Sample records for surface rainfall budgets

  1. Atmospheric water budget over the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (<500 mm/year). Similar result is observed in in NASA GLDAS data (1980-2014). The atmospheric water budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  2. Regulations of irrigation on regional climate in the Heihe watershed, China, and its implications to water budget

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2015-12-01

    In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to save water resources.

  3. Heat and Freshwater Budgets in the Eastern Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.

    2002-12-01

    Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.

  4. Water Budget for the Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).

  5. Seasonal Freshwater and Salinity Budgets in the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yoo, Jung Moon

    Seasonal freshwater and salt budgets in the tropical Atlantic are examined by incorporating precipitation, estimated from 11 years of outgoing longwave radiation (OLR) data. A spatially dependent formula is developed to estimate rainfall from the OLR data and the height of the base of the trade -wind inversion. This formula has been constructed by comparing rainfall records from twelve islands with the OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the east are included. Significant inconsistencies between results of the present study the seasonal rainfall estimates of Dorman and Bourke (1981) are found. Annual and interannual variations of the moisture and freshwater budgets are examined in the same region. The seasonal moisture budget (E-P) is calculated from the above rainfall and evaporation estimated from surface data. Consistent with previous estimates, we find annual mean deficit of freshwater. The interannual variability of freshwater flux during the period 1974 to 1979 is examined. Seasonal or interannua1 variations of rainfall account for two-thirds of the variations of the freshwater flux. We examine the seasonal freshwater and salt budgets, and obtain their meridional transports by southward integration of their divergence fields. The annual freshwater transport in the tropical Atlantic is northward, ranging from 0 Sv near the equator to 0.3 Sv at 12^circ N and 20^circS. The seasonal meridional transport amounts of freshwater from surface to 500 m depth in the tropical Atlantic Ocean range from 1.35 Sv to -0.45 Sv. The strong northward freshwater transports prevail for the period summer to fall. This seasonal cycle is caused by the shifts of the ITCZ as well as the changes in the local freshwater storage. Annual and seasonal salt budgets are calculated from objectively analyzed historical (1900-1986) salinity observations. The annual salt flux in the tropical Atlantic is zero, showing that the salt flux by horizontal advection balances the flux by horizontal diffusion. The salt flux due to the diffusion is northward, and has a maximum of 5 times 10^6kg/s at 15^circN. Seasonal transport amounts of salt range from 30 times 10^6 kg/s to -35 times 10^6kg/s. The direction of the seasonal salt transports in the tropical Atlantic is northward except for the period summer to fall. We find an interannual variability of salinity along the coast of South America in the western Atlantic.

  6. Application of the Nimbus 5 ESMR to rainfall detection over land surfaces

    NASA Technical Reports Server (NTRS)

    Meneely, J. M.

    1975-01-01

    The ability of the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) to detect rainfall over land surfaces was evaluated. The ESMR brightness temperatures (Tb sub B) were compared with rainfall reports from climatological stations for a limited number of rain events over portions of the U.S. The greatly varying emissivity of land surfaces precludes detection of actively raining areas. Theoretical calculations using a ten-layer atmospheric model showed this to be an expected result. Detection of rain which had fallen was deemed feasible over certain types of land surfaces by comparing the Tb sub B fields before and after the rain fell. This procedure is reliable only over relatively smooth terrain having a substantial fraction of bare soil, such as exists in major agricultural regions during the dormant or early growing seasons. Soil moisture budgets were computed at selected sites to show how the observed emissivity responded to changes in the moisture content of the upper soil zone.

  7. Land surface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.

    2017-12-01

    Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.

  8. The Sensitivity of Tropical Squall Lines (GATE and TOGA COARE) to Surface Fluxes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen

    1999-01-01

    Two tropical squall lines from TOGA COARE and GATE were simulated using a two-dimensional cloud-resolving model to examine the impact of surface fluxes on tropical squall line development and associated precipitation processes. The important question of how CAPE in clear and cloudy areas is maintained in the tropics is also investigated. Although the cloud structure and precipitation intensity are different between the TOGA COARE and GATE squall line cases, the effects of the surface fluxes on the amount of rainfall and on the cloud development processes are quite similar. The simulated total surface rainfall amount in the runs without surface fluxes is about 67% of the rainfall simulated with surface fluxes. The area where surface fluxes originated was categorized into clear and cloudy regions according to whether there was cloud in the vertical column. The model results indicated that the surface fluxes from the large clear air environment are the dominant moisture source for tropical squall line development even though the surface fluxes in the cloud region display a large peak. The high-energy air from the boundary layer in the clear area is what feeds the convection while the CAPE is removed by the convection. The surface rainfall was only reduced 8 to 9% percent in the simulations without surface fluxes in the cloud region. Trajectory and water budget analysis also indicated that most moisture (92%) was from the boundary layer of the clear air environment.

  9. Rainfall intensity and groundwater recharge: evidence from ground-based observations in East Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Owor, M.; Kaponda, A.

    2013-12-01

    Global greenhouse-gas emissions serve to warm Africa more rapidly than the rest of the world. The intensification of precipitation that is associated with this warming, strongly influences terrestrial water budgets. This shift toward fewer but heavier rainfall events is expected to lead to more frequent and intense floods as well as more variable and lower soil moisture. However, its impact on groundwater recharge is unclear and in dispute. We review evidence from long (1 to 5 decades) time series of groundwater levels recorded in deeply weathered crystalline rock aquifers systems underlying land surfaces of low relief in Uganda and Tanzania. Borehole hydrographs consistently demonstrate a non-linear relationship between rainfall and recharge wherein heavy rainfalls exceeding a threshold contribute disproportionately to the recharge flux. Rapid responses observed in groundwater levels to rainfall events attest further to the importance of preferential pathways in enabling rain-fed recharge via soil macro-pores. Our results suggest that, in these environments, increased use of groundwater to offset periods of low surface flow and to supplement soil moisture through irrigation may prove a logical strategy to enhance regional water and food security.

  10. Coordinated field study for CaPE: Analysis of energy and water budgets

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Duchon, Claude; Kanemasu, Edward T.; Smith, Eric A.; Crosson, William; Laymon, Chip; Luvall, Jeff

    1993-01-01

    The objectives of this hydrologic cycle study are to understand and model (1) surface energy and land-atmosphere water transfer processes, and (2) interactions between convective storms and surface energy fluxes. A surface energy budget measurement campaign was carried out by an interdisciplinary science team during the period July 8 - August 19, 1991 as part of the Convection and Precipitation/Electrification Experiment (CaPE) in the vicinity of Cape Canaveral, FL. Among the research themes associated with CaPE is the remote estimation of rainfall. Thus, in addition to surface radiation and energy budget measurements, surface mesonet, special radiosonde, precipitation, high-resolution satellite (SPOT) data, geosynchronous (GOES) and polar orbiting (DMSP SSM/I, OLS; NOAA AVHRR) satellite data, and high altitude airplane data (AMPR, MAMS, HIS) were collected. Initial quality control of the seven surface flux station data sets has begun. Ancillary data sets are being collected and assembled for analysis. Browsing of GOES and radar data has begun to classify days as disturbed/undisturbed to identify the larger scale forcing of the pre-convective environment, convection storms and precipitation. The science analysis plan has been finalized and tasks assigned to various investigators.

  11. Global intensification in observed short-duration rainfall extremes

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.

    2017-12-01

    Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.

  12. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the nutrients nitrogen and phosphorus, and chlorophyll (collected at lake sites only). Specific conductance ranged from about 190 to 230 microsiemens per centimeter at 25 degrees Celsius in Lakes Maitland, Virginia and Osceola and from about 226 to 260 microsiemens per centimeter at 25 degrees Celsius in Lake Mizell. The median concentrations of total ammonia-plus-organic nitrogen in all the lakes ranged from 0.79 to 0.99 milligrams per liter. Median total phosphorus concentrations ranged from less than 0.02 to 0.20 milligrams per liter. Stormwater samples were collected for 17 storms at one storm-drain site and 16 storms at another storm-drain site on Lake Osceola. Median total nitrogen concentrations at the sites were 2.23 and 3.06 milligrams per liter and median total phosphorus concentrations were 0.34 and 0.40 milligrams per liter. The water quality in the Winter Park lakes generally is fair to good, based on a trophic-state index used by the Florida Department of Environmental Protection for assessing the tropic state of Florida lakes. This index was determined from median total nitrogen, total phosphorus, and chlorophyll-a concentrations, and median Secchi-disk transparency for all lakes for the period September 1989 to June 1992. Based on a one-time sampling of 20 sites around the lakes, surficial ground-water quality is highly variable. Nutrient concentrations were highly variable and could not be correlated to the proximity of septic tanks. Fertilizer probably is the primary source of nutrients in the surficial ground water. Nutrient budgets were calculated for the lakes for the 3 years of the study. The most variable source of nutrient loading to the lakes is stormwater. Nutrient-loading modeling indicates that reduction of nutrients in stormflow probably would improve lake-water quality. However, even with complete removal of nitrogen and phosphorus from stormwater, the lakes might still be mesotrophic with respect to both nutrients during periods of below ave

  13. Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia

    NASA Astrophysics Data System (ADS)

    Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio

    2017-03-01

    We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was temporarily pooled in small wetlands. This was also supported by tritium (3H) counting of the current rain- and subsurface waters in the region. We highly recommend that shallow groundwater not be pumped intensively to conserve surface and subsurface waters, both of which are important water resources in the region.

  14. Water Budget of East Maui, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1999-01-01

    Ground-water recharge is estimated from six monthly water budgets calculated using long-term average rainfall and streamflow data, estimated pan-evaporation and fog-drip data, and soil characteristics. The water-budget components are defined seasonally, through the use of monthly data, and spatially by broad climatic and geohydrologic areas, through the use of a geographic information system model. The long-term average water budget for east Maui was estimated for natural land-use conditions. The average rainfall, fog-drip, runoff, evapotranspiration, and ground-water recharge volumes for the east Maui study area are 2,246 Mgal/d, 323 Mgal/d, 771 Mgal/d, 735 Mgal/d, and 1,064 Mgal/d, respectively.

  15. Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma

    NASA Technical Reports Server (NTRS)

    Fisher, Brad L.

    2004-01-01

    The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.

  16. Investigating the role of the land surface in explaining the interannual variation of the net radiation balance over the Western Sahara and sub-Sahara

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Nicholson, Sharon

    1987-01-01

    The status of the data sets is discussed. Progress was made in both data analysis and modeling areas. The atmospheric and land surface contributions to the net radiation budget over the Sahara-Sahel region is being decoupled. The interannual variability of these two processes was investigated and this variability related to seasonal rainfall fluctuations. A modified Barnes objective analysis scheme was developed which uses an eliptic scan pattern and a 3-pass iteration of the difference fields.

  17. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  18. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    USGS Publications Warehouse

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  19. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.

  20. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 1. Energy and water

    NASA Astrophysics Data System (ADS)

    Ramier, David; Boulain, Nicolas; Cappelaere, Bernard; Timouk, Franck; Rabanit, Manon; Lloyd, Colin R.; Boubkraoui, Stéphane; Métayer, Frédéric; Descroix, Luc; Wawrzyniak, Vincent

    2009-08-01

    SummaryThis paper presents an analysis of the coupled cycling of energy and water by semi-arid Sahelian surfaces, based on two years of continuous vertical flux measurements from two homogeneous recording stations in the Wankama catchment, in the West Niger meso-site of the AMMA project. The two stations, sited in a millet field and in a semi-natural fallow savanna plot, sample the two dominant land cover types in this area typical of the cultivated Sahel. The 2-year study period enables an analysis of seasonal variations over two full wet-dry seasons cycles, characterized by two contrasted rain seasons that allow capturing a part of the interannual variability. All components of the surface energy budget (four-component radiation budget, soil heat flux and temperature, eddy fluxes) are measured independently, allowing for a quality check through analysis of the energy balance closure. Water cycle monitoring includes rainfall, evapotranspiration (from vapour eddy flux), and soil moisture at six depths. The main modes of observed variability are described, for the various energy and hydrological variables investigated. Results point to the dominant role of water in the energy cycle variability, be it seasonal, interannual, or between land cover types. Rainfall is responsible for nearly as much seasonal variations of most energy-related variables as solar forcing. Depending on water availability and plant requirements, evapotranspiration pre-empts the energy available from surface forcing radiation, over the other dependent processes (sensible and ground heat, outgoing long wave radiation). In the water budget, pre-emption by evapotranspiration leads to very large variability in soil moisture and in deep percolation, seasonally, interannually, and between vegetation types. The wetter 2006 season produced more evapotranspiration than 2005 from the fallow but not from the millet site, reflecting differences in plant development. Rain-season evapotranspiration is nearly always lower at the millet site. Higher soil moisture at this site suggests that this difference arises from lower vegetation requirements rather than from lower infiltration/higher runoff. This difference is partly compensated for during the next dry season. Effects of water and vegetation on the energy budget appear to occur more through latent heat than through albedo. A large part of albedo variability comes from soil wetting and drying. Prior to the onset of monsoon rain, the change in air mass temperature and wind produces, through modulation of sensible heat, a marked chilling effect on the components of the surface energy budget.

  1. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaledmore » to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.« less

  3. Water availability as a driver of spatial and temporal variability in vegetation in the La Mancha plain (Spain): Implications for the land-surface energy, water and carbon budget

    NASA Astrophysics Data System (ADS)

    Los, Sietse

    2017-04-01

    Vegetation is water limited in large areas of Spain and therefore a close link exists between vegetation greenness observed from satellite and moisture availability. Here we exploit this link to infer spatial and temporal variability in moisture from MODIS NDVI data and thermal data. Discrepancies in the precipitation - vegetation relationship indicate areas with an alternative supply of water (i.e. not rainfall), this can be natural where moisture is supplied by upwelling groundwater, or can be artificial where crops are irrigated. As a result spatial and temporal variability in vegetation in the La Mancha Plain appears closely linked to topography, geology, rainfall and land use. Crop land shows large variability in year-to-year vegetation greenness; for some areas this variability is linked to variability in rainfall but in other cases this variability is linked to irrigation. The differences in irrigation treatment within one plant functional type, in this case crops, will lead to errors in land surface models when ignored. The magnitude of these effects on the energy, carbon and water balance are assessed at the scale of 250 m to 200 km. Estimating the water balance correctly is of particular important since in some areas in Spain more water is used for irrigation than is supplemented by rainfall.

  4. Simulation of streamflow, evapotranspiration, and groundwater recharge in the lower San Antonio River Watershed, South-Central Texas, 2000-2007

    USGS Publications Warehouse

    Lizarraga, Joy S.; Ockerman, Darwin J.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire watershed was 34.3 inches. Using the HSPF model it was estimated that for 2000-2007, less than 10 percent of the annual mean rainfall on the study watershed exited the watershed as streamflow, whereas about 82 percent, or an average of 28.2 inches per year, exited the watershed as ET. Estimated annual mean groundwater recharge for the entire study area was 3.0 inches, or about 9 percent of annual mean rainfall. Estimated annual mean recharge was largest in water-budget zone 3, the zone where the Carrizo Sand outcrops. In water-budget zone 3, the estimated annual mean recharge was 5.1 inches or about 15 percent of annual mean rainfall. Estimated annual mean recharge was smallest in water-budget zone 6, about 1.1 inches or about 3 percent of annual mean rainfall. The Cibolo Creek subwatershed and the subwatershed of the San Antonio River upstream from Cibolo Creek had the largest and smallest basin yields, about 4.8 inches and 1.2 inches, respectively. Estimated annual ET and annual recharge generally increased with increasing annual rainfall. Also, ET was larger in zones 8 and 9, the most downstream zones in the watershed. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error.

  5. Investigation of rainfall and regional factors for maintenance cost allocation.

    DOT National Transportation Integrated Search

    2010-08-01

    The existing formulas used by the Texas Department of Transportation (TxDOT) to allocate the statewide : maintenance budget rely heavily on inventory and pavement evaluation data. These formulas include : regional factors and rainfall indices that va...

  6. The influence of land surface properties on Sahel climate. Part 1: Desertification

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Shukla, Jagadish

    1993-01-01

    This is a general circulation model sensitivity study of the physical mechanisms of the effects of desertification on the Sahel drought. The model vegetation types were changed in the prescribed desertification area, which led to changes in the surface characteristics. The model was integrated for three months (June, July, August) with climatological surface conditions (control) and desertification conditions (anomaly) to examine the summer season response to the changed surface conditions. The control and anomaly experiments consisted of five pairs of integrations with different initial conditions and/or sea surface temperature boundary conditions. In the desertification experiment, the moisture flux convergence and rainfall were reduced in the test area and increased to the immediate south of this area. The simulated anomaly dipole pattern was similar to the observed African drought patterns in which the axis of the maximum rainfall shifts to the south. The circulation changes in the desertification experiment were consistent with those observed during sub-Saharan dry years. The tropical easterly jet was weaker and the African easterly jet was stronger than normal. Further, in agreement with the observations, the easterly wave disturbances were reduced in intensity but not in number. Descending motion dominated the desertification area. The surface energy budget and hydrological cycle were also changed substantially in the anomaly experiment.

  7. A critical analysis of the cumulative rainfall departure concept.

    PubMed

    Weber, Kenneth; Stewart, Mark

    2004-01-01

    Evaluation of trends in time-series, such as precipitation or ground water levels, is an essential element in many hydrologic evaluations, including water resource studies and planning efforts. The cumulative rainfall departure (CRD) from normal rainfall is a concept sometimes utilized to evaluate the temporal correlation of rainfall with surface water or ground water levels. Permutations of the concept have been used to estimate recharge or aquifer storativity, and in attempts to explain declining ground water levels. The cumulative departure concept has hydrologic meaning in the short term, as a generalized evaluation of either meager or abundant rainfall, and when utilized in connection with a detailed water budget analysis can be used in a predictive fashion. However, the concept can be misapplied if extended over lengthy periods. Misapplication occurs because of several factors including the separation of the mean and median in nonnormal distributions, how the choice of beginning and end points of the data can affect the results, the lack of consideration that above-average rainfall can reset the hydrologic system without mathematically eliminating the accumulated deficit, and the lack of support for the necessary inference that rainfall events and hydrologic levels widely separated in time are linked. Standard statistical techniques are available to reliably determine trends and can provide rigorous statistical measures of the significance of conclusions. Misuse of the CRD concept can lead to erroneous and unsupported conclusions regarding hydrologic relationships and can potentially result in misguided water resource decision-making.

  8. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  9. A water-budget model and estimates of groundwater recharge for Guam

    USGS Publications Warehouse

    Johnson, Adam G.

    2012-01-01

    On Guam, demand for groundwater tripled from the early 1970s to 2010. The demand for groundwater is anticipated to further increase in the near future because of population growth and a proposed military relocation to Guam. Uncertainty regarding the availability of groundwater resources to support the increased demand has prompted an investigation of groundwater recharge on Guam using the most current data and accepted methods. For this investigation, a daily water-budget model was developed and used to estimate mean recharge for various land-cover and rainfall conditions. Recharge was also estimated for part of the island using the chloride mass-balance method. Using the daily water-budget model, estimated mean annual recharge on Guam is 394.1 million gallons per day, which is 39 percent of mean annual rainfall (999.0 million gallons per day). Although minor in comparison to rainfall on the island, water inflows from water-main leakage, septic-system leachate, and stormwater runoff may be several times greater than rainfall at areas that receive these inflows. Recharge is highest in areas that are underlain by limestone, where recharge is typically between 40 and 60 percent of total water inflow. Recharge is relatively high in areas that receive stormwater runoff from storm-drain systems, but is relatively low in urbanized areas where stormwater runoff is routed to the ocean or to other areas. In most of the volcanic uplands in southern Guam where runoff is substantial, recharge is less than 30 percent of total water inflow. The water-budget model in this study differs from all previous water-budget investigations on Guam by directly accounting for canopy evaporation in forested areas, quantifying the evapotranspiration rate of each land-cover type, and accounting for evaporation from impervious areas. For the northern groundwater subbasins defined in Camp, Dresser & McKee Inc. (1982), mean annual baseline recharge computed in this study is 159.1 million gallons per day, which is 50 percent of mean annual rainfall, and is 42 percent greater than the recharge estimate of Camp, Dresser & McKee Inc. (1982). For the northern aquifer sectors defined in Mink (1991), which encompass most of the northern half of the island, mean annual baseline recharge computed in this study is 238.0 million gallons per day, which is 51 percent of mean annual rainfall, and is about 6 percent lower than the recharge estimate of Mink (1991). For the drought simulation performed in this study, recharge for the entire island is 259.3 million gallons per day, which is 34 percent lower than recharge computed for baseline conditions. For all aquifer sectors defined by Mink (1991), total recharge during drought conditions is 32 percent lower than mean baseline recharge. For the future land-cover water-budget simulation, which represents potential land-cover changes owing to the military relocation and population growth, estimated recharge for the entire island is nearly equal to the baseline recharge estimate that was based on 2004 land cover. Using the water-budget model, estimated recharge in the northern half of the island is most sensitive to crop coefficients and net precipitation rates—two of the water-budget parameters used in the estimation of total evapotranspiration. Estimated recharge in the southern half of the island is most sensitive to crop coefficients, net precipitation rate, and runoff-to-rainfall ratios. During March 2010 to May 2011, bulk-deposition samples from five rainfall stations on Guam were collected and analyzed for chloride. Additionally, samples from five groundwater sites were collected and analyzed for chloride. Results were used to estimate groundwater recharge using the chloride mass-balance method. Recharge estimates using this method at three bulk-deposition stations on the northern limestone plateau range from about 25 to 48 percent of rainfall. These recharge estimates are similar to the estimate of Ayers (1981) who also used this method. Recharge estimates at each bulk-deposition station, however, are lower than the baseline recharge estimate from the water-budget model used in this study. This may be because no large storms, such as tropical cyclones, passed near Guam during March 2010 to May 2011.

  10. Estimating Basin-Scale Water Budgets with SMAP Level 2 Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Crow, Wade; Reichle, Rolf; Mahanama, Sarith P.

    2018-01-01

    The SMAP estimates of rainfall and streamflow are not perfect, but they do contain relevant information. At the very least, they should prove useful for constraining, or otherwise contributing to, rainfall and streamflow estimates obtained with more conventional approaches.

  11. Simulation of boreal Summer Monsoon Rainfall using CFSV2_SSiB model: sensitivity to Land Use Land Cover (LULC)

    NASA Astrophysics Data System (ADS)

    Chilukoti, N.; Xue, Y.

    2016-12-01

    The land surface play a vital role in determining the surface energy budget, accurate representation of land use and land cover (LULC) is necessary to improve forecast. In this study, we have investigated the influence of surface vegetation maps with different LULC on simulating the boreal summer monsoon rainfall. Using a National Centres for Environmental Prediction (NCEP) Coupled Forecast System version 2(CFSv2) model coupled with Simplified Simple Biosphere (SSiB) model, two experiments were conducted: one with old vegetation map and one with new vegetation map. The significant differences between new and old vegetation map were in semi-arid and arid areas. For example, in old map Tibetan plateau classified as desert, which is not appropriate, while in new map it was classified as grasslands or shrubs with bare soil. Old map classified the Sahara desert as a bare soil and shrubs with bare soil, whereas in new map it was classified as bare ground. In addition to central Asia and the Sahara desert, in new vegetation map, Europe had more cropped area and India's vegetation cover was changed from crops and forests to wooded grassland and small areas of grassland and shrubs. The simulated surface air temperature with new map shows a significant improvement over Asia, South Africa, and northern America by some 1 to 2ºC and 2 to 3ºC over north east China and these are consistent with the reduced rainfall biases over Africa, near Somali coast, north east India, Bangladesh, east China sea, eastern Pacific and northern USA. Over Indian continent and bay of Bengal dry rainfall anomalies that is the only area showing large dry rainfall bias, however, they were unchanged with new map simulation. Overall the CFSv2(coupled with SSiB) model with new vegetation map show a promising result in improving the monsoon forecast by improving the Land -Atmosphere interactions. To compare with the LULC forcing, experiment was conducted using the Global Forecast System (GFS) simulations forced with different observed Sea Surface Temperatures (SST) for the same period: one is from NCEP reanalysis and one from Hadley Center. They have substantial difference in Indian Ocean. Preliminary analysis shows that, the impact of these two SST data sets on Indian summer monsoon rainfall has no significant impact.

  12. Mapping and monitoring of sediment budgets and river change by means of UAS multi-scale, high-resolution imageries

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-Jen; Tseng, Chih-Ming

    2017-04-01

    Due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island Taiwan. Global warming and sea-level rise with increasing frequency and magnitude of storms and typhoons has resulted in an increase of natural hazards, and strong impacts on human life. A consequence of a change of the rainfall regime, increase of intensity and in a reduction of the duration of the events may have dramatic impacts. Heavy rainfall precipitations are one of the major triggering factors for landslides. Typhoon Morakot in 2009 brought extreme and long-time rainfall, and caused severe disasters. After 2009, numerous debris and sediment deposition increased greatly due to the severe landslides in upstream area. Detail morphological records may able to reveal the environment changes. This kind of analysis is based on the concept of DEM of difference (DoD) to evaluate the sediment budgets during climate and geo-hazard events. The aerial photographs generated digital surface models (DSMs) before and after Typhoon Morakot, and the subsequent multi-periods of imageries is thus been conducted in this study. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. In order quantify the hazards in different time; we try to integrate several technologies, especially by unmanned aircraft system (UAS), to decipher the consequence and the potential hazard, and the social impact. In order to monitoring the sediment budget of the study area, we integrates several methods, including, 1) Remote-sensing images gathered by UAS and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS in-site geomatic measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAS and aerial photos. We finally acquired 7 DEMs, prior to post-events, from 2009-2015. The precision of the dataset been verified firstly. The migration of the debris is well defined from DEMs and been calculated. The sediment budgets are thus been evaluated. The riverbed migration is affect both by natural sediment deposition and by human activities. The profile of the riverbed is blocked mainly in the midstream area. One-half of the debris still rested on the mid- to upstream, and in the up-slope. To the end, the UAS and the methodology used in this study is been adjusted and is capable to apply to other region for hazard monitoring, mitigation and planning.

  13. Introducing the MIT Regional Climate Model (MRCM)

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.; Winter, Jonathn M.; Marcella, Marc P.; Gianotti, Rebecca L.; Im, Eun-Soon

    2013-04-01

    During the last decade researchers at MIT have worked on improving the skill of Regional Climate Model version 3 (RegCM3) in simulating climate over different regions through the incorporation of new physical schemes or modification of original schemes. The MIT Regional Climate Model (MRCM) features several modifications over RegCM3 including coupling of Integrated Biosphere Simulator (IBIS), a new surface albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Here, we introduce the MRCM and briefly describe the major model modifications relative to RegCM3 and their impact on the model performance. The most significant difference relative to the RegCM3 original configuration is coupling the Integrated Biosphere Simulator (IBIS) land-surface scheme (Winter et al., 2009). Based on the simulations using IBIS over the North America, the Maritime Continent, Southwest Asia and West Africa, we demonstrate that the use of IBIS as the land surface scheme results in better representation of surface energy and water budgets in comparison to BATS. Furthermore, the addition of a new irrigation scheme to IBIS makes it possible to investigate the effects of irrigation over any region. Also a new surface albedo assignment method used together with IBIS brings further improvement in simulations of surface radiation (Marcella and Eltahir, 2013). Another important feature of the MRCM is the introduction of a new convective cloud and rainfall auto-conversion scheme (Gianotti and Eltahir, 2013). This modification brings more physical realism into an important component of the model, and succeeds in simulating convective-radiative feedback improving model performance across several radiation fields and rainfall characteristics. Other features of MRCM such as the modified boundary layer height and cloud scheme, and the improvements in the dust emission and transport representations will be discussed.

  14. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  15. Intraseasonal SST-precipitation coupling during the Indian Summer Monsoon, and its modulation by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    Jongaramrungruang, S.; Seo, H.; Ummenhofer, C.

    2016-02-01

    The Indian Summer Monsoon (ISM) plays a crucial role in shaping the large proportion of the total precipitation over the Indian subcontinent each year. The ISM rainfall exhibits a particularly strong intraseasonal variability, that has profound socioeconomic consequences, such as agricultural planning and flood preparation. However, our understanding of the variability on this time scale is still limited due to sparse data availability in the past. In this study, we used a combination of state-of-the-art high-resolution satellite estimate of rainfall, objectively analyzed surface flux, as well as atmospheric reanalysis product to investigate the nature of the ISM intraseasonal rainfall variability and how it varies year to year. The emphasis is placed on the Bay of Bengal (BoB) where the intraseasonal ocean-atmosphere coupling is most prominent. Results show that the maximum warming of SST leads the onset of heavy precipitation event by 3-5 days, and that surface heat flux and surface wind speed are weak prior to the rain but amplifies and peaks after the rain reaches its maximum. Furthermore, the Indian Ocean Dipole (IOD) significantly affects the observed intraseasonal SST-precipitation relationship. The pre-convection SST warming is stronger and more pronounced during the negative phase of the IOD, while the signal is weaker and less organized in the positive phase. This is explained by the column-integrated moisture budget analysis which reveals that, during the ISM heavy rainfall in the BoB, there is more moisture interchange in the form of enhanced vertical advection from the ocean to atmosphere in negative IOD years as compared to positive IOD years. Knowing the distinction of ISM variabilities during opposite phases of the IOD will help contribute to a more reliable prediction of ISM activities.

  16. A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling

    NASA Astrophysics Data System (ADS)

    Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.

    2017-12-01

    Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.

  17. The Impact of TRMM on Mesoscale Model Simulation of Super Typhoon Paka

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Jia, Y.; Halverson, J.; Hou, A.; Olson, W.; Rodgers, E.; Simpson, J.

    1999-01-01

    Tropical cyclone Paka formed during the first week of December 1997 and underwent three periods of rapid intensification over the following two weeks. During one of these periods, which initiated early on December 10, Paka's Dvorak-measured windspeed increased from 23 to 60 m/s over a 48-hr period. On December 18, during the last rapid deepening episode, Paka became a supertyphoon with a maximum wind speed of about 80 m/s. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (135, 45 and 15 km horizontal resolution) will be used to simulate supertyphoon Paka. We performed two runs initialized with Goddard Earth Observing System (GEOS) data sets. The first GEOS data set does not incorporate either TRMM (tropical rainfall measuring mission satellite) or SSM/I (sensor microwave imager) observed rainfall fields into the GEOS's assimilation system while the second one does. Preliminary results show that the MM5 simulated surface pressure deepened by more than 25 mb (45 km resolution domain) in the run initialized with the GEOS data set incorporating TRMM and SSM/I derived rainfall, compared to the one initialized without. However, the track and precipitation patterns are quite similar between the runs. In our presentation, we will show the impact of TRMM rainfall upon the MM5 simulation of Paka at various horizontal resolutions. We will also examine the physical processes associated with initial explosive development by comparing MM5 simulated rainfall and latent heat release. In addition, budget (vorticity, PV, momentum and heat) calculations and sensitivity tests will be performed to examine the upper-tropospheric and SST mechanisms responsible for the explosive development of Paka.

  18. Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates

    USGS Publications Warehouse

    Sanford, Ward E.; Wood, Warren W.

    2001-01-01

    Water fluxes were estimated and a water budget developed for the land surface and a surficial 10-m-deep section of the coastal sabkhas that extend from the city of Abu Dhabi, United Arab Emirates, west to the border with Saudi Arabia. The fluxes were estimated on the basis of water levels and hydraulic conductivities measured in wells and evaporation rates measured with a humidity chamber. In contrast with conceptual models proposed in earlier studies, groundwater inflow is estimated to be small, whereas the largest components of the water budget are recharge from rainfall and evaporation from the water table. Estimates within a rectilinear volume of sabkha, defined as 1 m wide by 10 km long by 10 m deep, indicate that about 1 m3/year of water enters and exits by lateral groundwater flow; 40–50 m3/year enters by upward leakage; and 640 m3/year enters by recharge from rainfall. Based on the water and solute fluxes estimated for the upward leakage into the sabkha, 7–8 pore volumes of brine have entered the sabkha from below since the time the sabkha became saturated (7,000 years ago) as a result of the last global sea-level rise.

  19. Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Hong, Song-You

    2012-11-01

    This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

  20. Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Ji, Zhenming; Chen, Deliang; Kang, Shichang; Fu, Congshen; Duan, Keqin; Shen, Miaogen

    2018-06-01

    The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level (surface-sensitive) channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets. Here, we used an improved land use and leaf area index (LAI) dataset in the WRF-3DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels (e.g., channel 3), the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation.

  1. Phosphorus and water budgets in an agricultural basin.

    PubMed

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  2. A Study of Heavy Precipitation Events in Taiwan During 10-13 August, 1994. Part 2; Mesoscale Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.

    2001-01-01

    Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.

  3. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; hide

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the second major goal of obtaining credible LH estimates as well as their applications within TRMM's zone of coverage, the standard TRMM LH products, and areas for further improvement.

  4. Quasi-Equilibrium States in the Tropics Simulated by a Cloud-Resolving Model. Part 1; Specific Features and Budget Analysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.

  5. Investigating the Impacts of Surface Temperature Anomalies due to Burned Area Albedo in Northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.

    2015-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.

