indicate an important decrease in embedded scatterer size with altitude, which could be related to enhanced weathering.

  9. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  10. Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2010-01-01

    Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.

  11. Radar cross section measurements of a scale model of the space shuttle orbiter vehicle

    NASA Technical Reports Server (NTRS)

    Yates, W. T.

    1978-01-01

    A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.

  12. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    NASA Astrophysics Data System (ADS)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  13. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  14. Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2017-12-01

    From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content during the process of differentiation, evidence to the contrary is continuing to change our understanding of the distribution and preservation of volatiles during planetary formation in the early solar system.

  15. Millimeter wave backscatter measurements in support of collision avoidance applications

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Snuttjer, Brett R. J.

    1997-11-01

    Millimeter-wave short range radar systems have unique advantages in surface navigation applications, such as military vehicle mobility, aircraft landing assistance, and automotive collision avoidance. In collision avoidance applications, characterization of clutter due to terrain and roadside objects is necessary in order to maximize the signal-to-clutter ratio (SCR) and to minimize false alarms. The results of two types of radar cross section (RCS) measurements at 95 GHz are reported in this paper. The first set of measurements presents data on the normalized RCS (NRCS) as well as clutter distributions of various terrain types at low grazing angles of 5° and 7.5°. The second set of measurements presents RCS data and statistics on various types of roadside objects, such as metallic and wooden sign posts. These results are expected to be useful for designers of short-range millimeter-wave collision avoidance radar systems.

  16. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of themore » WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.« less

  17. Evaluation of Water Vapor Radiometer on HY-2A Satellite with the Ship-borne GNSS Observations over the India Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, Z.; Chen, G.; Liu, W.

    2016-12-01

    HY-2A is the first marine dynamic environment satellite in China. It is used to observe the global sea surface wind field, sea surface height, significant wave heights and sea surface temperature. In order to correct tropospheric delay in the radar altimeter measurements, the calibration microwave radiometer (CMR) is on board satellite. In this paper, a ship-borne GNSS experiment was done to evaluate the accuracy of water vapor content observed from CMR over the India Ocean in 2014. Because the HY-2A satellite orbit is in S-N direction, the ship course was designed in E-W direction to produce the cross-point over the ocean for the calibration. During two months experiment, three cross-points were captured on the 29th April/5th May/13th May. The GNSS data include GPS,GLONASS and BDS, and its sampling rate is 1s. The GNSS observations are processed with the Point Precise Positioning (PPP) algorithm by our software. The Precipitable Water Vapor (PWV) is better than 3mm accuracy, which is consistent with the results from NAVCOM and FUFRO. The GNSS derived PWV are compared with those from HY-2A CMR on the three cross-points. Their differences are -1.68mm,-0.88mm and -2.21mm respectively, and the average is -1.58mm. This result means the CMR derived PWV is good agreement with that from GNSS. It demonstrates that the HY-2A satellite has the ability of high accuracy water vapor measurement. It is quite beneficial to the radar altimeter for sea surface height measurements.

  18. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    NASA Astrophysics Data System (ADS)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  19. Capabilities of radar as they might relate to entomological studies

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1979-01-01

    A tutoral background of radar capabilities and its potential for insect research is provided. The basic principles and concepts of radar were reviewed. Information on current radar equipment was examined. Specific issues related to insect research included; target cross-section, radar frequency, tracking target recognition and false alarms, clutter reduction, radar transmitter power, and ascertained atmospheric processes.

  20. A signature correlation study of ground target VHF/UHF ISAR imagery

    NASA Astrophysics Data System (ADS)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  1. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  2. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  3. Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface

    NASA Astrophysics Data System (ADS)

    Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei

    2010-02-01

    In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.

  4. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  5. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  6. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on Board the GPM Core Observatory

    NASA Technical Reports Server (NTRS)

    Kubota, Takuji; Iguchi, Toshio; Kojima, Masahiro; Liao, Liang; Masaki, Takeshi; Hanado, Hiroshi; Meneghini, Robert; Oki, Riko

    2016-01-01

    A statistical method to reduce the sidelobe clutter of the Ku-band precipitation radar (KuPR) of the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory is described and evaluated using DPR observations. The KuPR sidelobe clutter was much more severe than that of the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM), and it has caused the misidentification of precipitation. The statistical method to reduce sidelobe clutter was constructed by subtracting the estimated sidelobe power, based upon a multiple regression model with explanatory variables of the normalized radar cross section (NRCS) of surface, from the received power of the echo. The saturation of the NRCS at near-nadir angles, resulting from strong surface scattering, was considered in the calculation of the regression coefficients.The method was implemented in the KuPR algorithm and applied to KuPR-observed data. It was found that the received power from sidelobe clutter over the ocean was largely reduced by using the developed method, although some of the received power from the sidelobe clutter still remained. From the statistical results of the evaluations, it was shown that the number of KuPR precipitation events in the clutter region, after the method was applied, was comparable to that in the clutter-free region. This confirms the reasonable performance of the method in removing sidelobe clutter. For further improving the effectiveness of the method, it is necessary to improve the consideration of the NRCS saturation, which will be explored in future work.

  7. Numeric Computation of the Radar Cross Section of In-flight Projectiles

    DTIC Science & Technology

    2016-11-01

    SUBJECT TERMS computational electromagnetics , radar signature, ballistic trajectory, radar cross section, RCS 16. SECURITY CLASSIFICATION OF: 17...under the generic category of rockets, artillery, and mortar (RAM). The electromagnetic (EM) modeling team at the US Army Research Laboratory (ARL) is...ARL-TR-5145. 5. Balanis C. Advanced engineering electromagnetics . New York (NY): Wiley; 1989. 6. Ruck G, Barrick DE, Stuart WD, Krichbaum CK

  8. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  9. Ocean wave-radar modulation transfer functions from the West Coast experiment

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  10. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  11. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  12. Analysis of the Convective Storm using Meteosat Second Generation and SPOL Radar over a Megacity, on May 18, 2014

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, Ivon Wilson; José Pereira Filho, Augusto; Alves Barbosa, Humberto

    2017-04-01

    The rapid populational growth in urban areas of Southeast and South Brazil has increased anthropic effects on severe weather caused by thunderstorms whose impacts require mitigation on a small space-time scale more susceptible to natural disasters such as flooding. The 18 May 2015 thunderstorms in The Metropolitan Area of São Paulo (MASP) caused many losses due to heavy rain, gusty winds and falling hail. The local press reported 310 tons of ice removed from the surface. Meteosat Second Generation (MSG) images, polarimetric weather radar measurements, radiosondes and surface weather variables data sets were used to analyze the event. The environmental thermodynamic analysis showed a dry layer at mid levels with wind shear at upper levels. Diabatic heating increased throughout the day and made the atmosphere very unstable at the end of the afternoon with greater potential energy induced by the local sea breeze. The 0 °C isotherm was at 3781 m. Initially, the rapid horizontal expansion of the storm caused by environmental wind shear was observed at 10.8 mm IR MSG channel brightness temperature (BT) was of -57 ° C. The brightness temperature differences (BTD) between WV and IR MSG channels evidenced vertical moisture transport from near the surface to the upper levels during convection. In the mature stage, radar reflectivity showed widespread multi cellular storm structures. Vertical cross-section indicated reflectivities between 45 dBZ to 55 dBZ with cloud tops with reflectivity greater than 30 dBZ at 14 km altitude when updrafts were more intense. Vertical profiles of differential reflectivity (ZDR) showed a deep column from to +2 to +4 dB between 6 km to 12 km altitude where intense vertical transport of large drops and a mixture of water and ice well above the 0 ° C isotherm level. This environment increased efficiency of the Wegener-Bergeron-Findeisen type microphysics with rapid ice crystal growth to hail with later precipitation at the surface that lasted from 1855 UTC to 1935 UTC. The thunderstorms main cores crossed MASP also due local circulations induced by the heat island. These results can contribute to the development of nowcasting tools and short-term warning systems by integrating satellite and weather radar data sets so to increase the resilience of megacities to such severe convective events.

  13. Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?

    NASA Astrophysics Data System (ADS)

    Liu, Chuntao; Zipser, Edward J.

    2013-01-01

    Both ground and space borne radars have shown that radar reflectivity profiles below the freezing level have different slopes over land and ocean in general. This is critical in correctly estimating the surface precipitation rate in the usual situation in which the radar reflectivity cannot be measured as close to the surface as one would like. Using 14 years of Tropical Rainfall Measuring Mission precipitation radar observations, the variations of slopes of the radar reflectivity in the low troposphere are examined over the stratiform and convective precipitation regions. Radar reflectivity below the freezing level usually decreases toward the surface over land, but increases toward the surface over the ocean. Increasing reflectivity toward the surface is hypothesized to occur mainly when raindrops grow while falling through low clouds, which is favored by high humidity at low levels, and by updraft speeds lower than the fall speed of raindrops, both more likely over oceans. Other things being equal, proxy evidence is presented that the more intense the convection, the more likely reflectivity is to decrease toward the surface, and that this is at least as important as low-level relative humidity. Over monsoon regions with more moderate convection but higher humidity, such as southeast China and the Amazon, there are more profiles with reflectivity increasing toward the surface than over other continental regions such as Africa. Radar reflectivity tends to increase toward the surface in shallow warm rain systems in trade cumulus regions, but tends to decrease toward the surface when high reflectivity values are present at or above the freezing level.

  14. Directional ocean wave measurements in a coastal setting using a focused array imaging radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frasier, S.J.; Liu, Y.; Moller, D.

    1995-03-01

    A unique focused array imaging Doppler radar was used to measure directional spectra of ocean surface waves in a nearshore experiment performed on the North Carolina Outer Banks. Radar images of the ocean surface`s Doppler velocity were used to generate two dimensional spectra of the radial component of the ocean surface velocity field. These are compared to simultaneous in-situ measurements made by a nearby array of submerged pressure sensors. Analysis of the resulting two-dimensional spectra include comparisons of dominant wave lengths, wave directions, and wave energy accounting for relative differences in water depth at the measurement locations. Limited estimates ofmore » the two-dimensional surface displacement spectrum are derived from the radar data. The radar measurements are analogous to those of interferometric synthetic aperture radars (INSAR), and the equivalent INSAR parameters are shown. The agreement between the remote and in-situ measurements suggests that an imaging Doppler radar is effective for these wave measurements at near grazing incidence angles.« less

  15. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  16. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    PubMed

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  17. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  18. More Results from a Long-Term Radar Survey of M-Class Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Clark, B. E.; Benner, L. A.; Giorgini, J. D.; Magri, C.; Nolan, M. C.; Ostro, S. J.

    2006-09-01

    We present more results from our long-term radar survey of main-belt M-class asteroids. Because metals are denser and more radar reflective than silicates, an asteroid's radar cross-section can provide unambiguous information on its composition and near surface porosity [1]. The composition of this enigmatic class has important implications for the structure and evolution of the asteroid belt. As of July 2006 the following twelve main-belt M-class asteroids had been observed with radar: 16 Psyche [2,3,5], 21 Lutetia [3,5], 22 Kalliope [3], 83 Beatrix [4], 97 Klotho [3], 129 Antigone [5], 135 Hertha [5], 224 Oceana [5], 325 Heidelberga [5], and 785 Zwetana [5], 216 Kleopatra [4], and 796 Sarita [3]. Only one-third of this sample -- 16 Psyche, 129 Antigone, 216 Kleopatra and 785 Zwetana -- have radar albedos unambiguously consistent with metallic compositions [1,5]. Our goal is to triple the number of radar observed M-class targets within the next five years. We will present results focusing on the unusual radar variability of 129 Antigone. Acknowledgements. This work was partially supported by a grant from Bloomsburg University to MKS and NSF grant AST-0605903. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. [1] Ostro et al. Science 252, 1399-1404, 1991. [2] Ostro et al. Science 229,442-446, 1985. [3] Magri et al. Icarus 140, 379-407, 1999. [4] Magri et al. submitted to Icarus. [5] Shepard et al in prep.

  19. Target scattering characteristics for OAM-based radar

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  20. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform collaborative science with other investigations, including cartographic and geologic maps, regional and high-resolution digital topography, GIS products, color and photometric data products, a geodetic control network tied to radar altimetry, and a database of plume-search observations.

