Sample records for surface reaction control

  1. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although perovskites have been widely used in catalysis, tuning their surface terminations to control reaction selectivities has not been well established. In this work, we employ multiple surface sensitive techniques to characterize the surface termination (one aspect of surface reconstruction) of SrTiO 3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface termination of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO 2. Densitymore » functional theory (DFT) calculations well explain the selectivity tuning and reaction mechanism on different surface terminations of STO. Similar catalytic tunability is also observed on BaZrO 3, highlighting the generality of the finding from this work.« less

  2. From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion.

    PubMed

    Cheng, Zhongjun; Du, Ming; Lai, Hua; Zhang, Naiqing; Sun, Kening

    2013-04-07

    In this paper, a convenient approach based on the reaction between an alkyl thiol and hierarchical structured Cu(OH)2 substrates is reported for the fabrication of super-hydrophobic surfaces with controlled adhesion. This reaction can etch the Cu(OH)2 microstructures and simultaneously introduce a coating with low surface energy. By simply controlling the reaction time or the chain length of the thiol, super-hydrophobic surfaces with controlled adhesion can be achieved, and the adhesive force between the surface and the water droplet can be adjusted from extreme low (∼14 μN) to very high (∼65 μN). The tunable effect of the adhesion is ascribed to the different wetting states for the droplet on the surface that results from the change of the morphology and microstructure scale after the thiolate reaction. Noticeably, the as-prepared surfaces are acid/alkali-resisting; the acidic and basic water droplets have similar contact angles and adhesive forces to that of the neutral water droplet. Moreover, we demonstrate a proof of water droplet transportation for application in droplet-based microreactors via our surfaces. We believe that the results reported here would be helpful for the further understanding of the effect of wetting states on the surface adhesion and the fabrication principle for a super-hydrophobic surface with controlled adhesion.

  3. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  4. Rhenium/Oxygen Interactions at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Myers, Dwight; Zhu, Dong-Ming; Humphrey, Donald

    2000-01-01

    The oxidation of pure rhenium is examined from 600-1400 C in oxygen/argon mixtures. Linear weight loss kinetics are observed. Gas pressures, flow rates, and temperatures are methodically varied to determine the rate controlling steps. The reaction at 600 and 800 C appears to be controlled by a chemical reaction step at the surface; whereas the higher temperature reactions appear to be controlled by gas phase diffusion of oxygen to the rhenium surface. Attack of the rhenium appears to be along grain boundaries and crystallographic planes.

  5. Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor

    2017-07-19

    Although well known in the material science field, surface reconstruction of perovskites has not been implemented in heterogeneous catalysis. In this work, we employ multiple surface sensitive techniques to characterize the surface reconstruction of SrTiO3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface reconstruction of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO2. Density functional theory (DFT) calculations well explain the selectivity tuningmore » and reaction mechanism on differently reconstructed surfaces of STO. Similar catalytic tunability is also observed on BaZrO3, highlighting the generality of the finding from this work.« less

  6. Adjusting the surface areal density of click-reactive azide groups by kinetic control of the azide substitution reaction on bromine-functional SAMs.

    PubMed

    Zhang, Shuo; Maidenberg, Yanir; Luo, Kai; Koberstein, Jeffrey T

    2014-06-03

    Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide. The kinetics of the azide substitution reaction on monolayers formed on flat Ge substrates, determined by attenuated total reflection infrared spectroscopy (ATR-IR), are found to be identical to those for monolayers formed on both silica and iron oxide nanoparticles, the latter determined by transmission infrared spectroscopy. To validate the method, the percentages of surface bromine groups converted to azide groups after various reaction times were measured by quenching the S(N)2 reaction followed by analysis with ATR-IR (for Ge) and thermogravimetric analysis (after a subsequent click reaction with an alkyne-terminal polymer) for the nanoparticle substrates. The conversions found after quenching agree well with those expected from the standard kinetic curves. The latter result suggests that the kinetic method for the control of azide group areal density is a versatile means for functionalizing substrates with a prescribed areal density of azide groups for subsequent click reactions, and that the method is universal for any substrate, flat or nanoparticle, that can be modified with bromo-alkane-silane monolayers. Regardless of the surface geometry, we find that the azide substitution reaction is complete within 2-3 h, in sharp contrast to previous reports that indicate times of 48-60 h required for completion of the reaction.

  7. Modeling the rate-controlled sorption of hexavalent chromium

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  8. THE INFLUENCE OF MINERAL REACTIONS ON THE ENVIRONMENTAL FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction, however, these ...

  9. Kinetic aspects of chain growth in Fischer-Tropsch synthesis.

    PubMed

    Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M

    2017-04-28

    Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.

  10. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.

  11. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    PubMed

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  12. Poly(L-lysine) Interfaces via Dual Click Reactions on Surface-Bound Custom-Designed Dithiol Adsorbates.

    PubMed

    Shakiba, Amin; Jamison, Andrew C; Lee, T Randall

    2015-06-09

    Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.

  13. Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels-Alder Reaction.

    PubMed

    Zhu, Jun; Hiltz, Jonathan; Tefashe, Ushula M; Mauzeroll, Janine; Lennox, R Bruce

    2018-06-21

    The chemical modification of an sp 2 hybridized carbon surface in a controllable manner is very challenging but also crucial for many applications. An inverse electron demand Diels-Alder (IEDDA) reaction using microcontact printing technique is introduced to spatially control the modification of a highly ordered pyrolytic graphite (HOPG) surface under ambient conditions. The covalent modification was characterized by Raman spectroscopy, XPS, and SECM. Tetrazine derivatives can effectively react with an HOPG surface and with microcontact printing methods resulting in spatially patterned surfaces being produced with micrometer-scale resolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...

  15. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    PubMed Central

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-01-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage. PMID:26658957

  16. JF-104 ground testing reaction control system (RCS) jets

    NASA Technical Reports Server (NTRS)

    1961-01-01

    JF-104A (formerly YF-104A, serial # 55-2961) was modifed with a hydrogen peroxide reaction control system (RCS). Following a zoom climb to altitudes in the vicinity of 80,000 feet, the RCS system gave the aircraft controllability in the thin upper atmosphere where conventional control surfaces are ineffective.

  17. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality.