  6. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    USGS Publications Warehouse

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    Tsala Apopka Lake is a complex system of lakes and wetlands, with intervening uplands, located in Citrus County in west-central Florida. It is located within the 2,100 square mile watershed of the Withlacoochee River, which drains north and northwest towards the Gulf of Mexico. The lake system is managed by the Southwest Florida Water Management District as three distinct “pools,” which from upstream to downstream are referred to as the Floral City Pool, Inverness Pool, and Hernando Pool. Each pool contains a mixture of deep-water lakes that remain wet year round, ephemeral (seasonal) ponds and wetlands, and dry uplands. Many of the major deep-water lakes are interconnected by canals. Flow from the Withlacoochee River, when conditions allow, can be diverted into the lake system. Flow thorough the canals can be used to control the distribution of water between the three pools. Flow in the canals is controlled using structures, such as gates and weirs.Hydrogeologic units in the study area include a surficial aquifer consisting of Quaternary-age sediments, a discontinuous intermediate confining unit consisting of Miocene- and Pliocene-age sediments, and the underlying Upper Floridan aquifer, which consists of Eocene- and Oligocene-age carbonates. The fine-grained quartz sands that constitute the surficial aquifer are generally thin, typically less than 25 feet thick, within the vicinity of Tsala Apopka Lake. A thin, discontinuous, sandy clay layer forms the intermediate confining unit. The Upper Floridan aquifer is generally unconfined in the vicinity of Tsala Apopka Lake because the intermediate confining unit is discontinuous and breached by numerous karst features. In the study area, the Upper Floridan aquifer includes the upper Avon Park Formation and Ocala Limestone. The Ocala Limestone is the primary source of drinking water and spring flow in the area.The objectives of this study are to document the interaction of Tsala Apopka Lake, the surficial aquifer, and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient (based on evapotranspiration measurements at stations located in representative landscapes). Surface-water inflows and outflows were determined using stage data collected at a series of streamgages installed primarily at the water-control structures. Discharge was measured under varying flow regimes and ratings were developed for the water-control structures. The discharge data collected during the study period were used to calibrate a surface-water flow model for 2004–12. Flows predicted by the model were used in the water-budget analysis. Net groundwater flow was determined as the residual term in the water-budget equation.The results of the water-budget analysis indicate that rainfall was the largest input of water to Tsala Apopka Lake, whereas evapotranspiration was the largest output. For the 2004–12 analysis period, surface-water inflow accounted for 11 percent of the inputs, net groundwater inflow accounted for 1 percent of inputs (annual periods with positive net groundwater flow were included as inputs, while annual periods with negative net groundwater flow were counted as outputs), and rainfall accounted for the remaining 88 percent. For the same period, the outputs consisted of 2 percent surface-water outflow, 12 percent net groundwater outflow, and 86 percent evapotranspiration. Net groundwater inflows and surface-water/groundwater storage were negligible during the water-budget period but could be important components of the budget in individual years.The net groundwater flow was negative (downward) for 8 out of the 9 years modeled (2004–12), indicating that the Tsala Apopka Lake study area was primarily a recharge area for the underlying Upper Floridan aquifer during this time period. Groundwater-level elevation in paired wells (adjacent wells completed in the surficial aquifer and Upper Floridan aquifer) typically was higher in the surficial aquifer than the Upper Floridan aquifer. However, hydraulic head data indicate that the surficial aquifer often has discharge potential to the surface-water system, especially in the low lying areas near the major lakes. Surficial-aquifer water levels were often higher than lake stages, especially during wet periods, which is likely an indication of aquifer-to-lake seepage in these areas. East of the major lakes, hydraulic head data were nearly equal in the surficial aquifer and Upper Floridan aquifer, which is an indication that the Upper Floridan aquifer is unconfined. Based on deuterium and oxygen stable isotope data collected in December 2011 and December 2012, there was no evidence of recharge to the Upper Floridan aquifer from the wetlands east of the major lakes; aquifer isotopic ratios did not indicate an enriched source, which is typical of lake and wetland sources. West of the major lakes, there was evidence of enriched isotopic ratios in water samples from the Upper Floridan aquifer. Differences in hydraulic head at paired wells in the surficial aquifer and Upper Floridan aquifer indicated that the surficial aquifer has the potential to recharge the Upper Floridan aquifer in the western part of the pools and west of the major lakes.

  7. Simulation of flow and effects of best-management practices in the upper Seco Creek basin, south-central Texas, 1991-98

    USGS Publications Warehouse

    Brown, David S.; Raines, Timothy H.

    2002-01-01

    The Hydrological Simulation Program— FORTRAN model was used to assess the effects of two best-management practices—brush management (removal of woody species locally known as cedar) and weather modification (rainfall enhancement)—on selected hydrologic processes in six subbasins that compose the upper Seco Creek Basin in south-central Texas. A parameter set for use with the model was developed to simulate surface-water-budget components for the six gaged subbasins.Simulation of brush management, represented by decreases in simulated evapotranspiration of 5 to 6 percent, resulted in increases of 1 to 47 percent in annual runoff and increases of 14 to 48 percent in surface runoff for the six subbasins. Simulation of weather modification, represented by a 10-percent increase in rainfall totals and intensities, resulted in increases of 5 to 6 percent in evapotranspiration, increases of 2 to 92 percent in annual runoff, and increases of 36 to 101 percent in surface runoff. Rainfall and runoff data for the study were collected during January 1, 1991–September 30, 1998. Data from 60 storms were used for the simulations. The model was calibrated with data from 33 storms (in two subbasins) and tested with data from 27 storms (in four subbasins). Twenty-one pervious land segments were defined for the study on the basis of geology and land cover. An error analysis and a sensitivity analysis were done on each subbasin, and the results were used to develop the final parameter set.

  8. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    USGS Publications Warehouse

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-01-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m−3 and 207 kg m−3 and the deeper layer (monimolimnion) from 153 kg m−3 to 211 kg m−3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake’s surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset.The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward.During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C.The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m−3 and 15.4 MJ m−3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its characteristics should aid in identification of other hitherto unknown heliothermal lakes.

  9. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    NASA Astrophysics Data System (ADS)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its characteristics should aid in identification of other hitherto unknown heliothermal lakes.

  10. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    NASA Astrophysics Data System (ADS)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong LST and Emissivity anomaly over the lake in comparison with surrounding lands. These anomalies should explain rainfall underestimations tendency over this lake. LST and Emissivity of lake Poopó are closest to surrounding land and the slight observed rainfall overestimation appears to be related to the very arid context of the region.

  11. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget

  12. Phase synchronization between tropospheric radio refractivity and rainfall amount in a tropical region

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.; Dada, Joseph B.; Ashidi, Gabriel A.; Emmanuel, Israel

    2016-11-01

    This study investigated linear and nonlinear relationship between the amount of rainfall and radio refractivity in a tropical country, Nigeria using forty seven locations scattered across the country. Correlation and Phase synchronization measures were used for the linear and nonlinear relationship respectively. Weak correlation and phase synchronization was observed between seasonal mean rainfall amount and radio refractivity while strong phase synchronization was found for the detrended data suggesting similar underlying dynamics between rainfall amount and radio refractivity. Causation between rainfall and radio refractivity in a tropical location was studied using Granger causality test. In most of the Southern locations, rainfall was found to Granger cause radio refractivity. Furthermore, it was observed that there is strong correlation between mean rainfall amount and the phase synchronization index over Nigeria. Coupling between rainfall and radio refractivity has been found to be due to water vapour in the atmosphere. Frequency planning and budgeting for microwave propagation during periods of high rainfall should take into consideration this nonlinear relationship.

  13. Indirect and direct recharges in a tropical forested watershed: Mule Hole, India

    NASA Astrophysics Data System (ADS)

    Maréchal, Jean-Christophe; Varma, Murari R. R.; Riotte, Jean; Vouillamoz, Jean-Michel; Kumar, M. S. Mohan; Ruiz, Laurent; Sekhar, M.; Braun, Jean-Jacques

    2009-01-01

    SummaryIt is commonly accepted that forest plays role to modify the water cycle at the watershed scale. However, the impact of forest on aquifer recharge is still discussed: some studies indicate that infiltration is facilitated under forest while other studies suggest a decrease of recharge. This paper presents an estimate of recharge rates to groundwater in a humid forested watershed of India. Recharge estimates are based on the joint use of several methods: chloride mass balance, water table fluctuation, geophysics, groundwater chemistry and flow analysis. Two components of the recharge (direct and indirect) are estimated over 3 years of monitoring (2003-2006). The direct and localized recharges resulting from rainfall over the entire watershed surface area is estimated to 45 mm/yr while the indirect recharge occurring from the stream during flood events is estimated to 30 mm/yr for a 2 km-long stream. Calculated recharge rates, rainfall and runoff measurements are then combined in a water budget to estimate yearly evapotranspiration which ranges from 80% to 90% of the rainfall, i.e. 1050 mm/y as an average. This unexpected high value for a deciduous forest is nevertheless in agreement with the forest worldwide relationship between rainfall and evapotranspiration. The large evapotranspiration from the forest cover contributes to decrease the recharge rate which leads to a lowering of the water table. This is the reason why the stream is highly ephemeral.

  14. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, J.-H.; Shie, C.-L.; Lau, W. K.-M.; Kakar, R.; Starr, David (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional scale model (with grid size of 20 km) and Goddard Cumulus Ensemble (GCE) model (with 1 km grid size) are used to perform multi-day integration to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during SCSMEX Sensitivity tests on various land surface models, sea surface temperature (SST) variations, and cloud processes are performed to understand the precipitation processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. Cloud processes can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. The GCE-model results captured many observed precipitation characteristics because it used a fine grid size. For example, the model simulated rainfall temporal variation compared quite well to the sounding-estimated rainfall. The results show there are more latent heat fluxes prior to the onset of the monsoon. However, more rainfall was simulated after the onset of the monsoon. This modeling study indicates the latent heat fluxes (or evaporation) have more of an impact on precipitation processes and rainfall in the regional climate model simulations than in the cloud-resolving model simulations. Research is underway to determine if the difference in the grid sizes or the moist processes used in these two models is responsible for the differing influence of surface fluxes an precipitation processes.

  15. A 130 ka reconstruction of rainfall on the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, C. J.; Quade, J.; Patchett, P. J.

    2013-02-01

    New efforts to link climate reconstructions from shoreline deposits and sediment cores yield an improved and more detailed lake history from the Bolivian Altiplano. On the Southern Altiplano, 10 lake oscillations have been identified from this new unified chronology, each coincident with North Atlantic cold events such as Heinrich Events H5, H2, H1, and the Younger Dryas. By coupling this new lake history to a hydrologic budget model we are able to evaluate precipitation variability on the Southern Bolivian Altiplano over the last 130 ka. These modeling efforts underscore the relative aridity of the Altiplano during the rare and small lake cycles occurring between 80 and 20 ka, when colder temperatures combined with little or no change in rainfall produced smaller paleolakes. Relative aridity between 80 and 20 ka contrasts with the immense Tauca lake cycle (18.1-14.1 ka), which was six times larger than modern Lake Titicaca and coincided with Heinrich Event 1. This improved paleolake record from the Southern Altiplano reveals a strong link between central Andean climate and Atlantic sea-surface temperature gradients during the late Pleistocene, even though today rainfall variability is driven mostly by Pacific sea-surface temperature anomalies associated with El Niño/Southern Oscillation. However, not all Heinrich Events appear to result in lake expansions, most conspicuously during the global cold interval between 80 and 20 ka when the Altiplano and Amazon Basin were relatively arid.

  16. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  17. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  18. Characteristics of the modelled meteoric freshwater budget of the western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    van Wessem, J. M.; Meredith, M. P.; Reijmer, C. H.; van den Broeke, M. R.; Cook, A. J.

    2017-05-01

    Rapid climatic changes in the western Antarctic Peninsula (WAP) have led to considerable changes in the meteoric freshwater input into the surrounding ocean, with implications for ocean circulation, the marine ecosystem and sea-level rise. In this study, we use the high-resolution Regional Atmospheric Climate Model RACMO2.3, coupled to a firn model, to assess the various contributions to the meteoric freshwater budget of the WAP for 1979-2014: precipitation (snowfall and rainfall), meltwater runoff to the ocean, and glacial discharge. Snowfall is the largest component in the atmospheric contribution to the freshwater budget, and exhibits large spatial and temporal variability. The highest snowfall rates are orographically forced and occur over the coastal regions of the WAP (> 2000 mm water equivalent (w.e.) y-1) and extend well onto the ocean up to the continental shelf break; a minimum (∼ 500 mm w . e .y-1) is reached over the open ocean. Rainfall is an order of magnitude smaller, and strongly depends on latitude and season, being large in summer, when sea ice extent is at its minimum. For Antarctic standards, WAP surface meltwater production is relatively large (> 50 mm w . e .y-1) , but a large fraction refreezes in the snowpack, limiting runoff. Only at a few more northerly locations is the meltwater predicted to run off into the ocean. In summer, we find a strong relationship of the freshwater fluxes with the Southern Annular Mode (SAM) index. When SAM is positive and occurs simultaneously with a La Niña event there are anomalously strong westerly winds and enhanced snowfall rates over the WAP mountains, Marguerite Bay and the Bellingshausen Sea. When SAM coincides with an El Niño event, winds are more northerly, reducing snowfall and increasing rainfall over the ocean, and enhancing orographic snowfall over the WAP mountains. Assuming balance between snow accumulation (mass gain) and glacial discharge (mass loss), the largest glacial discharge is found for the regions around Adelaide Island (10 Gty-1) , Anvers Island (8 Gty-1) and southern Palmer Land (12 Gty-1) , while a minimum (< 2 Gty-1) is found in Marguerite Bay and the northern WAP. Glacial discharge is in the same order of magnitude as the direct freshwater input into the ocean from snowfall, but there are some local differences. The spatial patterns in the meteoric freshwater budget have consequences for local productivity and carbon drawdown in the coastal ocean.

  19. Connecticut Highlands Technical Report - Documentation of the Regional Rainfall-Runoff Model

    USGS Publications Warehouse

    Ahearn, Elizabeth A.; Bjerklie, David M.

    2010-01-01

    This report provides the supporting data and describes the data sources, methodologies, and assumptions used in the assessment of existing and potential water resources of the Highlands of Connecticut and Pennsylvania (referred to herein as the “Highlands”). Included in this report are Highlands groundwater and surface-water use data and the methods of data compilation. Annual mean streamflow and annual mean base-flow estimates from selected U.S. Geological Survey (USGS) gaging stations were computed using data for the period of record through water year 2005. The methods of watershed modeling are discussed and regional and sub-regional water budgets are provided. Information on Highlands surface-water-quality trends is presented. USGS web sites are provided as sources for additional information on groundwater levels, streamflow records, and ground- and surface-water-quality data. Interpretation of these data and the findings are summarized in the Highlands study report.

  20. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  1. Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai`i, 1978–2007

    USGS Publications Warehouse

    Johnson, Adam G.; Engott, John A.; Bassiouni, Maoya; Rotzoll, Kolja

    2014-12-14

    Demand for freshwater on the Island of Maui is expected to grow. To evaluate the availability of fresh groundwater, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Maui for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Maui is about 1,309 million gallons per day, or about 44 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 39 percent of total water inflow consisting of precipitation, irrigation, septic leachate, and seepage from reservoirs and cesspools. Most recharge occurs on the wet, windward slopes of Haleakalā and on the wet, uplands of West Maui Mountain. Dry, coastal areas generally have low recharge. In the dry isthmus, however, irrigated fields have greater recharge than nearby unirrigated areas. For drought conditions, mean annual recharge for Maui is about 1,010 million gallons per day, which is 23 percent less than recharge for average climate conditions. For individual aquifer-system areas used for groundwater management, recharge for drought conditions is about 8 to 51 percent less than recharge for average climate conditions. The spatial distribution of rainfall is the primary factor determining spatially distributed recharge estimates for most areas on Maui. In wet areas, recharge estimates are also sensitive to water-budget parameters that are related to runoff, fog interception, and forest-canopy evaporation. In dry areas, recharge estimates are most sensitive to irrigated crop areas and parameters related to evapotranspiration.

  2. Design and development of surface rainfall forecast products on GRAPES_MESO model

    NASA Astrophysics Data System (ADS)

    Zhili, Liu

    2016-04-01

    In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.

  3. Mitigation of Sri Lanka Island Effects in Colombo Sounding Data during DYNAMO

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.; Yoneyama, K.

    2013-12-01

    During the Dynamics of the MJO (DYNAMO) field campaign, upper-air soundings were launched at Colombo, Sri Lanka as part of the enhanced northern sounding array (NSA) of the experiment. The Colombo soundings were affected at low-levels by diurnal heating of this large island and by flow blocking due to elevated terrain to the east of the Colombo site. Because of the large spacing between sounding sites, these small-scale effects are aliased onto the larger scale impacting analyses and atmospheric budgets over the DYNAMO NSA. To mitigate these local island effects on the large-scale budgets, a procedure was designed which uses ECMWF-analyzed fields in the vicinity of Sri Lanka to estimate open-ocean conditions (i.e, as if this island were not present). These 'unperturbed' ECMWF fields at low-levels are then merged with observed Colombo soundings. This procedure effectively mutes the blocking effects and large diurnal cycle observed in the low-level Colombo fields. In westerly flow regimes, adjusted Colombo winds increase the low-level westerlies by 2-3 m/s with a similar increase of the low-level easterlies in easterly flow regimes. In general, over the NSA the impact of the adjusted Colombo winds results in more low-level divergence (convergence), more mid-level subsidence (rising motion) and reduced (increased) rainfall during the westerly (easterly) wind regimes. In comparison to independent TRMM rainfall estimates, both the mean budget-derived rainfall and its temporal correlation are improved by using the adjusted Colombo soundings. In addition, use of the 'unperturbed' fields result in a more realistic moisture budget analyses, both in its diurnal cycle and during the build-up phase of the November MJO when a gradual deepening of apparent drying was observed. Overall, use of the adjusted Colombo soundings appears to have a beneficial impact on the NSA analyses and budgets.

  4. Mapping the world's tropical cyclone rainfall contribution over land using TRMM satellite data: precipitation budget and extreme rainfall

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.

    2012-12-01

    A study was performed to characterize over-land precipitation associated with tropical cyclones (TCs) for basins around the world gathered in the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2010, rainfall data from TRMM 3B42, showed that TCs accounted for 8-, 11-, 7-, 10-, and 12-% of the annual over-land precipitation for North America, East Asia, Northern Indian Ocean, Australia, and South-West Indian Ocean respectively, and that TC-contribution decreased importantly within the first 150-km from the coast. At the local scale, TCs contributed on average to more than 40% and up to 77% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. The East Asia domain presented the higher and most constant TC-rain (170±23%-mm/yr) normalized over the area impacted, while the Southwest Indian domain presented the highest variability (130±48%-mm/yr), and the North American domain displayed the lowest average TC-rain (77±27%-mm/yr) despite a higher TC-activity. The maximum monthly TC-contribution (11-15%) was found later in the TC-season and was a conjunction between the peak of TC-activity, TC-rainfall, and the domain annual antagonism between dry and wet regimes if any. Furthermore, TC-days that accounted globally for 2±0.5% of all precipitation events for all basins, represented between 11-30% of rainfall extremes (>101.6mm/day). Locally, TC-rainfall was linked with the majority (>70%) or the quasi-totality (≈100%) of extreme rainfall. Finally, because of their importance in terms of rainfall amount, the contribution of tropical cyclones is provided for a selection of fifty urban areas experiencing cyclonic activity. Cases studies conducted at the regional scale will focus on the link between TC-activity, water resources, and hydrohazards such as floods and droughts.

  5. A sound budget for the southeastern Bering Sea: measuring wind, rainfall, shipping, and other sources of underwater sound.

    PubMed

    Nystuen, Jeffrey A; Moore, Sue E; Stabeno, Phyllis J

    2010-07-01

    Ambient sound in the ocean contains quantifiable information about the marine environment. A passive aquatic listener (PAL) was deployed at a long-term mooring site in the southeastern Bering Sea from 27 April through 28 September 2004. This was a chain mooring with lots of clanking. However, the sampling strategy of the PAL filtered through this noise and allowed the background sound field to be quantified for natural signals. Distinctive signals include the sound from wind, drizzle and rain. These sources dominate the sound budget and their intensity can be used to quantify wind speed and rainfall rate. The wind speed measurement has an accuracy of +/-0.4 m s(-1) when compared to a buoy-mounted anemometer. The rainfall rate measurement is consistent with a land-based measurement in the Aleutian chain at Cold Bay, AK (170 km south of the mooring location). Other identifiable sounds include ships and short transient tones. The PAL was designed to reject transients in the range important for quantification of wind speed and rainfall, but serendipitously recorded peaks in the sound spectrum between 200 Hz and 3 kHz. Some of these tones are consistent with whale calls, but most are apparently associated with mooring self-noise.

  6. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  7. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not necessarily correlate with drainage size, and may vary by two orders of magnitude on an annual basis, using techniques such as sediment-yield equations to estimate the sediment loads of ungaged tributaries may lead to large errors in sediment budgets.

  8. Inaccuracies in sediment budgets arising from estimations of tributary sediment inputs: an example from a monitoring network on the southern Colorado plateau

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2015-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain-size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a channel reach is in a state of sediment accumulation, deficit or stasis. Many studies have estimated sediment loads from ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of sediment loads in semi-arid climates, where rainfall events, contributing geology, and vegetation have large spatial variability.

  9. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  10. Land surface energy budget during dry spells: global CMIP5 AMIP simulations vs. satellite observations

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Folwell, Sonja S.

    2015-04-01

    During extended periods without rain (dry spells), the soil can dry out due to vegetation transpiration and soil evaporation. At some point in this drying cycle, land surface conditions change from energy-limited to water-limited evapotranspiration, and this is accompanied by an increase of the ground and overlying air temperatures. Regionally, the characteristics of this transition determine the influence of soil moisture on air temperature and rainfall. Global Climate Models (GCMs) disagree on where and how strongly the surface energy budget is limited by soil moisture. Flux tower observations are improving our understanding of these dry down processes, but typical heterogeneous landscapes are too sparsely sampled to ascertain a representative regional response. Alternatively, satellite observations of land surface temperature (LST) provide indirect information about the surface energy partition at 1km resolution globally. In our study, we analyse how well the dry spell dynamics of LST are represented by GCMs across the globe. We use a spatially and temporally aggregated diagnostic to describe the composite response of LST during surface dry down in rain-free periods in distinct climatic regions. The diagnostic is derived from daytime MODIS-Terra LST observations and bias-corrected meteorological re-analyses, and compared against the outputs of historical climate simulations of seven models running the CMIP5 AMIP experiment. Dry spell events are stratified by antecedent precipitation, land cover type and geographic regions to assess the sensitivity of surface warming rates to soil moisture levels at the onset of a dry spell for different surface and climatic zones. In a number of drought-prone hot spot regions, we find important differences in simulated dry spell behaviour, both between models, and compared to observations. These model biases are likely to compromise seasonal forecasts and future climate projections.

  11. Hydrological processes in major types of Chinese forest

    NASA Astrophysics Data System (ADS)

    Wei, X.; Liu, S.; Zhou, G.; Wang, C.

    2005-01-01

    Overexploitation of forest resources in China has caused serious concerns over its negative impacts on water resources, biodiversity, soil erosion, wildlife habitat and community stability. One key concern is the impact of forestry practices on hydrological processes, particularly the effect of forest harvest on water quality and quantity. Since the mid 1980s, a series of scientific studies on forest hydrology have been initiated in major types of forest across the country, including Korean pine (Pinus koraiensis), Chinese fir (Cunninghamia lanceolata), oak (Quercus mongolica), larch (Larix gmelinii), faber fir (Abies fabri), Chinese pine (Pinus tabulaeformis), armand pine (Pinus arandi), birch (Betula platyphylla) and some tropical forests. These studies measured rainfall interception, streamflow, evapotranspiration and impacts of forest management (clearcutting and reforestation). This paper reviews key findings from these forest hydrological studies conducted over the past 20 years in China.Forest canopy interception rates varied from 15 to 30% of total rainfall, depending on forest canopy and rainfall characteristics. Stemflow is generally a small percentage (<5%) of total rainfall, but it accounts for 15% in the oak forest in northeast China. The high amounts of stemflow, as well as higher amounts of nutrients contained in stemflow, may allow oak trees to adapt to a dry and nutrient-poor environment. Evapotranspiration was a significant component of the water budget in these Chinese forests studied, ranging from 80-90% of total rainfall in the northern temperate forests to 40-50% in the southern tropical forests. Forests substantially reduced surface runoff and erosion. However, no consistent response on total streamflows was observed. The reason for the inconsistency may be due to complexities of streamflow processes and the utilization of different methodologies applied at the various spatial scales. Copyright

  12. South Asian summer monsoon breaks: Process-based diagnostics in HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, Franziska S.; Annamalai, H.; Rinke, Annette; Dethloff, Klaus

    2017-05-01

    This study assesses the ability of a high-resolution downscaling simulation with the regional climate model (RCM) HIRHAM5 in capturing the monsoon basic state and boreal summer intraseasonal variability (BSISV) over South Asia with focus on moist and radiative processes during 1979-2012. A process-based vertically integrated moist static energy (MSE) budget is performed to understand the model's fidelity in representing leading processes that govern the monsoon breaks over continental India. In the climatology (June-September) HIRHAM5 simulates a dry bias over central India in association with descent throughout the free troposphere. Sources of dry bias are interpreted as (i) near-equatorial Rossby wave response forced by excess rainfall over the southern Bay of Bengal promotes anomalous descent to its northwest and (ii) excessive rainfall over near-equatorial Arabian Sea and Bay of Bengal anchor a "local Hadley-type" circulation with descent anomalies over continental India. Compared with observations HIRHAM5 captures the leading processes that account for breaks, although with generally reduced amplitudes over central India. In the model too, anomalous dry advection and net radiative cooling are responsible for the initiation and maintenance of breaks, respectively. However, weaker contributions of all adiabatic MSE budget terms, and an inconsistent relationship between negative rainfall anomalies and radiative cooling reveals shortcomings in HIRHAM5's moisture-radiation interaction. Our study directly implies that process-based budget diagnostics are necessary, apart from just checking the northward propagation feature to examine RCM's fidelity to simulate BSISV.

  13. Age, budget and dynamics of an active salt extrusion in Iran

    NASA Astrophysics Data System (ADS)

    Talbot, C. J.; Jarvis, R. J.

    The Hormuz salt of Kuh-e-Namak, Iran began rising through its Phanerozoic cover in Jurassic times and had surfaced by Cretaceous times. In Miocene times, the still-active Zagros folds began to develop and the salt is still extruding to feed a massive topographic dome and two surface flows of salt which have previously been called salt glaciers but are here called namakiers. Two crude but independent estimates for the rate of salt extrusion and loss are shown to balance the salt budget if the current salt dynamics are assumed to be in steady state. First, to replace the extrusive salt likely to be lost in solution in the annual rainfall, the salt must rise at an average velocity of about 11 cm a -1. Second, the foliation pattern shows that the extruding (and partially dissolved) salt column spreads under its own weight. The maximum height of the salt dome is consistent with a viscous fluid with a viscosity of 2.6 × 10 17 poises extruding from its orifice at a rate of almost 17 cm a -1. Both estimates are consistent in indicating that salt can extrude onto the surface 42-85 times faster than the average long term rate at which salt diapirs rise to the surface. The structure, fabrics, textures and deformation mechanisms of the impure halite all change along the path of the extrusive salt from the dome down the length of both namakiers. Such changes tend to occur when the flowing salt encounters changes in its boundary conditions, and the recognition of buried namakiers is discussed in the light of such observations. Episodes of salt flow at a rate of 0.5 m per day have been measured along the margin of the N namakier after significant rain showers. Such brief episodes of rapid flow alternate with long periods when the namakier is dry and stationary. The shape of the colour bands cropping out on the N namakier indicate that the flow over the surface of impure salt with a mylonitic texture obeys a power law with n ≈ 3. Although the reported annual rainfall has the potential of dissolving both namakiers in about 2000 years, a superimposed thin marine cover may protect static parts of them for as long as 30,000 to 300,000 years.

  14. Nitrogen emission and deposition budget in West and Central Africa

    NASA Astrophysics Data System (ADS)

    Galy-Lacaux, C.; Delon, C.

    2014-12-01

    Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000-2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NOx and NH3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha-1 yr-1 emitted in dry savanna, 8.38 (±2.04) kgN ha-1 yr-1 deposited and 9.60 (±0.69) kgN ha-1 yr-1 emitted in wet savanna. In forested ecosystems, the total budget is dominated by wet plus dry deposition processes (14.75 ± 2.36 kgN ha-1 yr-1), compared to emissions processes (8.54 ± 0.50 kgN ha-1 yr-1).

  15. Hydrologically transported dissolved organic carbon influences soil respiration in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Zhou, Wen-Jun; Lu, Hua-Zheng; Zhang, Yi-Ping; Sha, Li-Qing; Schaefer, Douglas Allen; Song, Qing-Hai; Deng, Yun; Deng, Xiao-Bao

    2016-10-01

    To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0-20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0-20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0-20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0-20 cm). The difference in δ13C between the soil, soil water (at 0-20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.

  16. Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; White, Paul; Moore, Catherine

    2015-04-01

    Models of rainfall recharge to groundwater are challenged by the need to combine uncertain estimates of rainfall, evapotranspiration, terrain slope, and unsaturated zone parameters (e.g., soil drainage and hydraulic conductivity of the subsurface). Therefore, rainfall recharge is easiest to estimate on a local scale in well-drained plains, where it is known that rainfall directly recharges groundwater. In New Zealand, this simplified approach works in the policy framework of regional councils, who manage water allocation at the aquifer and sub-catchment scales. However, a consistent overview of rainfall recharge is difficult to obtain at catchment and national scale: in addition to data uncertainties, data formats are inconsistent between catchments; the density of ground observations, where these exist, differs across regions; each region typically uses different local models for estimating recharge components; and different methods and ground observations are used for calibration and validation of these models. The research described in this paper therefore presents a nation-wide approach to estimate rainfall recharge in New Zealand. The method used is a soil water balance approach, with input data from national rainfall and soil and geology databases. Satellite data (i.e., evapotranspiration, soil moisture, and terrain) aid in the improved calculation of rainfall recharge, especially in data-sparse areas. A first version of the model has been implemented on a 1 km x 1 km and monthly scale between 2000 and 2013. A further version will include a quantification of recharge estimate uncertainty: with both "top down" input error propagation methods and catchment-wide "bottom up" assessments of integrated uncertainty being adopted. Using one nation-wide methodology opens up new possibilities: it can, for example, help in more consistent estimation of water budgets, groundwater fluxes, or other hydrological parameters. Since recharge is estimated for the entire land surface, and not only the known aquifers, the model also identifies other zones that could potentially recharge aquifers, including large areas (e.g., mountains) that are currently regarded as impervious. The resulting rainfall recharge data have also been downscaled in a 200 m x 200 m calculation of a national monthly water table. This will lead to better estimation of hydraulic conductivity, which holds considerable potential for further research in unconfined aquifers in New Zealand.

  17. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    PubMed Central

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-01-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288

  18. Evaluating the effects of historical land cover change on summertime weather and climate in New Jersey: Land cover and surface energy budget changes

    USGS Publications Warehouse

    Wichansky, P.S.; Steyaert, L.T.; Walko, R.L.; Waever, C.P.

    2008-01-01

    The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6??C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0??C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3-0.6??C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. Copyright 2008 by the American Geophysical Union.

  19. Tundra water budget and implications of precipitation underestimation

    PubMed Central

    Hinzman, Larry D.; Kane, Douglas L.; Oechel, Walter C.; Tweedie, Craig E.; Zona, Donatella

    2017-01-01

    Abstract Difficulties in obtaining accurate precipitation measurements have limited meaningful hydrologic assessment for over a century due to performance challenges of conventional snowfall and rainfall gauges in windy environments. Here, we compare snowfall observations and bias adjusted snowfall to end‐of‐winter snow accumulation measurements on the ground for 16 years (1999–2014) and assess the implication of precipitation underestimation on the water balance for a low‐gradient tundra wetland near Utqiagvik (formerly Barrow), Alaska (2007–2009). In agreement with other studies, and not accounting for sublimation, conventional snowfall gauges captured 23–56% of end‐of‐winter snow accumulation. Once snowfall and rainfall are bias adjusted, long‐term annual precipitation estimates more than double (from 123 to 274 mm), highlighting the risk of studies using conventional or unadjusted precipitation that dramatically under‐represent water balance components. Applying conventional precipitation information to the water balance analysis produced consistent storage deficits (79 to 152 mm) that were all larger than the largest actual deficit (75 mm), which was observed in the unusually low rainfall summer of 2007. Year‐to‐year variability in adjusted rainfall (±33 mm) was larger than evapotranspiration (±13 mm). Measured interannual variability in partitioning of snow into runoff (29% in 2008 to 68% in 2009) in years with similar end‐of‐winter snow accumulation (180 and 164 mm, respectively) highlights the importance of the previous summer's rainfall (25 and 60 mm, respectively) on spring runoff production. Incorrect representation of precipitation can therefore have major implications for Arctic water budget descriptions that in turn can alter estimates of carbon and energy fluxes. PMID:29081549

  20. Tundra water budget and implications of precipitation underestimation.

    PubMed

    Liljedahl, Anna K; Hinzman, Larry D; Kane, Douglas L; Oechel, Walter C; Tweedie, Craig E; Zona, Donatella

    2017-08-01

    Difficulties in obtaining accurate precipitation measurements have limited meaningful hydrologic assessment for over a century due to performance challenges of conventional snowfall and rainfall gauges in windy environments. Here, we compare snowfall observations and bias adjusted snowfall to end-of-winter snow accumulation measurements on the ground for 16 years (1999-2014) and assess the implication of precipitation underestimation on the water balance for a low-gradient tundra wetland near Utqiagvik (formerly Barrow), Alaska (2007-2009). In agreement with other studies, and not accounting for sublimation, conventional snowfall gauges captured 23-56% of end-of-winter snow accumulation. Once snowfall and rainfall are bias adjusted, long-term annual precipitation estimates more than double (from 123 to 274 mm), highlighting the risk of studies using conventional or unadjusted precipitation that dramatically under-represent water balance components. Applying conventional precipitation information to the water balance analysis produced consistent storage deficits (79 to 152 mm) that were all larger than the largest actual deficit (75 mm), which was observed in the unusually low rainfall summer of 2007. Year-to-year variability in adjusted rainfall (±33 mm) was larger than evapotranspiration (±13 mm). Measured interannual variability in partitioning of snow into runoff (29% in 2008 to 68% in 2009) in years with similar end-of-winter snow accumulation (180 and 164 mm, respectively) highlights the importance of the previous summer's rainfall (25 and 60 mm, respectively) on spring runoff production. Incorrect representation of precipitation can therefore have major implications for Arctic water budget descriptions that in turn can alter estimates of carbon and energy fluxes.