  1. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  2. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  3. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  4. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Shen, Tao; William, Perrie; Chen, Wei; Kuang, Hai-Lan

    2010-05-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.

  5. Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar

    NASA Astrophysics Data System (ADS)

    Schroevers, Marinus

    2015-04-01

    The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.

  6. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  7. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons

    PubMed Central

    Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun

    2018-01-01

    The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068

  8. A 100,000 Scale Factor Radar Range.

    PubMed

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  9. Two-Way Pattern Design for Distributed Subarray Antennas

    DTIC Science & Technology

    2012-09-01

    GUI Graphical User Interface HPBW Half-power Beamwidth MFR Multifunction Radar RCS Radar Cross Section RRE Radar Range Equation...The Aegis ships in the US Navy use phased arrays for the AN/SPY-1 multifunction radar ( MFR ) [2]. The phased array for the AN/SPY-1 radar is shown in...arrays. This is a challenge for design of antenna apertures for shipboard radar systems. One design approach is to use multi-function subarray

  10. Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    NASA Technical Reports Server (NTRS)

    Spudis, P.D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  11. Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Bussey, D. B. J.; Baloga, S. M.; Cahill, J. T. S.; Glaze, L. S.; Patterson, G. W.; Raney, R. K.; Thompson, T. W.; Thomson, B. J.; Ustinov, E. A.

    2013-01-01

    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant.

  12. Through-the-Wall Radar Simulations for Complex Room Imaging

    DTIC Science & Technology

    2010-05-01

    obtained by combining images from different aspect angles. We demonstrate the advantages of using cross -polarization for detecting human targets. We...3. Numerical Results 6 3.1 SAR Images from a Ground-based Radar System ..........................................................6 3.2 Using Cross ...bottom row contains the cross -correlation between the images created by the two methods. ....................16 vi Acknowledgments This study

  13. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  14. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be considered as constant, in case of rain, at X-SAR incidence angles, it exhibits a dependence to precipitation event due the combined effects of corrugation due to the impinging raindrops and to the surface wind. Therefore, when retrieving of X-SAR NRCS in precipitation over the sea, this effect must be accounted for and can be quantified based on the precipitation event using a simple NRCS surface model. In this work, an EM model based on Bahar's Full Wave Model is used for evaluating such NRCS depending on polarization, frequency and incidence angle for different values of wind velocity and the root mean square height of the corrugation induced by rainfall. The reconstruction of X-SAR returns in precipitation is finally obtained by joint utilization of volume reflectivity and attenuation estimated from KLIX and the sea NRCS model.

  15. Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area

    NASA Astrophysics Data System (ADS)

    Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich

    2016-04-01

    Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML's path were extracted and rain intensities were derived and averaged to simulate the dependence of the CML rain intensity on path's length. The CML-derived rain intensity is then multiplied by a correlation factor, found by fitting the CML intensity to that of the radar's rain (instantaneous rather than cumulative values) using least squares. Relative humidity is taken into account from the beginning of storms because its low values can lead to the Virga phenomenon - rain drops evaporate before reaching the ground, particularly in arid regions. This is a significant disadvantage of using radar data in dry regions. Therefore, the CML contribution may be significant in this environment. Spatial assumptions including uniformity are used to allow the computed specific discharge to be compared to the corrected and the uncorrected rain intensity. The time difference between the runoff generating attenuation pattern and the arrival of the wave at the outlet is examined and can constitute the base of a future short term flood warning system.

  16. A time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter

    USDA-ARS?s Scientific Manuscript database

    Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation s...

  17. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded

  18. A study of Radar Cross Section (RCS) characteristics and their application in future weapon systems

    NASA Astrophysics Data System (ADS)

    McCluggage, W. A.

    The sum of components technique was used to calculate the radar cross section (RCS) of a Canberra B2 aircraft. The theoretical result obtained by using simple shapes to model the aircraft were compared with practical results. It is found that this technique can be used to give a quick order of magnitude estimation of a target's RCS. However, the major drawback of this technique is that it cannot predict the rapid changes in RCS which result from a small change in aspect angle. Trends in radar guided weapons, the effects of aircraft shape on the overall RCS of a weapons platform, and reduction of aircraft RCS by appropriate shaping are discussed. Methods, including radar absorption, radar absorbing materials, impedance loading, and active cancellation, which can be used to reduce an aircraft's radar signature and the associated penalties are reviewed.

  19. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  20. A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements

    DTIC Science & Technology

    2013-10-01

    common radar bands. ACKNOWLEDGEMENTS The authors wish to thank David Jillson (UML STL – Electrical Engineer) for efforts involved in RF and DC wiring...Waldman J., Fetterman H.R., Duffy P.E., Bryant T.G., Tannenwald P.E., “Submillimeter Model Measurements and Their Applications to Millimeter Radar

  1. Radar cross section lectures

    NASA Astrophysics Data System (ADS)

    Fuhs, A. E.

    A comprehensive account is given of the principles that can be applied in military aircraft configuration studies to minimize the radar cross section (RCS) that will be presented by the resulting design to advanced radars under various mission circumstances. It is noted that, while certain ECM techniques can be nullified by improved enemy electronics in a very short time, RCS reductions may require as much as a decade of radar development before prior levels of detectability can be reestablished by enemy defenses. Attention is given to RCS magnitude determinants, inverse scattering, the polarization and scattering matrix, the RCSs of flat plates and conducting cylinders, and antenna geometry and beam patterns.

  2. UCAV path planning in the presence of radar-guided surface-to-air missile threats

    NASA Astrophysics Data System (ADS)

    Zeitz, Frederick H., III

    This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.

  3. Polarimetric Signatures of Initiating Convection During MC3E

    NASA Technical Reports Server (NTRS)

    Emory, Amber

    2012-01-01

    One of the goals of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was to provide constraints for space-based rainfall retrieval algorithms over land. This study used datasets collected during the 2011 field campaign to combine radiometer and ground-based radar polarimetric retrievals in order to better understand hydrometeor type, habit and distribution for initiating continental convection. Cross-track and conically scanning nadir views from the Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) were compared with ground-based polarimetric radar retrievals along the ER-2 flight track. Polarimetric signatures for both airborne radiometers and ground-based radars were well co-located with deep convection to relate radiometric signatures with low-level polarimetric radar data for hydrometeor identification and diameter estimation. For the time period of study, Z(sub DR) values indicated no presence of hail at the surface. However, the Z(sub DR) column extended well above the melting level into the mixed phase region, suggesting a possible source of frozen drop embryos for the future formation of hail. The results shown from this study contribute ground truth datasets for GPM PR algorithm development for convective events, which is an improvement upon previous stratiform precipitation centered framework.

  4. A user's manual for the Electromagnetic Surface Patch code: ESP version 3

    NASA Technical Reports Server (NTRS)

    Newman, E. H.; Dilsavor, R. L.

    1987-01-01

    This report serves as a user's manual for Version III of the Electromagnetic Surface Patch Code or ESP code. ESP is user-oriented, based on the method of moments (MM) for treating geometries consisting of an interconnection of thin wires and perfectly conducting polygonal plates. Wire/plate junctions must be about 0.1 lambda or more from any plate edge. Several plates may intersect along a common edge. Excitation may be by either a delta-gap voltage generator or by a plane wave. The thin wires may have finite conductivity and also may contain lumped loads. The code computes most of the usual quantities of interest such as current distribution, input impedance, radiation efficiency, mutual coupling, far zone gain patterns (both polarizations) and radar-cross-section (both/cross polarizations).

  5. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.

  6. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  7. Polarimetric optical imaging of scattering surfaces.

    PubMed

    Barter, J D; Lee, P H

    1996-10-20

    A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.

  8. Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials

    USGS Publications Warehouse

    Zhou, C.; Liu, L.; Lane, J.W.

    2001-01-01

    A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  10. The Relationship Between Sea Breeze Forcing and HF Radar-Derived Surface Currents in Monterey Bay

    DTIC Science & Technology

    2014-06-01

    the ocean wave backscattering the radar signal is one half the radar’s wavelength (Neal 1992). This process is called Bragg scattering (Barrick 1977...transmit frequency of radar is important because it helps us to figure out the length of the ocean waves and backscattered radar wavelength (Harlan et al...Representation of some remote sensing methods exploiting signals backscattered from the sea surface (from Shearman 1981). 7 HF radars have many advantages

  11. Comparisons of Rain Estimates from Ground Radar and Satellite Over Mountainous Regions

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Kidd, Chris; Tao, Jing; Barros, Ana

    2016-01-01

    A high-resolution rainfall product merging surface radar and an enhanced gauge network is used as a reference to examine two operational surface radar rainfall products over mountain areas. The two operational rainfall products include radar-only and conventional-gauge-corrected radar rainfall products. Statistics of rain occurrence and rain amount including their geographical, seasonal, and diurnal variations are examined using 3-year data. It is found that the three surface radar rainfall products in general agree well with one another over mountainous regions in terms of horizontal mean distributions of rain occurrence and rain amount. Frequency of rain occurrence and fraction of rain amount also indicate similar distribution patterns as a function of rain intensity. The diurnal signals of precipitation over mountain ridges are well captured and joint distributions of coincident raining samples indicate reasonable correlations during both summer and winter. Factors including undetected low-level precipitation, limited availability of gauges for correcting the Z-R relationship over the mountains, and radar beam blocking by mountains are clearly noticed in the two conventional radar rainfall products. Both radar-only and conventional-gauge-corrected radar rainfall products underestimate the rain occurrence and fraction of rain amount at intermediate and heavy rain intensities. Comparison of PR and TMI against a surface radar-only rainfall product indicates that the PR performs equally well with the high-resolution radar-only rainfall product over complex terrains at intermediate and heavy rain intensities during the summer and winter. TMI, on the other hand, requires improvement to retrieve wintertime precipitation over mountain areas.

  12. Application of synthetic aperture radars for the ground displacement monitoring in mineral mining areas

    NASA Astrophysics Data System (ADS)

    Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV

    2018-03-01

    The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.

  13. Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected locations in Deep Creek Lake, Garrett County, Maryland, 2007

    USGS Publications Warehouse

    Banks, William S.L.; Johnson, Carole D.

    2011-01-01

    This investigation focused on selected regions of the study area, particularly in the coves where sediment accumulations were presumed to be thickest. GPR was the most useful tool for interpreting sediment thickness, especially in these shallow coves. The radar profiles were interpreted for two surfaces of interest-the water bottom, which was defined as the "2007 horizon," and the interface between Lake sediments and the original Lake bottom, which was defined as the "1925 horizon"-corresponding to the year the Lake was impounded. The ground-penetrating radar data were interpreted on the basis of characteristics of the reflectors. The sediments that had accumulated in the impounded Lake were characterized by laminated, parallel reflections, whereas the subsurface below the original Lake bottom was characterized by more discontinuous and chaotic reflections, often with diffractions indicating cobbles or boulders. The reflectors were picked manually along the water bottom and along the interface between the Lake sediments and the pre-Lake sediments. A simple graphic approach was used to convert traveltimes to depth through water and depth through saturated sediments using velocities of the soundwaves through the water and the saturated sediments. Nineteen cross sections were processed and interpreted in 9 coves around Deep Creek Lake, and the difference between the 2007 horizon and the 1925 horizon was examined. In most areas, GPR data indicate a layer of sediment between 1 and 7 feet thick. When multiple cross sections from a single cove were compared, the cross sections indicated that sediment thickness decreased toward the center of the Lake.

  14. A modal radar cross section of thin-wire targets via the singularity expansion method

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Shumpert, T. H.; Riggs, L. S.

    1992-01-01

    A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.

  15. Radar cross sections of standard and complex shape targets

    NASA Technical Reports Server (NTRS)

    Sohel, M. S.

    1974-01-01

    The theoretical, analytical, and experimental results are described for radar cross sections (RCS) of different-shaped targets. Various techniques for predicting RCS are given, and RCS of finite standard targets are presented. Techniques used to predict the RCS of complex targets are made, and the RCS complex shapes are provided.

  16. Potential enhancements to the performance of ASDE radars derived from multistatic radar principles

    DOT National Transportation Integrated Search

    2001-10-14

    Airport surface surveillance systems, such as airport surface detection equipment (ASDE) radars, are susceptible to multipath propagation and scattering effects that can result in the placement of false targets located at critical locations on airpor...