    PubMed

    Nguyen, Michelle A; Bedford, Nicholas M; Ren, Yang; Zahran, Elsayed M; Goodin, Robert C; Chagani, Fatima F; Bachas, Leonidas G; Knecht, Marc R

    2015-06-24

    We report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures. Octahedral particles were prepared at selected Cu(2+):glucose ratios that demonstrated a range of photocatalytic reactivity. The results indicate that material composition, surface area, and substrate charge effects play important roles in controlling the overall reaction rate. In addition, analysis of the post-reacted materials revealed photocorrosion was inhibited and that surface etching had preferentially occurred at the particle edges during the reaction, suggesting that the reaction predominately occurred at these interfaces. Such results advance the understanding of how size and composition affect the surface interface and catalytic functionality of materials.

  18. Bifurcations on Potential Energy Surfaces of Organic Reactions

    PubMed Central

    Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.

    2009-01-01

    A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086

  19. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions.

    PubMed

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  20. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-04-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  1. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    PubMed

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  2. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.

    PubMed

    Mansfield, Avril; Peters, Amy L; Liu, Barbara A; Maki, Brian E

    2010-04-01

    Compensatory stepping and grasping reactions are prevalent responses to sudden loss of balance and play a critical role in preventing falls. The ability to execute these reactions effectively is impaired in older adults. The purpose of this study was to evaluate a perturbation-based balance training program designed to target specific age-related impairments in compensatory stepping and grasping balance recovery reactions. This was a double-blind randomized controlled trial. The study was conducted at research laboratories in a large urban hospital. Thirty community-dwelling older adults (aged 64-80 years) with a recent history of falls or self-reported instability participated in the study. Participants were randomly assigned to receive either a 6-week perturbation-based (motion platform) balance training program or a 6-week control program involving flexibility and relaxation training. Features of balance reactions targeted by the perturbation-based program were: (1) multi-step reactions, (2) extra lateral steps following anteroposterior perturbations, (3) foot collisions following lateral perturbations, and (4) time to complete grasping reactions. The reactions were evoked during testing by highly unpredictable surface translation and cable pull perturbations, both of which differed from the perturbations used during training. /b> Compared with the control program, the perturbation-based training led to greater reductions in frequency of multi-step reactions and foot collisions that were statistically significant for surface translations but not cable pulls. The perturbation group also showed significantly greater reduction in handrail contact time compared with the control group for cable pulls and a possible trend in this direction for surface translations. Further work is needed to determine whether a maintenance program is needed to retain the training benefits and to assess whether these benefits reduce fall risk in daily life. Perturbation-based training shows promise as an effective intervention to improve the ability of older adults to prevent themselves from falling when they lose their balance.

  3. In situ monitoring of atomic layer controlled pore reduction in alumina tubular membranes using sequential surface reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, B.S.; Gartland, I.P.; Ott, A.W.

    1998-12-01

    The pore diameter in alumina tubular membranes with an initial diameter of 50 {angstrom} was systematically reduced using the atomic layer controlled deposition of Al{sub 2}O{sub 3}. The Al{sub 2}O{sub 3} was deposited using sequential exposures of Al(CH{sub 3}){sub 3} (trimethylaluminum, TMA) and H{sub 2}O in an ABAB... binary reaction sequence. The pore diameter reduction was monitored using in situ N{sub 2} and Ar conductance measurements. The conductance, C = Q/{Delta}P, was measured using a mass flow controller to define a constant gas throughput, Q, and a pair of capacitance manometers to monitor the transmembrane pressure drop, {Delta}P. Conductance measurementsmore » were periodically obtained at 298 K as a function of AB binary reaction cycles. These conductance measurements were consistent with a pore diameter reduction from 50 {angstrom} to {approximately}5--10 {angstrom} at a rate of {approximately}2.5 {angstrom} for each AB cycle. Conductance measurements were also performed during the Al{sub 2}O{sub 3} deposition at 500 K after each half-reaction in the binary reaction sequence. These in situ conductance measurements demonstrate that the pore diameters in mesoporous membranes can be reduced to molecular dimensions with atomic layer control using sequential surface reactions. Poe diameters can be tailored for specific applications by varying the number of AB cycles and changing the nature of the terminating surface functional groups.« less

  4. Mixing-dependent Reactions in the Hyporheic Zone: Laboratory and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Santizo, K. Y.; Eastes, L. A.; Hester, E. T.; Widdowson, M.

    2017-12-01

    The hyporheic zone is the surface water-groundwater interface surrounding the river's perimeter. Prior research demonstrates the ability of the hyporheic zone to attenuate pollutants when surface water cycles through reactive sediments (non-mixing-dependent reactions). However, the colocation of both surface and ground water within hyporheic sediments also allows mixing-dependent reactions that require mixing of reactants from these two water sources. Recent modeling studies show these mixing zones can be small under steady state homogeneous conditions, but do not validate those results in the laboratory or explore the range of hydrological characteristics that control the extent of mixing. Our objective was to simulate the mixing zone, quantify its thickness, and probe its hydrological controls using a "mix" of laboratory and numerical experiments. For the lab experiments, a hyporheic zone was simulated in a sand mesocosm, and a mixing-dependent abiotic reaction of sodium sulfite and dissolved oxygen was induced. Oxygen concentration response and oxygen consumption were visualized via planar optodes. Sulfate production by the mixing-dependent reaction was measured by fluid samples and a spectrophometer. Key hydrologic controls varied in the mesocosm included head gradient driving hyporheic exchange and hydraulic conductivity/heterogeneity. Results show a clear mixing area, sulfate production, and oxygen gradient. Mixing zone length (hyporheic flow cell size) and thickness both increase with the driving head gradient. For the numerical experiments, transient surface water boundary conditions were implemented together with heterogeneity of hydraulic conductivity. Results indicate that both fluctuating boundary conditions and heterogeneity increase mixing-dependent reaction. The hyporheic zone is deemed an attenuation hotspot by multiple studies, but here we demonstrate its potential for mixing-dependent reactions and the influence of important hydrological parameters.