  1. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year). Recharge (rainfall minus evapotranspiration) to the Upper Floridan aquifer consists of vertical leakage through the surficial deposits. Discharge is primarily through springs and diffuse upward leakage that maintains the extensive swamps along the Gulf of Mexico. The ground-water basins had slightly different partitioning of hydrologic components, reflecting variation among the regions. Trends in hydrologic data were identified using nonparametric statistical techniques to infer long-term changes in hydrologic conditions, and yielded mixed results. No trend in rainfall was detected during the past century. No trend in spring flow was detected in 1931-98. Although monotonic trends were not detected, rainfall patterns are naturally variable from month to month and year to year; this variability is reflected in ground-water levels and spring flows. A decreasing trend in ground-water levels was detected in the Weeki Wachee well (1966-98), but the trend was statistically weak. At current ground-water withdrawal rates, there is no discernible affect on ground-water levels and spring flows. Sporadic data records, lack of continuous data, and inconsistent periods of record among the hydrologic components impeded analysis of long-term changes to the hydrologic system and interrelations among components. The ongoing collection of hydrologic data from index sites could provide much needed information to assess the hydrologic factors affecting the quantity and quality of spring flow in the Coastal Springs Ground-Water Basin.

  2. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  3. Detection of seasonal erosion processes at the scale of an elementary black marl gully from time series of Hi-Resolution DEMs

    NASA Astrophysics Data System (ADS)

    Bechet, J.; Duc, J.; Loye, A.; Jaboyedoff, M.; Mathys, N.; Malet, J.-P.; Klotz, S.; Le Bouteiller, C.; Rudaz, B.; Travelletti, J.

    2015-12-01

    The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to weathering processes. Since 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope erosion processes at the scale of elementary gullies. Since 2007, a monitoring of surface changes has been performed by comparing of high-resolution digital elevation models (HR-DEMs) produced from Terrestrial Laser Scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the DEM at the centimetre scale. The topographic changes over a time span of 4 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes contributing to the recharge of tributary gullies and rills are presented. According to the transport capacity generated by runoff, loose regolith soil sources are eroded at different periods of the year. These are forming transient deposits in the main reach when routed downstream, evolving from a transport-limited to a supply-limited regime through the year. The monitoring allows a better understanding of the seasonal pattern of erosion processes for black marls badland-type slopes and illustrates the mode of sediment production and the temporal storage/entrainment in similar slopes. The observed surface changes caused by erosion (ablation/deposition) are quantified for the complete TLS time-series, and sediment budget maps are presented for each season. Comparisons of the TLS sediment budget map with the in situ sediment monitoring (limnigraph and sedigraph) in the stream are discussed. Intense and long duration rainfall events are the triggering factor of the major erosive events.

  4. Hydrologic Effects of Brush Management in Central Texas

    NASA Astrophysics Data System (ADS)

    Banta, J. R.; Slattery, R.

    2011-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  5. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.

    PubMed

    Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  6. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  7. Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003

    USGS Publications Warehouse

    Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.

    2005-01-01

    Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland. Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season. The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he

  8. Evapotranspiration and the water budget of prairie potholes in North Dakota

    USGS Publications Warehouse

    Shjeflo, J.B.

    1968-01-01

    The mass-transfer method was used to study the hydrologic behavior of 10 prairie potholes in central North Dakota during the 5-year period 1960-64. Many of the potholes went dry when precipitation was low. The average evapotranspiration during the May to October period each year was 2.11 feet, and the average seepage was 0.60 foot. These averages remained nearly constant for both wet and dry years. The greatest source of water for the potholes was the direct rainfall on the pond surface; this supplied 1.21 feet per year. Spring snowmelt supplied 0.79 foot of water and runoff from the land surface during the summer supplied 0.53 foot. Even though the water received from snowmelt was only 31 percent of the total, it was probably the most vital part of the annual water supply. This water was available in the spring, when waterfowl were nesting, and generally lasted until about July 1, even with no additional direct rainfall on the pond or runoff from the drainage basin. The average runoff from the land surface into pothole 3 was found to be 1.2 inches per year- 1 inch from snowmelt and 0.2 inch from rainfall.'The presence of growing aquatic plants, such as bulrushes and cattails, was a complicating factor in making measurements. New computation procedures had to be devised to define the variable mass-transfer coefficient. Rating periods were divided into 6-hour units for the vegetated potholes. The instruments had to be carefully maintained, as water levels had to be recorded with such accuracy that changes of 0.001 foot could be detected. In any research project involving the measurements of physical quantities, the results are dependent upon the accuracy and dependability of the instruments used; this was especially true during this project.

  9. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  10. Rectification of the Diurnal Cycle and the Impact of Islands on the Tropical Climate

    NASA Astrophysics Data System (ADS)

    Cronin, T. W.; Emanuel, K.

    2012-12-01

    Tropical islands are observed to be rainier than nearby ocean areas, and rainfall over the islands of the Maritime Continent plays an important role in the atmospheric general circulation. Convective heating over tropical islands is also strongly modulated by the diurnal cycle of solar insolation and surface enthalpy fluxes, and convective parameterizations in general circulation models are known to reproduce the phase and amplitude of the observed diurnal cycle of convection rather poorly. Connecting these ideas suggests that poor representation of the diurnal cycle of convection and precipitation over tropical islands in climate models may be a significant source of model biases. Here, we explore how a highly idealized island, which differs only in heat capacity from the surrounding ocean, could rectify the diurnal cycle and impact the tropical climate, especially the spatial distribution of rainfall. We perform simulations of radiative-convective equilibrium with the System for Atmospheric Modeling cloud-system-resolving model, with interactive surface temperature and a varied surface heat capacity. For the case of relatively small-scale simulations, where a shallow (~5 cm) slab-ocean "swamp island" surface is embedded in a deeper (~1 m) slab-ocean domain, the precipitation rate over the island is more than double the domain average value, with island rainfall occurring primarily in a strong regular convective event each afternoon. In addition to this island precipitation enhancement, the upper troposphere also warms with the inclusion of a low- heat capacity island. We discuss two radiative mechanisms that contribute to both island precipitation enhancement and free tropospheric warming, by producing a top-of-atmosphere radiative surplus over the island. The first radiative mechanism is a clear-sky effect, related to nonlinearities in the surface energy budget, and differences in how surface energy balance is achieved over surfaces of different heat capacities. The second radiative mechanism is a cloudy-sky effect, related to the timing of clouds with respect to solar forcing, as well as to the mean cloud fraction and height. We also discuss an advective mechanism for island precipitation enhancement, related to both the moist static energy convergence by the diurnally-reversing land/sea breeze, and the enhanced variability of moist static energy in the island subcloud layer. Preliminary results from larger-domain equatorial beta-channel simulations are also discussed, with potentially greater applicability to the impacts of islands on the large-scale tropical circulation.

  11. Influence of Madden-Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina

    2013-10-01

    Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.

  12. Evapotranspiration from a cypress and pine forest subjected to natural fires, Volusia County, Florida, 1998-99

    USGS Publications Warehouse

    Sumner, D.M.

    2001-01-01

    Daily values of evapotranspiration from a watershed in Volusia County, Florida, were estimated for a 2-year period (January 1998 through December 1999) by using an energy-budget variant of the eddy correlation method and a Priestley-Taylor model. The watershed consisted primarily of pine flatwood uplands interspersed within cypress wetlands. A drought-induced fire in spring 1998 burned about 40 percent of the watershed, most of which was subsequently logged. The model reproduced the 449 measured values of evapotranspiration reasonably well (r2=0.90) over a wide range of seasonal and surface-cover conditions. Annual evapotranspiration from the watershed was estimated to be 916 millimeters (36 inches) for 1998 and 1,070 millimeters (42 inches) for 1999. Evapotranspiration declined from near potential rates in the wet conditions of January 1998 to less than 50 percent of potential evapotranspiration after the fire and at the peak of the drought in June 1998. After the drought ended in early July 1998 and water levels returned to near land-surface, evapotranspiration increased sharply; however, the evapotranspiration rate was only about 60 percent of the potential rate in the burned areas, compared to about 90 percent of the potential rate in the unburned areas. This discrepancy can be explained as a result of fire damage to vegetation. Beginning in spring 1999, evapotranspiration from burned areas increased sharply relative to unburned areas, sometimes exceeding unburned evapotranspiration by almost 100 percent. Possible explanations for the dramatic increase in evapotranspiration from burned areas could include phenological changes associated with maturation or seasonality of plants that emerged after the fire or successional changes in composition of plant community within burned areas. Variations in daily evapotranspiration are primarily the result of variations in surface cover, net radiation, photosynthetically active radiation, air temperature, and water-table depth. A water budget for the watershed supports the validity of the daily measurements and estimates of evapotranspiration. A water budget constructed using independent estimates of average rates of rainfall, runoff, and deep leakage, as well as evapotranspiration, was consistent within 3.8 percent. An alternative water budget constructed using evapotrans-piration estimated by the standard eddy correlation method was consistent only within 9.1 percent. This result indicates that the standard eddy correlation method is not as accurate as the energy-budget variant.

  13. Evaluation of LIS-based Soil Moisture and Evapotranspiration in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Jung, H. C.; Kang, D. H.; Kim, E. J.; Yoon, Y.; Kumar, S.; Peters-Lidard, C. D.; Baeck, S. H.; Hwang, E.; Chae, H.

    2017-12-01

    K-water is the South Korean national water agency. It is the government-funded private agency for water resource development that provides both civil and industrial water in S. Korea. K-water is interested in exploring how earth remote sensing and modeling can help their tasks. In this context, the NASA Land Information System (LIS) is implemented to simulate land surface processes in the Korean Peninsula. The Noah land surface model with Multi-Parameterization, version 3.6 (Noah-MP) is used to reproduce the water budget variables on a 1 km spatial resolution grid with a daily temporal resolution. The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) datasets is used to force the system. The rainfall data are spatially downscaled from high resolution WorldClim precipitation climatology. The other meteorological inputs (i.e. air temperature, humidity, pressure, winds, radiation) are also downscaled by statistical methods (i.e. lapse-rate, slope-aspect). Additional model experiments are conducted with local rainfall datasets and soil maps to replace the downscaled MERRA-2 precipitation field and the hybrid STATSGO/FAO soil texture, respectively. For the evaluation of model performance, daily soil moisture and evapotranspiration measurements at several stations are compared to the LIS-based outputs. This study demonstrates that application of NASA's LIS can enhance drought and flood prediction capabilities in South Asia and Korea.

  14. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.

  15. Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.

    2018-01-01

    In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.

  16. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux. Higher RWRs were observed for shorter vegetation and bare soil compared to tall, deep-rooted vegetation due to differences in both aerodynamic and hydrological properties. The variation of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies in climatologically. Different drying stages for a given antecedent rainfall can thus be observed depending on land cover type. For instance, our results suggest that forests in a continental climate remain unstressed during a 10 day dry spell provided the previous month saw at least 95 mm of rain. Conversely, RWR values indicate that under similar conditions regions of grass/crop cover are water-stressed.

  17. An Investigation of the Influence of Urban Areas on Rainfall Using a Cloud-Mesoscale Model and the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)

    2001-01-01

    A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.

  18. Estimation of evapotranspiration in the Rainbow Springs and Silver Springs basins in North-Central Florida

    USGS Publications Warehouse

    Knowles, Leel

    1996-01-01

    Estimates of evapotranspiration (ET) for the Rainbow and Silver Springs ground-water basins in north-central Florida were determined using a regional water-~budget approach and compared to estimates computed using a modified Priestley-Taylor (PT) model calibrated with eddy-correlation data. Eddy-correlation measurements of latent 0~E) and sensible (H) heat flux were made monthly for a few days at a time, and the PT model was used to estimate 3,E between times of measurement during the 1994 water year. A water-budget analysis for the two-basin area indicated that over a 30-year period (196594) annual rainfall was 51.7 inches. Of the annual rainfall, ET accounted for about 37.9 inches; springflow accounted for 13.1 inches; and the remaining 0.7 inch was accounted for by stream-flow, by ground-water withdrawals from the Floridan aquifer system, and by net change in storage. For the same 30-year period, the annual estimate of ET for the Silver Springs basin was 37.6 inches and was 38.5 inches for the Rainbow Springs basin. Wet- and dry-season estimates of ET for each basin averaged between nearly 19 inches and 20 inches, indicating that like rainfall, ET rates during the 4-month wet season were about twice the ET rates during the 8-month dry season. Wet-season estimates of ET for the Rainbow Springs and Silver Springs basins decreased 2.7 inches, and 3.4 inches, respectively, over the 30-year period; whereas, dry-season estimates for the basins decreased about 0.4 inch and1.0 inch, respectively, over the 30-year period. This decrease probably is related to the general decrease in annual rainfall and reduction in net radiation over the basins during the 30-year period. ET rates computed using the modified PT model were compared to rates computed from the water budget for the 1994 water year. Annual ET, computed using the PT model, was 32.0 inches, nearly equal to the ET water-budget estimate of 31.7 inches computed for the Rainbow Springs and Silver Springs basins. Modeled ET rates for 1994 ranged from 14.4 inches per year in January to 51.6 inches per year in May. Water-budget ET rates for 1994 ranged from 12.0 inches per year in March to 61.2 inches per year in July. Potential evapotranspiration rates for 1994 averaged 46.8 inches per year and ranged from 21.6 inches per year in January to 74.4 inches per year in May. Lake evaporation rates averaged 47.1 inches per year and ranged from 18.0 inches per year in January to 72.0 inches per year in May 1994.

  19. On the relation between SMMR 37-GHz polarization difference and the rainfall over Africa and Australia

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Digirolamo, Nicolo E.

    1994-01-01

    A major difficulty in interpreting coarse resolution satellite data in terms of land surface characteristics is unavailability of spatially and temporally representative ground observations. Under certain conditions rainfall has been found to provide a proxy measure for surface characteristics, and thus a relation between satellite observations and rainfall might provide an indirect approach for relating satellite data to these characteristics. Relationship between rainfall over Africa and Australia and 7-year average (1979-1985) polarization difference (PD) at 37 GHz from scanning multichannel microwave radiometer (SMMR) on board the Nimbus-7 satellite is studied in this paper. Quantitative methods have been used to screen (accept or reject) PD data considering antenna pattern, geolocation uncertainty, water contamination, surface roughness, and adverse effect of drought on the relation between rainfall and surface characteristics. The rainfall data used in the present analysis are climatologic averages and also 1979-1985 averages, and no screening has been applied to this data. The PD data has been screened considering only the location of rainfall stations, without any regard to rainfall amounts. The present analysis confirms a non-linear relation between rainfall and PD published previously.

  20. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  1. Revealing the Hidden Water Budget of an Alpine Volcanic Watershed Using a Bayesian Mixing Model

    NASA Astrophysics Data System (ADS)

    Markovich, K. H.; Arumi, J. L.; Dahlke, H. E.; Fogg, G. E.

    2017-12-01

    Climate change is altering alpine water budgets in observable ways, such as snow melting sooner or falling as rain, but also in hidden ways, such as shifting recharge timing and increased evapotranspiration demand leading to diminished summer low flows. The combination of complex hydrogeology and sparse availability of data make it difficult to predict the direction or magnitude of shifts in alpine water budgets, and thus difficult to inform decision-making. We present a data sparse watershed in the Andes Mountains of central Chile in which complex geology, interbasin flows, and surface water-groundwater interactions impede our ability to fully describe the water budget. We collected water samples for stable isotopes and major anions and cations, over the course of water year 2016-17 to characterize the spatial and temporal variability in endmember signatures (snow, rain, and groundwater). We use a Bayesian Hierarchical Model (BHM) to explicitly incorporate uncertainty and prior information into a mixing model, and predict the proportional contribution of snow, rain, and groundwater to streamflow throughout the year for the full catchment as well as its two sub-catchments. Preliminary results suggest that streamflow is likely more rainfall-dominated than previously thought, which not only alters our projections of climate change impacts, but make this watershed a potential example for other watersheds undergoing a snow to rain transition. Understanding how these proportions vary in space and time will help us elucidate key information on stores, fluxes, and timescales of water flow for improved current and future water resource management.

  2. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.

    2016-05-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.

  3. Land Cover Vegetation Changes and Hydrology in Central Texas

    NASA Astrophysics Data System (ADS)

    Banta, J. R.; Slattery, R.

    2013-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing changes in land cover vegetation (removing the woody vegetation and allowing native grasses to reestablish in the area, commonly referred to as brush management), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal agencies, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and potential groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Results indicate there are differences in the hydrologic budget and water quality between the reference and treatment watersheds, as well as between pre- and post-brush management periods.

  4. The Sensitivity of West African Squall Line Water Budgets to Land Cover

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Baker, R. David; Tao, Wei-Kuo; Famiglietti, James S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    This study used a two-dimensional coupled land/atmosphere (cloud-resolving) model to investigate the influence of land cover on the water budgets of squall lines in the Sahel. Study simulations used the same initial sounding and one of three different land covers, a sparsely vegetated semi-desert, a grassy savanna, and a dense evergreen broadleaf forest. All simulations began at midnight and ran for 24 hours to capture a full diurnal cycle. In the morning, the latent heat flux, boundary layer mixing ratio, and moist static energy in the boundary layer exhibited notable variations among the three land covers. The broadleaf forest had the highest latent heat flux, the shallowest, moistest, slowest growing boundary layer, and significantly more moist static energy per unit area than the savanna and semi-desert. Although all simulations produced squall lines by early afternoon, the broadleaf forest had the most intense, longest-lived squall lines with 29% more rainfall than the savanna and 37% more than the semi-desert. The sensitivity of the results to vegetation density, initial sounding humidity, and grid resolution was also assessed. There were greater differences in rainfall among land cover types than among simulations of the same land cover with varying amounts of vegetation. Small changes in humidity were equivalent in effect to large changes in land cover, producing large changes in the condensate and rainfall. Decreasing the humidity had a greater effect on rainfall volume than increasing the humidity. Reducing the grid resolution from 1.5 km to 0.5 km decreased the temperature and humidity of the cold pools and increased the rain volume.

  5. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the water budget of the lakes.

  6. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    NASA Astrophysics Data System (ADS)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  7. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.

  8. Sounding-Diagnosed Convective Environments and Preliminary Energy Budgets Diagnosed during the TRMM Field Campaigns

    NASA Technical Reports Server (NTRS)

    Halverson, Jeffrey B.; Roy, Biswadev; O'CStarr, David (Technical Monitor)

    2002-01-01

    An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.

  9. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    PubMed

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  10. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  11. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  12. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage

  13. Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration

    USGS Publications Warehouse

    Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy

    2017-01-01

    Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated” to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.

  14. Water budget of the Calera Aquifer in Zacatecas, Mexico

    USDA-ARS?s Scientific Manuscript database

    In the Calera Aquifer Region of the State of Zacatecas, Mexico, limited rainfall and low agricultural water use efficiency in combination with fast growing industrial and urban water demand are contributing to groundwater depletion at an unsustainable rate. Limited data and planning tools were avail...

  15. Role Of Fires On The Global Methane Budget And Atmospheric Methane Increase Since 2006

    NASA Astrophysics Data System (ADS)

    Worden, J.; Bloom, A. A.; Jiang, Z.; Pandey, S.; Walker, T. W.; Worden, H. M.

    2016-12-01

    Since 2006, Methane has increased at an average rate of 7 ppb/year. Satellite based measurements of total column CH4 suggest that 70% of this increase is from N. American (likely fossil fuel) sources whereas surface isotope data attribute the increase almost entirely to emissions from tropical wetlands or agriculture. However, large uncertainties in all components of the methane budget suggest any one source could substantially affect the growth rate of atmospheric methane. Here we examine the role of fires on the recent changes in atmospheric methane. We use satellite measurements of CH4 and CO to show that total land-use related CH4 fire emissions have decreased from 14+/-4 Tg during the 2001-2006 time period to 11+/- 4 Tg for the 2007-2015 time period, consistent with bottom-up estimates. Largest reductions are over S. America and Indonesia, likely as a result of increased rainfall during this time period. Fire emissions of methane are isotopically enhanced relative to fossil fuels and wetlands. Including the effects of fires in a global isotopic box model indicates that fossil fuels can account for 1/3 of the recent increase with the remaining due to biogenic sources.

  16. Evaluating short-term hydro-meteorological fluxes using GRACE-derived water storage changes

    NASA Astrophysics Data System (ADS)

    Eicker, A.; Jensen, L.; Springer, A.; Kusche, J.

    2017-12-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. In this contribution we will investigate the closure of the water balance for short-term fluxes, i.e. the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. Missing river runoff observations will be extrapolated using the calibrated rainfall-runoff model GR2M. We will perform a global analysis and will additionally focus on selected river basins in West Africa. The investigations will be carried out for various temporal scales, focusing on short-term fluxes down to daily variations to be detected in daily GRACE time series.

  17. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  18. SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.

    2010-12-01

    We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.

  19. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    PubMed

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  20. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.

  1. Clear-sky narrowband albedos derived from VIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  2. Determining the influence of rainfall patterns and carbendazim on the surface activity of the earthworm Lumbricus terrestris.

    PubMed

    Ellis, Sian R; Hodson, Mark E; Wege, Phil

    2010-08-01

    Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols. Copyright 2010 SETAC

  3. Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.

    NASA Astrophysics Data System (ADS)

    Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.

    2003-12-01

    The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are simulated by the model. They are determined by the observed mean U wind shear (unidirectional versus reverse shear profiles above midlevels).Several sensitivity tests are performed to examine the impact of the radiation, microphysics, and large-scale mean horizontal wind on the organization and intensity of the SCSMEX convective systems.

  4. Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs Basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.

    2009-01-01

    A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.

  5. Geochemical evidence for groundwater behavior in an unconfined aquifer, south Florida

    NASA Astrophysics Data System (ADS)

    Meyers, Jayson B.; Swart, Peter K.; Meyers', Janet L.

    1993-07-01

    Five well sites have been investigated along an east-west transect across the surfical aquifer system (SAS) of south Florida. Differences between rainfall during wet seasons (June-October) and evaporation during dry seasons (November-May) give surface waters of this region isotopically light ( δ 18O -22‰ and δ D -7.6‰ ) and heavy ( δ 18O +4.2‰ ) compositions, respectively. Surface waters and shallow groundwaters are enriched in 18O and D to the west, which is consistent with westward decrease in equal excess of rainfall. In the shallow portion of the SAS (less than 20 m, Biscayne sub-aquifer) heterogeneous stable isotopic compositions occur over short spans of time (less than 90 days), reflecting seasonal changes in the isotopic composition of recharge and rapid flushing. Homogeneous stable isotopic compositions occur below the Biscayne sub-aquifer, marking the zone of delayed circulation. Surface evaporation calculated from a stable isotope evaporation model agrees with previously published estimates of 75-95% by physical evaporation measurements and water budget calculations. This model contains many parameters that are assumed to be mean values, but short-term variability in some of these parameters may make this model unsuitable for the application of yearly mean values. For the Everglades, changes in the isotopic composition of atmospheric vapor during the dry season may cause the model to yield anomalous results when annual mean values are used. Chloride-enriched waters (more than 280 mg 1 -1) form a plume emanating from the bottom central portion of the transect. Elevated chloride concentration and light stable isotopic composition ( δ 18O ≈ -2‰ , δ D ≈ -8‰ ) suggest this plume is probably caused not by salinity of residual seawater in the aquifer, but by leakage from the minor artesian water-bearing zone of the Floridan aquifer system. Stable isotope values from Floridan aquifer groundwater plot close to the meteoric water line, in the same area as Everglades rainfall. These Floridan waters are interpreted to have originated in central Florida some 25 000-132 000 years ago, indicating that meteoric conditions in the Florida peninsula have changed little since late Pleistocene time.

  6. The Role of Management in Enrichment Ratio Dynamics and Resilience of Aggregate Fractions Via Raindrop Impact within Agricultural Hillslopes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Hatfield, J.; Cambardella, C.; Abban, B. K.; Wilson, C. G.; Filley, T. R.; Hou, T.; Dold, C.

    2017-12-01

    The abundance and distribution of surface soil size fractions has been shown to be reflective of changes in management practices and landscape position. Soil size fractions exist in both un-aggregated and aggregated forms that differ in textural and biological composition, which can impact soil hydrology and aggregation processes. Soils with higher stocks of soil organic matter (SOM) promote higher biological activity, infiltration, and soil structure due to stronger, more resilient aggregates. Within ag-systems, intensive cultivation and steep gradients can negatively impact the formation/stability of aggregates and amplify erosion processes, which redistributes material along downslope flowpathways to varying degrees, based on the amount of available surface cover during a rainfall event. The innate variability in SOM composition found amongst the size fractions combined with these highly active flowpathways, produces a symphony of interactive biogeochemical and hydrologic processes, which promote spatial landscape heterogeneity. Due to this intricacy, accurately assessing changes in SOM stocks within high energy ag-systems is extremely challenging, and could greatly impact soil carbon budgets at the hillslope and greater spatial scales. To address this, in part, we utilize a systematic approach that isolates the role of management in building aggregate resilience to hydrologic forcing. Soil samples were collected from farm fields with varying slopes (1-20%) and management conditions, and then isolated into seven aggregate size fractions. Each aggregate fraction was tested for resilience to raindrop impact with corresponding SOM composition and biological activity. Rainfall simulations were conducted on plots under representative management and gradient to capture the dynamicity of the size fractions being transported during an applied rainfall event. Results found that small macroaggregate fractions were most indicative of changes in management, and erosion rates from plots were inversely proportional to SOM enrichment. These experiments not only promote our fundamental understanding on the dynamics of surface soil and SOM redistribution but also can provide guidance into best management practices that promote aggregate stability, decrease soil loss, and enhance soil health.

  7. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    NASA Astrophysics Data System (ADS)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  8. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total ground-water inflow to lakes, saturated-flow models of lake basins need to account for the potential effects of rapid and efficient recharge in the surficial aquifer system closest to the lake. In this part of the basin, the ability to accurately estimate recharge is crucial because the water table is shallowest and the response time between rainfall and recharge is shortest. Use of the one-dimensional LEACHM model to simulate the effects of the unsaturated zone on the timing and magnitude of recharge in the nearshore improved the simulation of peak values of ground-water inflow to Lake Starr. Results of weekly simulations suggest that weekly recharge can approach the majority of weekly rainfall on the nearshore part of the lake basin. However, even though a weekly simulation with higher recharge in the nearshore was able to reproduce the extremes of ground-water exchange with the lake more accurately, it was not consistently better at predicting net ground-water flow within the water budget error than a simulation with lower recharge. The more subtle effects of rainfall and recharge on ground-water inflow to the lake were more difficult to simulate. The use of variably saturated flow modeling, with time scales that are shorter than weekly and finer spatial discretization, is probably necessary to understand these processes. The basin-wide model of Lake Starr had difficulty simulating the full spectrum of ground-water inflows observed in the water budget because of insufficient information about recharge to ground water, and because of practical limits on spatial and temporal discretization in a model at this scale. In contrast, the saturated flow model appeared to successfully simulate the effects of heads in the Upper Floridan aquifer on water levels and ground-water exchange with the lake at both weekly and monthly stress periods. Most of the variability in lake leakage can be explained by the average vertical head difference between the lake and a re

  9. On the controls of daytime precipitation in the Amazonian dry season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Virendra P.; Kollias, Pavlos

    The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily amore » result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. Lastly, the control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.« less

  10. On the controls of daytime precipitation in the Amazonian dry season

    DOE PAGES

    Ghate, Virendra P.; Kollias, Pavlos

    2016-12-16

    The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily amore » result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. Lastly, the control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.« less

  11. North Pacific Westerly Jet Influence of the Winter Hawaii Rainfall in the last 21,000 years

    NASA Astrophysics Data System (ADS)

    Li, S.; Elison Timm, O.

    2017-12-01

    Hawaii rainfall has a strong seasonality which has more rainfall during the winter than summer. Part of the winter rainfall is from extratropical weather disturbances. Kona lows (KL) are important contributors to the annual rainfall budget of the Hawaiian Islands. KL activity is found to have a strong relationship with the North Pacific climate variability. The goal of the research is to test the hypothesis that changes in the strength and position of the upper level zonal wind jet is a key driver for regional rainfall changes. The main objectives are (1) to identify the relationship between North Pacific westerly jet strength and KL activity in present day climate, (2) to test the stability of this relationship under past climatic conditions, and (3) to explore the teleconnection between Hawaii and North America. For the present-day analysis of the westerly jet, the zonal wind at 250hPa is used from ERA-interim data from 1979-2014. The potential vorticity is used as a measure of extratropical synoptic activity. The Hawaii Rainfall Index is from the Rainfall Atlas of Hawaii (seasonal means, 1920-2012). For the paleoclimatic study, the transient TraCE-21ka simulation is used for the zonal wind - Hawaii rainfall analysis. The results of present-day analysis show that when the jet extends farther into the eastern Pacific sector the Kona Low activity is reduced, less winter rainfall is observed over Hawaii and more rainfall over the California region. The jet position-rainfall relationship was investigated within the TrACE-21 simulation. For the TraCE-21ka dataset, there is an increasing rainfall trend from 21kBP to 14kBP; this period coincides with a gradual decrease in the strength of the westerly wind jet. The results show that the westerly jet strength has a strong influence of the Kona Low activity and the rainfall over Hawaii both in the present and the past.

  12. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    NASA Astrophysics Data System (ADS)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  13. Idealized Cloud-System Resolving Modeling for Tropical Convection Studies

    NASA Astrophysics Data System (ADS)

    Anber, Usama M.

    A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non-monotonic dependence of rainfall on shear is observed when the imposed surface fluxes are moderate. For larger surface fluxes, convection in the unsheared basic state is already strongly organized, but increasing wind shear still leads to increasing rainfall. In addition to surface rainfall, the impacts of shear on the parameterized large-scale vertical velocity, convective mass fluxes, cloud fraction, and momentum transport are also discussed. For experiments with interactive radiative cooling profile, the effect of cloud-radiation interaction on cumulus ensemble is examined in sheared and unsheared environments with both fixed and interactive sea surface temperature (SST). For fixed SST, interactive radiation, when compared to simulations in which radiative profile has the same magnitude and vertical shape but does not interact with clouds or water vapor, is found to suppress mean precipitation by inducing strong descent in the lower troposphere, increasing the gross moist stability. For interactive SST, using a slab ocean mixed layer, there exists a shear strength above which the system becomes unstable and develops oscillatory behavior. Oscillations have periods of wet precipitating states followed by periods of dry non-precipitating states. The frequencies of oscillations are intraseasonal to subseasonal, depending on the mixed layer depth. Finally, the model is coupled to a land surface model with fully interactive radiation and surface fluxes to study the diurnal and seasonal radiation and water cycles in the Amazon basin. The model successfully captures the afternoon precipitation and cloud cover peak and the greater latent heat flux in the dry season for the first time; two major biases in GCMs with implications for correct estimates of evaporation and gross primary production in the Amazon. One of the key findings is that the fog layer near the surface in the west season is crucial for determining the surface energy budget and precipitation. This suggests that features on the diurnal time scale can significantly impact climate on the seasonal time scale.

  14. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  15. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  16. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    NASA Astrophysics Data System (ADS)

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  17. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  18. The Eastern Pacific ITCZ during the Boreal Spring

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.; Sobel, Adam H.

    2004-01-01

    The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.

  19. Remote sensing-based characterization of rainfall during atmospheric rivers over the central United States

    NASA Astrophysics Data System (ADS)

    Nayak, Munir A.; Villarini, Gabriele

    2018-01-01

    Atmospheric rivers (ARs) play a central role in the hydrology and hydroclimatology of the central United States. More than 25% of the annual rainfall is associated with ARs over much of this region, with many large flood events tied to their occurrence. Despite the relevance of these storms for flood hydrology and water budget, the characteristics of rainfall associated with ARs over the central United has not been investigated thus far. This study fills this major scientific gap by describing the rainfall during ARs over the central United States using five remote sensing-based precipitation products over a 12-year study period. The products we consider are: Stage IV, Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH). As part of the study, we evaluate these products against a rain gauge-based dataset using both graphical- and metrics-based diagnostics. Based on our analyses, Stage IV is found to better reproduce the reference data. Hence, we use it for the characterization of rainfall in ARs. Most of the AR-rainfall is located in a narrow region within ∼150 km on both sides of the AR major axis. In this region, rainfall has a pronounced positive relationship with the magnitude of the water vapor transport. Moreover, we have also identified a consistent increase in rainfall intensity with duration (or persistence) of AR conditions. However, there is not a strong indication of diurnal variability in AR rainfall. These results can be directly used in developing flood protection strategies during ARs. Further, weather prediction agencies can benefit from the results of this study to achieve higher skill of resolving precipitation processes in their models.

  20. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study period. Groundwater flows simulated using daily time steps over a 10-year period were used to describe the relationship between climate, the size of the groundwater catchment, and the relative importance of groundwater inflow to the lake water budget. Modeling approaches used in this study should be applicable to other surface-water bodies such as wetlands and playa lakes. Lake Starr watershed (depressions from sinkholes)

  1. A GCM simulation study of the influence of Saharan evapotranspiration and surface-albedo anomalies on July circulation and rainfall

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Molod, A.

    1988-01-01

    The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.

  2. Namib Desert primary productivity is driven by cryptic microbial community N-fixation.

    PubMed

    Ramond, Jean-Baptiste; Woodborne, Stephan; Hall, Grant; Seely, Mary; Cowan, Don A

    2018-05-02

    Carbon exchange in drylands is typically low, but during significant rainfall events (wet anomalies) drylands act as a C sink. During these anomalies the limitation on C uptake switches from water to nitrogen. In the Namib Desert of southern Africa, the N inventory in soil organic matter available for mineralisation is insufficient to support the observed increase in primary productivity. The C4 grasses that flourish after rainfall events are not capable of N fixation, and so there is no clear mechanism for adequate N fixation in dryland ecosystems to support rapid C uptake. Here we demonstrate that N fixation by photoautotrophic hypolithic communities forms the basis for the N budget for plant productivity events in the Namib Desert. Stable N isotope (δ 15 N) values of Namib Desert hypolithic biomass, and surface and subsurface soils were measured over 3 years across dune and gravel plain biotopes. Hypoliths showed significantly higher biomass and lower δ 15 N values than soil organic matter. The δ 15 N values of hypoliths approach the theoretical values for nitrogen fixation. Our results are strongly indicative that hypolithic communities are the foundation of productivity after rain events in the Namib Desert and are likely to play similar roles in other arid environments.