  17. Experimental Investigation into the Radar Anomalies on the Surface of Venus

    NASA Technical Reports Server (NTRS)

    Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.

    2012-01-01

    Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.

  18. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  19. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    NASA Astrophysics Data System (ADS)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

  20. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    NASA Astrophysics Data System (ADS)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a first insight and discussion into how to interpret statistically-inverted radar data from an icy planetary surface.

  1. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  2. Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1991-01-01

    Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.

  3. SAR Polarimetric Scattering from Natural Terrains

    DTIC Science & Technology

    2017-02-17

    Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Radar polarimetry and speckles of random rough surface scattering is studied using 3-D numerical...Performance : 04/18/2013 - 04/17/2016 AOARD PM: Dr. Seng Hong Abstract : Radar polarimetry and speckles of random rough surface scattering is studied using 3...Doctoral Dissertation Title : Polarimetry In Radar Backscattering from Soil and Vegetated Surfaces Institution : University of Washington, Seattle

  4. A study of rain effects on radar scattering from water waves

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George

    1988-01-01

    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  5. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  6. Archival of aircraft scatterometer data from AAFE RADSCAT missions

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Mitchell, J. L.

    1983-01-01

    Aircraft scatterometer data obtained over the ocean with the Radiometer-Scatterometer (RADSCAT) instrument is documented. The normalized radar cross section data was obtained at 13.9 GHz for a variety of ocean surface wind conditions, which are also presented. All such valid RADSCAT ocean scatterometer data for which surface truth was obtained are included, except for ice research missions during the last year of RADSCAT's lifetime. Aircraft scatterometer data obtained for the SEASAT underflights were with a second instrument, the Airborne Microwave Scatterometer (AMSCAT). The RADSCAT data are archived on card image computer tapes and on microfiche.

  7. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  8. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  9. Comparison of two target classification techniques

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Walton, E. K.

    1986-01-01

    Radar target classification techniques based on backscatter measurements in the resonance region (1.0-20.0 MHz) are discussed. Attention is given to two novel methods currently being tested at the radar range of Ohio State University. The methods include: (1) the nearest neighbor (NN) algorithm for determining the radar cross section (RCS) magnitude and range corrected phase at various operating frequencies; and (2) an inverse Fourier transformation of the complex multifrequency radar returns of the time domain, followed by cross correlation analysis. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise ratio for different types of processing. The results of the comparison are discussed in detail.

  10. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  11. Digital Beamforming Interferometry

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F. (Inventor)

    2016-01-01

    Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.

  12. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

    PubMed Central

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-01

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves. PMID:28106090

  13. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    PubMed

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-02

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.

  14. Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction.

    PubMed

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Zhou, Zicheng

    2017-01-20

    In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show that the proposed metasurface structure can significantly reduce the radar cross section more than 10 dB from 17 GHz to 42 GHz when the angle of incident waves varies from 10° to 50°. The proposed coding metasurface provides an efficient scheme to reduce the scattering of the electromagnetic waves.

  15. Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium

    NASA Technical Reports Server (NTRS)

    Peeples, W. J.; Sill, W. R.; May, T. W.; Ward, S. H.; Phillips, R. J.; Jordan, R. L.; Abbott, E. A.; Killpack, T. J.

    1978-01-01

    Data from the lunar-orbiting Apollo 17 radar sounding experiment (60-m wavelength) have been examined in both digital and holographic formats, and it is concluded that there are two subsurface radar reflectors below the surface in Mare Serenitatis and one reflector below the surface in Mare Crisium. The mean apparent depths of the reflectors below the surface of the former Mare are 0.9 and 1.6 km, while the reflector below the surface of the latter Mare has a mean depth of 1.4 km. These reflectors represent basin-wide subsurface interfaces. Techniques for reducing surface backscatter (clutter) in the data are described, and reasons for thinking that the distinct alignments in radar returns represent subsurface reflecting horizons are explained

  16. Airborne microwave radar measurements of surface velocity in a tidally-driven inlet

    NASA Astrophysics Data System (ADS)

    Farquharson, G.; Thomson, J. M.

    2012-12-01

    A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.

  17. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  18. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  19. Planetary surface roughness derived from ice penetrating radar data: Method and concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.

    2013-12-01

    Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.

  20. Lunar Crater Ejecta: Physical Properties Revealed by Radar and Thermal Infrared Observations

    NASA Technical Reports Server (NTRS)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Udovicic, C. J. Tai; Campbell, B. A.

    2015-01-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for greater than 3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages greater than 3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  1. The scatter of obliquely incident plane waves from a corrugated conducting surface

    NASA Technical Reports Server (NTRS)

    Levine, D. N.

    1975-01-01

    A physical optics solution is presented for the scattering of plane waves from a perfectly conducting corrugated surface in the case of waves incident from an arbitrary direction and for an observer far from the surface. This solution was used to compute the radar cross section of the surface in the case of backscatter from irregular (i.e., stochastic) corrugations and to point out a correction to the literature on this problem. A feature of the solution is the occurrence of singularities in the scattered fields which appear to be a manifestation of focussing by the surface at its stationary points. Whether or not the singularities occur in the solution depends on the manner in which one restricts the analysis to the far field.

  2. Simulation of radar reflectivity and surface measurements of rainfall

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Bringi, V. N.

    1987-01-01

    Raindrop size distributions (RSDs) are often estimated using surface raindrop sampling devices (e.g., disdrometers) or optical array (2D-PMS) probes. A number of authors have used these measured distributions to compute certain higher-order RSD moments that correspond to radar reflectivity, attenuation, optical extinction, etc. Scatter plots of these RSD moments versus disdrometer-measured rainrates are then used to deduce physical relationships between radar reflectivity, attenuation, etc., which are measured by independent instruments (e.g., radar), and rainrate. In this paper RSDs of the gamma form as well as radar reflectivity (via time series simulation) are simulated to study the correlation structure of radar estimates versus rainrate as opposed to RSD moment estimates versus rainrate. The parameters N0, D0 and m of a gamma distribution are varied over the range normally found in rainfall, as well as varying the device sampling volume. The simulations are used to explain some possible features related to discrepancies which can arise when radar rainfall measurements are compared with surface or aircraft-based sampling devices.

  3. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  4. Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    NASA Technical Reports Server (NTRS)

    Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.

    1978-01-01

    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.

  5. Broad perspectives in radar for ocean measurements

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1978-01-01

    The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.

  6. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.

  7. UAV-based Radar Sounding of Antarctic Ice

    NASA Astrophysics Data System (ADS)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of deep temperate glaciers—examples from the Northern Patagonian Icefield, 14th International Conference on Ground Penetrating Radar (GPR) June 4-8, 2012, Shanghai, China, ISBN 978-1-4673-2663-6.

  8. Planetary surface characterization from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a new way to characterize the density or porosity of the the fine-grained regolith layer, and distinguish it from the centimeter-to-meter-scale boulders. We present the application of the method to asteroids, comets, and the Galilean moons.

  9. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  10. Titan Radar Mapper observations from Cassini's T3 fly-by

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  11. Glacier surface velocity estimation in the West Kunlun Mountain range from L-band ALOS/PALSAR images using modified synthetic aperture radar offset-tracking procedure

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Guo, Huadong; Liu, Guang; Yan, Shiyong

    2014-01-01

    Glacier movement is closely related to changes in climatic, hydrological, and geological factors. However, detecting glacier surface flow velocity with conventional ground surveys is challenging. Remote sensing techniques, especially synthetic aperture radar (SAR), provide regular observations covering larger-scale glacier regions. Glacier surface flow velocity in the West Kunlun Mountains using modified offset-tracking techniques based on ALOS/PALSAR images is estimated. Three maps of glacier flow velocity for the period 2007 to 2010 are derived from procedures of offset detection using cross correlation in the Fourier domain and global offset elimination of thin plate smooth splines. Our results indicate that, on average, winter glacier motion on the North Slope is 1 cm/day faster than on the South Slope-a result which corresponds well with the local topography. The performance of our method as regards the reliability of extracted displacements and the robustness of this algorithm are discussed. The SAR-based offset tracking is proven to be reliable and robust, making it possible to investigate comprehensive glacier movement and its response mechanism to environmental change.

  12. Electromagnetic Modeling, Optimization and Uncertainty Quantification for Antenna and Radar Systems Surfaces Scattering and Energy Absorption

    DTIC Science & Technology

    2017-03-06

    design of antenna and radar systems, energy absorption and scattering by rough-surfaces. This work has lead to significant new methodologies , including...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption...and scattering by rough-surfaces. This work has lead to significant new methodologies , including introduction of a certain Windowed Green Function

  13. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  14. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data.

    PubMed

    Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi

    2018-05-17

    This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σ VV 0 retrieved from new PR models as well as σ HH 0 is in good agreement with σ VV 0 extracted from SAR images directly.

  15. A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data

    PubMed Central

    Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi

    2018-01-01

    This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σVV0 retrieved from new PR models as well as σHH0 is in good agreement with σVV0 extracted from SAR images directly. PMID:29772821

  16. Planetary landing-zone reconnaissance using ice-penetrating radar data: Concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.

    2014-11-01

    The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.

  17. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  18. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  19. Elliptical storm cell modeling of digital radar data

    NASA Technical Reports Server (NTRS)

    Altman, F. J.

    1972-01-01

    A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.

  20. Low-Cost ASDE Evaluation Report: Raytheon Marine (Phase I) Radar at MKE (ARPA M345O/18CPX-19), Volume I.

    DOT National Transportation Integrated Search

    1996-07-31

    The FAA has identified the Airport Surface Detection Equipment as a radar system that aids air traffic controllers in low visibility conditions to detect surface radar targets and sequence aircraft movement on active runways. Though 35 major U.S. air...

  1. Resolving carbonate platform geometries on the Island of Bonaire, Caribbean Netherlands through semi-automatic GPR facies classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-07-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  2. Resolving Carbonate Platform Geometries on the Island of Bonaire, Caribbean Netherlands through Semi-Automatic GPR Facies Classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-05-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  3. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  4. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7). [3]Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., (2004). Inversion of Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 1291-1300. [4] Fucile, F., Ludeno, G., Serafino, F.,Bulian, G., Soldovieri, F., Lugni, C. "Some challenges in recovering wave features from a wave radar system". Paper submitted to the International Ocean and Polar Engineering Conference, ISOPE, Rhodes 2016

  5. Arecibo radar observations of Mars surface characteristics in the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Simpson, R. A.; Tyler, G. L.; Campbell, D. B.

    1978-01-01

    Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the 12.6-cm radar at the Arecibo Observatory during 1975-76. Interpretation of each power spectrum suggests rms surface tilts of 4 deg at the final A1WNW (47.9 deg W, 22.5 deg N) site, 5 deg near the original A1 site, and 6 deg between the two. At the back-up site (A2) surface-roughness estimates were about 4 deg. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1- to 100-m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.

  6. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  7. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  8. Geometry and Hydraulics of Englacial Conduits, Storglaciaren, Sweden

    NASA Astrophysics Data System (ADS)

    Fountain, A. G.; Schlichting, R.; Frodin, S.; Jacobel, R. W.

    2001-12-01

    Englacial conduits are the primary structure responsible for transporting surface water to the base of a glacier, where it supplies the subglacial hydraulic system and, in turn, affects glacier movement. Despite the well-known theoretical descriptions of englacial conduits, little direct evidence exists about their geometry and hydraulics. In July 2001, we initiated a field effort on Storglaciären, Sweden, to intersect englacial conduits by drilling into the glacier using a hot water drill. A companion project (Jacobel et al., this session) attempted to detect the englacial conduits using ground-penetrating radar. In a typical borehole, the water level remained at the surface while drilling through the impermeable ice. Once a connection was made, the water level dropped roughly 10 m and remained low despite continued water pumping. A small video camera was lowered, with attachments, to measure the geometry of the opening, and water flow speed. The water level in the hole provided a piezometric measure of the pressure. We drilled 22 holes at 3 separate locations and 17 (77%) connected englacially, the remaining 5 reached the bed without englacial connection, of which 2 drained at the bed. The geometry of the connections was highly irregular in cross-section with 1-2 cm openings, reminiscent of crevasse-like features rather than circular cross-sections as anticipated from the theoretical literature. Flow behavior was observed by tracking particle motion. The flow was complicated, in part by the inferred tangential intersection between the borehole and structure, and by the observed surging behavior. Flow speeds were low, on the order of 1 cm sec-1. Water level records from 3 different holes over several days exhibited highly correlated variations and large diurnal excursions. In contrast, records from holes drilled to the bed showed little variation. Based on these measurements, our conceptual picture of the englacial system is that of a sluggish flow system composed of many passages with hydraulically inefficient cross-sections. In general, correlation between the radar images and directly measured connections was inconclusive. However, in one case we believe we drilled to a very clear linear subsurface structure imaged by the radar.