  5. Aluminum/water reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Hooper, Joseph

    2013-03-01

    We discuss mechanisms that may control the reaction of aluminum and water under extreme conditions. We are particularly interested in the high-temperature, high-strain regime where the native oxide layer is destroyed and fresh aluminum is initially in direct contact with liquid or supercritical water. Disparate experimental data over the years have suggested rapid oxidation of aluminum is possible in such situations, but no coherent picture has emerged as to the basic oxidation mechanism or the physical processes that govern the extent of reaction. We present theoretical and computational analysis of traditional metal/water reaction mechanisms that treat diffusion through a dynamic oxide layer or reaction limited by surface kinetics. Diffusion through a fresh solid oxide layer is shown to be far too slow to have any effect on the millisecond timescale (even at high temperatures). Quantum molecular dynamics simulations of liquid Al and water surface reactions show rapid water decomposition at the interface, catalyzed by adjacent water molecules in a Grotthus-like relay mechanism. The surface reaction barriers are far too low for this to be rate-limiting in any way. With these straightforward mechanisms ruled out, we investigate two more complex possibilities for the rate-limiting factor; first, we explore the possibility that newly formed oxide remains a metastable liquid well below its freezing point, allowing for diffusion-limited reactions through the oxide shell but on a much faster timescale. The extent of reaction would then be controlled by the solidification kinetics of alumina. Second, we discuss preliminary analysis on surface erosion and turbulent mixing, which may play a prominent role during hypervelocity penetration of solid aluminum projectiles into water.

  6. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol

    DOE PAGES

    Xu, Ping; Kang, Leilei; Mack, Nathan H.; ...

    2013-10-21

    We investigate surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from surface plasmon resonance to 4ATP, where O 2 (as an electron acceptor) is essential and H 2O (as a base) can accelerate the reaction. In contrast, hot electron (from surface plasmon decay) induction drives the reverse reaction of DMAB to 4ATP, where H 2O (or H 2) acts asmore » the hydrogen source. More interestingly, the cyclic redox between 4ATP and DMAB by SPAC approach has been demonstrated. Finally, this SPAC methodology presents a unique platform for studying chemical reactions that are not possible under standard synthetic conditions.« less

  7. X-ray driven reaction front dynamics at calcite-water interfaces

    DOE PAGES

    Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; ...

    2015-09-18

    The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less

  8. Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature

    NASA Technical Reports Server (NTRS)

    Williams, D. N.; Wood, R. A.

    1972-01-01

    An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.

  9. The immediate effects of therapeutic keyboard music playing for finger training in adults undergoing hand rehabilitation.

    PubMed

    Zhang, Xiaoying; Liu, Songhuai; Yang, Degang; Du, Liangjie; Wang, Ziyuan

    2016-08-01

    [Purpose] The purpose of this study was to examine the immediate effects of therapeutic keyboard music playing on the finger function of subjects' hands through measurements of the joint position error test, surface electromyography, probe reaction time, and writing time. [Subjects and Methods] Ten subjects were divided randomly into experimental and control groups. The experimental group used therapeutic keyboard music playing and the control group used grip training. All subjects were assessed and evaluated by the joint position error test, surface electromyography, probe reaction time, and writing time. [Results] After accomplishing therapeutic keyboard music playing and grip training, surface electromyography of the two groups showed no significant change, but joint position error test, probe reaction time, and writing time obviously improved. [Conclusion] These results suggest that therapeutic keyboard music playing is an effective and novel treatment for improving joint position error test scores, probe reaction time, and writing time, and it should be promoted widely in clinics.

  10. STRUCTURAL DYNAMICS OF METAL PARTITIONING TO MINERAL SURFACES

    EPA Science Inventory

    The conceptual understanding of surface complexation reactions that control trace element partitioning to mineral surfaces is limited by the assumption that the solid reactant possesses a finite, time-invariant population of surface functional groups. This assumption has limited...

  11. Atmospheric Chemistry of Neonicotinoids Used in Urban Areas

    NASA Astrophysics Data System (ADS)

    Finlayson-Pitts, B. J.; Aregahegn, K.; Shemesh, D.; Gerber, R. B.

    2016-12-01

    Neonicotinoid (NN) pesticides are used extensively in both urban and agricultural settings to control sucking pests such as aphids, as well as for flea control for domestic pets. As a result, they are commonly found on surfaces that are exposed to the atmosphere. Imidacloprid (IMD) is one of the major NNs in pest control formulations. While there have been a number of studies of IMD reactions in solution, there are relatively few surface reactions that are relevant to atmospheric exposures. We report here laboratory studies of the photochemistry of IMD on surfaces in which quantum yields are measured and combined with absorption cross sections to estimate tropospheric lifetimes with respect to photolysis. Products identified using a combination of ATR-FTIR, DART-MS and ESI-MS include the desnitro and urea derivatives in the solid, and N2O in the gas phase. Quantum chemical calculations suggest a mechanism for the photolysis and production of these products. The implications for altering toxicity through atmospheric reactions will be discussed.

  12. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction.

    PubMed

    Cobley, Claire M; Zhang, Qiang; Song, Wilbur; Xia, Younan

    2011-06-06

    The use of silver nanocrystals--asymmetrically truncated octahedrons and nanobars--characterized by a nonuniform surface as substrates for a galvanic replacement reaction was investigated. As the surfaces of these nanocrystals contain facets with a variety of different areas, shapes, and atomic arrangements, we were able to examine the roles of these parameters in different stages of the galvanic replacement reaction with HAuCl(4) (e.g., pitting, hollowing, pit closing, and pore formation), and thus obtain a deeper understanding of the reaction mechanism than is possible with silver nanocubes. We found that the most important of these parameters was the atomic arrangement, that is, whether the surface was capped by a {100} or {111} facet, and that the area and shape of the facet had essentially no effect on the initiation of the reaction. Interestingly, through the reaction with asymmetrically truncated octahedrons, we were also able to demonstrate that even when pitting occurred over a large area, this region would be sealed through a combination of atomic diffusion and deposition during the intermediate stages of the reaction. Consequently, even if pitting occurred across a large percentage of the nanocrystal surface, it was still possible to maintain the morphology of the template throughout the reaction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chloride (Cl-) ion-mediated shape control of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj

    2016-02-01

    The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

  14. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    PubMed Central

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809

  15. Supersonic molecular beam experiments on surface chemical reactions.

    PubMed

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    PubMed

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  17. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  18. The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure

    USGS Publications Warehouse

    Plummer, Niel; Wigley, T.M.L.