  3. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  4. Estimation of the fractional coverage of rainfall in climate models

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.

  5. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

  6. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar) rainfall information on latent heating structures.

  7. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    USDA-ARS?s Scientific Manuscript database

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  8. High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.

    2016-05-01

    During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.

  9. Water cycle research associated with the CaPE hydrometeorology project (CHymP

    NASA Technical Reports Server (NTRS)

    Duchon, Claude E.

    1993-01-01

    One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

  10. Comparisons of Rain Estimates from Ground Radar and Satellite Over Mountainous Regions

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Kidd, Chris; Tao, Jing; Barros, Ana

    2016-01-01

    A high-resolution rainfall product merging surface radar and an enhanced gauge network is used as a reference to examine two operational surface radar rainfall products over mountain areas. The two operational rainfall products include radar-only and conventional-gauge-corrected radar rainfall products. Statistics of rain occurrence and rain amount including their geographical, seasonal, and diurnal variations are examined using 3-year data. It is found that the three surface radar rainfall products in general agree well with one another over mountainous regions in terms of horizontal mean distributions of rain occurrence and rain amount. Frequency of rain occurrence and fraction of rain amount also indicate similar distribution patterns as a function of rain intensity. The diurnal signals of precipitation over mountain ridges are well captured and joint distributions of coincident raining samples indicate reasonable correlations during both summer and winter. Factors including undetected low-level precipitation, limited availability of gauges for correcting the Z-R relationship over the mountains, and radar beam blocking by mountains are clearly noticed in the two conventional radar rainfall products. Both radar-only and conventional-gauge-corrected radar rainfall products underestimate the rain occurrence and fraction of rain amount at intermediate and heavy rain intensities. Comparison of PR and TMI against a surface radar-only rainfall product indicates that the PR performs equally well with the high-resolution radar-only rainfall product over complex terrains at intermediate and heavy rain intensities during the summer and winter. TMI, on the other hand, requires improvement to retrieve wintertime precipitation over mountain areas.

  11. Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.

    2003-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data fiom the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo- China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the lowlevel temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation.

  12. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil

    USDA-ARS?s Scientific Manuscript database

    The rainfall-induced removal of pathogens and microbial indicators from land-applied manure with runoff and infiltration greatly contributes to the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in rainfall intensity during a rainfall event d...

  13. Regional-Scale Modeling at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Baker, D.; Braun, S.; Chou, M.-D.; Jasinski, M. F.; Jia, Y.; Kakar, R.; Karyampudi, M.; Lang, S.

    2003-01-01

    Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.

  14. Disentangling Climate and Land-use Impacts on Grassland Carbon and Water Fluxes

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Nippert, J. B.

    2014-12-01

    Regional climate and land cover interact in a complex, non-linear manner to alter the local cycling of mass and energy. It is often difficult to isolate the role of either mechanism on the resultant fluxes. Here, we attempt to isolate these mechanisms through the use of network of 4 Ameriflux eddy covariance towers installed over different land cover and land use classes along a pronounced rainfall gradient. The land cover types include: annually burned C4 grassland, a 4 year burn site experiencing woody encroachment, an abandoned agricultural field and a new perennial agricultural site. We investigated the impact of rainfall variability, drought, and heat waves on the water and carbon budgets using data analysis, remote sensing, and modeling approaches. In addition, we have established a network of mini-meteorological stations at the annually and 4-year burn sites to assess micro-scale variability within the footprints of the towers as a function of topographic position, soil depth and soil water availability. Through the use of a wavelet multiscale decomposition and information theory metrics, we have isolated the role of environmental factors (temperature, humidity, soil moisture, etc.) on the fluxes across the different sites. By applying a similar analysis to model output, we can assess the ability of land-surface models to recreate the observed sensitity. Results indicate the utility of a network of measurement systems used in conjunction with land surface modeling and time series analysis to assess differential impacts to similar regional scale climate forcings. Implications for the role of land cover class in regional and global scale modeling systems will also be discussed.

  15. Soil erosion under multiple time-varying rainfall events

    NASA Astrophysics Data System (ADS)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  16. Possible rainfall reduction through reduced surface temperatures due to overgrazing

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

  17. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  18. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  19. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  20. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  1. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  2. Drought Early Warning and Agro-Meteorological Risk Assessment using Earth Observation Rainfall Datasets and Crop Water Budget Modelling

    NASA Astrophysics Data System (ADS)

    Tarnavsky, E.

    2016-12-01

    The water resources satisfaction index (WRSI) model is widely used in drought early warning and food security analyses, as well as in agro-meteorological risk management through weather index-based insurance. Key driving data for the model is provided from satellite-based rainfall estimates such as ARC2 and TAMSAT over Africa and CHIRPS globally. We evaluate the performance of these rainfall datasets for detecting onset and cessation of rainfall and estimating crop production conditions for the WRSI model. We also examine the sensitivity of the WRSI model to different satellite-based rainfall products over maize growing regions in Tanzania. Our study considers planting scenarios for short-, medium-, and long-growing cycle maize, and we apply these for 'regular' and drought-resistant maize, as well as with two different methods for defining the start of season (SOS). Simulated maize production estimates are compared against available reported production figures at the national and sub-national (province) levels. Strengths and weaknesses of the driving rainfall data, insights into the role of the SOS definition method, and phenology-based crop yield coefficient and crop yield reduction functions are discussed in the context of space-time drought characteristics. We propose a way forward for selecting skilled rainfall datasets and discuss their implication for crop production monitoring and the design and structure of weather index-based insurance products as risk transfer mechanisms implemented across scales for smallholder farmers to national programmes.

  3. GPM and TRMM Radar Vertical Profiles and Impact on Large-scale Variations of Surface Rain

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Adler, R. F.

    2017-12-01

    Previous studies by the authors using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data have shown that TRMM Precipitation Radar (PR) and GPM Dual-Frequency Precipitation Radar (DPR) surface rain estimates do not have corresponding amplitudes of inter-annual variations over the tropical oceans as do passive microwave observations by TRMM Microwave Imager (TMI) and GPM Microwave Imager (GMI). This includes differences in surface temperature-rainfall variations. We re-investigate these relations with the new GPM Version 5 data with an emphasis on understanding these differences with respect to the DPR vertical profiles of reflectivity and rainfall and the associated convective and stratiform proportions. For the inter-annual variation of ocean rainfall from both passive microwave (TMI and GMI) and active microwave (PR and DPR) estimates, it is found that for stratiform rainfall both TMI-PR and GMI-DPR show very good correlation. However, the correlation of GMI-DPR is much higher than TMI-PR in convective rainfall. The analysis of vertical profile of PR and DPR rainfall during the TRMM and GPM overlap period (March-August, 2014) reveals that PR and DPR have about the same rainrate at 4km and above, but PR rainrate is more than 10% lower that of DPR at the surface. In other words, it seems that convective rainfall is better defined with DPR near surface. However, even though the DPR results agree better with the passive microwave results, there still is a significant difference, which may be a result of DPR retrieval error, or inherent passive/active retrieval differences. Monthly and instantaneous GMI and DPR data need to be analyzed in details to better understand the differences.

  4. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 min rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.

  5. Comparison of TRMM 2A25 Products Version 6 and Version 7 with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.

    2012-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.

  6. Heating, moisture, and water budgets of tropical and midlatitude squall lines - Comparisons and sensitivity to longwave radiation

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Simpson, J.; Sui, C.-H.; Ferrier, B.; Lang, S.; Scala, J.; Chou, M.-D.; Pickering, K.

    1993-01-01

    A 2D time-dependent and nonhydrostatic numerical cloud model is presently used to estimate the heating, moisture, and water budgets in the convective and stratiform regions for both a tropical and a midlatitude squall line. The model encompasses a parameterized, three-class ice phase microphysical scheme and longwave radiative transfer process. It is noted that the convective region plays an important role in the generation of stratiform rainfall for both cases. While a midlevel minimum in the moisture profile for the tropical case is due to vertical eddy transport in the convective region, the contribution to the heating budget by the cloud-scale fluxes is minor; by contrast, the vertical eddy heat-flux is relatively important for the midlatitude case due to the stronger vertical velocities present in the convective cells.

  7. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  8. Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions

    PubMed Central

    Tao, Wanghai; Wu, Junhu; Wang, Quanjiu

    2017-01-01

    Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431

  9. A comparison of six potential evapotranspiration methods for regional use in the Southeastern United States

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Devendra Amatya

    2005-01-01

    Potential evapotranspiration (PET) is an important index of hydrologic budgets at different spatial scales and is a critical variable for understanding regional biological processes. It is often an important variable in estimating actual evapotranspiration (AET) in rainfall-runoff and ecosystem modeling. However, PET is defined in different ways in the literature and...

  10. An Investigation of the Influence of Urban Areas on Rainfall Using the TRMM Satellite and a Cloud-Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Shepherd, J.

    2002-05-01

    A recent paper by Shepherd et al. (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study.

  11. Using Smart Planning to Mitigate Drought in Urban Areas: A Seasonal Simulation of the Impact of Urbanization on Precipitation in the Indianapolis Region

    NASA Astrophysics Data System (ADS)

    Schmid, P. E.; Niyogi, D.

    2012-12-01

    The Indianapolis region exhibits a precipitation distribution indicative of urban weather modification: negative bias upwind and positive bias downwind. The causes for such a distribution within an urban area arise from a combination of land-surface heterogeneity and urban aerosol-cloud interaction. This study investigates the causes of the precipitation distribution with a 120-day simulation using the Regional Atmospheric Modeling System (RAMS) coupled with the Town Energy Budget (TEB) model. Using a nested grid with a maximum resolution of 500m, a seasonal simulation of May through August, 2008 is conducted. Land surface conditions are varied, removing, expanding, and intensifying the Indianapolis urban area. Aerosol conditions are scaled by a three-dimensional combination of MODIS and CALIPSO observations, and varied in concentration and plume extent. Results from the study demonstrate the paradigm of urban precipitation modification on a seasonal time scale. The boundary between the rural and urban land surfaces weakens approaching systems upwind, decreasing precipitation in the city center. A larger urban extent diminishes the systems further. The aerosol plume downwind increases cloud lifetimes via cloud-nucleating aerosol, then invigorates precipitation via large drizzle-invigorating aerosols. The overall effect reproduces the observed negative precipitation bias upwind and positive bias downwind of the urban center. A lower concentration of aerosols leads to a higher proportion of stratiform rain over a larger area, whereas a higher concentration of aerosols leads to more convective rain and heavy rain events. This manifests in a weekly cycle of precipitation with rain most likely on weekends, and with less frequent but heavier rain events most likely during midweek, when aerosol concentrations are the highest. More intense urbanization, via both land surface and aerosol effects, creates more frequent heavy rainfall events and exacerbates dry-periods, potentially leading to premature drought onset. The wetter than average May, June, and July received more total rainfall from the heavy rainfall events, while the dry August became drier due to lack of stratiform precipitation. Smart planning solutions can partially mitigate the urban precipitation problem. In a simulation where a more intense urban Indianapolis is surrounded by a greenbelt and green roofs are implemented in the city, the urban precipitation bias becomes less significant. Upwind, the greenbelt provides surface moisture and mitigates how much precipitation systems weaken. Downwind, the greenbelt slows the transport of drizzle-invigorating aerosol, reducing the heavy rain events. The green roofs reduce the urban-rural gradient and slow the initial weakening of systems.

  12. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  13. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation, accretionary pellet formation, rapid surface sealing and infiltration-excess overland flow generation whilst a coarse surface layer demonstrated exclusively rainsplash-driven particle detachment throughout the rainfall simulations. This experimental protocol has the potential to quantitatively examine the effects of a variety of individual parameters in RTL initiation under controlled conditions.

  14. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  15. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.

  16. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  17. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  18. Potential Impact of Rainfall on the Air-Surface Exchange of Total Gaseous Mercury from Two Common Urban Ground Surfaces

    EPA Science Inventory

    The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...

  19. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    NASA Astrophysics Data System (ADS)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  20. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    PubMed

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).

  1. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from the da Silva, Young, Levitus COADS analysis. The overall results from our analysis suggest an increase (decrease) of the hydrologic cycle during ENSO warm (cold) events at the rate of about 5 W/sq m per K of SST change. Model results agree reasonably well with this estimate of sensitivity. This rate is slightly less than that which would be expected for constant relative humidity over the tropical oceans. There remain, however, significant quantitative uncertainties in cloud forcing changes in the models as compared to observations. These differences are examined in relationship to model convection and cloud parameterizations Analysis of the possible sampling and measurement errors compared to systematic model errors is also presented.

  2. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean difference in daily evapotranspiration rates between the two watershed sites is greater during the post-treatment than the pre-treatment period. Average annual rainfall, streamflow, evapotranspiration, and potential groundwater-recharge conditions were incorporated into a single hydrologic budget (expressed as a percentage of the average annual rainfall) applied to each watershed before and after treatment to evaluate the effects of brush management. During the post-treatment period, the percent average annual unit runoff in the reference watershed was similar to that in the treatment watershed, however, the difference in percentages of average annual evapotranspiration and potential groundwater recharge were more appreciable between the reference and treatment watersheds than during the pre-treatment period. Using graphical comparisons, no notable differences in major ion or nutrient concentrations were found between samples collected at the reference watershed (site 1C) and treatment watershed (site 2C) during pre- and post-treatment periods. Suspended-sediment loads were calculated from samples collected at sites 1C and 2T. The relation between suspended-sediment loads and streamflow calculated from samples collected from sites 1C and 2T did not exhibit a statistically significant difference during the pre-treatment period, whereas during the post-treatment period, relation between suspended-sediment loads and streamflow did exhibit a statistically significant difference. The suspended-sediment load to streamflow relations indicate that for the same streamflow, the suspended-sediment loads calculated from site 2T were generally less than suspended-sediment loads calculated from site 1C during the post-treatment period.

  3. Impact of climate change on runoff pollution in urban environments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.

    2012-12-01

    Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between ±40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions. Consequently, the choice of a proper buildup/washoff model, with calibrated site-specific coefficients, is a major factor in modeling future runoff concentrations from contaminated urban surfaces.

  4. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake lower in the flow system, the impacts of climate change are diminished. 

  5. Simulation of the Onset of the Southeast Asian Monsoon During 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lau, W.; Baker, R.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.

  6. Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.

  7. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  8. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Boyer-Souchet, Irène

    2012-05-01

    This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.

  9. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region

    NASA Astrophysics Data System (ADS)

    KanthaRao, B.; Rakesh, V.

    2018-05-01

    Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).

  10. Stormwater Infrastructure Effects on Urban Nitrogen Budgets

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Turnbull, L.; Earl, S.; Moratto, S.; Shorts, D.; Grimm, N. B.

    2012-12-01

    The effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs and altered hydrology are well studied. Less is known, however, about nutrient transport and processing within urban watersheds. Previous research has focused on the roles of land cover and land use but drainage system design and configuration also are apt to play a significant role in controlling the transport of water and nutrients downstream. Furthermore, variability in drainage systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 10 watersheds ranging in size from 5 to 22,000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (< 200ha) watersheds had uniform land cover (medium-density residential) but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or engineered washes, and retention basins. We quantified discharge and precipitation at the outflow of each subwatershed and collected stormwater and rainfall samples for analyses of dissolved nitrogen species and δ15N, δ18O and Δ17O isotopes of nitrate (NO3) over two years. We also measured potential denitrification rates in washes and retention basins within our sites, and collected soil and pavement samples to describe pools of N within our watersheds. We used these data in combination with literature data on soil N transformations to construct N budgets for each watershed for a single event and at annual scales. We found that stormwater infrastructure type strongly affects N retention. Watersheds with surface or pipe drainage were sources of N downstream, whereas watersheds drained by washes or retention basins retained 70-99% of N inputs in rainfall. Event scale N retention was strongly correlated with hydrologic connectivity, as measured by runoff coefficients. Differences in δ15N, δ18O, and Δ17O isotopes of NO3 suggested that watersheds with decreased hydrologic connectivity were more biogeochemically active, that is, exported NO3 had less of an atmospheric signal than did NO3 exported from piped watersheds. Overall, we find that stormwater infrastructure significantly alters hydrologic connectivity and that these changes in hydrology are driving patterns in N export and retention.

  11. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  12. Analysis of surface energy budget data over varying land-cover conditions.

    USDA-ARS?s Scientific Manuscript database

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...

  13. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.

  14. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  15. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird’s Year-Round Activity Budgets

    PubMed Central

    Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M.

    2015-01-01

    How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. PMID:26581108

  16. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  17. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  18. Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention

    NASA Astrophysics Data System (ADS)

    Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza

    2015-04-01

    The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.

  19. Precipitation driven decadal scale decline and recovery of wetlands of Lake Pannon during the Tortonian

    PubMed Central

    Kern, Andrea K.; Harzhauser, Mathias; Soliman, Ali; Piller, Werner E.; Gross, Martin

    2012-01-01

    High resolution pollen and dinoflagellate analyses were performed on a continuous 98-cm-long core from Tortonian deposits of Lake Pannon in the Styrian Basin in Austria. The sample distance of 1-cm corresponds to a resolution of roughly one decade, allowing insights into environmental and climatic changes over a millennium of Late Miocene time. Shifts in lake level, surface water productivity on a decadal- to centennial-scale can be explained by variations of rainfall during the Tortonian climatic optimum. Related to negative fine scale shifts of mean annual precipitation, shoreline vegetation belts reacted in an immediate replacement of Poaceae by Cyperaceae as dominant grasses in the marshes fringing the lake. In contrast to such near-synchronous ecosystem-responses to precipitation, a delayed lake level rise of 4–6 decades is evident in the hydrological budget of Lake Pannon. This transgression, caused by a precipitation increase up to > 1200 mm/yr, resulted in a complete dieback of marshes. Simultaneously, “open-water” dinoflagellates, such as Impagidinium, took over in the brackish lagoon and fresh water dinoflagellates disappeared. As soon as the rainfall switched back to moderate levels of ~ 1100–1200 mm/yr, the rise of the lake level slowed down, the marsh plants could keep up again and the former vegetation belts became re-established. Thus, mean annual precipitation, more than temperature, was the main driving force for high-frequency fluctuations in the Tortonian wetlands and surface water conditions of Lake Pannon. Such high resolution studies focusing on Tortonian decadal to centennial climate change will be crucial to test climate models which try to compare the Tortonian models with predictions for future climate change. PMID:23576820

  20. On the use of MODIS and TRMM products to simulate hydrological processes in the La Plata Basin

    NASA Astrophysics Data System (ADS)

    Saavedra Valeriano, O. C.; Koike, T.; Berbery, E. H.

    2009-12-01

    La Plata basin is targeted to establish a distributed water-energy balance model using NASA and JAXA satellite products to estimate fluxes like the river discharge at sub-basin scales. The coupled model is called the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM), already tested with success in the Little Washita basin, Oklahoma, and the upper Tone River in Japan. The model demonstrated the ability to reproduce point-scale energy fluxes, CO2 flux, and river discharges. Moreover, the model showed the ability to predict the basin-scale surface soil moisture evolution in a spatially distributed fashion. In the context of the La Plata Basin, the first step was to set-up the water balance component of the distributed hydrological model of the entire basin using available global geographical data sets. The geomorphology of the basin was extracted using 1-km DEM resolution (obtained from EROS, Hydro 1K). The total delineated watershed reached 3.246 millions km2, identifying 145 sub-basins with a computing grid of 10-km. The distribution of land cover, land surface temperature, LAI and FPAR were obtained from MODIS products. In a first instance, the model was forced by gridded rainfall from the Climate Prediction Center (derived from available rain gauges) and satellite precipitation from TRMM 3B42 (NASA & JAXA). The simulated river discharge using both sources of data was compared and the overall low flow and normal peaks were identified. It was found that the extreme peaks tend to be overestimated when using TRMM 3B42. However, TRMM data allows tracking rainfall patterns which might be missed by the sparse distribution of rain gauges over some areas of the basin.

  1. [Characteristics of rainfall and runoff in urban drainage based on the SWMM model.

    PubMed

    Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke

    2016-11-18

    The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.

  2. Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX

    USDA-ARS?s Scientific Manuscript database

    Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...

  3. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  4. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  5. Earth radiation budget measurements from satellites and their interpretation for climate modeling and studies

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.

    1980-01-01

    The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.

  6. Modelling urban rainfall-runoff responses using an experimental, two-tiered physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2016-04-01

    Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.

  7. Impact of rainfall pattern on interrill erosion process

    USDA-ARS?s Scientific Manuscript database

    The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...

  8. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    NASA Astrophysics Data System (ADS)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  9. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    PubMed Central

    Jorgenson, Brant C.; Young, Thomas M.

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces. PMID:20524665

  10. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons will also be presented in the context of sensitivity testing to help understand the intrinsic uncertainties in the water budget terms.

  11. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  12. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  13. Evaluation and prediction of anomalous El Niño generated rainfalls in Peruvian and Ecuadorian coastal zone

    NASA Astrophysics Data System (ADS)

    Cadier, E.; Rossel, F.; Pouyaud, B.; Raymond, M.

    2003-04-01

    Coastal regions of Southern Ecuador and Northern Peru rainfalls are well known for their sensitivity to the El Niño/Southern Oscillation (ENSO) phenomenon. New monthly rainfall index series were set up from a network of 200 rainfall stations in the Ecuadorian and Peruvian coastal region. Throughout the study, rainfall was modelled keeping a distinction between a "dependent" data set used as a training period and an "independent" portion of the record reserved for validation. Multiple regression models were proposed to predict monthly rainfall in the Guayaquil and in northern coastal Peru, using as predictors, sea surface temperature, precipitation, meridional and zonal wind in the eastern equatorial Pacific. Then, the resulting equations were used to predict rainfall anomalies in the independent data set. In the Guayaquil zone, there is considerable predictable expertise for the rainy months of the year, the best predictability being assessed from March to May. The multiple linear correlations explain 60 to 82% of the monthly-precipitation variance. Northern coastal Ecuadorian region's preseason rainfall is the most powerful predictor for the rainy season peak in Guayaquil, while the eastern equatorial Pacific sea surface temperature is the most powerful predictor for the end of rainy season. KEY WORDS: El Niño, Rainfall Prediction, Ecuador.

  14. Upper Blue Nile basin water budget from a multi-model perspective

    NASA Astrophysics Data System (ADS)

    Jung, Hahn Chul; Getirana, Augusto; Policelli, Frederick; McNally, Amy; Arsenault, Kristi R.; Kumar, Sujay; Tadesse, Tsegaye; Peters-Lidard, Christa D.

    2017-12-01

    Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

  15. The May October energy budget of a Scots pine plantation at Hartheim, Germany

    NASA Astrophysics Data System (ADS)

    Gay, L. W.; Vogt, R.; Kessler, A.

    1996-03-01

    This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two “One-Propeller Eddy Correlation” (OPEC) systems, and latent energy (evapotranspiration or ET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11 12), and again during the “HartX2” experiment over 20 days late in the summer (Sep. 10 29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of daily ET of about 5%. After taking dew into account, estimates of OPEC ET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forest ET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144 288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.

  16. Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao

    2018-05-01

    In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.

  17. Influence of urban surface properties and rainfall characteristics on surface water flood outputs - insights from a physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2017-04-01

    Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.

  18. Study of the Formation and Evolution of Precipitation Induced Sea Surface Salinity Minima in the Tropical Pacific Using HYCOM

    NASA Astrophysics Data System (ADS)

    Gallagher, R. L.

    2016-02-01

    During heavy rain events in the tropics, areas of relatively low salinity water collect on the ocean surface. Rainfall events increase the buoyancy of the ocean surface and impact upper ocean salinity and temperature profiles. This resists downward mixing and as a result can persist (SPURS II planning group, 2012; Oceanography 28(1) 150-159). Salinity at the surface adjusts through advective and diffusive mixing processes (Scott, J. et al, 2013; AGU Fall meeting abstracts). This project investigates the upper ocean salinity response in both advection and diffusion dominated regions. The changes in ocean surface salinity are tracked before, during, and after rainfall events. Data from a standard oceanographic model, HYCOM, are used to identify areas where each surface process is significant. Rainfall events are identified using a TRMM dataset. It provides a tropical rainfall analysis which uses amalgamated satellite data to develop detailed global precipitation grids between 50 o north and south latitude. TRMM is useful due its high temporal and spatial resolutions. The salinity response in HYCOM is tested against simple theoretical advective and diffusive mixing models. The magnitude of sea surface salinity minima, their persistence and the precision by which HYCOM can resolve these phenomena are of interest.

  19. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in; Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in; Purohit, Sandip, E-mail: sandip.purohit91@gmail.com

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliablymore » estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.« less

  20. A protocol for conducting rainfall simulation to study soil runoff

    USDA-ARS?s Scientific Manuscript database

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial ur...

  1. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    USGS Publications Warehouse

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  2. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  3. Country-wide rainfall maps from cellular communication networks

    PubMed Central

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-01-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal’s attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space–time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km2), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210

  4. Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS

    NASA Astrophysics Data System (ADS)

    Gianotti, R. L.; Zhang, D.; Eltahir, E. A.

    2010-12-01

    Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and specifically overestimation of interception loss with concurrent underestimation of transpiration, irrespective of the land surface scheme used. Discussion of the origin of these errors is provided, with some suggestions for improvement.

  5. Canopy rainfall interception measured over ten years in a coastal plain loblolly pine (Pinus taeda L.) plantation

    Treesearch

    Michael Gavazzi; Ge Sun; Steve McNulty; E.A Treasure; M.G Wightman

    2016-01-01

    The area of planted pine in the southern U.S. is predicted to increase by over 70% by 2060, potentially altering the natural hydrologic cycle and water balance at multiple scales. To better account for potential shifts in water yield, land managers and resource planners must accurately quantify water budgets from the stand to the regional scale. The amount of...

  6. Wind erodibility response of physical and biological crusts to rain and flooding

    NASA Astrophysics Data System (ADS)

    Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.

    2015-12-01

    Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.

  7. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    NASA Astrophysics Data System (ADS)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  8. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    PubMed

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  9. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.

    2015-05-01

    In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.

  10. Derivation of Improved Surface and TOA Broadband Fluxes Using CERES-derived Narrowband-to-Broadband Coefficients

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Doelling, David R.; Chan, Pui K.; Nordeen, MIchele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick

    2006-01-01

    Satellites can provide global coverage of a number of climatically important radiative parameters, including broadband (BB) shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA) and surface. These parameters can be estimated from narrowband (NB) Geostationary Operational Environmental Satellite (GOES) data, but their accuracy is highly dependent on the validity of the narrowband-to-broadband (NB-BB) conversion formulas that are used to convert the NB fluxes to broadband values. The formula coefficients have historically been derived by regressing matched polarorbiting satellite BB fluxes or radiances with their NB counterparts from GOES (e.g., Minnis et al., 1984). More recently, the coefficients have been based on matched Earth Radiation Budget Experiment (ERBE) and GOES-6 data (Minnis and Smith, 1998). The Clouds and the Earth's Radiant Energy Budget (CERES see Wielicki et al. 1998)) project has recently developed much improved Angular Distribution Models (ADM; Loeb et al., 2003) and has higher resolution data compared to ERBE. A limited set of coefficients was also derived from matched GOES-8 and CERES data taken on Topical Rainfall Measuring Mission (TRMM) satellite (Chakrapani et al., 2003; Doelling et al., 2003). The NB-BB coefficients derived from CERES and the GOES suite should yield more accurate BB fluxes than from ERBE, but are limited spatially and seasonally. With CERES data taken from Terra and Aqua, it is now possible to derive more reliable NB-BB coefficients for any given area. Better TOA fluxes should translate to improved surface radiation fluxes derived using various algorithms. As part of an ongoing effort to provide accurate BB flux estimates for the Atmospheric Radiation Measurement (ARM) Program, this paper documents the derivation of new NB-BB coefficients for the ARM Southern Great Plains (SGP) domain and for the Darwin region of the Tropical Western Pacific (DTWP) domain.

  11. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  12. A Method for Partitioning Surface and Subsurface Flow Using Rainfall Simulaton and Two-Dimensional Surface Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.

    2014-12-01

    In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of ecological sites in the Upper Crow Creek in order to characterize the variable hydrologic response of this complex rangeland watershed. This information is being used to refine current physically based hydrologic models and watershed assessment tools.

  13. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    NASA Astrophysics Data System (ADS)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  14. The role of stochastic storms on hillslope runoff generation and connectivity in a dryland basin

    NASA Astrophysics Data System (ADS)

    Michaelides, K.; Singer, M. B.; Mudd, S. M.

    2016-12-01

    Despite low annual rainfall, dryland basins can generate significant surface runoff during certain rainstorms, which can cause flash flooding and high rates of erosion. However, it remains challenging to anticipate the nature and frequency of runoff generation in hydrological systems which are driven by spatially and temporally stochastic rainstorms. In particular, the stochasticity of rainfall presents challenges to simulating the hydrological response of dryland basins and understanding flow connectivity from hillslopes to the channel. Here we simulate hillslope runoff generation using rainfall characteristics produced by a simple stochastic rainfall generator, which is based on a rich rainfall dataset from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. We assess hillslope runoff generation using the hydrological model, COUP2D, driven by a subset of characteristic output from multiple ensembles of decadal monsoonal rainfall from the stochastic rainfall generator. The rainfall generator operates across WGEW by simulating storms with areas smaller than the basin and enables explicit characterization of rainfall characteristics at any location. We combine the characteristics of rainfall intensity and duration with data on rainstorm area and location to model the surface runoff properties (depth, velocity, duration, distance downslope) on a range of hillslopes within the basin derived from LiDAR analysis. We also analyze connectivity of flow from hillslopes to the channel for various combinations of hillslopes and storms. This approach provides a framework for understanding spatial and temporal dynamics of runoff generation and connectivity that is faithful to the hydrological characteristics of dryland environments.

  15. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  16. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.

  17. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    PubMed

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  18. Systematic evaluation of NASA precipitation radar estimates using NOAA/NSSL National Mosaic QPE products

    NASA Astrophysics Data System (ADS)

    Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.

    2011-12-01

    Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.

  19. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    PubMed Central

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment. PMID:26291616

  20. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments.

    PubMed

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment.

  1. Rainfall estimation from microwave links in São Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2017-04-01

    Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.

  2. Borneo vortex and meso-scale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2013-08-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth of the meso-α cyclone was achieved mainly by vortex stretching. The comma-shaped rainband consists of clusters of meso-β scale rainfall patches. The warm and wet cyclonic southeasterly flow meets with the cold and dry northeasterly surge forming a confluence front in the northeastern sector of the cyclone. Intense upward motion and heavy rainfall result both due to the low-level convergence and the favourable thermodynamic profile at the confluence front. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is much enhanced by nonlinear self-enhancement dynamics.

  3. ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wang, J. J.

    2017-12-01

    Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.

  4. Analysis of the Diurnal Cycle and Cloud Effects on the Surface Radiation Budget of the SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Augustine, J. A.; McComiskey, A. C.

    2017-12-01

    The NOAA Earth Systems Research Laboratory (ESRL) Global Monitoring Division (GMD) operates a network of seven surface radiation budget sites (SURFRAD) across the continental United States. The SURFRAD network was established in 1993 with the primary objective to support climate research with accurate, continuous, long-term measurements of the surface radiation budget over the United States and is a major contributor to the WMO international Baseline Surface Radiation Network. The data from the SURFRAD sites have been used in many studies including trend analyses of surface solar brightening (Long et al, 2009; Augustine and Dutton, 2013; Gan et al., 2015). These studies have focused mostly on long term aggregate trends. Here we will present results of studies that take a closer look across the years of the cloud influence on the surface radiation budget components partitioned by seasonal and diurnal analyses, and using derived quantities now available from the SURFRAD data archive produced by the Radiative Flux Analysis value added processing. The results show distinct differences between the sites surface radiative energy budgets and cloud radiative effects due to their differing climates and latitudinal locations.

  5. An Investigation of the Influence of Urban Areas on Rainfall Using the TRMM Satellite and a Cloud-Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; OCStarr, David (Technical Monitor)

    2002-01-01

    A recent paper by Shepherd and Pierce (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of approx. 28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  6. Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime

    NASA Astrophysics Data System (ADS)

    Li, Chun; Ma, Hao

    2011-09-01

    In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  8. Runoff process in the Miyake-jima Island after Eruption in 2000

    NASA Astrophysics Data System (ADS)

    Tagata, Satoshi; Itoh, Takahiro; Miyamoto, Kuniaki; Ishizuka, Tadanori

    2014-05-01

    Hydrological environment in a basin can be changed completely due to volcanic eruption. Huge volume of tephra was yielded due to eruptions in 2000 in the Miyake-jima Island, Japan. Hydrological monitoring was conducted at four observation sites with several hundred m2 in a basin. Those were decided by the distribution of thickness and the grain size of the tephra. Rainfall intensity was measured by a tipping bucket type raingauge and flow discharge was calculated by the over flow depth in a flow gauging weir in the monitoring. However, the runoff rate did not relate to the grain size of tephra and the thickness of tephra deposition, according to measured data of rainfall intensity and runoff discharge. Supposing that if total runoff in one rainfall event is equal to the summation of rainfall over a threshold, the value of the threshold must be the loss rainfall intensity, the value of the threshold corresponds to the infiltration for the rainfall intensity. The relationships between loss rainfall intensity and the antecedent precipitation are calculated using measured rainfall and runoff data in every rainfall event, focusing on that the antecedent precipitation before occurrence of surface runoff approximately corresponds to the water contents under the slope surface. In present study, the results obtained through data analyses are summarized as follows: (1) There are some values for the threshold values, and the loss rainfall intensity approaches to some constant value if the value of the antecedent precipitation increases. The constant value corresponds to the saturated infiltration. (2) The loss rainfall intensity must be vertical unsaturated infiltration, and observed data for water runoff can express that the runoff is given by the excess rainfall intensity more than the loss rainfall intensity. (3) There are two antecedent times for rainfall with several hours and several days, and the saturation ratio before antecedent time at four observation sites can be predicted in the range from sixty to ninety percentages by the water retention curve.