  9. Monte Carlo simulation of wave sensing with a short pulse radar

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Davisson, L. D.; Kutz, R. L.

    1977-01-01

    A Monte Carlo simulation is used to study the ocean wave sensing potential of a radar which scatters short pulses at small off-nadir angles. In the simulation, realizations of a random surface are created commensurate with an assigned probability density and power spectrum. Then the signal scattered back to the radar is computed for each realization using a physical optics analysis which takes wavefront curvature and finite radar-to-surface distance into account. In the case of a Pierson-Moskowitz spectrum and a normally distributed surface, reasonable assumptions for a fully developed sea, it has been found that the cumulative distribution of time intervals between peaks in the scattered power provides a measure of surface roughness. This observation is supported by experiments.

  10. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  11. The Pros and Cons of National Defense: A Study of the Proponents, Opponents, Issues, and the Public Affairs and Public Relations Programs Surrounding the B-1 Strategic Bomber

    DTIC Science & Technology

    1979-08-01

    it was noted that I the B-I would be faster, carry more payload, and have a smaller radar cross section than the B-52. Also, in comparison to the B-52...payload or have smaller cross section . (6) Compared to B-52, B-i will: (a) Have higher penetration speeds (b) Have larger payload capacity (c) Have... radar detection range, then S I descend to below radar detection altitudes (literally at treetop levels) and penetrate enemy airspace to within

  12. On the radar cross section (RCS) prediction of vehicles moving on the ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  13. Formulation and Analysis of the Quantum Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.

    In radar, the amount of returns that an object sends back to the receiver after being struck by an electromagnetic wave is characterized by what is known as the radar cross section, denoted by sigma typically. There are many mechanisms that affect how much radiation is reflected back in the receiver direction, such as reflectivity, physical contours and dimensions, attenuation properties of the materials, projected cross sectional area and so on. All of these characteristics are lumped together in a single value of sigma, which has units of m2. Stealth aircrafts for example are designed to minimize its radar cross section and return the smallest amount of radiation possible in the receiver direction. A new concept has been introduced called quantum radar, that uses correlated quantum states of photons as well as the unique properties of quantum mechanics to ascertain information on a target at a distance. At the time of writing this dissertation, quantum radar is very much in its infancy. There still exist fundamental questions about the feasibility of its implementation, especially in the microwave spectrum. However, what has been theoretically determined, is that quantum radar has a fundamental advantage over classical radar in terms of resolution and returns in certain regimes. Analogous to the classical radar cross section (CRCS), the concept of the quantum radar cross section (QRCS) has been introduced. This quantity measures how an object looks to a quantum radar be describing how a single photon, or small cluster of photons scatter off of a macroscopic target. Preliminary simulations of the basic quantum radar cross section equation have yielded promising results showing an advantage in sidelobe response in comparison to the classical RCS. This document expands upon this idea by providing insight as to where this advantage originates, as well as developing more rigorous simulation analysis, and greatly expanding upon the theory. The expanded theory presented in this document includes re-deriving the QRCS formula to be a general bistatic formula, as the current equation is only valid for monostatic radar geometries. This re-derivation process also leads to the addition of terms that capture the effect of photon polarization, something that is not properly taken into account in the current literature. Most importantly, a new formulation of the QRCS formula will be derived that includes writing the equation in terms of Fourier transforms. This has a profound impact on the analysis of the theory of the QRCS as it allows for the derivation of closed form solutions of certain geometries, something that has never been possible due to the form of the current QRCS equation. All together, this document will provide a complete and general theory of the QRCS. After deriving the necessary equations, there will be extensive work in the utilization of these equations in deriving geometry dependent responses and comparing the closed form solutions to the classical solutions as well as comparing the solutions to the numerical simulations. The current literature relies exclusively on numerical simulations to analyze the behavior of the QRCS. The simulations done do not take into account the macroscopic nature of the target. Because the atoms are so numerous, and because of the underlying Fourier transform relationship, there are many issues of sampling that must be taken into account when performing simulations. Simulating an object with too few samples results in an aliased and incorrect version of the QRCS response. An extensive error analysis is presented which ensures an accurate simulation result based on sample number. Finally, possible future work endeavors will be presented which include QRCS diffraction, shadowing, more accurate simulation concepts, and the effect of quantum tunneling on the QRCS response.

  14. Observations of the marine environment from spaceborne side-looking real aperture radars

    NASA Technical Reports Server (NTRS)

    Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.

    1993-01-01

    Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.

  15. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station. (b...

  16. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station. (b...

  17. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station. (b...

  18. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station. (b...

  19. 46 CFR 121.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radars. 121.404 Section 121.404 Shipping COAST GUARD... Navigation Equipment § 121.404 Radars. (a) Except as allowed by paragraph (b) of this section, all self... radar system for surface navigation with a radar screen mounted at the primary operating station. (b...

  20. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  1. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    PubMed

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  2. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  3. Cassini radar views the surface of Titan.

    PubMed

    Elachi, C; Wall, S; Allison, M; Anderson, Y; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Franceschetti, G; Gim, Y; Hamilton, G; Hensley, S; Janssen, M; Johnson, W; Kelleher, K; Kirk, R; Lopes, R; Lorenz, R; Lunine, J; Muhleman, D; Ostro, S; Paganelli, F; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Soderblom, L; Stiles, B; Stofan, E; Vetrella, S; West, R; Wood, C; Wye, L; Zebker, H

    2005-05-13

    The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.

  4. Cassini radar views the surface of Titan

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Allison, M.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.; Johnson, W.; Kelleher, K.; Kirk, R.; Lopes, R.; Lorenz, R.; Lunine, J.; Muhleman, D.; Ostro, S.; Paganelli, F.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Soderblom, L.; Stiles, B.; Stofan, E.; Vetrella, S.; West, R.; Wood, C.; Wye, L.; Zebker, H.

    2005-01-01

    The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of ???0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.

  5. Significance of dual polarized long wavelength radar for terrain analysis

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Waite, W. P.

    1978-01-01

    Long wavelength systems with improved penetration capability have been considered to have the potential for minimizing the vegetation contribution and enhancing the surface return variations. L-band imagery of the Arkansas geologic test site provides confirmatory evidence of this effect. However, the increased wavelength increases the sensitivity to larger scale structure at relatively small incidence angles. The regularity of agricultural and urban scenes provides large components in the low frequency-large scale portion of the roughness spectrum that are highly sensitive to orientation. The addition of a cross polarized channel is shown to enable the interpreter to distinguish vegetation and orientational perturbations in the surface return.

  6. Effect of radar frequency on the detection of shaped (low RCS) targets

    NASA Astrophysics Data System (ADS)

    Moraitis, D.; Alland, S.

    The use of shaping to reduce the radar cross-section (RCS) of aircraft and missiles can result in the RCS varying significantly with radar operating frequency. This RCS sensitivity to frequency should be considered when selecting radar frequency and should be accounted for when evaluating radar performance. A detection range increase for shaped (low RCS) targets of a factor of two or greater can be realized for lower frequency radar (e.g., UHF-Band or L-Band) when compared to higher frequency radar (C-Band or X-Band). For low flying (sea skimming) targets, the RCS variation with frequency for shaped (low RCS) targets neutralizes the advantage that higher radar frequencies realize in multipath propagation resulting in approximately the same detection range across the radar bands from UHF to X-Band.

  7. PO calculation for reduction in radar cross section of hypersonic targets using RAM

    NASA Astrophysics Data System (ADS)

    Liu, Song-hua; Guo, Li-xin; Pan, Wei-tao; Chen, Wei; Xiao, Yi-fan

    2018-06-01

    The radar cross section (RCS) reduction of hypersonic targets by radar absorbing materials (RAM) coating under different reentry cases is analyzed in the C and X bands frequency range normally used for radar detection. The physical optics method is extended to both the inhomogeneous plasma sheath and RAM layer present simultaneously. The simulation results show that the absorbing coating can reduce the RCS of the plasma cloaking system and its effectiveness is related to the maximum plasma frequency. Moreover, the amount of the RCS decrease, its maxima, and the corresponding optimal RAM thickness depend on the non-uniformity and parameters of the plasma sheath. In addition, the backward RCS of the flight vehicle shrouded by plasma shielding and man-made absorber is calculated and compared to the bare cone.

  8. Borehole radar interferometry revisited

    USGS Publications Warehouse

    Liu, Lanbo; Ma, Chunguang; Lane, John W.; Joesten, Peter K.

    2014-01-01

    Single-hole, multi-offset borehole-radar reflection (SHMOR) is an effective technique for fracture detection. However, commercial radar system limitations hinder the acquisition of multi-offset reflection data in a single borehole. Transforming cross-hole transmission mode radar data to virtual single-hole, multi-offset reflection data using a wave interferometric virtual source (WIVS) approach has been proposed but not fully demonstrated. In this study, we compare WIVS-derived virtual single-hole, multi-offset reflection data to real SHMOR radar reflection profiles using cross-hole and single-hole radar data acquired in two boreholes located at the University of Connecticut (Storrs, CT USA). The field data results are similar to full-waveform numerical simulations developed for a two-borehole model. The reflection from the adjacent borehole is clearly imaged by both the real and WIVS-derived virtual reflection profiles. Reflector travel-time changes induced by deviation of the two boreholes from the vertical can also be observed on the real and virtual reflection profiles. The results of this study demonstrate the potential of the WIVS approach to improve bedrock fracture imaging for hydrogeological and petroleum reservoir development applications.

  9. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.

    PubMed

    Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas

    2004-09-01

    The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

  10. A two-scale scattering model with application to the JONSWAP '75 aircraft microwave scatterometer experiment

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1977-01-01

    The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.

  11. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  12. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  13. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when considering topics like the surface topography, stratigraphy and identification of different materials.

  14. Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.

    1982-01-01

    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.

  15. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented. The estimates of roughness parameters variability during precipitation are obtained. The first measurements of rain influencing on cross section and Doppler spectrum of backscattered acoustic signal was carried out. The obtained results were compared with calculations based on the theoretical model. Acknowledgments. The reported study was supported by RFBR, research project No. 14-05-31517 mol_a. References 1. Bliven Larry, Branger Hubert, Sobieski Piotr, Giovanangeli Jean-Paul, An analysis of scatterometer returns from a water surface agitated by artificial rain : evidence that ring-waves are the mean feature, Intl. Jl. of Remote Sensing, Vol. 14, n 12, 1993, pp. 2315-2329, 1993 2. Sobieski Piotr, Craeye Christophe, Bliven Larry, A Relationship Between Rain Radar Reflectivity and Height Elevation Variance of Ringwaves due to the Impact of Rain on the Sea Surface, Radio Science, AGU, 44, RS3005, 1-20, 2009 3. Weissman, D. E., and M. A. Bourassa, Measurements of the Effect of Rain-induced Sea Surface Roughness on the Satellite Scatterometer Radar Cross Section, IEEE Trans. Geosci. Remote Sens., 46, 2882-2894, 2008 4. B. Brumley, La Jolla, E.Terray, B.String, «System and method for measuring wave directional spectrum and wave height», USA Patent N US 2004/0184350 A1,23 September 2004 5. James H. Churchill, Albert J. Plueddemann, Stephen M. Faluotico, «Extracting Wind Sea and Swell from Directional Wave Spectra derived from a bottom-mounted ADCP», Woods Hole Oceanographic Institution, Technical Report WHOI-2006-13 6. V. Yu. Karaev, M. B. Kanevsky, E. M. Meshkov, Measuring the parameters of sea-surface roughness by underwater acoustic systems: discussion of the device concept, Radiophysics and Quantum Electronics, V. 53, I. 9-10. pp. 569-579, 2011

  16. Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the Electromagnetic Perspective

    DTIC Science & Technology

    2011-09-01

    and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the

  17. 10. The surface and interior of venus

    USGS Publications Warehouse

    Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.