    1976-01-01

    The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.

  19. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles.

    PubMed

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin

    2017-06-14

    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  20. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  1. Improving catalytic selectivity through control of adsorption orientation

    NASA Astrophysics Data System (ADS)

    Pang, Simon H.

    In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.

  2. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.

    PubMed

    Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D

    2005-06-22

    A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.

  3. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  4. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  5. Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2016-12-01

    Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.

  6. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  7. Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction

    PubMed Central

    Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin

    2013-01-01

    Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418

  8. A generalized expression for lag-time in the gas-phase permeation of hollow tubes

    NASA Technical Reports Server (NTRS)

    Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.

    1975-01-01

    A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.

  9. Qualitative and quantitative observations of bone tissue reactions to anodised implants.

    PubMed

    Sul, Young-Taeg; Johansson, Carina B; Röser, Kerstin; Albrektsson, Tomas

    2002-04-01

    Research projects focusing on biomaterials related factors; the bulk implant material, the macro-design of the implant and the microsurface roughness are routinely being conducted at our laboratories. In this study, we have investigated the bone tissue reactions to turned commercially pure (c.p.) titanium implants with various thicknesses of the oxide films after 6 weeks of insertion in rabbit bone. The control c.p. titanium implants had an oxide thickness of 17-200 nm while the test implants revealed an oxide thickness between 600 and 1000 nm. Routine histological investigations of the tissue reactions around the implants and enzyme histochemical detections of alkaline and acid phosphatase activities demonstrated similar findings around both the control and test implants. In general, the histomorphometrical parameters (bone to implant contact and newly formed bone) revealed significant quantitative differences between the control and test implants. The test implants demonstrated a greater bone response histomorphometrically than control implants and the osteoconductivity was more pronounced around the test implant surfaces. The parameters that differed between the implant surfaces, i.e. the oxide thickness, the pore size distribution, the porosity and the crystallinity of the surface oxides may represent factors that have an influence on the histomorphometrical results indicated by a stronger bone tissue response to the test implant surfaces, with an oxide thickness of more than 600 nm.

  10. The Effect of Simulated Microgravity Environment of RWV Bioreactors on Surface Reactions and Adsorption of Serum Proteins on Bone-bioactive Microcarriers

    NASA Technical Reports Server (NTRS)

    Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.

    2003-01-01

    Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.

  11. Reaction Mechanisms for the Electrochemical Reduction of CO 2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water

    DOE PAGES

    Cheng, Tao; Xiao, Hai; Goddard, William A.

    2016-10-11

    Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). We carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO 2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formatemore » (HCOO –) from CO 2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ-), with a free energy barrier of ΔG ‡ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO– formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO – formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Therefore, to alter the product distribution, we need to control this first step of CO 2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.« less

  12. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  13. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Westphal, S.

    1979-01-01

    Optimization studies were carried out for the SiF4-Na reaction with solid Na feed. The goals of the study were the consistent production of high purity reaction products and the gathering of relevant information needed to scale-up the reactor. Parameters studied include: (1) effect of surface to volume ratio of Na slices on the extent of reaction; (2) effect of Na surface oxidation on the extent of reaction; (3) effect of external heating on the extent of SiF4-Na reaction; (4) effect of Na slice addition rate on extent of the reaction; and (5) SiF4-Na reaction - high pressure experiments. An investigation was also made of the possible role played by NaF as a fluxing agent during the separation of silicon by melting of the reaction product (Si + NaF) mixture. Since silicon can be produced by the thermite reaction between Na2SiF6 and Na, studies were initiated to gather information on parameters which control the efficiency of the thermite reaction.

  14. Homochiral polymerization-driven selective growth of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro; Nakae, Takahiro

    2017-01-01

    The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate 'conformation-controlled surface catalysis': the two-zone chemical vapour deposition of a 'Z-bar-linkage' precursor, which represents two terphenyl units linked in a 'Z' shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.

  15. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    PubMed Central

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-01-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions. PMID:26355955

  16. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co(2+) Solution: Interactional Performance and Mechanism.

    PubMed

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-10

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co(2+) solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co(2+) reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the "structural influence" crucial for the full and dynamical understanding of nZVI reactions.

  17. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.

  18. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  19. Adsorption of acrylonitrile on diamond and silicon (001)-(2 x 1) surfaces: effects of dimer structure on reaction pathways and product distributions.

    PubMed

    Schwartz, Michael P; Barlow, Daniel E; Russell, John N; Butler, James E; D'Evelyn, Mark P; Hamers, Robert J

    2005-06-15

    Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) are used to compare the reaction of acrylonitrile with Si(001) and C(001) (diamond) surfaces. Our results show that reaction with Si(001) and C(001) yield very different product distributions that result from fundamental differences in the ionic character of these surfaces. While acrylonitrile reacts with the C(001) surface via a [2 + 2] cycloaddition reaction in a manner similar to nonpolar molecules such as alkenes and disilenes, reaction with the Si(001) surface occurs largely through the nitrile group. This work represents the first experimental example of how differences in dimer structure lead to very different chemistry for C(001) compared to that for Si(001). The fact that Si(001) reacts with the strongly polar nitrile group of acrylonitrile indicates that the zwitterionic character of this surface controls its reactivity. C(001) dimers, on the other hand, behave more like a true molecular double bond, albeit a highly strained one. Consequently, while alternative strategies will be necessary for chemical modification of Si(001), traditional schemes from organic chemistry for functionalization of alkenes and disilenes may be available for building molecular layers on C(001).