  9. The Hydrometeorological DREAM: A Daily REcharge Assessment Model, for the Israeli Western Mountain Aquifer

    NASA Astrophysics Data System (ADS)

    Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Frumkin, A.; Navon, S.; Morin, E.

    2008-05-01

    The western part of the Israeli Mountain Aquifer (WMA) supplies 360-400 MCM/y of fresh water to the Israeli water budget, which is approximately 20% of the total consumption. The annually recharge to the WMA is considered to be 25-35% of annual rainfall. The high variability in recharge to the WMA is due to spatial and temporal differences in the rain contributing to the aquifer. Different winters producing the same amount of rain may contribute differently to the aquifer due to the locations of the storms, intensity, duration, dry spells between successive rain events, etc. Moreover, besides the climatic-meteorological factors, the recharge is dependent also on geographical factors, such as lithology, pedology, land-use, slope gradient, slope direction etc. The need for a robust reliable Hydrometeorological Daily basis REcharge Assessment Model (Hydrometeorological DREAM) brought us to develop a model with a relatively high spatial and temporal resolution. The concept is based on a relatively simple water budget that states that rainfall over land is added to the soil, and removed later on by means of evapotranspiration, recharge and runoff. The method in use to date at the Hydrological Service for estimating recharge to the WMA is based on an annual regression curve that can be implemented only after the total annual rainfall is known. The DREAM is a near real time estimator of recharge to the WMA using daily rainfall and pan evaporation data. Comparison of the DREAM results with the annual regression curve show a high agreement on an annual basis. The improvements introduced by the DREAM are: 1) Near real time daily values of infiltration, as opposed to calculated annual values established after the rain season is over. 2) High spatial resolution. The DREAM produces daily recharge values in more than 3000 mesh points throughout the 2200 km2 of recharge area. By linking the DREAM output as input to a hydrogeological model (such as FEFLOW, MODFLOW etc.) a completion of the water cycle can by achieved.

  10. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  11. Chemistry of through-fall and stem-flow leachate following rainfall simulation over pinyon and juniper

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that leachate from pinyon and juniper canopies, following rainfall events, may contribute sizable levels of solutes and C to the soil surface. We quantified solutes and dissolved carbon in stem-flow (SF) and through-fall (TF) following replicated rainfall simulation events in a pinyo...

  12. Evaluation of NU-WRF Rainfall Forecasts for IFloodS

    NASA Technical Reports Server (NTRS)

    Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter

    2016-01-01

    The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.

  13. Karst Aquifer in Qatar and its bearing on Natural Rainfall Recharge

    NASA Astrophysics Data System (ADS)

    Baalousha, Husam; Ackerer, Philippe

    2017-04-01

    Qatar is an arid country with little rainfall and high evaporation. Surface water is non-existent so aquifer is the only source of natural water. The annual long-term averages of rainfall and evaporation are 80 mm and more than 2000 mm, respectively. Despite the low rainfall and high evaporation, natural recharge from rainfall occurs at an average of approximately 50 million m3 per year. Rainfall recharge in Qatar takes in land depressions that occur all over the country. These depressions are a result of land collapse due to sinkholes and cavity in the limestone formation. In the northern part of the country, karst features occur as a result of dissolution of limestone, which leads to land depressions. Results of this study shows groundwater recharge occurs in land depression areas, especially in the northern part of the country, where surface runoff accumulates in these land depressions and recharges the aquifer. This paper was made possible by NPRP grant # [NPRP 9-030-1-008] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the author[s]."

  14. Biophysical response of dryland soils to rainfall: implications for wind erosion

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Strong, C. L.; Aubault, H.

    2016-12-01

    Dryland soils can be highly susceptible to wind erosion due to low vegetation cover. The formation of physical and biological soil crusts between vascular plants can exert some control on the soil surface erodibility. The development of these crusts is highly dependent on rainfall which causes sediment compaction and aggregate breakdown, and triggers photosynthetic activity and an increase soil organic matter within biological soil crusts. Using controlled field experiments, this study tests how biological soil crusts in different dryland geomorphic settings respond to various rainfall amounts (0, 5 or 10 mm) and how this in turn affects the resistance of soils to wind erosion. Results show that 10 mm of rainfall triggers more intense photosynthetic activity (high fluorescence) and a greater increase in extracellular polysaccharide content in biological crusts than 5 mm of rainfall but that the duration of photosynthetic activity is comparable for both quantities of rain. These biological responses have little impact on surface resistance, but results show that soils are more susceptible to wind erosion after rainfall events than in their initial dry state. This unexpected result could be explained by the detachment of surface sediments by raindrop impact and overland flow. The study highlights the complexity of soil erodibility at small scale which is driven by rain, wind and crust, and a necessity to understand how the spatial heterogeneity of crust and their ecophysiology alters small scale processes.

  15. WCRP surface radiation budget shortwave data product description, version 1.1

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Dipasquale, R. C.; Ritchey, N. A.

    1993-01-01

    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures.

  16. REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management

    NASA Astrophysics Data System (ADS)

    Guan, M.; Yu, D.; Wilby, R.

    2016-12-01

    Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.

  17. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Tiedeman, Claire; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average ET over the 1995 to 2006 period was 34.47 inches per year, compared to the calculated average ET rate of 36.39 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.58 inches per year, compared with the calculated average of 3.39 inches per year from the model-independent water-budget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 920 million gallons per day, which is equivalent to about 2 inches per year over the model area and slightly more than half of the simulated average net recharge to the surficial aquifer system over the same period. Annual net simulated recharge rates to the surficial aquifer system were less than the total groundwater withdrawals from the Floridan aquifer system only during the below-average rainfall years of 2000 and 2006.

  18. Estimation of Rainfall Rates from Passive Microwave Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Sharma, Awdhesh Kumar

    Rainfall rates have been estimated using the passive microwave and visible/infrared remote sensing techniques. Data of September 14, 1978 from the Scanning Multichannel Microwave Radiometer (SMMR) on board SEA SAT-A and the Visible and Infrared Spin Scan Radiometer (VISSR) on board GOES-W (Geostationary Operational Environmental Satellite - West) was obtained and analyzed for rainfall rate retrieval. Microwave brightness temperatures (MBT) are simulated, using the microwave radiative transfer model (MRTM) and atmospheric scattering models. These MBT were computed as a function of rates of rainfall from precipitating clouds which are in a combined phase of ice and water. Microwave extinction due to ice and liquid water are calculated using Mie-theory and Gamma drop size distributions. Microwave absorption due to oxygen and water vapor are based on the schemes given by Rosenkranz, and Barret and Chung. The scattering phase matrix involved in the MRTM is found using Eddington's two stream approximation. The surface effects due to winds and foam are included through the ocean surface emissivity model. Rainfall rates are then inverted from MBT using the optimization technique "Leaps and Bounds" and multiple linear regression leading to a relationship between the rainfall rates and MBT. This relationship has been used to infer the oceanic rainfall rates from SMMR data. The VISSR data has been inverted for the rainfall rates using Griffith's scheme. This scheme provides an independent means of estimating rainfall rates for cross checking SMMR estimates. The inferred rainfall rates from both techniques have been plotted on a world map for comparison. A reasonably good correlation has been obtained between the two estimates.

  19. A protocol for conducting rainfall simulation to study soil runoff.

    PubMed

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  20. A Protocol for Conducting Rainfall Simulation to Study Soil Runoff

    PubMed Central

    Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.

    2014-01-01

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061

  1. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    NASA Astrophysics Data System (ADS)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  2. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  3. The effects of more extreme rainfall patterns on nitrogen leaching from a field crop system in the upper Midwest, USA

    NASA Astrophysics Data System (ADS)

    Hess, L.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2016-12-01

    As global surface temperatures rise, the proportion of total rainfall that falls in heavy storm events is increasing in many areas, in particular the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for ecosystem nutrient losses, especially from agricultural ecosystems. We conducted a multi-year rainfall manipulation experiment to examine how more extreme rainfall patterns affect nitrogen (N) leaching from row-crop ecosystems in the upper Midwest, and to what extent tillage may moderate these effects. 5x5m rainout shelters were installed in April 2015 to impose control and extreme rainfall patterns in replicated plots under conventional tillage and no-till management at the Kellogg Biological Station LTER site. Plots exposed to the control rainfall treatment received ambient rainfall, and those exposed to the extreme rainfall treatment received the same total amount of water but applied once every 2 weeks, to simulate larger, less frequent storms. N leaching was calculated as the product of measured soil water N concentrations and modeled soil water drainage at 1.2m depth using HYDRUS-1D. Based on data to date, more N has been leached from both tilled and no-till soils exposed to the extreme rainfall treatment compared to the control rainfall treatment. Results thus far suggest that greater soil water drainage is a primary driver of this increase, and changes in within-system nitrogen cycling - such as net N mineralization and crop N uptake - may also play a role. The experiment is ongoing, and our results so far suggest that intensifying precipitation patterns may exacerbate N leaching from agricultural soils, with potentially negative consequences for receiving ground- and surface waters, as well as for farmers.

  4. Toward Continental-scale Rainfall Monitoring Using Commercial Microwave Links From Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Leijnse, H.; Overeem, A.

    2017-12-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.

  5. A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2007-06-01

    Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.

  6. The I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017): Key activities and outcomes

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2017-04-01

    Amplified climate change and ecological sensitivity of high-latitude and high-altitude cold climate environments has been highlighted as a key global environmental issue. Projected climate change in largely undisturbed cold regions is expected to alter melt-season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active-layer depths. These combined effects will undoubtedly change Earth surface environments in cold regions and will alter the fluxes of sediments, solutes and nutrients. However, the absence of quantitative data and coordinated analysis to understand the sensitivity of the Earth surface environment are acute in cold regions. Contemporary cold climate environments generally provide the opportunity to identify solute and sedimentary systems where anthropogenic impacts are still less important than the effects of climate change. Accordingly, it is still possible to develop a library of baseline fluvial yields and sedimentary budgets before the natural environment is completely transformed. The SEDIBUD (Sediment Budgets in Cold Environments) Program, building on the European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments, since 2004) was formed in 2005 as a new Program (Working Group) of the International Association of Geomorphologists (I.A.G./A.I.G.) to address this still existing key knowledge gap. SEDIBUD (2005-2017) has currently about 400 members worldwide and the Steering Committee of this international program is composed of eleven scientists from ten different countries. The central research question of this global program is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at 56 defined SEDIBUD key test sites (selected catchment systems) varies by scientific program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists with different levels of detail. SEDIBUD has developed a key set of primary research data requirements intended to incorporate results from these varied projects and allow quantitative analysis across the program. Defined SEDIBUD key test sites provide field data on annual climatic conditions, total discharge and particulate and dissolved fluxes and yields as well as information on other relevant denudational Earth surface processes. A number of selected key test sites are providing high-resolution data on climatic conditions, runoff and solute and sedimentary fluxes and yields, which - in addition to the annual data - contribute to the SEDIBUD metadata database. To support these coordinated efforts, the SEDIFLUX manual and a set of framework papers and book chapters have been produced to establish the integrative approach and common methods and data standards. Comparable field-datasets from different SEDIBUD key test sites are analyzed and integrated to address key research questions of the SEDIBUD program as defined in the SEDIBUD working group objective. A key SEDIBUD synthesis book was published in 2016 by the group and a synthesis key paper is currently in preparation. Detailed information on all SEDIBUD activities, outcomes and published products is found at http://www.geomorph.org/sedibud-working-group/.

  7. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    PubMed

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  8. Soil Organic Carbon Loss and Selective Transportation under Field Simulated Rainfall Events

    PubMed Central

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future. PMID:25166015

  9. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.

  10. Surface Water in Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  11. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  12. Modelling landscape evolution at the flume scale

    NASA Astrophysics Data System (ADS)

    Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew

    2017-04-01

    The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.

  13. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of age and rainfall pH on contaminant yields from metal roofs.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark

    2014-01-01

    Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.

  15. The oceanic influence on the rainy season of Peninsular Florida

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Mishra, Akhilesh

    2016-07-01

    In this study we show that the robust surface ocean currents around Peninsular Florida, namely, the Loop and the Florida Currents, affect the terrestrial wet season of Peninsular Florida. We show this through two novel regional coupled ocean-atmosphere models with different bathymetries that dislocate and modulate the strength of these currents and thereby affect the overlying sea surface temperature (SST) and upper ocean heat content. This study show that a weaker current system produces colder coastal SSTs along the Atlantic coast of Florida that reduces the length of the wet season and the total seasonal accumulation of precipitation over Peninsular Florida relative to the regional climate model simulation, in which these currents are stronger. The moisture budget reveals that as a result of these forced changes to the temperature of the upper coastal Atlantic Ocean, overlying surface evaporation and atmospheric convection is modulated. This consequently changes the moisture flux convergence leading to the modulation of the terrestrial wet season rainfall over Peninsular Florida that manifests in changes in the length and distribution of daily rain rate of the wet season. The results of this study have implications on interpreting future changes to hydroclimate of Peninsular Florida owing to climate change and low-frequency changes to the Atlantic meridional overturning circulation that comprises the Loop and the Florida Currents as part of its upper branch.

  16. Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Chikita, Kazuhisa A.; Nishi, Masataka; Fukuyama, Ryuji; Hamahara, Kazuhiro

    2004-05-01

    The contribution of groundwater output and input to lake chemistry was examined by estimating the hydrological and chemical budgets of a volcanic caldera lake, Lake Kussharo, Hokkaido, Japan. The lake level, meteorology, river water discharge and water properties were measured in the ice-covered period of February-March and in the open-water period of June-October in 2000. The inorganic chemistry was then analyzed for sporadically sampled surface water and hot spring water. The chemistry of lake water at pH of 6.91-7.57 and EC25 (electric conductivity at 25 °C) of 29.2-32.7 mS/m appears to be controlled by the input of two types of hot spring water: the inflowing Yunokawa River (pH of 2.27-2.54 and EC25 of 197.8-258.0 mS/m) and groundwater discharging directly on the shore (pH of 7.13-8.32, water temperature of 35.0-46.5 °C and EC25 of 53.1-152.0 mS/m). Excluding the days with rainfall or a great change in lake level, the water budget in June-October gave a net groundwater input of -7.41 to 2.97 m 3/s. A combination of the water budget with the chemical budget of two solutes, Na + and Cl -, led to the best estimate of groundwater output, Gout, at 3.82±3.02 m 3/s, the total fresh groundwater input, ∑ Gfresh, at 2.14±1.00 m 3/s, and the total groundwater input of hot springs, ∑ Gspa, at 0.46±0.05 m 3/s. This is comparable to G out=3.87 m3/ s, ∑G fresh=1.49 m3/ s and ∑G spa=0.41 m3/ s during the ice-covered period. The chemical flux by the freshwater input plays an important role in the alkalinity of lake water, as does the chemical flux by the shoreline hot springs. The large groundwater output could occur by the leakage through the highly permeable, underground pumice, distributed from the east-to-south lake basin to southeast of the outlet.

  17. Surface storage of rainfall in tree crowns: not all trees are equal

    Treesearch

    E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach

    2017-01-01

    Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...

  18. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  19. Rainfall Driven Sorting of Soils and Manure in Beef Feedlot Pens, Implications for Steroid Hormone Transport

    NASA Astrophysics Data System (ADS)

    Bryson, R.; Harter, T.

    2009-12-01

    Previous research has documented elevated estrogenic and androgenic activity in surface waters receiving cattle feedlot effluent, while current research shows that significant concentrations of hydrophobic steroid hormones are transported in the solid phase of feedlot pen surface runoff. Accumulated manure in beef feedlot pens includes organic matter ranging from colloidal particles to partially digested feed, forming a complex soil-manure conglomerate at the pen surface. We hypothesized that the transport of solid phase particles in rainfall runoff on beef feedlots would be influenced but not limited by shield layer development. Soils and manure at a beef feedlot were evaluated before and after rainfall-runoff events to determine changes in soil composition and structure. Runoff samples were also collected during an hour of runoff and analyzed for suspended solids. Results indicate that rainfall actively sorts the soil and manure components through raindrop impact, depression storage and runoff. However, transport of solid phase constituents was found to be elevated throughout the hydrograph. This suggests that the surface shield layer conceptualization applied to other soils should be modified before application to the soil-manure conglomerate found in beef feedlot pens.

  20. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  1. Hotplate precipitation gauge calibrations and field measurements

    NASA Astrophysics Data System (ADS)

    Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.

    2018-01-01

    First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  2. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2012-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  3. Nested High Resolution Modeling of the Impact of Urbanization on Regional Climate in Three Vast Urban Agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2013-04-01

    In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.

  4. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  5. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system. Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January- 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  6. Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal)

    NASA Astrophysics Data System (ADS)

    Hugman, Rui; Stigter, Tibor; Costa, Luis; Monteiro, José Paulo

    2017-11-01

    Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater-saltwater interfaces' comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr-1.

  7. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    NASA Astrophysics Data System (ADS)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i.e. uncoupled over India and coupled elsewhere, preliminary results suggest an increase in rainfall, surface temperature and pressure over northern India and the Himalayas, as well as a decrease in rainfall over the Bay of Bengal and the Maritime Continent. Other metrics, such as the northward propagation of intraseasonal rainfall variability and sensible and latent heat fluxes, are also discussed.

  8. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    PubMed

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  9. Small scale rainfall simulators: Challenges for a future use in soil erosion research

    NASA Astrophysics Data System (ADS)

    Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel

    2013-04-01

    Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.

  10. Destabilization of a Clay-Rich Slope by Rainfall : Monitoring of Precursons on an Hectometric Sliding Surface

    NASA Astrophysics Data System (ADS)

    Doan, M. L.; Bièvre, G.; Jongmans, D.; Helmstetter, A.; Radiguet, M.

    2016-12-01

    The Avignonet landslide is an active clay landslide near Grenoble, France, and therefore one of the monitored site of OMIV observatory. Previous geophysical investigation, including borehole drilling and surface geophysics proved that the landslide deformation is accommodated by several localized shear zones. The shallowest shear zone is about 5 m deep and extends over 100 m. Several sensors monitor the landslide. They record several precursors prior to a major disturbance of the landslide in autumn 2012, that affects all sensors in the landslide for several months. After major rainfalls, the two piezometers located near the 5 m deep interface got larger impulsional response to rainfall. The moderate rainfalls of Oct 26th caused the hydraulic head both reached a plateau before experiencing a sudden change, triggered by the small rainfall of Oct 31st. It's not the bigger rainfall that induced the disturbance. It was not the first rainfall neither.Other sensors suggest that the destabilization of the landslide was progressive. Spontaneous potential sensors regularly spaced within the 100 m wide sensors begin to separate after Oct 28th, suggesting a landslide wide precursor. Repeated microseismic events, of high frequency, suggesting a local origin, are more frequent. Their occurrence peaks after the small rainfall of Oct 29th and again on Oct 31st, before the rainfall that triggered the disturbance. They stop at the same time as sudden change in piezometric data. Despite the lack of displacement sensor, it is assumed that the 5 m deep shear zone slipped on Oct 31st, since it affects the piezometer sampling this interface. The data shows a progressive path towards destabilization. Especially, triggering of the landslide disturbances is associated to the cumulative effect of seismic activity and rainfall, even minor. This suggests a hydromechanical process.

  11. Two Distinct Modes in One-Day Rainfall Event during MC3E Field Campaign: Analyses of Disdrometer Observations and WRF-SBM Simulation

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-01-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  12. Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation

    NASA Astrophysics Data System (ADS)

    Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo

    2012-12-01

    A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.

  13. Multifractal characterisation of a simulated surface flow: A case study with Multi-Hydro in Jouy-en-Josas, France

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Abbes, Jean-Baptiste; da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2018-03-01

    In this paper we suggest to innovatively use scaling laws and more specifically Universal Multifractals (UM) to analyse simulated surface runoff and compare the retrieved scaling features with the rainfall ones. The methodology is tested on a 3 km2 semi-urbanised with a steep slope study area located in the Paris area along the Bièvre River. First Multi-Hydro, a fully distributed model is validated on this catchment for four rainfall events measured with the help of a C-band radar. The uncertainty associated with small scale unmeasured rainfall, i.e. occurring below the 1 km × 1 km × 5 min observation scale, is quantified with the help of stochastic downscaled rainfall fields. It is rather significant for simulated flow and more limited on overland water depth for these rainfall events. Overland depth is found to exhibit a scaling behaviour over small scales (10 m-80 m) which can be related to fractal features of the sewer network. No direct and obvious dependency between the overland depth multifractal features (quality of the scaling and UM parameters) and the rainfall ones was found.

  14. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    NASA Astrophysics Data System (ADS)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.

  15. Simulating transport of nitrogen and phosphorus in a Cambisol after natural and simulated intense rainfall.

    PubMed

    Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis

    2014-05-01

    Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.

    NASA Astrophysics Data System (ADS)

    Weiss, Mitchell; Smith, Eric A.

    1987-06-01

    A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.

  17. The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2016-12-01

    Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.

  18. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  19. Ground-water flow patterns and water budget of a bottomland forested wetland, Black Swamp, eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.; Kleiss, B.A.

    1996-01-01

    The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.

  20. RAINLINK: Retrieval algorithm for rainfall monitoring employing microwave links from a cellular communication network

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2017-12-01

    The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a temperate climate (the Netherlands), and from a subtropical climate (Brazil). We hope that RAINLINK will promote the application of rainfall monitoring using microwave links in poorly gauged regions around the world. We invite researchers to contribute to RAINLINK to make the code more generally applicable to data from different networks and climates.

  1. Aircraft Observations of Soil Hydrological Influence on the Atmosphere in Northern India

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher M.; Barton, Emma J.; Belusic, Danijel; Böing, Steven J.; Hunt, Kieran M. R.; Mitra, Ashis K.; Parker, Douglas J.; Turner, Andrew G.

    2017-04-01

    India is considered to be a region of the world where the influence of land surface fluxes of sensible and latent heat play an important role in regional weather and climate. Indian rainfall simulations in GCMs are known to be particularly sensitive to soil moisture. However, in a monsoon region where seasonal convective rainfall dominates, it is a big challenge for GCMs to capture, on the one hand, a realistic depiction of surface fluxes during wetting up and drying down at seasonal and sub-seasonal scales, and on the other, the sensitivity of convective rainfall and regional circulations to space-time fluctuations in land surface fluxes. On top of this, most GCMs and operational atmospheric forecast models don't explicitly consider irrigation. In the Indo-Gangetic plains of the Indian sub-continent, irrigated agriculture has become the dominant land use. Irrigation suppresses temporal flux variability for much of the year, and at the same time enhances spatial heterogeneity. One of the key objectives of the Anglo-Indian Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) collaborative project is to better understand the coupling between the land surface and the Indian summer monsoon, and build this understanding into improved prediction of rainfall on multiple time and space scales. During June and July 2016, a series of research flights was performed across the sub-continent using the NERC/Met Office BAe146 aircraft. Here we will present results for a case study from a flight on 30th June which sampled the Planetary Boundary Layer (PBL) on a 700 km low level transect, from the semi-arid region of Rajasthan eastwards into the extensively irrigated state of Uttar Pradesh. As well as crossing different land uses, the flight also sampled mesoscale regions with contrasting recent rainfall conditions. Here we will show how variations in surface hydrology, driven by both irrigation and rainfall, influence the temperature, humidity and winds in the PBL. These unique observations will provide a powerful tool for understanding the dominant land-atmosphere coupling mechanisms operating on a range of multiple length scales, and which help to shape the Indian monsoon.

  2. Borneo vortex and mesoscale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  3. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  4. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident seasonality in synoptic-scale wave signals is shown to be a good evidence for this seasonal evolution.

  5. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.

    2004-02-01

    In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.

  6. First Evaluation of Rainfall Derived from Commercial Microwave Links in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Raupach, T.

    2017-12-01

    Rainfall estimation from commercial microwave link (CML) networks has gained a lot of attention from the hydrometeorological community in the last decade. Path-averaged rainfall intensities can be retrieved from the signal attenuation between cell phone towers. Such a technique offers rainfall retrievals at high spatiotemporal resolutions. High spatiotemporal rainfall measurements are highly important for urban hydrology, given the often deadly impact of flash floods to society. This study evaluates CML rainfall retrievals for a subtropical climate. Rainfall estimation for subtropical climates is highly relevant, since many countries with few surface rainfall observations are located in such areas. The evaluation is done for the Brazilian city of São Paulo. RAINLINK (the open-source algorithm) retrieves rainfall intensities from attenuation measurements. We evaluated CMLs in the São Paulo metropolitan area for 81 days between October 2014 and January 2015. The evaluation was done against a dense automatic gauge network. High correlations (>0.9) and low biases ( 30%) are obtained, especially for short CMLs.

  7. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    NASA Technical Reports Server (NTRS)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  8. On the estimate of the Vegetation effects on the surface runoff through a plot scale rainfall simulator in Sardinia, Italy.

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.; Cortis, C.; Albertson, J. D.

    2012-04-01

    In semi-arid regions with the Mediterranean climate of cool, wet winters and hot, dry summers, precipitation timing and amount, vegetation growth, and surface runoff are tightly intertwined. In the experimental site of Sardinia, the main source of water is surface reservoirs that are recharged by surface runoff in the rainy winter season. However, changes in climate are expected to bring both an overall decrease in winter precipitation and increased interannual variability of precipitation to this region. These changes may affect characteristics of the water-limited vegetation growth such as timing and production, and consequently change the amount of overland flow and reservoir recharge. Currently, there is little research on the combination of these effects; therefore, the goal of this research is to assess the runoff response of the land surface with varying vegetation states to ultimately predict how changes in the climate of Mediterranean watersheds may affect the needs of water resource management. A 4 m by 4 m rainfall simulator was designed, constructed, and tested as the first stage of this research. The rainfall simulator consisted of four independent lines of low-cost pressure washing nozzles operated at a pressure of 80 mbar, with the number of nozzles determining the rainfall intensity delivered to the plot. The rainfall intensity of the simulator varies from approximately 26 to 52 mm/h with a coefficient of uniformity ranging from 0.40 to 0.59. Measurements taken include surface runoff using a tipping bucket flow meter and soil moisture throughout the plot. Literature models for surface runoff predictions (Philips, Horton, Green Ampt, Soil conservation Service model, bucket model) are widely tested highlighting the typical hortonian behavior of this soil. The simulator was used to monitor changes in the surface runoff throughout the seasons (July 2010, August 2010, June 2011, July 2011, December 2011, January 2012) as the vegetation changes. Results shows the great impact of changes in vegetation cover on soil runoff processes: the increase of LAI from values of 0 to 1.5 produces a decrease of surface runoff of the 50%.

  9. Using sediment budgets to investigate the pathogen flux through catchments.

    PubMed

    Whiteway, Tanya G; Laffan, Shawn W; Wasson, Robert J

    2004-10-01

    We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxyfor pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in south-eastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape.

  10. High temporal resolution of extreme rainfall rate variability and the acoustic classification of rainfall

    NASA Astrophysics Data System (ADS)

    Nystuen, Jeffrey A.; Amitai, Eyal

    2003-04-01

    The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.

  11. Monitoring the spring-summer surface energy budget transition in the Gobi Desert using AVHRR GAC data. [Global Area Coverage

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.

    1986-01-01

    A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.

  12. Simulated peak flows and water-surface profiles for Scott Creek near Sylva, North Carolina

    USGS Publications Warehouse

    Pope, B.F.

    1996-01-01

    Peak flows were simulated for Scott Creek, just upstream from Sylva, in Jackson County, North Carolina, in order to provide Jackson County officials with information that can be used to improve preparation for and response to flash floods along the reach of Scott Creek that flows through Sylva. A U.S. Geological Survey rainfall-runoff model was calibrated using observed rainfall and streamflow data collected from March 1994 through September 1995. Standard errors for calibration were 34 percent for runoff volumes and 21 percent for peak flows. The calibrated model was used to simulate peak flows resulting from syn- thetic rainfall amounts of 1.0, 2.5, 5.0, and 7.5 inches in 24-hour periods. For each rainfall amount, peak flows were simulated under low-, moderate-, and high-antecedent soil-moisture conditions, represented by selected 3-month periods of daily rainfall and evaporation record from nearby climatic-data measuring stations. Simulated peak flows ranged from 89 to 10,100 cubic feet per second. Profiles of water-surface elevations for selected observed and simu- lated peak flows were computed for the reach of Scott Creek that flows through Sylva, North Carolina. The profiles were computed using the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles computer program and channel cross-section data collected by the Tennessee Valley Authority. The stage-discharge relation for Scott Creek at the simulation site has changed since the collection of the cross-section data. These changes, however, are such that the water-surface profiles presented in this report likely overestimate the true water-surface elevations at the simulation site for a given peak flow

  13. Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity

    NASA Astrophysics Data System (ADS)

    Ulbrich, U.; Christoph, M.; Pinto, J. G.; Corte-Real, J.

    1999-03-01

    The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980

  14. Distribution Patterns of Land Surface Water from Hurricanes Katrina and Rita

    NASA Image and Video Library

    2005-10-12

    The above images, derived from NASA QuikScat satellite data, show the extensive pattern of rain water deposited by Hurricanes Katrina and Rita on land surfaces over several states in the southern and eastern United States. These results demonstrate the capability of satellite scatterometers to monitor changes in surface water on land. The color scale depicts increases in radar backscatter (in decibels) between the current measurement and the mean of measurements obtained during the previous two weeks. The backscatter can be calibrated to measure increases in surface soil moisture resulting from rainfall. The yellow color corresponds to an increase of approximately 10 percent or more in surface soil moisture according to the calibration site of Lonoke, Ark. The two hurricanes deposited excessive rainfall over extensive regions of the Mississippi River basin. Basins the size of the Mississippi can take up to several weeks before such excess rainfall significantly increases the amount of river discharge in large rivers such as the Mississippi. With hurricane season not over until November 30, the potential exists for significant flooding, particularly if new rain water is deposited by new hurricanes when river discharge peaks up as a result of previous rainfalls. River discharge should be closely monitored to account for this factor in evaluating potential flood conditions in the event of further hurricanes. http://photojournal.jpl.nasa.gov/catalog/PIA03029

  15. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    PubMed

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces

    NASA Astrophysics Data System (ADS)

    Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.

    2018-02-01

    Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases with both rainfall intensity and the surface slope. This observation leads to the second part of the study where the existing wash-off model is modified by introducing a capacity factor which defines this maximum fraction. This capacity factor is derived as a function of wash-off coefficient, making use of the correlation between the maximum fraction and the wash-off rate. Values of the modified wash-off coefficient are presented for all combinations of rainfall intensities and surface slopes, which can be transferred to other urban catchments with similar conditions.

  17. Spring precipitation in inland Iberia: land-atmosphere interactions and recycling and amplification processes.

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2012-04-01

    Inland Iberia, the highest peak of rainfall occurs in May, being critical for agriculture in large water-limited areas. We investigate here the role of the soil moisture - precipitation feedback in the intensification of the water cycle in spring and in the aforementioned maximum of precipitation in the interior of the Iberian Peninsula. We conducted paired, high-resolution simulations with the WRF-ARW model, using a nested grid that covers the Iberian Peninsula at 5km resolution. Eleven months of May (from May 2000 to May 2010) and eleven months of January (from January 2000 to January 2010) were selected. For each month, we performed two simulations: a control one, where all land-atmosphere fluxes are normally set up, and the corresponding experiment, where evapotranspired water over land in the nested domain is not incorporated into the atmosphere, although the corresponding latent heat flux is considered in the surface energy budget. As expected, precipitation is higher in the control runs with respect to the experiments and, furthermore, this fraction of extra rainfall substantially exceeds the value of the analytical recycling ratio. This suggests that amplification processes, and not only direct recycling, may play an important role in the maximum of precipitation observed in the Iberian spring. We estimated the amplification effect to be as large as the recycling with calculations using analytical methods of separation of both contributions. We also develop here a procedure to quantify the amplification impact using the no-ET experiment and results confirm those obtained analytically. These results suggest that in the Iberian spring, under favourable synoptic conditions and given a small supply of external moisture that triggers large-scale convection, land-atmosphere interactions can intensify and sustain convective processes in time. Thus there is a large impact of local land-surface fluxes on precipitation and that alterations of anthropogenic nature can potentially influence the precipitation regime significantly.

  18. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  19. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  20. Reclaimed mineland curve number response to temporal distribution of rainfall

    USGS Publications Warehouse

    Warner, R.C.; Agouridis, C.T.; Vingralek, P.T.; Fogle, A.W.

    2010-01-01

    The curve number (CN) method is a common technique to estimate runoff volume, and it is widely used in coal mining operations such as those in the Appalachian region of Kentucky. However, very little CN data are available for watersheds disturbed by surface mining and then reclaimed using traditional techniques. Furthermore, as the CN method does not readily account for variations in infiltration rates due to varying rainfall distributions, the selection of a single CN value to encompass all temporal rainfall distributions could lead engineers to substantially under- or over-size water detention structures used in mining operations or other land uses such as development. Using rainfall and runoff data from a surface coal mine located in the Cumberland Plateau of eastern Kentucky, CNs were computed for conventionally reclaimed lands. The effects of temporal rainfall distributions on CNs was also examined by classifying storms as intense, steady, multi-interval intense, or multi-interval steady. Results indicate that CNs for such reclaimed lands ranged from 62 to 94 with a mean value of 85. Temporal rainfall distributions were also shown to significantly affect CN values with intense storms having significantly higher CNs than multi-interval storms. These results indicate that a period of recovery is present between rainfall bursts of a multi-interval storm that allows depressional storage and infiltration rates to rebound. ?? 2010 American Water Resources Association.

  1. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    NASA Technical Reports Server (NTRS)

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  2. Rainfall and water-level data for a wetland area near Millington, Shelby County, Tennessee, October 1995 through September 1996

    USGS Publications Warehouse

    Knight, R.R.