    1977-01-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

  18. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  19. Measurement of Non-Linear Internal Waves and Their Interaction with Surface Waves using Coherent Real Aperture Radars

    DTIC Science & Technology

    2010-03-08

    frequencies on wind speed and direction is viable at VV polarization at much larger incidence angles than we had thought. At this polarization it works...out to 89 degree incidence angles. By contrast at HH polarization the model underpredicts the NRCS of the sea for incidence angles above about 45...degrees. ● At high grazing angles, HH polarized cross sections maximize upwind and minimize downwind; upwind they are slightly smaller than VV

  20. National Symposium: Surface Navy Leading the Way (5th) Held at Washington, DC on 26-29 October 1992

    DTIC Science & Technology

    1992-10-29

    nation. We all hope that in the days and years ahead a grateful nation continues to be grateful, and will not forget the price we paid for this... skimming threats. The Outlaw Bandit Program will continue. This program reduces the radar cross section of combatants significantly and increases the...Weapon Systems to provide a precision, multi-mode strike Cruise missile with an imaging seeker and hard target penetrator warhead. 22 With the

  1. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  2. Wind-Related Features and Processes on Venus: Summary of Magellan Results

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.

    1995-01-01

    A search of Magellan synthetic aperture radar images covering approximately 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 sq km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.

  3. Wind-Related Features and Processes on Venus Summary of Magellan Results

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.

    1995-01-01

    A search of Magellan synthetic aperture radar images covering about 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 square km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.

  4. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Venus mountain-top mineralogy: Misconceptions about pyrite as the high radar-reflecting phase

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Straub, Darcy W.

    1993-01-01

    Altitude-dependent, high radar-reflectivity surfaces on Venus are observed on most mountainous volcanic terranes above a planetary radius of about 6054 km. However, high radar-reflectivity areas also occur at lower altitudes in some impact craters and plain terranes. Pyrite (FeS2) is commonly believed to be responsible for the high radar reflectivities at high elevations on Venus, on account of large dielectric constants measured for sulfide-bearing rocks that were erroneously attributed to pyrite instead of pyrrhotite. Pentlandite-pyrrhotite assemblages may be responsible for high reflectivities associated with impact craters on the Venusian surface, by analogy with Fe-Ni sulfide deposits occurring in terrestrial astroblemes. Mixed-valence Fe(2+)-Fe(3+) silicates, including oxyhornblende, oxybiotite, and ilvaite, may contribute to high radar reflecting surfaces on mountain-tops of Venus.

  6. Reconstruction of the Mesoscale Velocity Shear Seaward of Coastal Upwelling Regions from the Refraction of the Surface Wave Field

    NASA Technical Reports Server (NTRS)

    Flament, Pierre; Graber, Hans C.; Halpern, D.; Holt, B.

    1996-01-01

    The objective of this project is to study fronts that develop at the boundary between cold water recently upwelled to the surface through Ekman divergence, and warmer surrounding waters. This specific objective was suggested by studying the small scale structure of upwelling fronts (coastal, island, and equatorial) through shipboard surveys and infrared satellite images. Constraints on the shuttle equator crossing imposed by other land sites precluded a coverage of the area targeted in the initial SIR-C proposal, the California Current. The site was then relocated to the Equatorial Pacific upwelling tongue, that can be satisfactorily imaged for a wide range of longitudes of the equator crossing. Some limited data was nevertheless obtained over coastal upwelling off California in 1989, using the JPL AIRSAR in multifrequency mode, and over island upwelling off Hawaii in 1990, using the radar in along-track interferometric mode.

  7. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  8. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  9. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, Jeffrey E.

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  10. Impact Craters on Titan? Cassini RADAR View

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles

    2005-01-01

    Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.

  11. Terrain-analysis procedures for modeling radar backscatter

    USGS Publications Warehouse

    Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis

    1978-01-01

    The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.

  12. Combined High Spectral Resolution Lidar and Millimeter Wavelength Radar Measurement of Ice Crystal Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eloranta, Edwin

    The goal of this research has been to improve measurements of snowfall using a combination of millimeter-wavelength radar and High Spectral Resolution Lidar (HSRL) Observations. Snowflakes are large compared to the 532nm HSRL wavelength and small compared to the 3.2 and 8.6 mm wavelength radars used in this study. This places the particles in the optical scattering regime of the HSRL, where extinction cross-section is proportional to the projected area of the particles, and in the Rayleigh regime for the radar, where the backscatter cross-section is proportional to the mass-squared of the particles. Forming a ratio of the radar measuredmore » cross-section to the HSRL measured cross section eliminates any dependence on the number of scattering particles, yielding a quantity proportional to the average mass-squared of the snowflakes over the average area of the flakes. Using simultaneous radar measurements of particle fall velocities, which are dependent particle mass and cross-sectional area it is possible to derive the average mass of the snow flakes, and with the radar measured fall velocities compute the snowfall rate. Since this retrieval requires the optical extinction cross-section we began by considering errors this quantity. The HSRL is particularly good at measuring the backscatter cross-section. In previous studies of snowfall in the high Arctic were able to estimate the extinction cross-section directly as a fixed ratio to the backscatter cross-section. Measurements acquired in the STORMVEX experiment in Colorado showed that this approach was not valid in mid-latitude snowfalls and that direct measurement of the extinction cross-section is required. Attempts to measure the extinction directly uncovered shortcomings in thermal regulation and mechanical stability of the newly deployed DOE HSRL systems. These problems were largely mitigated by modifications installed in both of the DOE systems. We also investigated other sources of error in the HSRL direct measurement of extinction (see appendix II of this report). We also developed improved algorithms to extract extinction from the HSRL data. These have been installed in the standard HSRL data processing software and are now available to all users of HSRL data. Validation of snowfall measurements has proven difficult due to the unreliability of conventional snowfall measurements coupled with the complexity of considering the vast variety of snowflake geometries. It was difficult to tell how well the algorithm’s approach to accommodating differences in snowflakes was working without good measurements for comparison. As a result, we decided to apply this approach to the somewhat simpler, but scientifically important, problem of drizzle measurement. Here the particle shape is known and the conventional measurement are more reliable. These algorithms where successfully applied to drizzle data acquired during the ARM MAGIC study of marine stratus clouds between California and Hawaii (see Appendix I). This technique is likely to become a powerful tool for studying lifetime of the climatically important marine stratus clouds.« less

  13. On Utilization of NEXRAD Scan Strategy Information to Infer Discrepancies Associated With Radar and Rain Gauge Surface Volumetric Rainfall Accumulations

    NASA Technical Reports Server (NTRS)

    Roy, Biswadev; Datta, Saswati; Jones, W. Linwood; Kasparis, Takis; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To evaluate the Tropical Rainfall Measuring Mission (TRMM) monthly Ground Validation (GV) rain map, 42 quality controlled tipping bucket rain gauge data (1 minute interpolated rain rates) were utilized. We have compared the gauge data to the surface volumetric rainfall accumulation of NEXRAD reflectivity field, (converting to rain rates using a 0.5 dB resolution smooth Z-R table). The comparison was carried out from data collected at Melbourne, Florida during the month of July 98. GV operational level 3 (L3 monthly) accumulation algorithm was used to obtain surface volumetric accumulations for the radar. The gauge records were accumulated using the 1 minute interpolated rain rates while the radar Volume Scan (VOS) intervals remain less than or equal to 75 minutes. The correlation coefficient for the radar and gauge totals for the monthly time-scale remain at 0.93, however, a large difference was noted between the gauge and radar derived rain accumulation when the radar data interval is either 9 minute, or 10 minute. This difference in radar and gauge accumulation is being explained in terms of the radar scan strategy information. The discrepancy in terms of the Volume Coverage Pattern (VCP) of the NEXRAD is being reported where VCP mode is ascertained using the radar tilt angle information. Hourly radar and gauge accumulations have been computed using the present operational L3 method supplemented with a threshold period of +/- 5 minutes (based on a sensitivity analysis). These radar and gauge accumulations are subsequently improved using a radar hourly scan weighting factor (taking ratio of the radar scan frequency within a time bin to the 7436 total radar scans for the month). This GV procedure is further being improved by introducing a spatial smoothing method to yield reasonable bulk radar to gauge ratio for the hourly and daily scales.

  14. Constraints on the subsurface structure and density of the nucleus of Comet 67P/Churyumov-Gerasimenko from Arecibo radar observations

    NASA Astrophysics Data System (ADS)

    Kamoun, P.; Lamy, P. L.; Toth, I.; Herique, A.

    2014-08-01

    Context. Little is known about the internal structure of cometary nuclei. In addition to understanding their accretion in the early solar nebula and their subsequent evolution in the solar system, we find this question to be of acute and timely interest in the case of 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) due to be visited by the Rosetta spacecraft in the second half of 2014. In particular, the successful landing of the Philae surface module depends critically upon the bulk density of the nucleus and the structure of its surface layer. Aims: In addition to fostering our general knowledge of these properties, it is important to exploit all possible information to assist in preparing the delivery of Philae. Methods: We performed an in-depth analysis of the observations done with the radar system of the Arecibo Observatory in November 1982 when comet 67P/C-G had a close encounter with Earth at a geocentric distance of 0.4AU taking our present knowledge of the properties of its nucleus (size, rotational state) into account. Results: In the absence of a detectable radar echo, we determined a maximum radar cross section of 0.7 km2, leading to a maximum radar albedo of 0.05. This low albedo probably results from a combination of a low radar reflectivity material and a lightly packed upper layer of the nucleus with substantial roughness (rms slope of ≈55°), consistent with its low thermal inertia. Based on radar observations of other cometary nuclei and asteroids, it is unlikely that the albedo can be lower than 0.04 so that we were able to constrain the dielectric permittivity of the subsurface layer to a narrow range of 1.9 to 2.1. Laboratory measurements and our modeling of mixtures of ice and dust have led to a porosity in the range of approximately 55 to 65% and a density in the range of ≈600 to ≈1000 kg m-3 for the top ≈2.5 m layer of the nucleus. This would be the bulk density range for a homogeneous nucleus and would place the success of the landing at risk, but an inhomogeneous nucleus with an overall density below this range remains a possibility.

  15. Radar Cross Section (RCS) Simulation for Wind Turbines

    DTIC Science & Technology

    2013-06-01

    SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Wind - turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built

  16. Reduction of the RCS of the leading edge of a conducting wing-shaped structure by means of lossless dielectric material

    NASA Astrophysics Data System (ADS)

    Booysen, A. J.; Pistorius, C. W. I.; Malherbe, J. A. G.

    1991-06-01

    The radar cross section of the leading edge of a conducting wing-shaped structure is reduced by replacing part of the structure with a lossless dielectric material. The structure retains its original external shape, thereby ensuring that the aerodynamic properties are not altered by the structural changes needed to reduce the radar cross section.

  17. Comparison of RCS prediction techniques, computations and measurements

    NASA Astrophysics Data System (ADS)

    Brand, M. G. E.; Vanewijk, L. J.; Klinker, F.; Schippers, H.

    1992-07-01

    Three calculation methods to predict radar cross sections (RCS) of three dimensional objects are evaluated by computing the radar cross sections of a generic wing inlet configuration. The following methods are applied: a three dimensional high frequency method, a three dimensional boundary element method, and a two dimensional finite difference time domain method. The results of the computations are compared with the data of measurements.

  18. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  19. Generic Surface-to-Air Missile Model.

    DTIC Science & Technology

    1979-10-01

    describes the Generic Surface-to-Air Missile Model (GENSAM) which evaluates the outcome of an engagement between a surface-to-air missile system and an...DETAILS OF THE GENERIC SAM MODEL 3-1 3.1 Coordinate Transformations 3-1 3.1.1 Coordinate Systems 3-1 3.1.2 Coordinate Transformations 3-4 3.1.3 Functions...Tracking Radars 3-54 3.3.11 Deception Jamming and Tracking Radars 3-55 3.3.12 Jaming and Track Radar Downlinks 3-56 3.3.13 Infrared Surveillance Systems 3

  20. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the second half of the L1 cal/val period, the RFI removal algorithm will be tuned for optimal performance, and the Faraday rotation corrections used in radar processing will be further developed and validated. This work is supported by the SMAP project at the Jet Propulsion Laboratory, California Institute of Technology.