  20. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Xiao, Zhongcan; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Sumpter, Bobby G.; Hong, Kunlun; Bernholc, J.; Li, An-Ping

    2017-03-01

    In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

  1. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    PubMed

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  2. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-09

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  3. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  4. Reaction mechanism of electrochemical-vapor deposition of yttria-stabilized zirconia film

    NASA Astrophysics Data System (ADS)

    Sasaki, Hirokazu; Yakawa, Chiori; Otoshi, Shoji; Suzuki, Minoru; Ippommatsu, Masamichi

    1993-10-01

    The reaction mechanism for electrochemical-vapor deposition of yttria-stabilized zirconia was studied. Yttria-stabilized zirconia films were deposited on porous La(Sr)MnOx using the electrochemical-vapor-deposition process. The distribution of yttria concentration through the film was investigated by means of secondary-ion-mass spectroscopy and x-ray microanalysis and found to be nearly constant. The deposition rate was approximately proportional to the minus two-thirds power of the film thickness, the one-third power of the partial pressure of ZrCl4/YCl3 mixed gas, and the two-thirds power of the product of the reaction temperature and the electronic conductivity of yttria-stabilized zirconia film. These experimental results were explained by a model for electron transport through the YSZ film and reaction between the surface oxygen and the metal chloride on the chloride side of the film, both of which affect the deposition rate. If the film thickness is very small, the deposition rate is thought to be controlled by the surface reaction step. On the other hand, if large, the electron transport step is rate controlling.

  5. Interaction of tetraethoxysilane with OH-terminated SiO2 (0 0 1) surface: A first principles study

    NASA Astrophysics Data System (ADS)

    Deng, Xiaodi; Song, Yixu; Li, Jinchun; Pu, Yikang

    2014-06-01

    First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO2(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO2 film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO2 films while the other will lead to formation of disordered SiO2 films.

  6. Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile.

    PubMed

    Ham, J E; Wells, J R

    2008-10-01

    The surface-phase reaction products of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone (O(3)), air or nitrogen (N(2)) on both a glass and vinyl flooring tile were investigated using the recently published FLEC Automation and Control System (FACS). The FACS was used to deliver O(3) (100 ppb), air or N(2) to the surface at a specified flow rate (300 ml/min) and relative humidity (50%) after application of a 1.6%alpha-terpineol solution in methanol. Oxidation products were detected using the derivatization agents: O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine and N,O-bis(trimethysilyl)trifluoroacetamide. The positively identified reaction products were glyoxal, methylglyoxal and 4-oxopentanal. The proposed oxidation products based on previously published VOC/O(3) reaction mechanisms were: 4-methylcyclohex-3-en-1-one, 6-hydroxyhept-en-2-one, 3-(1-hydroxy-1-methylethyl)-6-methylcyclohex-2-en-1-one) and one surface-enhanced reaction product: 5-(1-hydroxy-1-methylethyl)-2-methylcyclohex-2-en-1-one. Though similar products were observed in gas-phase alpha-terpineol/O(3) reactions, the ratio of the reaction products were different suggesting stabilization of larger molecular weight species by the surface. Emission profiles of these oxidation products over 72 h are also reported. Volatile organic compounds (VOCs) can interact with indoor initiators [such as hydroxyl radicals (OH*), ozone and nitrate radicals (NO(3)*)] to form a number of oxygenated by-products in the gas-phase. However, when VOCs are applied to or are present on the surface, heterogeneous chemistry with indoor initiators can also occur. The surface can influence the reaction mechanism to produce new surface reaction products. The work, described here, shows the interaction of alpha-terpineol (major component of pine oil) with ozone and air on both glass and vinyl flooring. These results demonstrated emissions of oxygenated organic compounds as a result of reaction and that further investigations of this chemistry are required to accurately estimate indoor occupant exposures.

  7. Oxygen atom reaction with shuttle materials at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1983-01-01

    Significant effects of the environment on payload bay materials observed on all flights are discussed. The STS 5 experiment is described. Increased outgassing rates resulting in possible localized effects on experiments, changes in optical control surfaces, and photoemission from reaction products are considered.

  8. Doping control by ALD surface functionalization

    DOEpatents

    Elam, Jeffrey W.; Yanguas-Gil, Angel

    2015-02-10

    Systems and methods for producing a material of desired thickness. Deposition techniques such as atomic layer deposition are alter to control the thickness of deposited material. A funtionalization species inhibits the deposition reaction.

  9. Direct electrical control of IgG conformation and functional activity at surfaces

    NASA Astrophysics Data System (ADS)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  10. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  11. 14 CFR 29.395 - Control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...

  12. 14 CFR 29.395 - Control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...

  13. 14 CFR 29.395 - Control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system. 29.395 Section 29.395... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.395 Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control...

  14. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments.

    DOE PAGES

    Danilovic, N.; Subbaraman, R.; Chang, K-C.; ...

    2014-10-08

    The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity ofmore » surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.« less

  15. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  16. Regulating the surface of nanoceria and its applications in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Ma, Yuanyuan; Gao, Wei; Zhang, Zhiyun; Zhang, Sai; Tian, Zhimin; Liu, Yuxuan; Ho, Johnny C.; Qu, Yongquan

    2018-03-01

    Ceria (CeO2) as a support, additive, and active component for heterogeneous catalysis has been demonstrated to have great catalytic performance, which includes excellent thermal structural stability, catalytic efficiency, and chemoselectivity. Understanding the surface properties of CeO2 and the chemical reactions occurred on the corresponding interfaces is of great importance in the rational design of heterogeneous catalysts for various reactions. In general, the reversible Ce3+/Ce4+ redox pair and the surface acid-base properties contribute to the superior intrinsic catalytic capability of CeO2, and hence yield enhanced catalytic phenomenon in many reactions. Particularly, nanostructured CeO2 is characterized by a large number of surface-bound defects, which are primarily oxygen vacancies, as the surface active catalytic sites. Many efforts have therefore been made to control the surface defects and properties of CeO2 by various synthetic strategies and post-treatments. The present review provides a comprehensive overview of recent progress in regulating the surface structure and composition of CeO2 and its applications in catalysis.

  17. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongwei; Zheng, Dong; Liu, Dan

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  18. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE PAGES

    Wang, Gongwei; Zheng, Dong; Liu, Dan; ...

    2017-04-28

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  19. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    NASA Astrophysics Data System (ADS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  20. High-rate synthesis of Cu-BTC metal-organic frameworks.

    PubMed

    Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun

    2013-12-21

    The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.

  1. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques

    NASA Astrophysics Data System (ADS)

    Assiongbon, K. A.; Roy, D.

    2005-12-01

    Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.

  2. Electronic Structure and Band Gap of Fullerenes on Tungsten Surfaces: Transition from a Semiconductor to a Metal Triggered by Annealing.

    PubMed

    Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra

    2016-12-21

    The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.