    1997-01-01

    Rainfall amounts and water levels were collected at a wetland area near Millington, Shelby County, Tennessee, to assist the Tennessee Department of Transportation with a program of wetland restoration. The site is located along a channelized reach of Big Creek Drainage Canal, east of State Route 240, and near the southern boundary of Naval Support Activity Memphis. Rainfall amounts and water levels for the site were recorded from October 1, 1995 to September 30, 1996. Total rainfall for this period was 47.58 inches. In general, water levels at the wetland were above or near the ground surface during the 6-month period from the first of January through the end of June 1996. For the remainder of the year, water levels generally subsided to several feet below land surface. However, some locations within the wetland were wet or highly saturated year round.

  3. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting Soil Strength in Terms of Cone Index and California Bearing Ratio for Trafficability

    DTIC Science & Technology

    2016-03-01

    conditions, however, soil strength will be a key factor. The Wet- Slippery conditions are considered when the top layer has reached a point of...the soil . Modeling moisture content of a soil in a layered system can be conducted using a finite difference water budget model illustrated in...Figure 2 (Sellers et al. 1986). Figure 2 shows how flow Q through the soil layer ij is modeled. In general, saturation of layer Qi due to rainfall is

  5. Use of hydrologic budgets and hydrochemistry to determine ground-water and surface-water interactions for Rapid Creek, Western South Dakota

    USGS Publications Warehouse

    Anderson, Mark T.

    1995-01-01

    The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.

  6. Rainfall and Erosion Response Following a Southern California Wildfire

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Robichaud, P. R.; Brown, R. E.

    2011-12-01

    Wildfire renders landscapes susceptible to flooding and accelerated surface erosion. Consumption of the vegetation canopy and the litter or duff layer removes resistances to the agents of erosion. Moreover, changes in soil properties can restrict infiltration, increasing the effectiveness of the driving forces of rainsplash and surface runoff. However, it is unclear whether surface erosion varies linearly with rainfall amounts and intensities or if thresholds exist beyond which erosion increases in a different trajectory. The Santiago Fire burned over 11000 ha in northeastern Orange County, California in October 2007. The burn area consists of a deeply dissected mountain block underlain by sedimentary and metamorphic rocks that produce erosive soils. Regional erosion and sediment transport is triggered by winter cyclonic storms. Recording raingages were deployed across a vertical gradient within the burned area and silt fences were constructed to monitor hillslope erosion. During the study period initial storms were characterized by moderate rainfall (amounts less than 25 mm with peak 10-minute intensities of less than 10 mm per hr). Surface erosion was concomitantly minor, less than 0.4 Mg per ha. However, an unusual thunderstorm in late May 2008 produced spatially variable rainfall and consequent surface erosion across the study area. The raingage at a lower elevation site measured 41.4 mm of rain for this storm with a peak 10-minute intensity of 81 mm per hr. The silt fences were overtopped, yielding a minimum value of 18.5 Mg per ha. In contrast, the raingage at an upper elevation site recorded 19.6 mm of rain with a peak 10-minute intensity of 50 mm per hr. Surface erosion in the higher elevation sites was negligible (0.1 Mg per ha). Subsequently, individual storms exceeded 100 mm of rainfall but peak 10-minute intensities never approached those of the May thunderstorm. Erosion was moderate (mostly less than 5 Mg per ha), albeit influenced by the presence of regrowing vegetation. We therefore believe that surface erosion in the immediate postfire environment is more related to storm intensity than rainfall amount. Even allowing for site-to-site differences and site changes over the first postfire winter season, it is clear that some threshold in erosion response was crossed at the lower elevation sites during the May 2008 thunderstorm. We suggest that this represents a threshold of peak 10-minute intensity of between 50 and 80 mm per hr.

  7. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.

  8. Measurement of surface water runoff from plots of two different sizes

    NASA Astrophysics Data System (ADS)

    Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel

    2002-05-01

    Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.

  9. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    NASA Astrophysics Data System (ADS)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  10. Current and Future Urban Stormwater Flooding Scenarios in the Southeast Florida Coasts

    NASA Astrophysics Data System (ADS)

    Huq, E.; Abdul-Aziz, O. I.

    2016-12-01

    This study computed rainfall-fed stormwater flooding under the historical and future reference scenarios for the Southeast Coasts Basin of Florida. A large-scale, mechanistic rainfall-runoff model was developed using the U.S. E.P.A. Storm Water Management Model (SWMM 5.1). The model parameterized important processes of urban hydrology, groundwater, and sea level, while including hydroclimatological variables and land use features. The model was calibrated and validated with historical streamflow data. It was then used to estimate the sensitivity of stormwater runoff to the reference changes in hydroclimatological variables (rainfall and evapotranspiration) and different land use/land cover features (imperviousness, roughness). Furthermore, historical (1970-2000) and potential 2050s stormwater budgets were also estimated for the Florida Southeast Coasts Basin by incorporating climatic projections from different GCMs and RCMs, as well as by using relevant projections of sea level and land use/cover. Comparative synthesis of the historical and future scenarios along with the results of sensitivity analysis can aid in efficient management of stormwater flooding for the southeast Florida coasts and similar urban centers under a changing regime of climate, sea level, land use/cover and hydrology.

  11. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  12. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; hide

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  13. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  14. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.

  15. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: An integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Hassan, S. M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Su, Zhongbo

    2014-09-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface-groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface-groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y-1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y-1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  16. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.

  17. Long Term TOA - M Data and Information

    Atmospheric Science Data Center

    2017-09-06

    ... A Long-Term TOA and Constrained Surface Radiation Budget Project A Long-Term TOA and Constrained Surface Readiation ... Budget Experiment (ERBE) and Clouds and the Earth's Radiant Energy System (CERES), that span nearly 30 years to date.   The ...

  18. Processus et bilan des flux hydriques d'un bassin versant de milieu tropical de socle au Bénin (Donga, haut Ouémé)

    NASA Astrophysics Data System (ADS)

    Kamagaté, Bamory; Séguis, Luc; Favreau, Guillaume; Seidel, Jean-Luc; Descloitres, Marc; Affaton, Pascal

    2007-05-01

    Hydrodynamic, geochemical, and subsurface geophysical investigations, for two consecutive years with contrasting rainfall conditions, were used to characterize the hydrological processes occurring, and the water balance of a 586-km 2 watershed in Benin (Africa). The water table's monitoring shows that recharge occurs by direct infiltration of rainfall, and represents between 5 to 24% of the annual rainfall. Both surface water outflow, limited to the rainy season, and water chemistry indicate a weak groundwater contribution to river discharge. This implies that the calculated variations in annual runoff coefficients (of 14 and 28%) are mainly governed by surface and subsurface flows.

  19. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  20. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  1. Hydrological modelling in sandstone rocks watershed

    NASA Astrophysics Data System (ADS)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.

  2. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    NASA Astrophysics Data System (ADS)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  3. Rainfall prediction using fuzzy inference system for preliminary micro-hydro power plant planning

    NASA Astrophysics Data System (ADS)

    Suprapty, B.; Malani, R.; Minardi, J.

    2018-04-01

    East Kalimantan is a very rich area with water sources, in the form of river streams that branch to the remote areas. The conditions of natural potency like this become alternative solution for area that has not been reached by the availability of electric energy from State Electricity Company. The river water in selected location (catchment area) which is channelled to the canal, pipeline or penstock can be used to drive the waterwheel or turbine. The amount of power obtained depends on the volume/water discharge and headwater (the effective height between the reservoir and the turbine). The water discharge is strongly influenced by the amount of rainfall. Rainfall is the amount of water falling on the flat surface for a certain period measured, in units of mm3, above the horizontal surface in the absence of evaporation, run-off and infiltration. In this study, the prediction of rainfall is done in the area of East Kalimantan which has 13 watersheds which, in principle, have the potential for the construction of Micro Hydro Power Plant. Rainfall time series data is modelled by using AR (Auto Regressive) Model based on FIS (Fuzzy Inference System). The FIS structure of the training results is then used to predict the next two years rainfall.

  4. Variability and trends of wet season temperature in the Sudano-Sahelian zone and relationships with precipitation

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou

    2018-02-01

    The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.

  5. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model

    NASA Astrophysics Data System (ADS)

    Watterson, I. G.

    2010-05-01

    Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.

  6. Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the Island of O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Engott, John A.; Johnson, Adam G.; Bassiouni, Maoya; Izuka, Scot K.; Rotzoll, Kolja

    2015-02-25

    Owing mainly to projected population growth, demand for freshwater on the Island of Oʻahu is expected to increase by about 26 percent between 2010 and 2030, according to the City and County of Honolulu. Estimates of groundwater recharge are needed to evaluate the availability of fresh groundwater. For this study, a water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Oʻahu for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Oʻahu is about 660 million gallons per day, or about 36 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 34 percent of total water inflow, which consists of precipitation, irrigation, septic leachate, water-main leakage, and seepage from reservoirs and cesspools. Recharge is high along the crest of the Koʻolau Range, reaching as much as about 180 inches per year in the north-central part of the range. Recharge is much lower outside of the mountainous areas of the island, commonly less than 5 inches per year in unirrigated areas. The island-wide estimate of groundwater recharge for average climate conditions from this study is within 1 percent of the recharge estimate used in the 2008 State of Hawaiʻi Water Resource Protection Plan, which divides the Island of Oʻahu into 23 aquifer systems for groundwater management purposes. To facilitate direct comparisons with this study, these 23 aquifer systems were consolidated into 21 aquifer systems. Recharge estimates from this study are higher for 12 of the aquifer-system areas and lower for 9. Differences in mean rainfall distribution and the inclusion of irrigation in this study are the primary reasons for discrepancies in recharge estimates between this study and the 2008 Hawaiʻi Water Resources Protection Plan. For drought conditions, mean annual recharge for Oʻahu is about 417 million gallons per day, which is about 37 percent less than recharge for average climate conditions. For individual aquifer-system areas, recharge for drought conditions is about 25 to 70 percent less than recharge for average climate conditions.

  7. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.

  8. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    NASA Astrophysics Data System (ADS)

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; Giangrande, Scott; Silva Dias, Maria A. F.; Cecchini, Micael A.; Albrecht, Rachel; Andreae, Meinrat O.; Araujo, Wagner F.; Artaxo, Paulo; Borrmann, Stephan; Braga, Ramon; Burleyson, Casey; Eichholz, Cristiano W.; Fan, Jiwen; Feng, Zhe; Fisch, Gilberto F.; Jensen, Michael P.; Martin, Scot T.; Pöschl, Ulrich; Pöhlker, Christopher; Pöhlker, Mira L.; Ribaud, Jean-François; Rosenfeld, Daniel; Saraiva, Jaci M. B.; Schumacher, Courtney; Thalman, Ryan; Walter, David; Wendisch, Manfred

    2018-05-01

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. This study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weighted mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.

  9. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  10. Simulations of precipitation using the Community Earth System Model (CESM): Sensitivity to microphysics time step

    NASA Astrophysics Data System (ADS)

    Murthi, A.; Menon, S.; Sednev, I.

    2011-12-01

    An inherent difficulty in the ability of global climate models to accurately simulate precipitation lies in the use of a large time step, Δt (usually 30 minutes), to solve the governing equations. Since microphysical processes are characterized by small time scales compared to Δt, finite difference approximations used to advance microphysics equations suffer from numerical instability and large time truncation errors. With this in mind, the sensitivity of precipitation simulated by the atmospheric component of CESM, namely the Community Atmosphere Model (CAM 5.1), to the microphysics time step (τ) is investigated. Model integrations are carried out for a period of five years with a spin up time of about six months for a horizontal resolution of 2.5 × 1.9 degrees and 30 levels in the vertical, with Δt = 1800 s. The control simulation with τ = 900 s is compared with one using τ = 300 s for accumulated precipitation and radi- ation budgets at the surface and top of the atmosphere (TOA), while keeping Δt fixed. Our choice of τ = 300 s is motivated by previous work on warm rain processes wherein it was shown that a value of τ around 300 s was necessary, but not sufficient, to ensure positive definiteness and numerical stability of the explicit time integration scheme used to integrate the microphysical equations. However, since the entire suite of microphysical processes are represented in our case, we suspect that this might impose additional restrictions on τ. The τ = 300 s case produces differences in large-scale accumulated rainfall from the τ = 900 s case by as large as 200 mm, over certain regions of the globe. The spatial patterns of total accumulated precipitation using τ = 300 s are in closer agreement with satellite observed precipitation, when compared to the τ = 900 s case. Differences are also seen in the radiation budget with the τ = 300 (900) s cases producing surpluses that range between 1-3 W/m2 at both the TOA and surface in the global means. In order to gain some insight into the possible causes of the observed differences, future work would involve performing additional sensitivity tests using the single column model version of CAM 5.1 to gauge the effect of τ on calculations of source terms and mixing ratios used to calculate precipitation in the budget equations.

  11. The impact of mesoscale convective systems on global precipitation: A modeling study

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo

    2017-04-01

    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.

  12. The Impact of Simulated Mesoscale Convective Systems on Global Precipitation: A Multiscale Modeling Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiun-Dar

    2017-01-01

    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.

  13. The impact of simulated mesoscale convective systems on global precipitation: A multiscale modeling study

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Chern, Jiun-Dar

    2017-06-01

    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.

  14. Microphysical Properties and Water Budget for Summer Convective Clouds over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Guo, X.; Tang, J.; Chang, Y.

    2017-12-01

    During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the clouds and precipitation processes over the Tibetan Plateau have been intensively investigated. On basis of field campaign, the cloud microphysical structure, water transformation and budget properties for typical convective precipitation processes in the summer season of 2014 over the plateau are studied using mesoscale numerical prediction model (WRF) combined with observational data collected during the experiment. The results indicate that WRF model could reproduce the general characteristics of diurnal variation of clouds and precipitation process over the plateau, however, the temporal and spatial distribution and intensity of cloud bands and precipitation simulated by WRF model still had large differences with those observed. Ice process played a critical role in the development of summer convective clouds and precipitation over the plateau. The surface precipitation was primarily formed by the melting process of graupel particles. Although the warm cloud microphysical process had small direct contribution on the surface precipitation, it had an important contribution in the formation of graupel embryos. High amount of supercooled cloud water content and graupel particles could be found in the clouds. The formation and growth of snow particles relied on the conversion of ice crystal and the aggregation with ice crystal over 12 km (-40°), but the formation of snow particles below 12 km (-40°)was dependent on the conversion of Bergeron process of ice crystals and its growth resulted from riming process with supercooled cloud water. The accretion process of supercooled raindrops by ice crystal and snow particles contributed to the production of graupel embryos and their growth mainly relied on the riming process with supercooled cloud water and aggregation process with snow particles. The mean daily conversion rate from vapor to precipitation was as high as 27.27%, which is close to Yangtze River downstream, and is higher than the regions of northern and northwestern China. The contribution of daily mean surface evaporation to precipitation was 10.92%, indicating that the 90% rainfall was from the conversion of water vapor outside the plateau.

  15. Indonesian Throughflow variability over the last glacial cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Holbourn, A. E.; Kuhnt, W.; Regenberg, M.; Xu, J.; Hendrizan, M.; Schröder, J.

    2013-12-01

    The transfer of surface and intermediate waters from the Pacific Ocean to the Indian Ocean through the Indonesian archipelago (Indonesian Throughflow: ITF) strongly influences the heat and freshwater budgets of tropical water masses, in turn affecting global climate. Key areas for monitoring past ITF variations through this critical gateway are the narrow passages through the Makassar Strait and Flores Sea and the main outflow area within the Timor Sea. Here, we integrate high-resolution sea surface temperature and salinity reconstructions (based on paired planktic foraminiferal Mg/Ca and δ18O) with X-ray fluorescence runoff data and benthic isotopes from marine sediment cores retrieved in these regions during several cruises with RV'Sonne' and RV'Marion Dufresne'. Our results show that high latitude climate variability strongly influenced ITF intensity on millennial to centennial timescales as well as on longer glacial-interglacial timescales. Marked declines in ITF strength occurred during Heinrich events and the Younger Dryas, most likely related to slowdown of the global thermohaline circulation during colder northern hemisphere climate spells, when deep water production decreased and the deep ocean became more stratified. Additionally, the surface component of the ITF strongly reflects regional windstress and rainfall patterns, and thus the spatial extent and intensity of the tropical convection over the Indonesian archipelago. Our runoff and salinity estimates reveal that the development of the tropical convection was intricately linked to the latitudinal migration of the Inter Tropical Convergence Zone (ITCZ). In particular, our data show that the Australian monsoon intensified during the major deglacial atmospheric CO2 rise through the Younger Dryas and earliest Holocene (12.9-10 ka). This massive intensification of the Australian monsoon coincided with a southward shift of the ITCZ, linked to southern hemisphere warming and enhanced greenhouse forcing over the Australian continent. However, the development of the monsoon was asynchronous over the region, which we relate to changes in landmass exposure during deglacial sea-level rise. Thus, we find that sea-level exerted a major control on ITF properties through the last glacial termination by altering gateway configuration and precipitation-evaporation budgets over the Indonesian archipelago.

  16. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)

  17. Interrill sediment enrichment of P and C from organically and conventionally farmed silty loams

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomen on involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P)and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows that the net P export from organically farmed soils is not reduced by a similar degree than soil erosion compared to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate fragments control P and C enrichment. Due to complex and dynamic interactions between P, SOC and interrill erosional processes, the nutrient and C status of sediments cannot be predicted based on soil P content, SOC or interrill erodibility alone. Clearly, further research on crust formation and the composition of fragments generated by aggregate breakdown and their transport in raindrop impacted flow under different rainfall conditions is required. Attaining this critical missing knowledge would enable a comprehensive assessment of the benefits of organic farming on nutrient budgets, off-site effects of interrill erosion and its role in the global C cycle.

  18. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    NASA Astrophysics Data System (ADS)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows that the net P export from organically farmed soils is not reduced by a similar degree than soil erosion compared to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate fragments control P and C enrichment. Due to complex and dynamic interactions between P, SOC and interrill erosional processes, the nutrient and C status of sediments cannot be predicted based on soil P content, SOC or interrill erodibility alone. Clearly, further research on crust formation and the composition of fragments generated by aggregate breakdown and their transport in raindrop impacted flow under different rainfall conditions is required. Attaining this critical missing knowledge would enable a comprehensive assessment of the benefits of organic farming on nutrient budgets, off-site effects of interrill erosion and its role in the global C cycle.

  19. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  20. Impact of Aerosols on Convective Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics: observational evidence of the effect of aerosols on precipitation processes, and results from (CRM) simulations. Note that this presentation is mainly based on a recent paper published in Geophy. Rev. (Tao et al. 2012).

  1. Quantification of Stemflow in Three Shrub Species in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Rakestraw, E.; Montalto, F. A.

    2015-12-01

    As precipitation falls on vegetated areas, it is partitioned into throughfall, stemflow and vapor. Stemflow has often been neglected in hydrologic budgeting of both trees and shrubs due to the small volume, and limited number of quantitative studies conducted. Studies of stemflow in shrub species are especially rare, and this study intends to decrease uncertainty of its occurrence. Six shrubs of species Prunus laurocerasus 'Otto Luyken', Hydrangea quercifolia 'Alice' , and Itea virginica 'Little Henry' were studied in an urban environment in Philadelphia, PA. During the 2015 growing season, total incident rainfall and measured stemflow were recorded. Stemflow was collected using aluminum collars attached to four stems of each individual. Vinyl tubing transported stemflow from the collars into collection bottles that were weighed after each rain event. Canopy areas of each collared branch were calculated. Impact of branch and leaf attachment angles, leaf area index, stem diameter, and bark properties on stemflow were analyzed. In addition to species characteristics, rain depth, rain intensity and wind speed were considered. Stemflow averages were found to be 12 %, 4 %, and 3 % for P. laurocerasus, H. quercifolia, and I. virginica respectively, with values up to 24 % in certain P. laurocerasus branches during some storms. The results show that although in some shrub species stemflow may be negligible, in others it can be high enough to be considered substantial in hydrologic budget calculations. By examining how the quantity of stemflow is affected by both meteorological and species characteristics, the partitioning of rainfall can be more accurately calculated.

  2. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-03-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices - the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.

  3. Borneo Vortex and Meso-scale Convective Rainfall

    NASA Astrophysics Data System (ADS)

    Koh, T. Y.; Koseki, S.; Teo, C. K.

    2014-12-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a perpetual cold surge. The Borneo vortex is manifested as a meso-alpha cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-alpha cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-beta scale rainfall cells. The intense rainfall in the comma-head (comma-tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-alpha cyclone system. At both meso-alpha and meso-beta scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics. Reference: Koseki, S., T.-Y. Koh and C.-K. Teo (2014), Atmospheric Chemistry and Physics, 14, 4539-4562, doi:10.5194/acp-14-4539-2014, 2014.

  4. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  5. Effect of tillage system and cumulative rainfall on multifractal parameters of soil surface microrelief

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Miranda, J. G. V.; Mirás-Avalos, J. M.; Díaz, M. C.; Paz-Ferreiro, J.

    2009-04-01

    Mathematical description of the spatial characteristics of soil surface microrelief still remains a challenge. Soil surface roughness parameters are required for modelling overland flow and erosion. The objective of this work was to evaluate the potential of multifractal for analyzing the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. In each plot soil surface microrelief was measured for times, with increasing amounts of natural rainfall using a pinmeter. The sampling scheme was a square grid with 25 x 25 mm point spacing and the plot size was 1350 x 1350 mm, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. All the investigated microrelief data sets exhibited, in general, scale properties, and the degree of multifractality showed wide differences between them. Multifractal analysis distinguishes two different patterns of soil surface microrelief, the first one has features close to monofractal spectra and the second clearly indicates multifractal behavior. Both, singularity spectra and generalized dimension spectra allow differentiating between soil tillage systems. In general, changes in values of multifractal parameters under simulated rainfall showed no or little correspondence with the evolution of the vertical microrelief component described by indices such as the standard deviation of the point height measurements. Multifractal parameters provided valuable information for chararacterizing the spatial features of soil surface microrelief as they were able to discriminate data sets with similar values for the vertical component of roughness.

  6. Rainfall estimation over-land using SMOS soil moisture observations: SM2RAIN, LMAA and SMART algorithms

    NASA Astrophysics Data System (ADS)

    Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca

    2016-04-01

    Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas, contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.

  7. Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies

    NASA Astrophysics Data System (ADS)

    Lassu, T.; Seeger, M.

    2012-04-01

    Rainfall simulation is one of the most prevalent methods used in soil erosion studies on agricultural land. In-situ simulators have been used to relate soil surface characteristics and management to runoff generation, infiltration and erosion, eg. the influence of different cultivation systems, and to parameterise erosion models. Laboratory rainfall simulators have been used to determine the impact of the soil surface characteristics such as micro-topography, surface roughness, and soil chemistry on infiltration and erosion rates, and to elucidate the processes involved. The purpose of the following study is to demonstrate the set-up and the calibration of a large indoor, nozzle-type rainfall simulator (RS) for soil erosion, surface runoff and rill development studies. This RS is part of the Kraijenhoff van de Leur Laboratory for Water and Sediment Dynamics in Wageningen University. The rainfall simulator consists from a 6 m long and 2,5 m wide plot, with metal lateral frame and one open side. Infiltration can be collected in different segments. The plot can be inclined up to 15.5° slope. From 3,85 m height above the plot 2 Lechler nozzles 460.788 are sprinkling the water onto the surface with constant intensity. A Zehnder HMP 450 pump provides the constant water supply. An automatic pressure switch on the pump keeps the pressure constant during the experiments. The flow rate is controlled for each nozzle by independent valves. Additionally, solenoid valves are mounted at each nozzle to interrupt water flow. The flow is monitored for each nozzle with flow meters and can be recorded within the computer network. For calibration of the RS we measured the rainfall distribution with 60 gauges equally distributed over the plot during 15 minutes for each nozzle independently and for a combination of 2 identical nozzles. The rainfall energy was recorded on the same grid by measuring drop size distribution and fall velocity with a laser disdrometer. We applied 2 different flow rates (4,5 l/min and 5,5 l/min), resulting in different rainfall intensities and made 2 repetitions each. The average rainfall intensity was 36,8 mm/h at the first and 37,6 mm/h at the second repetition with the lower flow rate (4,5 l/min). With the higher flow rate (5,5 l/min) at the first repetition it was 44,4 mm/h and 46 mm/h at the second one. The maximum and minimum values were 22 mm and 2 mm at the lower (4,5 l/min) flow rate, respectively 26 mm and 4 mm at the higher one (5,5 l/min). In this latter case, the resulting average kinetic energy reached 7 J m-2 mm-1, with a maximum 31,3 J m-2 mm-1 of and a minimum of 2,9 J m-2 mm-1. The Christiansen Uniformity coefficient (CU) for the lower intensities was 66% and 69%, respectively, with the higher intensities slightly better (70% and 72%). The data of the rainfall simulator in Wageningen make it a promising tool for research in soil erosion processes.

  8. Is the interspecific variation of body size of land snails correlated with rainfall in Israel and Palestine?

    NASA Astrophysics Data System (ADS)

    Hausdorf, Bernhard

    2006-11-01

    The hypothesis that body size of land snail species increases with aridity in Israel and Palestine because large snails lose relatively less water due to their lower surface to volume ratio has been investigated. Data on rainfall amplitudes of 84 land snail species in Israel and Palestine and on their body sizes were used to test for interspecific correlations between body size and rainfall. Four methods, means of body sizes in rainfall categories, the midpoint method, the across-species method, and a phylogenetically controlled analysis (CAIC) showed that there is no significant correlation between body size of land snail species and their rainfall amplitude in Israel and Palestine. The lack of an interspecific correlation between body size and rainfall amplitude may be the result of conflicting selective forces on body size.

  9. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (<10%) images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the presence of ephemeral water bodies in hyper-arid regions en masse; however, the absence of comparable diurnal images limits data in these regions. Linking high rainfall events with low diurnal surface radiance images is ideal for capturing the presence of temporary surface runoff and recharge zones. Expanded research on hyper-arid regions including thermal values, proposed lens locations, and in-situ data will provide more data points and bolster the methodology.

  10. A study of mesoscale surface heat and moisture budgets and their relationship to airmass cumulus clouds observed in LANDSAT imagery. [Manhatten, Kansas and Fargo, North Dakota

    NASA Technical Reports Server (NTRS)

    Merritt, E. S. (Principal Investigator); Sabatini, R. R.; Heitkemper, L.; Hart, W. D.; Hlavka, D. L.

    1976-01-01

    The author has identified the following significant results. The three budget analyses show a weak correspondence between LANDSAT cloud patterns and elements of the energy and moisture budgets. It was found that a little more energy is contributed by the ground to heat the air in cloudy areas. Improvements are warranted in the budget models and data coverage necessary to describe the environment. These models can serve as a basis for more complex models of surface air heat and moisture exchanges which would utilize readily available meteorological data on a mesoscale.

  11. Influence of net freshwater supply on salinity in Florida Bay

    USGS Publications Warehouse

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central and West Regions.

  12. A reference data set of hillslope rainfall-runoff response, Panola Mountain Research Watershed, United States

    USGS Publications Warehouse

    Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.

    2008-01-01

    Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.

  13. Mapping the Impact of Aerosol-Cloud Interactions on Cloud Formation and Warm-season Rainfall in Mountainous Regions Using Observations and Models

    NASA Astrophysics Data System (ADS)

    Duan, Yajuan

    Light rainfall (< 3 mm/hr) amounts to 30-70% of the annual water budget in the Southern Appalachian Mountains (SAM), a mid-latitude mid-mountain system in the SE CONUS. Topographic complexity favors the diurnal development of regional-scale convergence patterns that provide the moisture source for low-level clouds and fog (LLCF). Low-level moisture and cloud condensation nuclei (CCN) are distributed by ridge-valley circulations favoring LLCF formation that modulate the diurnal cycle of rainfall especially the mid-day peak. The overarching objective of this dissertation is to advance the quantitative understanding of the indirect effect of aerosols on the diurnal cycle of LLCF and warm-season precipitation in mountainous regions generally, and in the SAM in particular, for the purpose of improving the representation of orographic precipitation processes in remote sensing retrievals and physically-based models. The research approach consists of integrating analysis of in situ observations from long-term observation networks and an intensive field campaign, multi-sensor satellite data, and modeling studies. In the first part of this dissertation, long-term satellite observations are analyzed to characterize the spatial and temporal variability of LLCF and to elucidate the physical basis of the space-time error structure in precipitation retrievals. Significantly underestimated precipitation errors are attributed to variations in low-level rainfall microstructure undetected by satellites. Column model simulations including observed LLCF microphysics demonstrate that seeder-feeder interactions (SFI) among upper-level precipitation and LLCF contribute to an three-fold increase in observed rainfall accumulation and can enhance surface rainfall by up to ten-fold. The second part of this dissertation examines the indirect effect of aerosols on cloud formation and warm-season daytime precipitation in the SAM. A new entraining spectral cloud parcel model was developed and applied to provide the first assessment of aerosol-cloud interactions in the early development of mid-day cumulus congestus over the inner SAM. Leveraging comprehensive measurements from the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014, model results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations. Further, to explore sensitivity of warm-season precipitation processes to CCN characteristics, detailed intercomparisons of Weather Research and Forecasting (WRF) model simulations using IPHEx and standard continental CCN spectra were conducted. The simulated CDNC using the local spectrum show better agreement with IPHEx airborne observations and better replicate the widespread low-level cloudiness around mid-day over the inner region. The local spectrum simulation also indicate suppressed early precipitation, enhanced ice processes tied to more vigorous vertical development of individual storm cells. The studied processes here are representative of dominant moist atmospheric processes in complex terrain and cloud forests in the humid tropics and extra-tropics, thus findings from this research in the SAM are transferable to mountainous areas elsewhere.

  14. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences.

  15. A simulation of rainfall infiltration based on two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xi, Niannian; Liu, Gang; Hao, Shuang

    2016-04-01

    Rainfall infiltration in slope usually is one of major reasons cause landslide, which involves multiphase flow coupling with soil, water and gas. In order to study the mechanism of landslide caused by rainfall infiltration, a simulation of rainfall infiltration of DaPing slope, which locates in the Three Gorges Region of China, is presented based on the numerical solution of governing equations of two-phase flow in this paper. The results of this research suggest that there are two sections can be divided in the surface of slope, one is inflow area and the other is overflow area, according to where it is infiltration and discharge. The general inflow area is on the upside of slope, while the overflow area is on the underside. The middle section of slope is on a fluctuant position between inflow and overflow area, which is dramatically affected by the water content inside of slope. Moreover, the average rate of infiltration is more stable in both inflow and overflow area, whose numerical value is depend on the geometry and transmission characteristics of slope. And the factors of rainfall characteristics, surface flow and temperature have little effect on them. Furthermore, in the inflow area, when rainfall intensity is higher than infiltration the rain on the surface of slope will run off, otherwise water and gas will completely infiltrate through soil. The situation is different in the overflow area whose overland flow condition is depended on whether it is saturated or not inside of slope. When it is saturated in the slope, there is no infiltration in the overflow area. But when it is unsaturated, the infiltration intensity will equal to rainfall intensity. In a summary, the difference from inflow and overflow area is the evidence that the landslide may likely to happen on the slope of overflow area when it comes to a rainfall. It is disadvantageous for slope stability when transmitting the pressure of saturated water weight at the top of slope through the pore gas to groundwater, the groundwater pressure will increased sharply.

  16. The Earth on the Other Side of Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Ewing, S. A.; Owen, J. J.

    2010-12-01

    There are important reasons for examining the role of life on Earth surface processes, including better understanding the long term feedbacks between the geosphere and biosphere that maintain Earth habitability, and bracing for the cumulative impact of the Earth’s most invasive species (Homo sapiens) on the earth system. Coming to grips with the importance of life is simply a matter of recognizing the obvious: life mantles most of the planet’s surface and the planet’s climatic boundary conditions would be profoundly different if life on Earth had not evolved. Nearly every process on this planet is mediated in some way by biology . The most difficult aspect of deciphering the exact role of life on Earth surface processes is observationally identifying a “control experiment”- e.g. one where life does not exist. Planetary habitability is linked to the presence of liquid water. Thus, there are two regions on Earth that largely fall outside the rainfall limits of life and that have maintained nearly abiotic conditions for millions of years: the Atacama Desert of northern Chile (warm and very dry) and the Dry Valleys of Antarctica (very cold and dry). Here, we examine the Atacama Desert for the reason that it is the dry end of a continuous decline in rainfall with decreasing latitude in western South America, such that (almost imperceptibly) one eventually crosses a rainfall threshold beyond which most life ceases to exist. The consequence of soil and geomorphic studies along this rainfall gradient have revealed that several important earth surface processes vary montonically with declining rainfall up to the point where vascular plants disappear. At this point, the rates or types of key processes appear to undergo fundamental changes. Geomorphically, soil production/hillslope denudation rates vary within a window of rates over broad ranges in rainfall. However, at the biotic abiotic boundary, erosion rates decline in concert with rainfall. This pattern appears to be related to the feedbacks between soil thickness and soil production rates, and the impact of biology on both reducing surface erosion, and in enhancing the conversion of saprolite to soil. Once plants no longer exist, soil is rapidly stripped as the biological controls are removed. As aridity increases further, soils reappear on the hillslopes due to dust/salt accumulation, but the processes of both soil production and transport shift to slow abiotic mechanisms. Geochemically, N content in soils declines monotonically with rainfall up to the point that plants diappear. At that point, N cycling shifts to entirely abiotic mechanisms, allowing the accumulation of the unusal nitrate deposits that characterize this desert. While the parts of earth without life are unusually dry and/or cold, they offer unique, but also complex, perspectives into the sometimes overwhelming role that life plays on the earth surface. The true challenge to the geosciences is to rapidly acquire this knowledge in order to predict the trajectory of a changing world.