  1. C-band PARC manual

    NASA Astrophysics Data System (ADS)

    Groot, J. S.

    1992-05-01

    Measurement results of radar cross section, crosstalk level, etc., of a C band Polarimetric Active Radar Calibrator (PARC), which is used to calibrate air and spaceborne radars commonly used in remote sensing, are reported. The results are used to infer guidelines for the use of this PARC. The PARC consists of a high gain amplifier connected between two linearly polarized horn antennas.

  2. Global characterization of Titan's dune fields by RADAR and VIMS observations

    NASA Astrophysics Data System (ADS)

    garcia, A.; Rodriguez, S.; Lucas, A.; Appéré, T.; Le Gall, A.; Reffet, E.; Le Corre, L.; Le Mouélic, S.; Cornet, T.; Courrech Du Pont, S.; Narteau, C.; Bourgeois, O.; Radebaugh, J.; Arnold, K.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Lorenz, R. D.; Turtle, E. P.

    2013-12-01

    Cassini/RADAR high-resolution images of Titan's surface revealed linear features, geomorphologically similar to longitudinal dunes. Those dunes cover a large portion of the whole surface of Titan, i.e 7.8%, and 13.4% are present on the 58.4% of the surface imaged by the RADAR/SAR from July 2004 to July 2013 (fig.1). 99.6% of the dunes are confined at the equatorial regions (30°N-30°S). Formed and sculpted by the wind, those features represent clues for the understanding of the climatic history on the satellite. By using the joint analysis between RADAR/SAR observations and the infrared VIMS mosaic corrected for atmospheric contributions acquired through July 2013 and June 2010 respectively, we found a very high degree of correlation at global scale (more than 70%) between the RADAR dunes and a specific infrared VIMS spectral unit, the 'dark brown unit'. Some RADAR dunes, less than 2%, also belong in a commonly referenced unit, the 'dark blue unit'. These two units have been delimited by defining for each a specific set of spectral criteria. We have shown that those two units present a spectral behavior different, especially at short wavelengths (below 2 μm) allowing to say that the 'dark brown unit' is dominated by organic sediment, similar to atmospheric aerosols, namely tholins, and the 'dark blue' is most likely enriched in water ice compared to the rest of Titan's surface. Given the strong correlation between RADAR dunes and the infrared 'dark brown unit' we are now able to extrapolate the total surface area of the dunes material to the total surface area of the 'dark brown unit' which correspond to 17% of the Titan's surface. This permits to estimate the volume of sediment of 360,000 km3 (total mass ≈ 290,000 GT). Thus, these estimates based on the RADAR dunes/VIMS units correlation make the dune fields the largest organic reservoir on Titan's surface and characterize more precisely the composition of the dune material over the total extend of the dune regions.

  3. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    NASA Astrophysics Data System (ADS)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  4. Radar-cross-section reduction of wind turbines. part 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites,more » but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.« less

  5. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  6. Measurement of Automobile UWB Radar Cross Sections at Ka Band

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takehiko; Takahashi, Naoto; Yoshikawa, Makoto; Tsunoda, Kikuo; Tenno, Nobuyuki

    Ultra-wideband (UWB) radar cross sections (RCS) of an automobile were measured in the frequency range from 22 to 29 GHz, with a view to obtaining information on the design of vehicular cruise control short-range radars. The measurements were made in a radio anechoic chamber using three transmitting and receiving polarization combinations (V-V, H-H, and +45° to -45°). A vector network analyzer was used in making the wideband measurements. The UWB RCSs were derived by integrating the receiving power from 22 to 29 GHz. It was found that the UWB RCS of the automobile varied as follows:

  7. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  8. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...

  9. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...

  10. 46 CFR 28.875 - Radar, depth sounding, and auto-pilot.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar, depth sounding, and auto-pilot. 28.875 Section 28... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.875 Radar, depth sounding, and auto-pilot. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar...

  11. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...

  12. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...

  13. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...

  14. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  15. Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence

    NASA Astrophysics Data System (ADS)

    Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.

    2016-02-01

    Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.

  16. Arecibo Radar Investigations of Planetary and Small-Body Surfaces

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.

    2016-12-01

    The 305-m William E. Gordon telescope at Arecibo Observatory in Puerto Rico is the most sensitive, most powerful, and most active planetary radar facility in the world. Over the last 50-plus years, the S-band (12.6 cm, 2380 MHz) and P-band (70 cm, 430 MHz) radars at Arecibo have studied solid bodies in the solar system from Mercury to Saturn's rings. Radar provides fine spatial resolution of these bodies surpassed only by dedicated spacecraft while adding the extra dimensions of near-surface, wavelength-scale roughness and penetration to several wavelengths below the surface. For asteroids and comets, this spatial resolution is akin to a spacecraft flyby revealing spin, size, and shape information and geologic features such as ridges, crater-like depressions, and boulders. For planetary bodies, radar can reveal geologic features on the surface such as ancient lava flows or features buried beneath the regolith including lava tubes and water-ice deposits. We will present an overview of how the Arecibo radar systems are utilized in the study of planetary and small-body surfaces and what can be learned without ever leaving the comfort of Earth's surface. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Mendez-Universidad Metropolitana (UMET) and the Universities Space Research Association (USRA). The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G issued through the Near-Earth Object Observations program and operated by USRA in alliance with SRI International and UMET.

  17. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  18. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  19. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  20. CloudSat Image of a Polar Night Storm Near Antarctica

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat image of a horizontal cross-section of a polar night storm near Antarctica. Until now, clouds have been hard to observe in polar regions using remote sensing, particularly during the polar winter or night season. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water; the brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.

  1. Changes in the TRMM Version-5 and Version-6 Precipitation Radar Products Due to Orbit Boost

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    The performance of the version-5 and version-6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products before and after the satellite orbit boost is assessed through a series of comparisons with Weather Surveillance Radar (WSR)-88D ground-based radar in Melbourne, Florida. Analysis of the comparisons of radar reflectivity near the storm top from the ground radar and both versions of the PR indicates that the PR bias relative to the WSR radar at Melbourne is on the order of 1dB for both pre- and post-boost periods, indicating that the PR products maintain accurate calibration after the orbit boost. Comparisons with the WSR-88D near-surface reflectivity factors indicate that both versions of the PR products accurately correct for attenuation in stratiform rain. However, in convective rain, both versions exhibit negative biases in the near-surface radar reflectivity with version-6 products having larger negative biases than version-5. Rain rate comparisons between the ground and space radars show similar characteristics

  2. Pinacate-gran Desierto Region, Mexico: SIR-A Data Analysis

    NASA Technical Reports Server (NTRS)

    Christensen, P.; Greeley, R.; Mchone, J.; Asmerom, Y.; Barnett, S.

    1984-01-01

    Radar images (SIR-A) from the Columbia space shuttle were used to assess the radar returns of terrain shaped by volcanic, aeolian, and fluvial processes in northwest Sonora. Field studies and photointerpretation show that sand dunes are poorly imaged by SIR-A, in contrast to SEASAT, evidently a consequence of the greater SIR-A incidence angle; star dunes are visible only as small bright spots representing merging arms at dune apices which may act as corner reflectors. Desert grasses and bushes (approx. 2 m high) have little effect on radar brightness. Only larger trees with woody trunks approx. 0.5 m across are effective radar reflectors; their presence contributes to radar bright zones along some arroyos. The radar brightness of lava flows decreases with surface roughness and presence of mantling windblown sediments and weathering products; however, old uplifted (faulted) flows are of equal brightness to fresh, unmantled aa flows. Maar craters display circular patterns of varying radar brightness which represent a combination of geometry, slope, and distribution of surface materials. Some radar bright rings in the Pinacates resemble craters on radar but are observed to be playas encircled by trees.

  3. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  4. A 19-year radar altimeter elevation change time-series of the East and West Antarctic ice sheets

    NASA Astrophysics Data System (ADS)

    Sundal, A. V.; Shepherd, A.; Wingham, D.; Muir, A.; Mcmillan, M.; Galin, N.

    2012-12-01

    We present 19 years of continuous radar altimeter observations of the East and West Antarctic ice sheets acquired by the ERS-1, ERS-2, and ENVISAT satellites between May 1992 and September 2010. Time-series of surface elevation change were developed at 39,375 crossing points of the satellite orbit ground tracks using the method of dual cycle crossovers (Zwally et al., 1989; Wingham et al., 1998). In total, 46.5 million individual measurements were included in the analysis, encompassing 74 and 76 % of the East and West Antarctic ice sheet, respectively. The satellites were cross-calibrated by calculating differences between elevation changes occurring during periods of mission overlap. We use the merged time-series to explore spatial and temporal patterns of elevation change and to characterise and quantify the signals of Antarctic ice sheet imbalance. References: Wingham, D., Ridout, A., Scharroo, R., Arthern, R. & Shum, C.K. (1998): Antarctic elevation change from 1992 to 1996. Science, 282, 456-458. Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. (1989): Growth of Greenland ice-sheet - measurements. Science, 246, 1587-1589.

  5. Synthetic aperture radar imagery of airports and surrounding areas: Philadelphia Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic Aperture Radar (SAR) data were collected at the Philadelphia Airport. These data and the results of the clutter study are described. This 13 km x 10 km scene was imaged at 9.38 GHz and HH-polarization and contained airport grounds and facilities (6 percent), industrial (14 percent), residential (14 percent), fields (10 percent), forest (8 percent), and water (33 percent). Incidence angles ranged from 40 to 84 deg. Even at the smallest incidence angles, the distributed targets such as forest, fields, water, and residential rarely had mean scattering coefficients greater than -10 dB. Eighty-seven percent of the image had scattering coefficients less than -17.5 dB. About 1 percent of the scattering coefficients exceeded 0 dB, with about 0.1 percent above 10 dB. Sources which produced the largest cross sections were largely confined to the airport grounds and areas highly industrialized. The largest cross sections were produced by observing broadside large buildings surrounded by smooth surfaces.

  6. Impact of aerosols present in Titan's atmosphere on The Cassini Radar experiment

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Paillou, P.; Dobrijevic, M.; Ruffie, G.; Coll, P.; Bernard, J. M.; Encrenaz, P.

    2002-09-01

    One of the goals of the Cassini-Huygens mission, which will reach Saturn in 2004, is the study of the satellite Titan (its atmosphere and surface) by means of various remote sensing instruments on the orbiter and with the entry of the Huygens probe into Titan's atmosphere. In particular, the Cassini Radar experiment will use the high gain antenna at 13.78 GHz to "see" through Titan's atmosphere and map about 30 Two active modes (SAR and altimeter) and a passive mode (radiometer) will be used within the Radar experiment. The interpretation of future radar acquisitions will be conditioned by the electric properties of the atmospheric components the radar pulse will encounter, as well as the Titan's surface reflectivity. For this purpose, we made some dielectric constant measurements on synthetic analogs of Titan's aerosols, i.e. tholins. We found ǎrepsilon'=2-2.5 and a loss tangent between 5.10-2 and 10-3. These results were combined to scenarii of aerosol and rain formation in Titan's atmosphere into a simple simulation of the atmospheric transmission (Rayleigh and Mie scattering) in order to estimate the way aerosols and rain particles will affect the performance of the radar instrument, by attenuating the radar pulse before it reaches the surface. Results we obtained are surprisingly pessimistic for numbers of published atmospheric models, with computed attenuations that can be higher than 12 dB. Indeed, the occurrence of hydrocarbon rain in the low atmosphere could have a prejudicial effect on the radar pulses, since they could be partially attenuated, completely reflected, or distorted before reaching Titan's surface. We conclude on possible consequences that such atmospheric effects could have on the future analysis of Cassini Radar data. We also propose alternative ways to use combined altimeter and SAR data in order to decorrelate atmospheric and surface effects and then map the surface with less ambiguity, but also study the particles distribution in Titan's atmosphere. This work was supported by the French Programme National de Planétologie of the Institut National des Sciences de l'Univers, CNRS.