  3. Skating on thin ice: surface chemistry under interstellar conditions

    NASA Astrophysics Data System (ADS)

    Fraser, H.; van Dishoeck, E.; Tielens, X.

    Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159

  4. Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions.

    PubMed

    Shen, Bo; Wen, Xianghua; Korshin, Gregory V

    2018-05-14

    Herein, the rotating disk electrode technique was used for the first time to investigate the effects of mass-transfer limitations and pH on the electrochemical oxidation of CPX, to determine the kinetics of CPX oxidation and to explore intrinsic mechanisms during the electron transfer process. Firstly, cyclic voltammetry revealed that an obvious irreversible CPX oxidation peak was observed within the potential window from 0.70 to 1.30 V at all pHs. Based on the Levich equation, the electrochemical oxidation of CPX in the electron transfer process was found to be controlled by both diffusion and kinetic processes when pH = 2, 5, 7 and 9; the diffusion coefficient of CPX at pH = 2 was calculated to be 1.5 × 10-7 cm2 s-1. Kinetic analysis indicated that the reaction on the electrode surface was adsorption-controlled compared to a diffusion process; the surface concentration of electroactive species was estimated to be 1.15 × 10-9 mol cm-2, the standard rate constant of the surface reaction was calculated to be 1.37 s-1, and CPX oxidation was validated to be a two-electron transfer process. Finally, a possible CPX oxidation pathway during the electron transfer process was proposed. The electrochemical degradation of CPX on a Ti-based anode was also conducted subsequently to investigate the electrochemical oxidation of CPX in the indirect oxidation process in bulk solutions. The effects of pH and current density were determined and compared to related literature results. The oxidation of CPX at different pHs is believed to be the result of a counterbalance between favorable and unfavorable factors, namely electromigration and side reactions of oxygen evolution, respectively. The effects of current density indicated a diffusion- and reaction-controlled process at low currents followed by a reaction-controlled process at high currents. The results presented in this study provide better understanding of the electrochemical oxidation of CPX and would enable the development of new treatment methods based on electrochemistry.

  5. Information processing capacity while wearing personal protective eyewear.

    PubMed

    Wade, Chip; Davis, Jerry; Marzilli, Thomas S; Weimar, Wendi H

    2006-08-15

    It is difficult to overemphasize the function vision plays in information processing, specifically in maintaining postural control. Vision appears to be an immediate, effortless event; suggesting that eyes need only to be open to employ the visual information provided by the environment. This study is focused on investigating the effect of Occupational Safety and Health Administration regulated personal protective eyewear (29 CFR 1910.133) on physiological and cognitive factors associated with information processing capabilities. Twenty-one college students between the ages of 19 and 25 years were randomly tested in each of three eyewear conditions (control, new and artificially aged) on an inclined and horizontal support surface for auditory and visual stimulus reaction time. Data collection trials consisted of 50 randomly selected (25 auditory, 25 visual) stimuli over a 10-min surface-eyewear condition trial. Auditory stimulus reaction time was significantly affected by the surface by eyewear interaction (F2,40 = 7.4; p < 0.05). Similarly, analysis revealed a significant surface by eyewear interaction in reaction time following the visual stimulus (F2,40 = 21.7; p < 0.05). The current findings do not trivialize the importance of personal protective eyewear usage in an occupational setting; rather, they suggest the value of future research focused on the effect that personal protective eyewear has on the physiological, cognitive and biomechanical contributions to postural control. These findings suggest that while personal protective eyewear may serve to protect an individual from eye injury, an individual's use of such personal protective eyewear may have deleterious effects on sensory information associated with information processing and postural control.

  6. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  7. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+Soultion : Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Dai, C.; Zhang, Y.

    2015-12-01

    The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.

  8. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate.

    PubMed

    Davis, Kathryn M; Badu-Tawiah, Abraham K

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.

  9. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn M.; Badu-Tawiah, Abraham K.

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O2 •-) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  12. Effects of reaction control system jet flow field interactions on the aerodynamic characteristics of a 0.010-scale space shuttle orbiter model in the Langley Research Center 31 inch CFHT (OA85)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.

  13. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  14. Reaction Rate of Ti0.18Zr0.84Cr1.0Fe0.7Mn0.3Cu0.057 to Use for the Heat Driven Type Compact Metal Hydride Refrigerator

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Katsuta, Masafumi

    Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.

  15. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  16. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  17. Wetting characteristics and blood clotting on surfaces of copoly(gamma-Benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine).

    PubMed

    Yano, E; Komai, T; Kawasaki, T; Kaifu, K; Atsuta, T; Kubo, Y; Fujiwara, Y

    1985-09-01

    The film surface of poly(gamma-benzyl-L-glutamate) (PBLG) was modified with 2-aminoethanol to enhance its hydrophilicity. Controlling the reaction conditions of PBLG and 2-aminoethanol, various types of copoly(gamma-benzyl-L-glutamate, gamma-hydroxyethyl-L-glutamine) film surfaces were obtained. Surface free energy (gamma sv), the dispersive component of gamma sv (gamma dsv), the nondispersive component of gamma sv (gamma psv), and the interfacial free energy of polymer surface with water (gamma sw), which were obtained by using the contact angle measurement and calculation method proposed by Andrade et al., were changed remarkably by the aminolysis. The gamma sv value increased after 2 h of aminolysis from 48.2 (PBLG) to 65.3 dyn/cm and gradually increased to around 70 dyn/cm after 12 h reaction. (gamma dsv) and (gamma psv) changed from 31.0 and 17.2 dyn/cm (PBLG) to 26.5 and 44.3 dyn/cm, respectively. These parameters of the material surfaces, modified over 12 h reaction, were found to be similar to those of the surfaces of canine aorta, vein, and human fibrin membrane. Blood clotting times on these polymer surfaces were comparatively longer than on siliconized glass surfaces.

  18. Controlling Heterogeneous Catalysis of Water Dissociation Using Cu-Ni Bimetallic Alloy Surfaces: A Quantum Dynamics Study.