  17. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  18. Rainfall Effects on the Kuroshio Current East of Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  19. Surface radiation budget for climate applications

    NASA Technical Reports Server (NTRS)

    Suttles, J. T. (Editor); Ohring, G. (Editor)

    1986-01-01

    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.

  20. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  1. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  2. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause

    NASA Astrophysics Data System (ADS)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2015-03-01

    Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would automatically have reduced the influences on rainfall of those whose concentrations were related to previous rain, thereby leading to inhibition of feedback. The analytical methods described here provide means to map and delimit regions where rainfall feedback mediated by microorganisms is suspected to occur or has occurred historically, thereby providing rational means to establish experimental set-ups for verification.

  3. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    NASA Astrophysics Data System (ADS)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  4. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    Soil moisture governs the partitioning of mass and energy fluxes between the land surface and the atmosphere and, hence, it represents a key variable for many applications in hydrology and earth science. In recent years, it was demonstrated that soil moisture observations from ground and satellite sensors contain important information useful for improving rainfall estimation. Indeed, soil moisture data have been used for correcting rainfall estimates from state-of-the-art satellite sensors (e.g. Crow et al., 2011), and also for improving flood prediction through a dual data assimilation approach (e.g. Massari et al., 2014; Chen et al., 2014). Brocca et al. (2013; 2014) developed a simple algorithm, called SM2RAIN, which allows estimating rainfall directly from soil moisture data. SM2RAIN has been applied successfully to in situ and satellite observations. Specifically, by using three satellite soil moisture products from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observation) and SMOS (Soil Moisture and Ocean Salinity); it was found that the SM2RAIN-derived rainfall products are as accurate as state-of-the-art products, e.g., the real-time version of the TRMM (Tropical Rainfall Measuring Mission) product. Notwithstanding these promising results, a detailed study investigating the physical basis of the SM2RAIN algorithm, its range of applicability and its limitations on a global scale has still to be carried out. In this study, we carried out a crash test for SM2RAIN algorithm on a global scale by performing a synthetic experiment. Specifically, modelled soil moisture data are obtained from HTESSEL model (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced by ERA-Interim near-surface meteorology. Afterwards, the modelled soil moisture data are used as input into SM2RAIN algorithm for testing weather or not the resulting rainfall estimates are able to reproduce ERA-Interim rainfall data. Correlation, root mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.

  5. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  6. Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2013-10-01

    Rainfall-induced shallow landslides may occur abruptly without distinct precursors and could span a wide range of soil mass released during a triggering event. We present a rainfall-induced landslide-triggering model for steep catchments with surfaces represented as an assembly of hydrologically and mechanically interconnected soil columns. The abruptness of failure was captured by defining local strength thresholds for mechanical bonds linking soil and bedrock and adjacent columns, whereby a failure of a single bond may initiate a chain reaction of subsequent failures, culminating in local mass release (a landslide). The catchment-scale hydromechanical landslide-triggering model (CHLT) was applied to results from two event-based landslide inventories triggered by two rainfall events in 2002 and 2005 in two nearby catchments located in the Prealps in Switzerland. Rainfall radar data, surface elevation and vegetation maps, and a soil production model for soil depth distribution were used for hydromechanical modeling of failure patterns for the two rainfall events at spatial and temporal resolutions of 2.5 m and 0.02 h, respectively. The CHLT model enabled systematic evaluation of the effects of soil type, mechanical reinforcement (soil cohesion and lateral root strength), and initial soil water content on landslide characteristics. We compared various landslide metrics and spatial distribution of simulated landslides in subcatchments with observed inventory data. Model parameters were optimized for the short but intense rainfall event in 2002, and the calibrated model was then applied for the 2005 rainfall, yielding reasonable predictions of landslide events and volumes and statistically reproducing localized landslide patterns similar to inventory data. The model provides a means for identifying local hot spots and offers insights into the dynamics of locally resolved landslide hazards in mountainous regions.

  7. Why the predictions for monsoon rainfall fail?

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  8. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended abstract.

  9. Evaluation of radiative fluxes over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  10. Rainfall and water-level data for a wetland area near Millington, Shelby County, Tennessee, October 1996 through September 1997

    USGS Publications Warehouse

    Knight, R.R.

    1998-01-01

    Rainfall amounts and water levels at a degraded wetland area near Millington, Shelby County, Tennessee, were collected to assist the Tennessee Department of Transportation with a program designed to restore the wetland to a more natural condition. The site is located along a channelized reach of Big Creek Drainage Canal, east of State Route 240, and near the southeastern boundary of the Naval Support Activity Memphis, Millington. Rainfall amounts were recorded at 5-minute intervals using a tipping-bucket rain gage from October 1, 1996 through September 30, 1997. Total rainfall for this period was 70.16 inches. In general, water levels at the wetland were above or near the ground surface during the 6-month period from the first of January through June 1997. For the remainder of the year, water levels generally subsided to several feet below land surface. However, some locations within the wetland were wet or highly saturated year round.

  11. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30

  12. Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark

    Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less

  13. Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model

    DOE PAGES

    Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark; ...

    2016-06-21

    Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less

  14. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  15. Propagation of Satelite Rainfall Products uncertainties in hydrological applications : Examples in West-Africa in the framework of the Megha-Tropiques Satellite Mission

    NASA Astrophysics Data System (ADS)

    Casse, C.; Gosset, M.; Peugeot, C.; Boone, A.; Pedinotti, V.

    2013-12-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gauge (or radar) network are generally scarce and often degrading. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites in West Africa. The CNRM model Surfex-ISBA/TRIP has been set up to simulate the hydrological behavior of the Niger River. This modeling set up is being used to study the predictability of Niger Floods events in the city of Niamey and the performances of satellite rainfall products as forcing for such predictions. One of the interesting feature of the Niger outflow in Niamey is its double peak : a first peak attributed to 'local' rainfall falling in small to medium size basins situated in the region of Niamey, and a second peak linked to the rainfall falling in the upper par of the river, and slowly propagating through the river towards Niamey. The performances of rainfall products are found to differ between the wetter/upper part of the basin, and the local/sahelian areas. Both academic tests with artificially biased or 'perturbed' rainfield and actual rainfall products are carried out. A simple method based on probability matching is applied to correct the RT products from their main biases. Several sensitivity studies have also been carried out in the Oueme Basin in Benin, West Africa, one of the instrumented basin used for MT products direct and hydrological validation. The tests highlight the fact that not only total biases but also the distribution of rain rates are key players for explaining the hydrological model sensitivity. (a) TMPAv7 total rainfall in 2010 in West Africa. Solid gray line delimits Niger river catchment, and dotted lines delimit Niger right bank tributary catchments. (b) Observed and simulated discharge at Niamey station. Preliminary results using the SURFEX hydrological model over Niger catchment and different satellite rainfall products as forcing.

  16. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  17. Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Tang, Qiuhong; Zhang, Pengfei; Liu, Yimin

    2016-01-01

    Warm season heavy rainfall events over the Huaihe River Valley (HRV) of China are amongst the top causes of agriculture and economic loss in this region. Thus, there is a pressing need for accurate seasonal prediction of HRV heavy rainfall events. This study improves the seasonal prediction of HRV heavy rainfall by implementing a novel rainfall framework, which overcomes the limitation of traditional probability models and advances the statistical inference on HRV heavy rainfall events. The framework is built on a three-cluster Normal mixture model, whose distribution parameters are sampled using Bayesian inference and Markov Chain Monte Carlo algorithm. The three rainfall clusters reflect probability behaviors of light, moderate, and heavy rainfall, respectively. Our analysis indicates that heavy rainfall events make the largest contribution to the total amount of seasonal precipitation. Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmospheric circulation favorable for the onset and maintenance of heavy rainfall events. Occurring 5 months prior to the summer season, these tropical SSTAs provide potential sources of prediction skill for heavy rainfall events over the HRV. Using these preceding SSTA signals, we show that the support vector machine algorithm can predict HRV heavy rainfall satisfactorily. The improved prediction skill has important implication for the nation's disaster early warning system.

  18. Provisionally corrected surface wind data, worldwide ocean-atmosphere surface fields, and Sahelian rainfall variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, M.N.

    Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sahelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, 1973, 1982, 1983, 1984) (W - D). The results are compared with fields for a number of individual years and for 1988 minus 1987 (88 - 87); Sahelian rainfall in 1988 was near the 1951-80 normal, whereas 1987 was very dry. An extensive study of the geostrophic consistency of trends in pressure gradients and observed wind was undertaken. The results suggest, duringmore » the period 1949-88, a mean increase in reported wind speed of about 16% that cannot be explained by trends in geostrophic winds derived from seasonal mean SLP. Estimates of the wind bias are averaged for 18 ocean regions. A map of correlations between Sahelian rainfall and SLP in all available ocean regions is shown to be field significant. Remote atmospheric associations with Sahelian rainfall are consistent with recent suggestions that SST forcing from the tropical Atlantic and the other ocean basins may contribute to variability in seasonal Sahelian rainfall. It is suggested that wetter years in the Sahel are often accompanied by a stronger surface monsoonal flow over the western Indian Ocean and low SLP in the tropical western Pacific near New Guinea, and that there is increased cyclonicity over the extratropical eastern North Atlantic and northwest Europe. In the tropical Atlantic, W - D shows many of the features identified by previous authors. However, the 88-87 fields do not reflect these large-scale tropical Atlantic changes. Instead there is only local strengthening of the pressure gradient and wind flow from Brazil to Senegal. Further individual years are presented (1958, 1972, 1975) to provide specific examples.« less

  19. Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Levermann, Anders

    2017-07-01

    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.

  20. Sediment budget analysis of slope channel coupling and in-channel sediment storage in an upland catchment, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Dragovich, Deirdre

    2008-11-01

    Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.

  1. Soil organic carbon redistribution by water erosion: An experimental rainfall simulation approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Cammeraat, Erik; Romeijn, Paul; Kalbitz, Karsten

    2014-05-01

    Water erosion influences the redistribution of soil organic carbon (SOC) in landscapes and there is a strong need to better understand these processes with respect to the carbon (C) budget, from local to global scales. We present a study in which the total carbon budget of a loess soil under erosion was determined in an experimental set-up. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a climate controlled pseudo-replicated rainfall-simulation laboratory experiment. This approach has been rarely followed to integrate all components of the C budget in one experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in a significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m-2 yr-1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 27% at the deposition zone in comparison to non-eroded soils. Overall, CO2 emission was the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment. However, only 1.5 % of redistributed C was mineralized highlighting that the C sink induced by deposition is much larger than previously assumed. Our study also underlines the importance of C losses by particles and as DOC for understanding effects of water erosion on the C balance at the interface of terrestrial and aquatic systems. Furthermore our study revealed that the sediment and C fluxes showed good correspondence with values obtained in real landscapes as reported in literature. This confirms that a lab-approach, despite its shortcomings with respect to scale, is valuable and gives additional information on processes affecting the soil carbon budget. This is urgently needed and improves our knowledge on the fate of SOC in erosion-depositional systems.

  2. Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects

    NASA Technical Reports Server (NTRS)

    Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo

    2004-01-01

    On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.

  3. Assessment of rainfall thresholds for landslide triggering in the Pacific Northwest: extreme short-term rainfall and long-term trends

    NASA Astrophysics Data System (ADS)

    Stanley, T.; Kirschbaum, D.; Sobieszczyk, S.; Jasinski, M. F.; Borak, J.; Yatheendradas, S.

    2017-12-01

    Landslides occur every year in the U.S. Pacific Northwest due to extreme rainfall, snow cover, and rugged topography. Data for 15,000 landslide events in Washington and Oregon were assembled from State Surveys, Departments of Transportation, a Global Landslide Catalog compiled by NASA, and other sources. This new inventory was evaluated against rainfall data from the National Climate Assessment (NCA) Land Data Assimilation System to characterize the regional rainfall conditions that trigger landslides. Analysis of these data sets indicates clear differences in triggering thresholds between extreme weather systems such as a Pineapple Express and the more typical peak seasonal rainfall between November and February. The study also leverages over 30 years of precipitation and land surface information to inform variability of landslide triggering over multiple decades and landslide trends within the region.

  4. Comparative Synthesis of Current and Future Urban Stormwater Runoff Scenarios in Tampa Bay Basin under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2016-12-01

    Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.

  5. The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers

    NASA Astrophysics Data System (ADS)

    Viaroli, Stefano; Mastrorillo, Lucia; Lotti, Francesca; Paolucci, Vittorio; Mazza, Roberto

    2018-01-01

    Groundwater management authorities usually use groundwater budget calculations to evaluate the sustainability of withdrawals for different purposes. The groundwater budget calculation does not always provide reliable information, and it must often be supported by further aquifer monitoring in the case of hydraulic connections between neighboring aquifers. The Riardo Plain aquifer is a strategic drinking resource for more than 100,000 people, water storage for 60 km2 of irrigated land, and the source of a mineral water bottling plant. Over a long period, the comparison between the direct recharge and the estimated natural outflow and withdrawals highlights a severe water deficit of approximately 40% of the total groundwater outflow. A groundwater budget deficit should be a clue to the aquifer depletion, but the results of long-term water level monitoring allowed the observation of the good condition of this aquifer. In fact, in the Riardo Plain, the calculated deficit is not comparable to the aquifer monitoring data acquired in the same period (1992-2014). The small oscillations of the groundwater level and the almost stable streambed spring discharge allows the presumption of an additional aquifer recharge source. The confined carbonate aquifer locally mixes with the above volcanic aquifer, providing an externally stable recharge that reduces the effects of the local rainfall variability. The combined approach of the groundwater budget results and long-term aquifer monitoring (spring discharge and/or hydraulic head oscillation) provides information about significant external groundwater exchanges, even if unidentified by field measurements, and supports the stakeholders in groundwater resource management.

  6. Predicting water table response to rainfall events, central Florida.

    PubMed

    van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M

    2013-01-01

    A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  7. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    USDA-ARS?s Scientific Manuscript database

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  8. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  9. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less

  10. Simulated Rainfall-Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles

    DTIC Science & Technology

    2009-01-01

    Comp B a b s t r a c t Live-fire military training can deposit millimeter- sized particles of high explosives (HE) on surface soils when rounds do not...might dissolve under the action of rainfall and to use the data to verify a model that predicts HE dissolution as a function of particle size , particle...Detonations scatter HE particles broadly over surface soils. High-order detonations scatter lm- size HE particles and low-order (LO) detonations scatter

  11. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    USGS Publications Warehouse

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou

  12. A pore-pressure diffusion model for estimating landslide-inducing rainfall

    USGS Publications Warehouse

    Reid, M.E.

    1994-01-01

    Many types of landslide movement are induced by large rainstorms, and empirical rainfall intensity/duration thresholds for initiating movement have been determined for various parts of the world. In this paper, I present a simple pressure diffusion model that provides a physically based hydrologic link between rainfall intensity/duration at the ground surface and destabilizing pore-water pressures at depth. The model approximates rainfall infiltration as a sinusoidally varying flux over time and uses physical parameters that can be determined independently. Using a comprehensive data set from an intensively monitored landslide, I demonstrate that the model is capable of distinguishing movement-inducing rainstorms. -Author

  13. A method to combine spaceborne radar and radiometric observations of precipitation

    NASA Astrophysics Data System (ADS)

    Munchak, Stephen Joseph

    This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties.

  14. Characterizing land surface phenology and responses to rainfall in the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.

    2016-08-01

    Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

  15. Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain

    NASA Astrophysics Data System (ADS)

    Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin

    2015-04-01

    The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests that the simulation with Emanuel MIT convective scheme and BATs land surface scheme produces better collective performance compare to the rest of the simulations.

  16. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  17. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    DOE PAGES

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago; ...

    2018-05-07

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less

  18. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, Luiz A. T.; Calheiros, Alan J. P.; Biscaro, Thiago

    This study provides an overview of precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin near Manaus during the GoAmazon2014/5 and ACRIDICON-CHUVA experiments. Here, this study takes advantage of the numerous measurement platforms and instrument systems operating during both campaigns to sample cloud structure and environmental conditions during 2014 and 2015; the rainfall variability among seasons, aerosol loading, land surface type, and topography has been carefully characterized using these data. Differences between the wet and dry seasons were examined from a variety of perspectives. The rainfall rates distribution, total amount of rainfall, and raindrop size distribution (the mass-weightedmore » mean diameter) were quantified over both seasons. The dry season generally exhibited higher rainfall rates than the wet season and included more intense rainfall periods. However, the cumulative rainfall during the wet season was 4 times greater than that during the total dry season rainfall, as shown in the total rainfall accumulation data. The typical size and life cycle of Amazon cloud clusters (observed by satellite) and rain cells (observed by radar) were examined, as were differences in these systems between the seasons. Moreover, monthly mean thermodynamic and dynamic variables were analysed using radiosondes to elucidate the differences in rainfall characteristics during the wet and dry seasons. The sensitivity of rainfall to atmospheric aerosol loading was discussed with regard to mass-weighted mean diameter and rain rate. This topic was evaluated only during the wet season due to the insignificant statistics of rainfall events for different aerosol loading ranges and the low frequency of precipitation events during the dry season. The impacts of aerosols on cloud droplet diameter varied based on droplet size. For the wet season, we observed no dependence between land surface type and rain rate. However, during the dry season, urban areas exhibited the largest rainfall rate tail distribution, and deforested regions exhibited the lowest mean rainfall rate. Airplane measurements were taken to characterize and contrast cloud microphysical properties and processes over forested and deforested regions. Vertical motion was not correlated with cloud droplet sizes, but cloud droplet concentration correlated linearly with vertical motion. Clouds over forested areas contained larger droplets than clouds over pastures at all altitudes. Finally, the connections between topography and rain rate were evaluated, with higher rainfall rates identified at higher elevations during the dry season.« less

  19. Global rainfall erosivity assessment based on high-temporal resolution rainfall records.

    PubMed

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano

    2017-06-23

    The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

  20. Design of the primary pre-TRMM and TRMM ground truth site

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1988-01-01

    The primary objective of the Tropical Rain Measuring Mission (TRMM) were to: integrate the rain gage measurements with radar measurements of rainfall using the KSFC/Patrick digitized radar and associated rainfall network; delineate the major rain bearing systems over Florida using the Weather Service reported radar/rainfall distributions; combine the integrated measurements with the delineated rain bearing systems; use the results of the combined measurements and delineated rain bearing systems to represent patterns of rainfall which actually exist and contribute significantly to the rainfall to test sampling strategies and based on the results of these analyses decide upon the ground truth network; and complete the design begun in Phase 1 of a multi-scale (space and time) surface observing precipitation network centered upon KSFC. Work accomplished and in progress is discussed.

  1. Surface Energy Budget Disruption in the Northeast Pacific in Response to a Marine Heat Wave

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Siedlecki, S. A.; Ackerman, T. P.; Bond, N. A.

    2016-12-01

    The surface energy budget of the ocean varies greatly over space and time as a result of ocean-atmosphere interactions. Changes in the budget due to variability in incident shortwave radiation can alter the thermal structure of the upper ocean, influence photosynthetic processes, and ultimately affect marine biogeochemistry. Thus, accurate representation of the surface energy budget over the oceans is essential for successfully modeling ocean processes and ocean-atmosphere interactions. Siedlecki et al. [Scientific Reports 6 (2016): 27203] show that NOAA's Climate Forecast System (CFS) shortwave radiation fields are biased high relative to CFS reanalysis data by about 50 W/m2 in the study area off the coast of Washington and Oregon. This bias varies in space and time and is known to exist in large scale climate models. The bias results in reduced skill in ocean forecasts at the surface, with specific impacts on sea surface temperature and biogeochemistry. In order to better understand the surface radiation balance over the ocean and the biases present in large scale climate models, we use several data sets to analyze an anomalous sea surface temperature event (marine heat wave, MHW) in the Northeast Pacific during 2014-2015. This `blob' of warm water disrupted ocean-atmosphere feedbacks in the region and altered the surface energy balance; thus, it provides a case study to better understand physical mechanisms at play in the surface radiation balance. CERES SYN1deg satellite data are compared to model output from CFS (1°x1° resolution) and WRF (12km resolution). We use all three fields to assess the impact of model resolution on the surface energy budget, as well as identify feedbacks in ocean-atmosphere processes that may differ between the observations and the models. Observational time series from 2009-15 of shortwave radiation, longwave radiation, and cloud parameters across 3 latitudinal lines (44.5N, 47N, 50N) in the Northeast Pacific (150W to 125W) clearly show disruption in cloud fraction, water content, and radiative fluxes during the MHW. The timing and spatial extent of the disruption differ in the models. The surface radiation budget for the Northeast Pacific over this time period from the observations and models is compared and discussed.

  2. Determining erosion relevant soil characteristics with a small-scale rainfall simulator

    NASA Astrophysics Data System (ADS)

    Schindewolf, M.; Schmidt, J.

    2009-04-01

    The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.

  3. Centrifuge Modeling of Rainfall Induced Slope Failure

    NASA Astrophysics Data System (ADS)

    Ling, H.; Wu, M.

    2006-12-01

    Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.

  4. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be highly sensitive to the duration of dry spells, set by rainfall patterns, especially during wet seasons and further South from the Equator. These results points to the importance of proper understanding of convective systems and their effects on atmospheric albedo in assessing the vulnerability of Amazon basins to extended dry periods.

  5. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    NASA Astrophysics Data System (ADS)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  6. Subsurface drainage processes and management impacts

    Treesearch

    Elizabeth T. Keppeler; David Brown

    1998-01-01

    Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...

  7. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal characteristics. The comparison with the model helps to identify which retrieval configuration is most consistent with our understanding of surface soil moisture in this region. In particular we have determined how each of the soil moisture products is related to the spatio-temporal variations of rainfall. In large parts of the Iberian Peninsula the co-variance of remote sensed SSM and rainfall is consistent with that of the models. But for some regions questions are raised. The variability of SSM observed by SMOS in the North West of the Iberian Peninsula is similar to that of rainfall, at least this relation of SSM and rainfall is closer than suggested by the two models.

  8. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  9. Dissolved organic carbon export and its contribution to the carbon budget in a boreal peat landscape undergoing rapid permafrost thaw

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Fouche, J.; Helbig, M.; Karoline, W.; Hould Gosselin, G.; Hanisch, J.; Quinton, W. L.; Moore, T. R.

    2017-12-01

    Northern permafrost soils store 1035 ± 150 Pg of organic carbon in the first 3 m. In boreal lowlands with warm and thin isolated, sporadic and discontinuous permafrost, increasing temperatures cause a thaw-induced expansion of permafrost-free wetlands at the expense of forested permafrost peat plateaus. Permafrost thaw associated with warmer soils may enhance microbial decomposition of near-surface and deeper organic matter but also increase dissolved organic carbon (DOC) export to aquatic systems. Recent studies suggest that, under a warmer climate, the current net CO2 sink strength of boreal peat landscapes may decline over the next few decades, eventually turning them into net CO2 sources. DOC export from these organic-rich landscapes undergoing rapid permafrost thaw may play a non-negligible role for the carbon budget in a warmer climate. In this study, we quantify the DOC export from a boreal peat landscape in the southern Northwest Territories (Canada). We use half-hourly discharge measurements and DOC concentrations sampled at the outlets of three small catchments ( 0.1 km2) to quantify runoff and DOC export from April to August 2014, 2015 and 2016. We estimate the DOC export contribution to the overall carbon budget using concurrent eddy covariance measurements of net CO2 and methane exchanges. The primary control of DOC export is discharge. In 2016, 70% of the DOC was exported during the two weeks of the spring freshet in early May. DOC export from the three catchments was 3g C m-2 from April to August, which accounted for 15% of the annual net ecosystem exchange. For the same period, the cumulative methane emissions were 6 g C-CH4 m-2. Our findings suggest that thawing boreal peat landscapes along the southern limit of permafrost currently act as net carbon sinks with 11 g C m-2 y-1. Investigating the optical properties of the dissolved organic matter across the different landforms (e.g., transition between forested permafrost peat plateau and permafrost-free wetland) will allow us to assess the different contributions to catchment DOC export and better forecast the changes in DOC lability with permafrost thaw and wetland expansion. Associated with a more rainfall-controlled runoff regime, changes in DOC export with warming may affect the carbon budget in the southern boundaries of the permafrost region.

  10. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    NASA Astrophysics Data System (ADS)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  11. Land Use Change Impacts to Flows and Hydropower at the Southern Fringe of the Brazilian Amazon: A Regional, Empirical Study of Land-Water-Energy Nexus Dynamics

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Thompson, S. E.; Cohn, A.

    2014-12-01

    Land use/cover change (LUCC) has occurred extensively in the Brazilian Amazon rainforest-savanna transition. Agricultural development-driven LUCC at regional scales can alter surface energy budgets, evapotranspiration (ET) and rainfall; these hydroclimatic changes impact streamflows, and thus hydropower. To date, there is only limited empirical understanding of these complex land-water-energy nexus dynamics, yet understanding is important to developing countries where both agriculture and hydropower are expanding and intensifying. To observe these changes and their interconnections, we synthesize a novel combination of ground network, remotely sensed, and empirically modeled data for LUCC, rainfall, flows, and hydropower potential. We connect the extensive temporal and spatial trends in LUCC occurring from 2000-2012 (and thus observable in the satellite record) to long-term historical flow records and run-of-river hydropower generation potential estimates. Changes in hydrologic condition are observed in terms of dry and wet season moments, extremes, and flow duration curves. Run-of-river hydropower generation potential is modeled at basin gauge points using equation models parameterized with literature-based low-head turbine efficiencies, and simple algorithms establishing optimal head and capacity from elevation and flows, respectively. Regression analyses are used to demonstrate a preliminary causal analysis of LUCC impacts to flow and energy, and discuss extension of the analysis to ungauged basins. The results are transferable to tropical and transitional forest regions worldwide where simultaneous agricultural and hydropower development potentially compete for coupled components of regional water cycles, and where policy makers and planners require an understanding of LUCC impacts to hydroclimate-dependent industries and ecosystems.

  12. Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001-06

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Gilliom, Robert J.; Meyer, Michael T.

    2007-01-01

    The U.S. Geological Survey conducted a number of studies from 2001 through 2006 to investigate and document the occurrence, fate, and transport of glyphosate, its degradation product, aminomethylphosphonic acid (AMPA), and glufosinate in 2,135 ground- and surface-water samples, 14 rainfall samples, and 193 soil samples. Analytical methods were developed to detect and measure glyphosate, AMPA, and glufosinate in water, rainfall, and soil. Results show that AMPA was detected more frequently and occurred at similar or higher concentrations than the parent compound, glyphosate, whereas glufosinate was seldom found in the environment. Glyphosate and AMPA were detected more frequently in surface water than in ground water. Trace levels of glyphosate and AMPA may persist in the soil from year to year. The methods and data described in this report are useful to researchers and regulators interested in the occurrence, fate, and transport of glyphosate and AMPA in the environment.

  13. Simulation of radar reflectivity and surface measurements of rainfall

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Bringi, V. N.

    1987-01-01

    Raindrop size distributions (RSDs) are often estimated using surface raindrop sampling devices (e.g., disdrometers) or optical array (2D-PMS) probes. A number of authors have used these measured distributions to compute certain higher-order RSD moments that correspond to radar reflectivity, attenuation, optical extinction, etc. Scatter plots of these RSD moments versus disdrometer-measured rainrates are then used to deduce physical relationships between radar reflectivity, attenuation, etc., which are measured by independent instruments (e.g., radar), and rainrate. In this paper RSDs of the gamma form as well as radar reflectivity (via time series simulation) are simulated to study the correlation structure of radar estimates versus rainrate as opposed to RSD moment estimates versus rainrate. The parameters N0, D0 and m of a gamma distribution are varied over the range normally found in rainfall, as well as varying the device sampling volume. The simulations are used to explain some possible features related to discrepancies which can arise when radar rainfall measurements are compared with surface or aircraft-based sampling devices.

  14. Validation of the Land-Surface Energy Budget and Planetary Boundary Layer for Several Intensive field Experiments

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Molod, Andrea; Houser, Paul R.

    1999-01-01

    Land-surface processes in a data assimilation system influence the lower troposphere and must be properly represented. With the recent incorporation of the Mosaic Land-surface Model (LSM) into the GEOS Data Assimilation System (DAS), the detailed land-surface processes require strict validation. While global data sources can identify large-scale systematic biases at the monthly timescale, the diurnal cycle is difficult to validate. Moreover, global data sets rarely include variables such as evaporation, sensible heat and soil water. Intensive field experiments, on the other hand, can provide high temporal resolution energy budget and vertical profile data for sufficiently long periods, without global coverage. Here, we evaluate the GEOS DAS against several intensive field experiments. The field experiments are First ISLSCP Field Experiment (FIFE, Kansas, summer 1987), Cabauw (as used in PILPS, Netherlands, summer 1987), Atmospheric Radiation Measurement (ARM, Southern Great Plains, winter and summer 1998) and the Surface Heat Budget of the Arctic Ocean (SHEBA, Arctic ice sheet, winter and summer 1998). The sites provide complete surface energy budget data for periods of at least one year, and some periods of vertical profiles. This comparison provides a detailed validation of the Mosaic LSM within the GEOS DAS for a variety of climatologic and geographic conditions.

  15. Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.

  16. Simulation of the Onset of the Southeast Asian Monsoon during 1997 and 1998: The Impact of Surface Processes

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.

    2004-01-01

    The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were significantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-China peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and merit, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation and associated moisture transport and convection.

  17. A study of the dynamics of droughts in Northern Brazil: Observations, theory, and numerical experiments with a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Moura, A. D.

    1980-01-01

    The monthly mean sea surface temperature anomalies over tropical Altantic and rainfall anomalies over two selected stations for 25 years (1948-1972) were examined. It is found that the most severe drought events are associated with the simultaneous occurrence of warm sea surface temperature anomalies over north and cold sea surface temperature anomalies over south tropical Atlantic. Simultaneous occurrences of warm sea surface temperature anomaly at 15 deg N, 45 deg W and cold sea surface temperature anomaly at 15 deg S, 5 deg W were always associated with negative anomalies of rainfall, and vice versa. A simple primitive equation model is used to calculate the frictionally controlled and thermally driven circulation due to a prescribed heating function in a resting atmosphere.

  18. On the relationships of gas transfer velocity with turbulent kinetic energy dissipation rate and wind waves

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-12-01

    The exchange of carbon dioxide across the air-sea interface is an important component of the atmospheric CO2 budget. Understanding how future changes in climate will affect oceanic uptake and releaser CO2 requires accurate estimation of air-sea CO2 flux. This flux is typically expressed as the product of gas transfer velocity, CO2 partial pressure difference in seawater and air, and the CO2 solubility. As the key parameter, gas transfer velocity has long been known to be controlled by the near-surface turbulence in water, which is affected by many factors, such as wind forcing, ocean waves, water-side convection and rainfall. Although the wind forcing is believed as the major factor dominating the near-surface turbulence, many studies have shown that the wind waves and their breaking would greatly enhance turbulence compared with the classical solid wall theory. Gas transfer velocity has been parameterized in terms of wind speed, turbulent kinetic energy dissipation rate, and wave parameters on the basis of observational data or theoretical analysis. However, great discrepancies, as large as one order, exist among these formulas. In this study, we will systematically analyze the differences of gas transfer velocity proposed so far, and try to find the reason that leads to their uncertainties. Finally, a new formula for gas transfer velocity will be given in terms of wind speed and wind wave parameter.

  19. Global energetics and local physics as drivers of past, present and future monsoons

    NASA Astrophysics Data System (ADS)

    Biasutti, Michela; Voigt, Aiko; Boos, William R.; Braconnot, Pascale; Hargreaves, Julia C.; Harrison, Sandy P.; Kang, Sarah M.; Mapes, Brian E.; Scheff, Jacob; Schumacher, Courtney; Sobel, Adam H.; Xie, Shang-Ping

    2018-06-01

    Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

  20. Estimation of surface heat and moisture fluxes over a prairie grassland. I - In situ energy budget measurements incorporating a cooled mirror dew point hygrometer

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Crosson, William L.; Tanner, Bertrand D.

    1992-01-01

    Attention is focused on in situ measurements taken during FIFE required to support the development and validation of a biosphere model. Seasonal time series of surface flux measurements obtained from two surface radiation and energy budget stations utilized to support the FIFE surface flux measurement subprogram are examined. Data collection and processing procedures are discussed along with the measurement analysis for the complete 1987 test period.

  1. Evaluating RGB photogrammetry and multi-temporal digital surface models for detecting soil erosion

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2013-04-01

    Photogrammetry is a widely used tool for generating high-resolution digital surface models. Unmanned Aerial Vehicles (UAVs), equipped with a Red Green Blue (RGB) camera, have great potential in quickly acquiring multi-temporal high-resolution orthophotos and surface models. Such datasets would ease the monitoring of geomorphological processes, such as local soil erosion and rill formation after heavy rainfall events. In this study we test a photogrammetric setup to determine data requirements for soil erosion studies with UAVs. We used a rainfall simulator (5 m2) and above a rig with attached a Panasonic GX1 16 megapixel digital camera and 20mm lens. The soil material in the simulator consisted of loamy sand at an angle of 5 degrees. Stereo pair images were taken before and after rainfall simulation with 75-85% overlap. Acquired images were automatically mosaicked to create high-resolution orthorectified images and digital surface models (DSM). We resampled the DSM to different spatial resolutions to analyze the effect of cell size to the accuracy of measured rill depth and soil loss estimations, and determined an optimal cell size (thus flight altitude). Furthermore, the high spatial accuracy of the acquired surface models allows further analysis of rill formation and channel initiation related to e.g. surface roughness. We suggest implementing near-infrared and temperature sensors to combine soil moisture and soil physical properties with surface morphology for future investigations.

  2. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  3. Turbulence Kinetic Energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Lohou, F.; Lothon, M.; Pardyjak, E.; Mahrt, L.; Darbieu, C.

    2015-11-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from mid-day until zero buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 Intensive Observation Period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and meso-scale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near surface production of TKE is compensated by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with friction velocity and measurement height and discussed in the framework of Monin-Obukhov similarity theory. Empirically fitted expressions are presented. Alternatively, we also suggest a non-local parametrization of dissipation using a TKE-length scale model which takes into account the boundary layer depth in addition to distance above the ground. The non-local formulation is shown to give a better description of dissipation compared to a local parametrization.