  7. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  8. Drone-borne GPR design: Propagation issues

    NASA Astrophysics Data System (ADS)

    Chandra, Madhu; Tanzi, Tullio Joseph

    2018-01-01

    In this paper, we shall address the electromagnetic wave propagation issues that are critical to determining the feasibility of a drone-borne ground-penetrating radar sensor for humanitarian applications, particularly in the context of disaster management. Frequency- and polarization-dependent scattering, attenuation and dispersion of radar signals penetrating into the sub-surface region will determine the applicability of a drone-mounted radar sensor capable of registering radar echoes for observing and monitoring sub-surface features. The functionality of the radar will thus be assessed depending on key radar parameters that include the central radar frequency, the modulation depth, and the mode of radar operation (pulsed FM, FM-CW), the antenna type, the available power-budget. In the analysis to be presented, the radar equation, together with the aforementioned propagation effects, will be used to simulate the signal strength of radar echoes under different conditions arising from the chosen key-radar parameters and the assumed physical properties of the sub-surface earth medium. The analysis to be presented will indicate whether or not the drone-borne ground-penetrating radar is a feasible system and if it could be constructed with the technologies available today. Taking into account the strict constraints involved to design drone applications for Public Protection and Disaster Relief (PPDR), the ideas developed hereafter are both prospective and exploratory. The objective is to see if a solution can be found in the near future. xml:lang="fr" Dans l'analyse présentée, l'équation radar, ainsi que les effets de propagation susmentionnés, serviront à simuler la puissance du signal des échos radar sous différentes conditions découlant des paramètres clés choisis et les propriétés physiques du milieu sous la surface. L'étude a pour objectif de démontrer si le système est réalisable et s'il peut être construit avec les technologies disponibles aujourd'hui. En raison du contexte très contraignant des applications pour la protection du public et secours en cas de catastrophe, les idées ici développées ont un caractère tout à la fois prospectif et exploratoire, l'objectif étant d'examiner si, dans un avenir proche, une solution se dessinerait.

  9. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    USGS Publications Warehouse

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  10. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation...

  11. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation...

  12. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation...

  13. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation...

  14. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation...

  15. Dynamic imaging and RCS measurements of aircraft

    NASA Astrophysics Data System (ADS)

    Jain, Atul; Patel, Indu

    1995-01-01

    Results on radar cross section (RCS) measurements and inverse synthetic aperture radar images of a Mooney 231 aircraft using a ground-to-air measurement system (GTAMS) and a KC-135 airplane using an airborne radar are presented. The Mooney 231 flew in a controlled path in both clockwise and counterclockwise orbits, and successively with the gear down, flaps in the take-off position and with the speed brakes up. The data indicates that RCS pattern measurements from both ground-based and airborne radar of flying aircraft are useful and that the inverse synthetic aperture radar (ISAR) images obtained are valuable for signature diagnostics.

  16. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  17. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  18. Direct Visual and Radar Methods for the Detection, Quantification, and Prediction of Bird Migration.

    DTIC Science & Technology

    1980-04-30

    domesticus), 12 cm2 ; and Rock Dove ( Columba livia ), 80 cm’. Eastwood (1967) has given the radar cross sections of a number of European birds as mea...in Table 4 and Table 5 it is apparent that a single pigeon ( Columba livia ) flying toward the radar should theoretically produce an echo on the ASR-4

  19. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  20. Breast surface estimation for radar-based breast imaging systems.

    PubMed

    Williams, Trevor C; Sill, Jeff M; Fear, Elise C

    2008-06-01

    Radar-based microwave breast-imaging techniques typically require the antennas to be placed at a certain distance from or on the breast surface. This requires prior knowledge of the breast location, shape, and size. The method proposed in this paper for obtaining this information is based on a modified tissue sensing adaptive radar algorithm. First, a breast surface detection scan is performed. Data from this scan are used to localize the breast by creating an estimate of the breast surface. If required, the antennas may then be placed at specified distances from the breast surface for a second tumor-sensing scan. This paper introduces the breast surface estimation and antenna placement algorithms. Surface estimation and antenna placement results are demonstrated on three-dimensional breast models derived from magnetic resonance images.

  1. Space Radar Image of Safsaf Oasis, Egypt

    NASA Image and Video Library

    1999-04-15

    This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface.

  2. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  3. Evidence for highly reflecting materials on the surface and subsurface of Venus

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Slade, M. A.; Saunders, R. S.

    1988-01-01

    Radar images at a 12.5-centimeter wavelength made with the Goldstone radar interferometer in 1980 and 1986, together with lunar radar images and recent Venera 15 and 16 data, indicate that material on the surface and subsurface of Venus has a Fresnel reflectivity in excess of 50 percent. Such high reflectivities have been reported on the surface in mountainous regions. Material of high reflectivity may also underlie lower reflectivity surficial materials of the plains regions, where it has been excavated by impact cratering in some areas.

  4. Joint application of Geoelectrical Resistivity and Ground Penetrating Radar techniques for the study of hyper-saturated zones. Case study in Egypt

    NASA Astrophysics Data System (ADS)

    Mesbah, Hany S.; Morsy, Essam A.; Soliman, Mamdouh M.; Kabeel, Khamis

    2017-06-01

    This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS) and Ground Penetrating Radar (GPR) for outlining and investigating of surface springing out (flow) of groundwater to the base of an service building site, and determining the reason(s) for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES) survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form), are easily clarifying the direction of groundwater flow toward the studied building.

  5. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  6. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  7. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described.

  8. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  9. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  10. KSC-99pp0974

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  11. KSC-99pp0973

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lowers the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, into the payload bay of the orbiter Endeavour in Orbiter Processing Facility (OPF) bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  12. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    Hensley, H. A. Zebker, F. H. Webb, and E. Fielding, 1996, "Surface deformation and coherence measurements of Kilauea Volcano , Hawaii from SIR-C radar...topography, tectonic surface deformation, bulging and subsidence (earthquakes, volcanoes , geo-thermal fields and artesian irrigation, ice fields), glacial...J.J. and Y-J. Kim, 2000, "The relationship between radar polarimetric and interferometric phase," Presented at IGARSS�, Honolulu, Hawaii , July

  13. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  14. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-12-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  15. Airport surface detection equipment ASDE-3 radar set : appendix I

    DOT National Transportation Integrated Search

    1973-02-01

    This specification establishes the performance, design, development, and test requirements for the Airport Surface Detection Equipment, the ASDE-3 Radar Set, intended as a replacement for the currently FAA-commissioned ASDE-2. It provides improvement...

  16. Color Image of Death Valley, California from SIR-C

    NASA Image and Video Library

    1999-09-27

    This radar image shows the area of Death Valley, California and the different surface types in the area. Radar is sensitive to surface roughness with rough areas showing up brighter than smooth areas, which appear dark.

  17. HF Surface Wave Radar Tests at the Eastern China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Xiong Bin; Cheng, Feng; Wu, Shi Cai; Yang, Zi Jie; Wen, Biyang; Shi, Zhen Hua; Tian, Jiansheng; Ke, Hengyu; Gao, Huotao

    2005-01-01

    The HF surface wave radar system OSMAR2000 adopts Frequency Modulated Interrupted Continuous Waveform (FMICW) and its 120m-antenna array is transmitting/receiving co-used. MUSIC and MVM are applied to obtain sea echo's direction of arrival (DOA) when extracting currents information. Verification tests of OSMAR2000 ocean surface dynamics detection against in-situ measurements had been accomplished on Oct. 23~29, 2000. Ship detection test was carried out on Dec.24, 2001. It shows that OSMAR2000 is capable of detecting 1000 tons ships with a wide beam out to 70 km. This paper introduces the radar system and the applied DOA estimation methods in the first, and then presents ship detection results and some sea state measurement results of surface currents and waves. The results indicate the validity of the developed radar system and the effectiveness of the applied signal processing methods.

  18. HERMES: a high-speed radar imaging system for inspection of bridge decks

    NASA Astrophysics Data System (ADS)

    Azevedo, Stephen G.; Mast, Jeffrey E.; Nelson, Scott D.; Rosenbury, E. T.; Jones, Holger E.; McEwan, Thomas E.; Mullenhoff, D. J.; Hugenberger, R. E.; Stever, R. D.; Warhus, John P.; Wieting, Mel G.

    1996-11-01

    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds, i.e., without the need to restrict traffic flow. The first-generation system consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter-wide path is inspected on each pass over the roadway. In this paper, we describe the design of this system, show preliminary results, and lay out its deployment schedule.

  19. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    NASA Astrophysics Data System (ADS)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8-12 GHz) and Ku (12-18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  20. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  1. Application of Lipschitz Regularity and Multiscale Techniques for the Automatic Detection of Oil Spills in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.; Tello, M.

    2015-12-01

    This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also show applications to several real life oil spill scenarios using a series of L-band ALOS PALSAR images and X-band TerraSAR-X images acquired during the Deep Water Horizon spill in the Gulf of Mexico in 2010. From our analysis, we concluded that the LR and CWT have distinct advantages in oil spill detection and lead to high performance spill mapping results.

  2. Weddell-Scotia sea marginal ice zone observations from space, October 1984

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.

    1986-01-01

    Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.

  3. Calibration of quadpolarization SAR data using backscatter statistics

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey D.

    1989-01-01

    A new technique is described for calibration of complex multipolarization SAR imagery. Scatterer reciprocity and lack of correlation between like- and cross-polarized radar echoes for natural targets are used to remove cross-polarized contamination in the radar data channels without the use of known ground targets. If known targets are available, all data channels can be calibrated relative to one another and absolutely as well. The method is verified with airborne SAR data.

  4. Analysis of detection performance of multi band laser beam analyzer

    NASA Astrophysics Data System (ADS)

    Du, Baolin; Chen, Xiaomei; Hu, Leili

    2017-10-01

    Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.

  5. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    NASA Astrophysics Data System (ADS)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  6. Levee Monitoring with Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.

    2012-01-01

    Topics in this presentation are: 1. Overview of radar remote sensing 2. Surface change detection with Differential Interferometric Radar Processing 3. Study of the Sacramento - San Joaquin levees 4. Mississippi River Levees during the Spring 2011 floods.

  7. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  8. Investigating nearby exoplanets via interstellar radar

    NASA Astrophysics Data System (ADS)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  9. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  10. Radar observation of known and unknown clear echoes

    NASA Technical Reports Server (NTRS)

    Glover, K. M.; Konrad, T. G.

    1979-01-01

    Target cross-section as a function of wavelength for known insects, known bird, and dot targets is presented. Tracking data using the time series analysis was tabulated for known birds. Examples were selected from these early works to give entomologists some indication of the types of information that are available by radar as well as examples of the different sources of clear-air radar backscatter.

  11. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.

  12. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  13. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  14. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  15. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  16. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  17. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  18. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  19. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  20. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  1. 46 CFR 108.717 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  2. Dual-Band Deramp Radar Design for Ocean Current Measurements

    NASA Technical Reports Server (NTRS)

    Haynes, Mark S.

    2005-01-01

    A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.

  3. KSC-99pp0658

    NASA Image and Video Library

    1999-05-25

    STS-99 Mission Specialist Janice Voss conducts a system verification test on the Shuttle Radar Topography Mission in the Space Station Processing Facility. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch Sept. 16, 1999. This radar system will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  4. KSC-99pp1010

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  5. KSC-99pp1009

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is ready to be stored in the payload bay of the orbiter Endeavour before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  6. KSC-99pp1008

    NASA Image and Video Library

    1999-08-05

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, a radar antenna, part of the Shuttle Radar Topography Mission (SRTM), is nestled in the cargo bay of the orbiter Endeavour just before door closure. SRTM is the primary payload on mission STS-99, scheduled to launch Sept. 16 at 8:47 a.m. EDT from Launch Pad 39A. A specially modified radar system, the SRTM will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware consists of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR

  7. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  8. Comparison of Surface Elevation Changes of the Greenland and Antarctic Ice Sheets from Radar and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2012-01-01

    A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.

  9. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  10. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  11. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    NASA Astrophysics Data System (ADS)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-06-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P  =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X-Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect.