    PubMed

    Ray, Dhiman; Ghosh, Smita; Tiwari, Ashwani Kumar

    2018-06-07

    Copper-Nickel bimetallic alloys are emerging heterogeneous catalysts for water dissociation which is the rate determining step of industrially important Water Gas Shift (WGS) reaction. Yet, the detailed quantum dynamics studies of water-surface scattering in literature are limited to pure metal surfaces. We present here, a three dimensional wave-packet dynamics study of water dissociation on Cu-Ni alloy surfaces, using a pseudo diatomic model of water on a London-Eyring-Polanyi-Sato (LEPS) potential energy surface in order to study the effect of initial vibration, rotation and orientation of water molecule on reactivity. For all the chosen surfaces reactivity increases significantly with vibrational excitation. In general, for lower vibrational states the reactivity increases with increasing rotational excitation but it decreases in higher vibrational states. Molecular orientation strongly affects reactivity by helping the molecule to align along the reaction path at higher vibrational states. For different alloys, the reaction probability follows the trend of barrier heights and the surfaces having all Ni atoms in the uppermost layer are much more reactive than the ones with Cu atoms. Hence the nature of the alloy surface and initial quantum state of the incoming molecule significantly influence the reactivity in surface catalyzed water dissociation.

  19. Hybrid thrusters and reaction wheels strategy for large angle rapid reorientation with high precision

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Sun, Zhaowei; Wu, Shunan

    2012-08-01

    The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.

  20. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity.

    PubMed

    Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong

    2013-01-29

    Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.

  1. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.

    PubMed

    He, Peng; He, Lin

    2009-07-13

    We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.

  2. Molecular simulations of palladium catalysed hydrodeoxygenation of 2-hydroxybenzaldehyde using density functional theory.

    PubMed

    Verma, Anand Mohan; Kishore, Nanda

    2017-09-27

    The catalytic conversion of 2-hydroxybenzaldehyde (2-HB) is carried out numerically over a Pd(111) surface using density functional theory. The palladium catalyst surface is designed using a 12 atom monolayer and verified with the adsorption of phenol, benzene, anisole, guaiacol, and vanillin; it is found that the adsorption energies along with the adsorption configurations of phenol and benzene are in excellent agreement with the literature. The conversion of 2-HB over the Pd(111) catalyst surface is performed using four reaction schemes: (i) dehydrogenation of the formyl group followed by elimination of CO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (ii) direct elimination of CHO from 2-HB followed by elimination of hydrogen from adsorbed CHO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (iii) direct dehydroxylation of 2-HB followed by association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde, and (iv) dehydrogenation of the hydroxyl group of 2-HB followed by elimination of an oxygen atom and association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde. Along with the reaction mechanisms and their barrier heights, all reaction steps are considered for kinetic modelling in the temperature range 498-698 K with 50 K intervals. The rate constants, pre-exponential factors, and equilibrium constants of all elementary reaction steps are evaluated for each temperature. Kinetic analyses of the catalytic conversion of 2-HB over the Pd(111) surface suggests the production of phenol as an intermediate, instead of benzaldehyde, via dehydrogenation of the formyl group of 2-HB as a first elementary reaction step because of its low activation barrier and the high rate constant of the rate controlling step. Furthermore, the equilibrium constants of the rate controlling step in the production of phenol from 2-HB over the Pd(111) surface report a major fraction of the product in the product mixture even at a low temperature of 498 K.

  3. Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s)).

    PubMed

    Wadhawan, Amar R; Livi, Kenneth J; Stone, Alan T; Bouwer, Edward J

    2015-03-17

    Manganese sulfide (MnS(s)) minerals exist in sulfidic environments and can have unique reactive abilities because of sulfide, which is a known reductant, and Mn, the oxyhydroxides of which are known oxidants. This study elucidated the role of MnS(s) in controlling Cr speciation with implications on its fate and toxicity in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to sediment resuspension during dredging, bioturbation, and flood events. In continuously mixed batch reaction experiments, aqueous CrVI reduction under anaerobic conditions occurred primarily on the surface of MnS(s) displaying a biphasic behavior- the initial rapid removal of CrVI from solution was followed by a slow decline due to surface passivation by reaction products, mainly sorbed or precipitated CrIII. The reaction progress increased with MnS(s) surface area loading but decreased on increasing CrVI concentration and pH, suggesting that surface site regeneration through product desorption was the rate-controlling mechanism. Below circum-neutral pH, higher solubility of MnS(s) resulted in additional CrVI reduction by reduced sulfur species in solution, whereas increased CrIII solubility lowered surface passivation allowing for more reactive sites to participate in the reaction. Aeration of MnS(s) at pH≥7 caused the formation of a heterogeneous MnIII(hydr)oxide that was composed of hausmanite and manganite. CrVI reoccurrence was observed on aeration of CrVI-spiked MnS(s) from the oxidation of product CrIII. The reoccurrence at pH≥7 was attributed to the oxidation of product CrIII by MnIII(hydr)oxide, whereas the reoccurrence at pH<7 was hypothesized from the oxidation of product CrIII by intermediate aqueous MnIII and/or sulfur species. Just as with Cr, MnS(s) may play an important role in speciation, fate, and transport of other environmental contaminants.

  4. Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects.

    PubMed

    Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V

    2013-09-24

    The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

  5. Dynamic in-plane potential gradients for actively controlling electrochemical reactions: Part I. Characterization of 1- and 2-component alkanethiol monolayer gradients on thin gold films. Part II. Applications of in-plane potential gradients

    NASA Astrophysics Data System (ADS)

    Balss, Karin Maria

    The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.

  6. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    PubMed

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  7. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Tao; Xiao, Hai; Goddard, William A.

    Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions is not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or to carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). We carry out QM calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO 2 reduction reaction conditions) to examine the initial reaction pathways to form CO and formatemore » (HCOO –) from CO 2 through free energy calculations at 298 K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ-), with a free energy barrier of ΔG ‡ = 0.43 eV, the rate-determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 and 0.30 eV, respectively. HCOO– formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO – formation occurs in the first electron-transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Therefore, to alter the product distribution, we need to control this first step of CO 2 binding, which might involve controlling pH, alloying, or changing the structure at the nanoscale.« less

  9. A thermoresponsive nanorattle containing two different catalysts for controllable one-pot tandem catalysis

    NASA Astrophysics Data System (ADS)

    Niu, Chengrong; Hu, Jie; Li, Yinfeng; Leng, Jinghang; Li, Songjun

    2018-03-01

    In the present work, a thermoresponsive nanorattle with a Ag nanoparticle (NP) core (one catalyst in the nanorattle), and a poly(N-isopropylacrylamide) shell was developed. An imidazole group was grafted on the polymer shell by copolymerization as the other catalyst. Owing to the catalytic activities of the imidazole group and Ag NP with regards to hydrolysis and reduction, respectively, this nanorattle exhibited tandem-reaction catalytic abilities. In addition, because of the shrinkage of the poly(N-isopropylacrylamide) shell at high temperatures, the tandem reaction could be controlled to stop at the first reaction step. That is to say, only the hydrolysis reaction was catalyzed by the imidazole group being grafted on the surface of the shell. The reduction step in the tandem reaction catalyzed by the Ag particle, however, was switched off by the shrinkage of the poly(N-isopropylacrylamide) shell. This protocol opens up an opportunity to develop controllable catalysts for complicated chemical processes.