  4. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with friction velocity and measurement height and discussed in the framework of Monin-Obukhov similarity theory. Empirically fitted expressions are presented. Alternatively, we also suggest a non-local parametrization of dissipation using a TKE-length scale model which takes into account the boundary layer depth in addition to distance above the ground. The non-local formulation is shown to give a better description of dissipation compared to a local parametrization.

  5. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  6. Transition of surface energy budget in the Gobi Desert between spring and summer seasons

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.; Gao, Youxi

    1986-01-01

    The surface energetics of the southwest Gobi Desert, including the temporal variations and diurnally averaged properties of the surface energy budget components, was investigated. The field program was conducted during the spring and summer of 1984, with the measurement system designed to monitor radiative exchange, heat/moisture storage in the soil, and sensible and latent heat exhange between the ground and the atmosphere. Results of the analysis reveal a seasonal transition feature not expected of a midlatitude desert. Namely, the differences in both surface radiation exchange and the distibution of sensible and latent heat transfer arise within a radiatively forced environment that barely deviates from spring to summer in terms of available solar energy at the surface. Both similarities and differences in the spring and summer surface energy budgets arise from differences imparted to the system by an increase in the summertime atmospheric moisture content. Changes in the near-surface mixing ratio are shown to alter the effectiveness of the desert surface in absorbing radiative energy and redistibuting it to the lower atmosphere through sensible and latent heat exchange.

  7. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain).

    PubMed

    Corada-Fernández, Carmen; Candela, Lucila; Torres-Fuentes, Nivis; Pintado-Herrera, Marina G; Paniw, Maria; González-Mazo, Eduardo

    2017-12-15

    This study is focused on the Guadalete River basin (SW, Spain), where extreme weather conditions have become common, with and alternation between periods of drought and extreme rainfall events. Combined sewer overflows (CSOs) occur when heavy rainfall events exceed the capacity of the wastewater treatment plants (WWTP), as well as pollution episodes in parts of the basin due to uncontrolled sewage spills and the use of reclaimed water and sludge from the local WWTP. The sampling was carried out along two seasons and three campaigns during dry (March 2007) and extreme rainfall (April and December 2010) in the Guadalete River, alluvial aquifer and Jerez de la Frontera aquifer. Results showed minimum concentrations for synthetic surfactants in groundwater (<37.4μg·L -1 ) during the first campaign (dry weather conditions), whereas groundwater contaminants increased in December 2010 as the heavy rainfall caused the river to overflow. In surface water, surfactant concentrations showed similar trends to groundwater observations. In addition to surfactants, pharmaceuticals and personal care products (PPCPs) were analyzed in the third campaign, 22 of which were detected in surface waters. Two fragrances (OTNE and galaxolide) and one analgesic/anti-inflammatory (ibuprofen) were the most abundant PPCPs (up to 6540, 2748 and 1747ng·L -1 , respectively). Regarding groundwater, most PPCPs were detected in Jerez de la Frontera aquifer, where a synthetic fragrance (OTNE) was predominant (up to 1285ng·L -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Variation Characteristics and Sources of Heavy Metals in an Urban Karst Groundwater System during Rainfall Event].

    PubMed

    Ren, Kun; Yang, Ping-heng; Jiang, Ze-li; Wang, Zun-bo; Shi, Yang; Wang, Feng-kang; Li, Xiao-chun

    2015-04-01

    The groundwater discharge and heavy metal concentrations (Mn, Pb, Cu and As) at the outlet of Nanshan Laolongdong karst subterranean river, located at the urban region in Chongqing, were observed during the rainfall events. Analysis of flow and concentrations curves was employed to study their responses to the rainfall events and explore the internal structure of karst hydrological system. Principal component analysis (PCA) and measurements were used to identify the sources of heavy metals during rainfall. The result showed that the discharge and concentrations of the heavy metals responded promptly to the rainfall event. The variation characteristics of flow indicated that Laolongdong subterranean river system belonged to a karst hydrological system including fractures together with conduits. Urban surface runoff containing large amounts of Mn, Pb and Cu went directly to subterranean river via sinkholes, shafts and karst windows. As a result, the peak concentrations of contaminants (Mn, Pb and Cu) flowed faster than those of discharge. The major sources of water pollution were derived from urban surface runoff, soil and water loss. Cave dripwater and rainwater could also bring a certain amount of Mn, Pb and As into the subterranean river. Urban construction in karst areas needs scientific and rational design, perfect facilities and well-educated population to prevent groundwater pollution from the source.

  9. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  10. A simple lightning assimilation technique for improving ...

    EPA Pesticide Factsheets

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The

  11. A Simple Lightning Assimilation Technique For Improving ...

    EPA Pesticide Factsheets

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli

  12. A simple statistical method for analyzing flood susceptibility with incorporating rainfall and impervious surface

    NASA Astrophysics Data System (ADS)

    Chiang, Shou-Hao; Chen, Chi-Farn

    2016-04-01

    Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. The flood risk is even more severe in Tainan since 1990s, with the significant urban development over recent decades. Previous studies have indicated that the characteristics and the vulnerability of flood are affected by the increase of impervious surface area (ISA) and the changing climate condition. Tainan City, in southern Taiwan is selected as the study area. This study uses logistic regression to functionalize the relationship between rainfall variables, ISA and historical flood events. Specifically, rainfall records from 2001 to 2014 were collected and mapped, and Landsat images of year 2001, 2004, 2007, 2010 and 2014 were used to generate the ISA with SVM (support vector machine) classifier. The result shows that rainfall variables and ISA are significantly correlated to the flood occurrence in Tainan City. With applying the logistic function, the likelihood of flood occurrence can be estimated and mapped over the study area. This study suggests the method is simple and feasible for rapid flood susceptibility mapping, when real-time rainfall observations can be available, and it has potential for future flood assessment, with incorporating climate change projections and urban growth prediction.

  13. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    PubMed

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki

    2014-01-15

    Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs. © 2013.

  15. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    NASA Astrophysics Data System (ADS)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  16. Reconnaissance sediment budget for selected watersheds of West Maui, Hawai‘i

    USGS Publications Warehouse

    Stock, Jonathan D.; Falinski, Kim A.; Callender, Tova

    2016-01-12

    Episodic runoff brings suspended sediment to the nearshore waters of West Maui, Hawaiʻi. Even small rainfalls create visible plumes over a few hours. We used mapping, field experiments, and analysis of recent (July 19–20, 2014) and historic rainfall to estimate sources of land-based pollution for two watersheds in West Maui: Honolua, and Honokōwai. Former agricultural fields and some unimproved roads are plausible sources for polluted runoff, but have saturated hydraulic conductivities greater than the 10–15 millimeters per hour (mm/hr) rainfalls of July 2014. These fields and roads showed minor evidence for storm runoff, and could not have contributed substantially to July 2014 plume generation. Since 1978, rain at intensities capable of causing runoff from former agricultural fields sustained for 1–2 hours is also rare; such intensities have 2–5 year recurrence rates in the north, and greater than 25 year recurrence rates to the south near Lahaina. Streambanks now eroding into historic terraces of sands, silts, and clays are a more plausible source. Although past large storms contributed to sediment loading, annual plume generation is now caused by smaller rainfalls eroding these near-stream legacy deposits. Treatments of former agricultural fields, roads, and reserve forests are consequently not likely to measurably affect sediment pollution from smaller, more frequent storms. Increased runoff from the development of West Maui has the potential to exacerbate sediment plumes from such storms unless there is an effective strategy to reduce bank erosion. Uncertainties in the extent and erosion rate of historic terraces, however, limit our ability to plan mitigation.

  17. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong

    2018-02-01

    The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.

  18. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    NASA Astrophysics Data System (ADS)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  19. Effects of Rainfall-Induced Topsoil Structure Changes on Root-Zone Moisture Regime during the Dry Period

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Chen, Jiazhou; Lin, Lirong

    2018-01-01

    Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA 0.25, 0-30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity ( I) and degree ( D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA 0.25, 15-30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes greatly deteriorated the root-zone regime during the dry period mainly due to significant increasing soil water loss but little improving the raining stage of soil water storage. Straw mulching had greater effects than other practices in alleviating rainfall-induced erosion and intermittent drought, and could be a better strategy applied for this region.

  20. Convective and nonconvective rainfall partitioning over a mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.

    2011-12-01

    A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.

  1. SMAP soil moisture drying more rapid than observed in situ following rainfall events

    USDA-ARS?s Scientific Manuscript database

    We examine soil drying rates by comparing observations from the NASA Soil Moisture Active Passive (SMAP) mission to surface soil moisture from in situ probes during drydown periods at SMAP validation sites. SMAP and in situ probes record different soil drying dynamics after rainfall. We modeled this...

  2. The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current activities and future key tasks

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Lamoureux, S. F.; Decaulne, A.

    2012-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G./A.I.G.)SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Saemundsson (Iceland), Jeff Warburton (UK), Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (2004-2006), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual, available online, see below) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the programme. Defined SEDIBUD key test sites provide data on annual climate conditions, total discharge and particulate and dissolved fluxes as well as information on other relevant surface processes. A number of selected key test sites is providing high-resolution data on climate conditions, runoff and sedimentary fluxes, which in addition to the annual data contribute to the SEDIBUD metadata database which is currently developed. Comparable datasets from different SEDIBUD key test sites are integrated and analysed to address key research questions as defined in the SEDIBUD Objective (available online, see below). Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available online, see below) by using the datasets continuously compiled in the SEDIBUD metadata database. Detailed information on the I.A.G./A.I.G. SEDIBUD Programme, SEDIBUD meetings, SEDIBUD publications and SEDIBUD online documents and databases is available at the SEDIBUD website under http://www.geomorph.org/wg/wgsb.html.

  3. The I.A.G. / A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current and future activities

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Lamoureux, Scott; Decaulne, Armelle

    2013-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G. / A.I.G. ) SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Sæmundsson (Iceland), Jeff Warburton (UK) and Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments) (2004 - ), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual, available online, see below) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the programme. Defined SEDIBUD key test sites provide data on annual climate conditions, total discharge and particulate and dissolved fluxes (yields) as well as information on other relevant surface processes. A number of selected key test sites is providing high-resolution data on climate conditions, runoff and sedimentary fluxes (yields), which in addition to the annual data contribute to the SEDIBUD metadata database. Comparable datasets from different SEDIBUD key test sites are integrated and analysed to address key research questions as defined in the SEDIBUD objective (available online, see below). Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available online, see below) by using datasets continuously compiled in the SEDIBUD metadata database, (iv) The publication of a SEDIBUD book (synthesis book). Detailed information on the SEDIBUD Programme, SEDIBUD meetings, SEDIBUD publications and SEDIBUD online documents and databases is available at the SEDIBUD website under http://www.geomorph.org/wg/wgsb.html.

  4. Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment

    NASA Astrophysics Data System (ADS)

    Brauer, C. C.; Teuling, A. J.; Overeem, A.; van der Velde, Y.; Hazenberg, P.; Warmerdam, P. M. M.; Uijlenhoet, R.

    2011-06-01

    On 26 August 2010 the eastern part of The Netherlands and the bordering part of Germany were struck by a series of rainfall events lasting for more than a day. Over an area of 740 km2 more than 120 mm of rainfall were observed in 24 h. This extreme event resulted in local flooding of city centres, highways and agricultural fields, and considerable financial loss. In this paper we report on the unprecedented flash flood triggered by this exceptionally heavy rainfall event in the 6.5 km2 Hupsel Brook catchment, which has been the experimental watershed employed by Wageningen University since the 1960s. This study aims to improve our understanding of the dynamics of such lowland flash floods. We present a detailed hydrometeorological analysis of this extreme event, focusing on its synoptic meteorological characteristics, its space-time rainfall dynamics as observed with rain gauges, weather radar and a microwave link, as well as the measured soil moisture, groundwater and discharge response of the catchment. At the Hupsel Brook catchment 160 mm of rainfall was observed in 24 h, corresponding to an estimated return period of well over 1000 years. As a result, discharge at the catchment outlet increased from 4.4 × 10-3 to nearly 5 m3 s-1. Within 7 h discharge rose from 5 × 10-2 to 4.5 m3 s-1. The catchment response can be divided into four phases: (1) soil moisture reservoir filling, (2) groundwater response, (3) surface depression filling and surface runoff and (4) backwater feedback. The first 35 mm of rainfall were stored in the soil without a significant increase in discharge. Relatively dry initial conditions (in comparison to those for past discharge extremes) prevented an even faster and more extreme hydrological response.

  5. Surface Runoff Threshold Responses to Rainfall Intensity, Scale, and Land Use Type, Change and Disturbance

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Kampf, S. K.; Green, T. R.; Wilson, C.; Wagenbrenner, J.; Erksine, R. H.

    2017-12-01

    The dominance of infiltration-excess (Hortonian) overland flow can be determined by how well a rainfall intensity threshold predicts streamflow response. Areas in which we would expect infiltration-excess overland flow to dominate include urban, bedrock, desert pavement, and lands disturbed by vegetation removal (e.g., after a fire burn or fallow agricultural lands). Using a transferable method of identifying the existence of thresholds, we compare the following sites to investigate their hydrologic responses to 60-minute rainfall intensities: desert pavement sites in Arizona (Walnut Gulch and Yuma Proving Ground), post-fire sites in a forested, mountainous burn area in north-central Colorado (High Park Fire), an area of northeastern Colorado Plains that has transitioned from dryland agriculture to conservation reserve (Drake Farm), and watersheds in suburban Baltimore, Maryland which range from less than 5% to over 50% impervious surface cover. We observed that at desert sites, the necessary threshold of rainfall intensity to produce flow increased with watershed size. In burned watersheds, watershed size did not have a clear effect on rainfall thresholds, but thresholds increased with time after burning, with streamflow no longer exhibiting clear threshold responses after the third year post-fire. At the agricultural site, the frequency of runoff events decreased during the transition from cultivated crops to mixed perennial native grasses. In an area where the natural land cover (forested) would be not dominated by infiltration-excess overland flow, urbanization greatly lowered the rainfall thresholds needed for hydrologic response. This work contributes to building a predictive framework for identifying what naturally-occurring landscapes are dominated by infiltration-excess overland flow, and how land use change could shift the dominance of infiltration-excess overland flow. Characterizing the driving mechanism for streamflow generation will allow better prediction of hydrologic response to rainfall events.

  6. Relative roles of aerosols, SST, and snow impurity on snowmelt over the Tibetan Plateau and its their impacts on South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.

    2017-12-01

    We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.

  7. Responses of hydrochemical inorganic ions in the rainfall-runoff processes of the experimental catchments and its significance for tracing

    USGS Publications Warehouse

    Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.

    2007-01-01

    Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.

  8. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    PubMed

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  9. Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa

    2013-01-01

    The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.

  10. A laboratory rainfall simulator to study the soil erosion and runoff water

    NASA Astrophysics Data System (ADS)

    Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco

    2010-05-01

    The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.

  11. Factors Contributing to the Off-Target Transport of Pyrethroid Insecticides From Urban Surfaces

    PubMed Central

    Jorgenson, Brant C.; Wissel-Tyson, Christopher; Young, Thomas M.

    2013-01-01

    Pyrethroid insecticides used in an urban and suburban context have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9% to 0.011% of pyrethroid mass applied and 10 L nominal mass losses ranged from 3,970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and to a lesser degree set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted. PMID:22784034

  12. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  13. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases.

    PubMed

    Pielke, Roger A; Marland, Gregg; Betts, Richard A; Chase, Thomas N; Eastman, Joseph L; Niles, John O; Niyogi, Dev Dutta S; Running, Steven W

    2002-08-15

    Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'. A new metric is needed to quantify the human disturbance of the Earth's surface-energy budget. This 'regional climate change potential' could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.

  14. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    USGS Publications Warehouse

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  15. A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Ting, M.

    2017-12-01

    The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, we investigate the co-variability of the July-August mean rainfall across the Indian subcontinent (IS) and the TP. We found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation -that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk-Road wave train due to its link to rainfall over the northwestern IS.

  16. Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north Pacific by RegCM4

    NASA Astrophysics Data System (ADS)

    Li, Yu-Bin; Tam, Chi-Yung; Huang, Wan-Ru; Cheung, Kevin K. W.; Gao, Zhiqiu

    2016-04-01

    This study evaluates the sensitivity of summertime rainfall simulations over East-to-southeast Asia and the western north Pacific in the regional climate model version 4 (RegCM4) to cumulus (including Grell with Arakawa-Schubert type closure, Grell with Fritsch-Chappell type closure, and Emanuel), land surface (Biosphere-atmosphere transfer scheme or BATS, and the community land model or CLM) and ocean surface (referred to as Zeng1, Zeng2 and BATS1e in the model) schemes by running the model with different combinations of these parameterization packages. For each of these experiments, ensemble integration of the model was carried out in the extended boreal summer of May-October from 1998 to 2007. The simulated spatial distribution, intensity and inter-annual variation of the precipitation, latent heat flux, position of the subtropical high and tropical cyclone genesis patterns from these numerical experiments were analyzed. Examinations show that the combination of Emanuel, CLM and Zeng2 (E-C-Z2) yields the best overall results, consistent with the fact that physical mechanisms considered in E-C-Z2 tend to be more comprehensive in comparison with the others. Additionally, the rainfall quantity is found very sensitive to sea surface roughness length, and the reduction of the roughness length constant (from 2 × 10-4 to 5 × 10-5 m) in our modified BATS1e mitigates the drastic overestimation of latent heat flux and rainfall, and is therefore preferable to the default value for simulations in the western north Pacific region in RegCM4.

  17. Plot-scale soil loss estimation with laser scanning and photogrammetry methods

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán; Somogyi, Árpád; Barsi, Árpád

    2017-04-01

    Structure from Motion (SfM) is an automatic feature-matching algorithm, which nowadays is widely used tool in photogrammetry for geoscience applications. SfM method and parallel terrestrial laser scanning measurements are widespread and they can be well accomplished for quantitative soil erosion measurements as well. Therefore, our main scope was soil erosion characterization quantitatively and qualitatively, 3D visualization and morphological characterization of soil-erosion-dynamics. During the rainfall simulation, the surface had been measured and compared before and after the rainfall event by photogrammetry (SfM - Structure from Motion) and laser scanning (TLS - Terrestrial Laser Scanning) methods. The validation of the given results had been done by the caught runoff and the measured soil-loss value. During the laboratory experiment, the applied rainfall had 40 mm/h rainfall intensity. The size of the plot was 0.5 m2. The laser scanning had been implemented with Faro Focus 3D 120 S type equipment, while the SfM shooting had been carried out by 2 piece SJCAM SJ4000+ type, 12 MP resolution and 4K action cams. The photo-reconstruction had been made with Agisoft Photoscan software, while evaluation of the resulted point-cloud from laser scanning and photogrammetry had been implemented partly in CloudCompare and partly in ArcGIS. The resulted models and the calculated surface changes didn't prove to be suitable for estimating soil-loss, only for the detection of changes in the vertical surface. The laser scanning resulted a quite precise surface model, while the SfM method is affected by errors at the surface model due to other factors. The method needs more adequate technical laboratory preparation.

  18. GLEAM v3: updated land evaporation and root-zone soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko

    2016-04-01

    Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be distributed. The most important updates in GLEAM include the revision of the soil moisture data assimilation system, the evaporative stress functions and the infiltration of rainfall. In this presentation, we will highlight the changes of the methodology and present the new datasets, their validation against in situ observations and the comparisons against alternative datasets of terrestrial evaporation, such as GLDAS-Noah, ERA-Interim and previous GLEAM datasets. Preliminary results indicate that the magnitude and the spatio-temporal variability of the evaporation estimates have been slightly improved upon previous versions of the datasets.

  19. Spatial Dependence of the Relationship between Rainfall and Outgoing Longwave Radiation in the Tropical Atlantic.

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Moon; Carton, James A.

    1988-10-01

    We develop a Spatially dependent formula to estimate rainfall from satellite-derived outgoing longwave radiation (OLR) data and the height of the base of the trade-wind inversion. This formula has been constructed by comparing rainfall records from twelve islands in the tropical Atlantic with 11 years of OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the cast are included.The climatological winter and summer rainfall derived from the above formula concurs with ship observations described by Dorman and Bourke. However, during the spring and fall, OLR-derived rainfall is higher than observations by 2-4 mm day1 in the intertropical convergence zone. The largest discrepancy occurs during the fall in the region west of 28°W. Interannual anomalies of rainfall computed using this technique are large enough to cause potentially important changes in ocean surface salinity.

  20. Description and preliminary results of a 100 square meter rain gauge

    NASA Astrophysics Data System (ADS)

    Grimaldi, Salvatore; Petroselli, Andrea; Baldini, Luca; Gorgucci, Eugenio

    2018-01-01

    Rainfall is one of the most crucial processes in hydrology, and the direct and indirect rainfall measurement methods are constantly being updated and improved. The standard instrument used to measure rainfall rate and accumulation is the rain gauge, which provides direct observations. Though the small dimension of the orifice allows rain gauges to be installed anywhere, it also causes errors due to the splash and wind effects. To investigate the role of the orifice dimension, this study, for the first time, introduces and demonstrates an apparatus for observing rainfall called a giant-rain gauge that is characterised by a collecting surface of 100 m2. To discuss the new instrument and its technical details, a preliminary analysis of 26 rainfall events is provided. The results suggest that there are significant differences between the standard and proposed rain gauges. Specifically, major discrepancies are evident for low time aggregation scale (5, 10, and 15 min) and for high rainfall intensity values.

  1. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE PAGES

    Yu, Yan; Notaro, Michael; Wang, Fuyao; ...

    2017-11-30

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  2. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yan; Notaro, Michael; Wang, Fuyao

    Classic, model-based theory of land-atmosphere interactions across the Sahel promote positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback nor its underlying albedo mechanism has been convincingly demonstrated using observational data. Here, we present observational evidence for the region’s proposed positive vegetation-rainfall feedback on the seasonal to interannual time scale, and find that it is associated with a moisture recycling mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely sensed vegetation greenness across the Sahel during the late and post-monsoon periods favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indicative ofmore » amplified moisture recycling. The identified modest low-level cooling and anomalous atmospheric subsidence in response to positive vegetation greenness anomalies are counter to the responses expected through the classic vegetation-albedo feedback mechanism. The observational analysis further reveals enhanced dust emissions in response to diminished Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.« less

  3. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  4. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    PubMed

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  5. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  6. Application of Multi-Satellite Precipitation Analysis to Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers. In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences. However, difficulties in comparing landslide event information (mostly from news reports) with the satellite-based forecasts are analyzed.

  7. Effect of liquid swine manure rate, incorporation, and timing of rainfall on phosphorus loss with surface runoff.

    PubMed

    Allen, Brett L; Mallarino, Antonio P

    2008-01-01

    Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.

  8. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    NASA Astrophysics Data System (ADS)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation of detailed land surface processes involving prognostic soil moisture evolution in Noah scheme compared to the simple Slab model. To analyse the effect of model grid spacing, two sets of downscaling ratios - (i) 1 : 3, global to regional (G2R) scale and (ii) 1 : 9, global to convection-permitting scale (G2C) - are employed. Results indicate that a higher downscaling ratio (G2C) causes higher variability and consequently large errors in the simulations. Therefore, G2R is adopted as a suitable choice for simulating heavy rainfall event in the present case study. Further, the WRF-simulated rainfall is found to exhibit less bias when compared with the NCEP FiNaL (FNL) reanalysis data.

  9. Hydro-meteorological monitoring of a mountain catchment, the example of the Vorz (Belledonne, France)

    NASA Astrophysics Data System (ADS)

    Barth, Thierry; Saulnier, Georges-Marie; Malet, Emmanuel

    2010-05-01

    The 22th August 2005, an important flash flood happened on the Vorz torrent (Belledonne Moutain, Alps region, France). The village of Saint-Agnès downstream this torrent was hit leading to 7 millions Euros of damages. Civil authorities launched then a research program to evaluate the expected changes of the frequency of such events considering climatic changes. Such upslope mountainous catchments are often the main source of drinkable water resources for these high-elevated villages (for example the Saint-Agnès village uses the water of the Freydanne glacier embedded within the Vorz catchment). Then, this project aims also to consider the entire hydrological cycle and not only hazardous events. This research program includes obviously modelling work packages. But relevant modelling cannot be reached without minimal amount of data, which are always very difficult to obtain in mountainous regions. This particular issue is addressed in this communication. Many sources and different kinds of data are needed to feed and corroborate hydrological and snow melting simulations models. However, the principal problem in mountain area is the energy consuming, the collecting and the saving of data. The second problem is the important spatial variability of the meteorological parameters and their sampling in extremes conditions. Finally, it is wished that the sensor network remains as much money-saving as possible. Within the Vorz catchment, meteorological forcing variables (temperatures, rainfall and snow stock) are measured as well as the hydrological closing budget with one discharge station at its outlet. All the sensors were spreaded within the catchment at various elevations ranging from 900 to 2500meters. The flow is estimated using an original sensor based on a continuous video monitoring of the torrent. The river height and the surface velocities are then automatically estimated every 5 minutes. Supplementary information regarding the topography of the cross section allow then a reasonably accurate discharge measurement with a captor that remains sheltered from the hazardous floods, as it is not immersed in the torrent. 50 temperature sensors were installed within the catchment: 22 installed 2-3 meter above the soil surface and 16 installed 5cm under the soil surface. Rainfalls are sampled using three rain gauges for liquid rainfall and three cumulative snow gauges (at 1250, 1950 and 2200 meters). Solar radiation is also sampled. The last important variable that is measured is the snow cover on the catchment. Generally this snow cover is present between November and June in the top of the catchment. The snow cover is calculated using terrestrial pictures taken by two cameras able to shot up to six pictures per day (from 8.00am to 8.00pm). It is then possible to build the snow cover cartography of the catchment at 1 meter spatial resolution in the sampling zone and to accurately observe the spatial distribution of the snow during the melting period. Instrumentation in mountain area is a very difficult task with many sources of uncertainties and technicals challenges. The strategy that will be discussed in this presentation wish to multiply the number of measure points at "low" costs. The dense network of different types of measures is expected to compensate the uncertainty in the rainfall measurements within mountainous regions.

  10. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations

    USGS Publications Warehouse

    Iverson, R.M.; Major, J.J.

    1987-01-01

    We present data on rainfall, ground-water flow, and repetitive seasonal motion that occurred from 1982 to 1985 at Minor Creek landslide in northwestern Californa, and we interpret these data in the context of physically based theories. We find that landslide motion is closely regulated by the direction and magnitude of near-surface hydraulic gradients and by waves of pore pressure caused by intermittent rainfall. Hummocky topography that results from slope instability may cause ground-water flow that perpetuates instability. -from Authors

  11. New Bedford Harbor Superfund Project, Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Report 4. Surface Runoff Quality Evaluation for Confined Disposal

    DTIC Science & Technology

    1988-01-01

    infiltration studies ( Westerdahl and Skogerboe 1982). Exten- sive field verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of USACE project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rainfall...Criteria for Water 1986,"’ Criteria and Standards Division, Washington, DC. Westerdahl , H. E., and Skogerboe, J. G. 1982. "Realistic Rainfall and Water

  12. Nonlinear effects of microtopography on macroscopic rainfall-runoff partitioning a the hillslope scale: a modelling study

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Domin, Andrea; Hinz, Christoph

    2017-04-01

    The quantitative description and prediction of hydrological response of hillslopes or hillslope-scale catchments to rainfall events is becoming evermore relevant. At the hillslope scale, the onset of runoff and the overall rainfall-runoff transformation are controlled by multiple interacting small-scale processes, that, when acting together produce a response described in terms of hydrological variables well-defined at the catchment and hillslope scales. We hypothesize that small scale features such microtopography of the land surface will will govern large scale signatures of temporal runoff evolution. This can be tested directly by numerical modelling of well-defined surface geometries and adequate process description. It requires a modelling approach consistent with fundamental fluid mechanics, well-designed numerical methods, and computational efficiency. In this work, an idealized rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography is studied by simulating surface water redistribution by means of a 2D diffusive-wave (zero-inertia) shallow water model. By studying more than 500 surfaces and performing extensive sensitivity analysis forced by a single rainfall pulse, the dependency of characteristic hydrological responses to microtopographical properties was assessed. Despite of the simplicity of periodic surface and the rain event, results indicate complex surface flow dynamics during the onset of runoff observed at the macro and micro scales. Macro scale regimes were defined in terms of characteristics hydrograph shapes and those were related to surface geometry. The reference regime was defined for smooth topography and consisted of a simple hydrograph with smoothly rising and falling limbs with an intermediate steady state. In constrast, rough surface geometry yields stepwise rising limbs and shorter steady states. Furthermore, the increase in total infiltration over the whole domain relative to the smooth reference case shows a strong non-linear dependency on slope and the ratio of the characteristic wavelength and amplitude of microtopography. The coupled analysis of spatial and hydrological results also suggests that the hydrological behaviour can be explained by the spatiotemporal variations triggered by surface connectivity. This study significantly extents previous work on 1D domains, as our results reveal complexities that require 2D representation of the runoff processes.

  13. Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data

    NASA Astrophysics Data System (ADS)

    Abera, Wuletawu; Formetta, Giuseppe; Brocca, Luca; Rigon, Riccardo

    2017-06-01

    The Upper Blue Nile basin is one of the most data-scarce regions in developing countries, and hence the hydrological information required for informed decision making in water resource management is limited. The hydrological complexity of the basin, tied with the lack of hydrometeorological data, means that most hydrological studies in the region are either restricted to small subbasins where there are relatively better hydrometeorological data available, or on the whole-basin scale but at very coarse timescales and spatial resolutions. In this study we develop a methodology that can improve the state of the art by using available, but sparse, hydrometeorological data and satellite products to obtain the estimates of all the components of the hydrological cycle (precipitation, evapotranspiration, discharge, and storage). To obtain the water-budget closure, we use the JGrass-NewAge system and various remote sensing products. The satellite product SM2R-CCI is used for obtaining the rainfall inputs, SAF EUMETSAT for cloud cover fraction for proper net radiation estimation, GLEAM for comparison with NewAge-estimated evapotranspiration, and GRACE gravimetry data for comparison of the total water storage amounts available in the whole basin. Results are obtained at daily time steps for the period 1994-2009 (16 years), and they can be used as a reference for any water resource development activities in the region. The overall water-budget analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 % of the annual water budget, runoff is 33 %, storage varies from -10 to +17 % of the water budget.

  14. Holistic assessment of occurrence and fate of metolachlor within environmental compartments of agricultural watersheds

    USGS Publications Warehouse

    Rose, Claire E.; Coupe, Richard H.; Capel, Paul D.; Webb, Richard M.

    2017-01-01

    Background: Metolachlor [(RS)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide] and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) are commonly observed in surface and groundwater. The behavior and fate of these compounds were examined over a 12-year period in seven agricultural watersheds in the United States. They were quantified in air, rain, streams, overland flow, groundwater, soil water, subsurface drain water, and water at the stream/groundwater interface. The compounds were frequently detected in surface and groundwater associated with agricultural areas. A mass budget approach, based on all available data from the study and literature, was used to determine a percentage-wise generalized distribution and fate of applied parent metolachlor in typical agricultural environments.Results: In these watersheds, about 90% of applied metolachlor was taken up by plants or degraded, 10% volatilized, and 0.3% returned as rainfall. One percent was transported to surface water, while an equal amount infiltrated into the unsaturated zone soil water. < 0.02% reached the groundwater. Subsurface flow paths resulted in greater degradation of metolachlor because degradation reactions had more time to proceed.Conclusions: An understanding of the residence times of water in the different environmental compartments, and the important processes affecting metolachlor as it is transported along flowpaths among the environmental compartments allows for a degree of predictability of metolachlor's fate. Degradates with long half-lives can be used (in a limited capacity) as tracers of metolachlor, because of their persistence and widespread occurrence in the environment.

  15. Event-based estimation of water budget components using the network of multi-sensor capacitance probes

    USDA-ARS?s Scientific Manuscript database

    A time-scale-free approach was developed for estimation of water fluxes at boundaries of monitoring soil profile using water content time series. The approach uses the soil water budget to compute soil water budget components, i.e. surface-water excess (Sw), infiltration less evapotranspiration (I-E...

  16. Sounding-Based Thermodynamic Budgets from Dynamo/Cindy/Amie

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Ciesielski, P. E.; Ruppert, J. H.; Katsumata, M.

    2014-12-01

    The DYNAMO/CINDY/AMIE field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden-Julian Oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the Special Observing Period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q1 and Q2) and radiative heating rates QR throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA, so attention is focused on results for the NSA. Time series of Q1, Q2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, non-precipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q1 and Q2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA, a finding supported by TRMM measurements. Surface rainfall rates and column-integrated QR determined as residuals from the budgets show good agreement with satellite-based estimates. The column-integrated QR anomaly was nearly 20% of the net-tropospheric convective heating anomaly for the October MJO, approaching the proposed condition for radiative-convective instability. The ratio was far less for the November event, further emphasizing important distinctions between the two MJOs.

  17. Ecological responses of a large shallow lake (Okeechobee, Florida) to climate change and potential future hydrologic regimes.

    PubMed

    Havens, Karl E; Steinman, Alan D

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10% increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55% of the time compared to less than 4% of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.

  18. Ecological Responses of a Large Shallow Lake (Okeechobee, Florida) to Climate Change and Potential Future Hydrologic Regimes

    NASA Astrophysics Data System (ADS)

    Havens, Karl E.; Steinman, Alan D.

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10 % increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55 % of the time compared to less than 4 % of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.

  19. Satellite Sampling and Retrieval Errors in Regional Monthly Rain Estimates from TMI AMSR-E, SSM/I, AMSU-B and the TRMM PR

    NASA Technical Reports Server (NTRS)

    Fisher, Brad; Wolff, David B.

    2010-01-01

    Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.

  20. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots

    NASA Astrophysics Data System (ADS)

    Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc

    2006-07-01

    Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology seems robust and can be transposed to other gauged sites.

Top