  12. Surface Deformation and Coherence Measurements of Kilauea Volcano, Hawaii, from SIR-C Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Zebker, H. A.; Webb, F. H.; Fielding, E. J.

    1996-01-01

    The shuttle imaging radar C/X synthetic aperture radar (SIR-C/X-SAR) radar on board the space shuttle Endeavor imaged Kilauea Volcano, Hawaii, in April and October 1994 for the purpose of measuring active surface deformation by the methods of repeat-pass differential radar interferometry. Observations at 24 cm (L band) and 5.6 cm (C band) wavelengths were reduced to interferograms showing apparent surface deformation over the 6-month interval and over a succession of 1-day intervals in October. A statistically significant local phase signature in the 6-month interferogram is coincident with the Pu'u O'o lava vent. Interpreted as deformation, the signal implies centimeter-scale deflation in an area several kilometers wide surrounding the vent. Peak deflation is roughly 14 cm if the deformation is purely vertical, centered southward of the Pu'u O'o caldera. Delays in the radar signal phase induced by atmospheric refractivity anomalies introduce spurious apparent deformation signatures, at the level of 12 cm peak-to-peak in the radar line-of-sight direction. Though the phase observations are suggestive of the wide-area deformation measured by Global Positioning System (GPS) methods, the atmospheric effects are large enough to limit the interpretation of the result. It is difficult to characterize centimeter-scale deformations spatially distributed over tens of kilometers using differential interferometry without supporting simultaneous, spatially distributed measurements of reactivity along the radar line of sight. Studies of the interferometric correlation of images acquired at different times show that L band is far superior to C band in the vegetated areas, even when the observations are separated by only 1 day. These results imply longer wavelength instruments are more appropriate for studying surfaces by repeat-pass observations.

  13. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  14. KSC-99pp0925

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  15. KSC-99pp0972

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2 to the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  16. KSC-99pp0923

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  17. KSC-99pp0969

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payload canister with the Shuttle Radar Topography Mission (SRTM) inside, pulls into Orbiter Processing Facility (OPF) bay 2. The SRTM, the primary payload on STS-99, will soon be installed into the payload bay of the orbiter Endeavour already undergoing processing in bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  18. KSC-99pp0968

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  19. KSC-99pp0970

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane is lowered over the payload canister with the Shuttle Radar Topography Mission (SRTM) inside in Orbiter Processing Facility (OPF) bay 2. The primary payload on STS-99, the SRTM will soon be lifted out of the canister and installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  20. KSC-99pp0971

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A crane lifts the Shuttle Radar Topography Mission (SRTM), the primary payload on STS-99, from a payload canister used to transport it to Orbiter Processing Facility (OPF) bay 2. The SRTM will soon be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  1. Development and applications of a radar-attenuation model for polar ice sheets

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.

    Modern ice sheets are currently responding to significant climatic forcings and undergoing ice-dynamics changes that are not yet well understood. Ice-penetrating radar surveys are often used to infer their basal condition (e.g., is the bed wet or dry?) and internal properties. However, such inferences typically require a model of the electromagnetic attenuation through the ice sheet. Here I first develop and test a radar-attenuation model that is based on a synthesis of existing laboratory measurements of the dielectric properties of ice. This synthesis shows that radar attenuation in polar ice has a strong non-linear temperature dependence and a weaker linear dependence on the concentrations of acid and sea-salt chloride. This model was tested at Siple Dome, West Antarctica, using ice-core-chemistry and borehole-temperature data, and the model agreed well with an existing radar-attenuation measurement. I then use this model to investigate the nature of radar detection of accreted ice over Lake Vostok, East Antarctica. My analysis of ice-core and radar data found that the observed reflection is likely due to a fabric contrast near the boundary between the dirty and clean accreted ices. This reflection mechanism is also consistent with the spatial pattern of detection of the reflection. In anticipation of the requirements of a thermomechanical ice-sheet model to predict the spatial variation of attenuation over Lake Vostok, I develop an accumulation-rate map for the Lake Vostok region using radar data, a steady-state flow-band model, and inverse methods. I found that accumulation rates there are not inversely correlated with surface elevation, that there is a broad maximum above the lake's northwestern corner, and a minimum above most of its eastern shoreline. Finally, I investigate the spatial variability of attenuation in an ice sheet, using the flowline that crosses through the Vostok ice core as an example. I use radar layers and ice-velocity and temperature outputs from an ice-sheet model to estimate the spatial variation of attenuation using a series of progressively more complex models. I found that an attenuation-rate model that uses non-uniform ice temperatures and radar layers to rescale impurity-conentration profiles can satisfactorily capture most of the spatial variability of attenuation.

  2. Radar scattering from desert terrains, Pisgah/Lavic Region, California: Implications for Magellan

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Arvidson, R. E.; Wall, S.

    1989-01-01

    A major component of the 1988 Mojave Field Experiment involved the simultaneous acquisition of quad-polarization multifrequency airborne Synthetic Aperture Radar (SAR) imaging radar data and ground measurements thought to be relevant to the radar scattering behavior of a variety of desert surfaces. In preparation for the Magellan mission to Venus, the experiment was designed to explore the ability of SAR to distinguish types of geological surfaces, and the effects of varying incidence angles on the appearance of such surfaces. The airborne SAR system acquired images at approx. 10 m resolution, at 3 incidence angles (30, 40, 50 degs) and at 3 wavelengths (P:68 cm, L:24 cm, C:5.6 cm). The polarimetric capabilities of the instrument allow the simulation of any combination of transmit and receive polarizations during data reduction. Calibrated trihedral corner reflectors were deployed within each scene to permit absolute radiometric calibration of the image data. Initial analyses of this comprehensive radar data set is reported, with emphasis on implications for interpretation of Magellan data.

  3. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  4. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  5. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  6. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  7. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.

    PubMed

    Occhipinti, Giovanni; Aden-Antoniow, Florent; Bablet, Aurélien; Molinie, Jean-Philippe; Farges, Thomas

    2018-01-24

    Surface waves emitted after large earthquakes are known to induce atmospheric infrasonic waves detectable at ionospheric heights using a variety of techniques, such as high frequency (HF) Doppler, global positioning system (GPS), and recently over-the-horizon (OTH) radar. The HF Doppler and OTH radar are particularly sensitive to the ionospheric signature of Rayleigh waves and are used here to show ionospheric perturbations consistent with the propagation of Rayleigh waves related to 28 and 10 events, with a magnitude larger than 6.2, detected by HF Doppler and OTH radar respectively. A transfer function is introduced to convert the ionospheric measurement into the correspondent ground displacement in order to compare it with classic seismometers. The ground vertical displacement, measured at the ground by seismometers, and measured at the ionospheric altitude by HF Doppler and OTH radar, is used here to compute surface wave magnitude. The ionospheric surface wave magnitude (M s iono ) proposed here introduces a new way to characterize earthquakes observing the signature of surface Rayleigh waves in the ionosphere. This work proves that ionospheric observations are useful seismological data to better cover the Earth and to explore the seismology of the Solar system bodies observing the ionosphere of other planets.

  8. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  9. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  10. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  11. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  12. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations. Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.

  13. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  14. Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984

    NASA Astrophysics Data System (ADS)

    The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.

  15. Physical working principles of medical radar.

    PubMed

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  16. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  17. Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements

    NASA Astrophysics Data System (ADS)

    Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.

    2008-12-01

    Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.

  18. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  19. Pando Province, Northern Bolivia, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Pando Province, Bolivia, and adjacent parts of Brazil and Peru are seen in this visualization of Shuttle Radar Topography Mission (SRTM) elevation data covering part of the Amazon Basin. Most of this region is covered by tropical rainforest and is still largely unaltered by development, though new roads are providing increased access to the area, leading to changes in the landscape. SRTM data provide the first detailed three-dimensional look at the landforms of this region, and the Amazon Basin in its entirety, and will be particularly helpful in understanding the hydrologic patterns as environmental management becomes increasingly important.

    River drainage across this area flows generally east-northeast away from the nearby Andes Mountains. The most prominent river channels seen here are the Purus River in the northwest (upper left) and the Madre de Dios River, which crosses the south central (lower central) part of this view. The Beni and Mamore Rivers combine with the Madre de Dios in the eastern (right central) area to form the Madeira River, which flows northeast to eventually meet the Amazon River near Manaus.

    The Trans-Amazon Highway crosses the northern half of the scene, and subtle evidence of rainforest clear cutting, facilitated by this easy access, is apparent just north of the scene center, even at the low resolution of this display (740 m or 2428 feet). As seen here, clear cutting patterns in the rainforest typically show a pattern of parallel lines. SRTM mapped the shape of the Earths solid surface (not exclusively the ground surface), which includes to some degree land covers such as forests. Thus, SRTM data are capable of revealing deforestation patterns.

    For a smaller, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (image size: 184k JPEG)

    A combination of visualization methods was used to produce this image, based on shading and color coding. A shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellowish and reddish tans, to white at the highest elevations. A measure of relative local topographic height was added as brightness to enhance the contrast of stream channels to their surrounding terrain.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 536 by 710 kilometers (332 by 440 miles) Location: 10.4 degrees South latitude, 67.25 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  20. Combined radar-radiometer surface soil moisture and roughness estimation

    USDA-ARS?s Scientific Manuscript database

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution rad...

  1. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  2. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  3. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Min; Kollias, Pavlos; Feng, Zhe

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less

  5. Wallops waveform analysis of SEASAT-1 radar altimeter data

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1980-01-01

    Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.

  6. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  7. Surface Currents and Winds at the Delaware Bay Mouth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, P A; Barton, N P; Lipphardt, B L

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds andmore » currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.« less

  8. Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-11-01

    The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58-0.83] and [4.02-18.31] cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.

  9. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    antenna beamwidth and R is the range distance. Antenna beam width  is proportional to the real aperture size and is given as antennaL ...18) where  is the wavelength and antennaL is the physical length of the radar antenna; therefore, cross-range resolution for a real aperture... antennaL R  (20) A value of 50 meters for cross-range resolution is rather high and signifies poor resolution. Under these conditions, obtaining

  10. Study of the Bistatic Radar Cross Section of a 155-mm Artillery Round

    DTIC Science & Technology

    2017-06-01

    study . Section 3 compares the accuracy of the 2 EM modeling software packages used in this work. In Section 4, we discuss the relevant Approved for...ARL-TR-8045 ● JUNE 2017 US Army Research Laboratory Study of the Bistatic Radar Cross Section of a 155-mm Artillery Round by...when it is no longer needed. Do not return it to the originator. ARL-TR-8045 ● JUNE 2017 US Army Research Laboratory Study of the

  11. A simple device for long-term radar cross section recordings.

    PubMed

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2009-05-01

    A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.

  12. Ground radar detection of meteoroids in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Landry, P. M.; Gabbard, J. R.; Moran, J. L. T.

    1980-01-01

    A special test to lower the detection threshold for satellite fragments potentially dangerous to spacecraft was carried out by NORAD for NASA, using modified radar software. The Perimeter Acquisition Radar Attack Characterization System, a large, planar face, phased radar, operates at a nominal 430 MHz and produces 120 pulses per second, 45 of which were dedicated to search. In a time period of 8.4 hours of observations over three days, over 6000 objects were detected and tracked of which 37 were determined to have velocities greater than escape velocity. Six of these were larger objects with radar cross sections greater than 0.1 sq m and were probably orbiting satellites. A table gives the flux of both observed groups.

  13. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  14. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  15. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  16. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  17. 46 CFR 32.15-30 - Radar-T/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...

  18. KSC-99pp0522

    NASA Image and Video Library

    1999-05-13

    Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered by an overhead crane toward a workstand below. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  19. KSC-99pp0524

    NASA Image and Video Library

    1999-05-13

    The move of the Shuttle Radar Topography Mission (SRTM) is nearly complete as it is lowered onto the workstand in the Space Station Processing Facility. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

  20. KSC-99pp0521

    NASA Image and Video Library

    1999-05-13

    After being lifted off the transporter (lower right) in the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) moves across the floor toward a workstand. The SRTM, which is the primary payload on mission STS-99, consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission scheduled for launch in September 1999. The objective of this radar system is to obtain the most complete high-resolution digital topographic database of the Earth. It will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. SRTM will be making use of a technique called radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. To get two radar images taken from different locations, the SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle

Top