  10. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO2 Interfaces.

    PubMed

    Zhang, Jing; Wang, Bingwen; Nikolla, Eranda; Medlin, J Will

    2017-06-01

    Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO 2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  12. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    NASA Astrophysics Data System (ADS)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  13. Pore surface engineering in covalent organic frameworks.

    PubMed

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  14. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  15. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.

    PubMed

    Liu, Xiuyun; Zhang, Bo; Fei, Benhua; Chen, Xiufang; Zhang, Junyi; Mu, Xindong

    2017-09-21

    The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H 2 pressure). Under mild conditions (100 °C, 1 MPa H 2 ), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H 2 . The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a reaction mechanism for furfural reduction has been proposed.

  16. Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates - Relation between textural control on effective element fluxes and resulting carbonate phase

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita

    2017-01-01

    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed reaction rates are highest for the replacement of the initially highly porous coral and lowest for the compact structure of a single aragonite crystal. Therefore, the reaction progress equally depends on effective element fluxes between the fluid at the reaction interface and the bulk solution surrounding the test material as well as the reactive surface area. This study demonstrates that the textural and microstructural properties of the parent material have a significant influence on the chemical composition of the product phase. Moreover, our data highlight the importance of effective fluid-mediated element exchange between the fluid at the reaction interface and the bulk solution controlled by the local microstructure.

  17. Thorium binding by biochar fibres derived from Luffa Cylindrica after controlled surface oxidation

    NASA Astrophysics Data System (ADS)

    Liatsou, Ioanna; Christodoulou, Eleni; Paschalidis, Ioannis

    2017-04-01

    Controlled surface modification of biochar fibres derived from Luffa Cylindrica sponges has been carried out by nitric acid and the degree of oxidation could be controlled by changing the acid concentration or the reaction time. The extent of surface oxidation has been quantified by acid-base titration and FTIR-spectroscopy. Furthermore, thorium binding has been studied as a function of various parameters and the experimental results show that even under strong acidic conditions the relative sorption is above 70% and the sorption capacity of the biochar fibres for Th(IV) at pH 3 is qmax= 70 gṡkg-1.

  18. Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions.

    PubMed

    Sharma, Vipul; Kumar, Suneel; Bahuguna, Ashish; Gambhir, Diksha; Sagara, Prateep Singh; Krishnan, Venkata

    2016-12-21

    This work presents a novel approach of using natural plant leaf surfaces having intricate hierarchical structures as scaffolds for Pd nanoparticles and demonstrated it as a Green dip catalyst for Suzuki-Miyaura coupling reactions in water. The influence of the topographical texture of the plant leaves on the deposition and catalytic properties of Pd nanoparticles are presented and discussed. The catalytic activity can be correlated to the surface texture of the leaves, wherein it has been found that the micro/nanostructures present on the surface strongly influence the assembly and entrapment of the nanoparticles, and thereby control aggregation and leaching of the catalysts. This approach can provide insights for the future design and fabrication of bioinspired supports for catalysis, based on replication of leaf surfaces.

  19. Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology

    PubMed Central

    Körbahti, Bahadır K.; Demirbüken, Pelin

    2017-01-01

    Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225

  20. Free energy landscape of dissociative adsorption of methane on ideal and defected graphene from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Wlazło, M.; Majewski, J. A.

    2018-03-01

    We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.

  1. Crystallization kinetics of the borax decahydrate

    NASA Astrophysics Data System (ADS)

    Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.

    2007-03-01

    The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.

  2. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.

    PubMed

    Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C

    2004-02-01

    To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.

  3. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Overbury, Steven H.

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  4. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE PAGES

    Beste, Ariana; Overbury, Steven H.

    2016-03-09

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  5. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.

    PubMed

    Beste, Ariana; Overbury, Steven H

    2016-04-21

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.

  6. Controlling condensation and frost growth with chemical micropatterns

    DOE PAGES

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; ...

    2016-01-22

    Frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of frost across the population of supercooled condensate. Here, we demonstrate that when the nucleation sites for supercooled condensate are properly controlled with chemical micropatterns, the speed of frost growth can be slowed and even halted entirely. This stoppage of frost growth is attributed to the large interdroplet separation between condensate upon the onset ofmore » freezing, which was controlled by the pitch of the chemical patterns and by deliberately triggering an early freezing event. Lastly, these findings reveal that frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and/or temporally control the onset of freezing events.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free themore » workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.« less

  8. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    PubMed

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to stabilize the diazonium ion near the nanotube surface. Such Coulombic and surfactant packing effects offer promise toward employing surfactants to controllably functionalize carbon nanotubes. © 2011 American Chemical Society

  9. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    NASA Astrophysics Data System (ADS)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are also discussed. Chemisorption, TPD, FTIR using a batch reactor for the self-hydrogenation of cyclohexene and CO adsorbed on the bimetallic surfaces were carried out to correlate surface science findings with experiments on supported bimetallic catalysts. To expand the studies on the effect of bimetallic structures on hydrogenation reactions, molecules with multiple functional groups such as alpha,beta-unsaturated aldehydes were also investigated. Studies of selective hydrogenation of a,ss-unsaturated aldehydes toward the desired unsaturated alcohols are of interest for the production of fine chemicals and pharmaceuticals. In these compounds, competitive hydrogenation of the C=C and C=O bonds occurs. TPD and HREELS experiments of acrolein (CH2=CH-CH=O) on Pt-based bimetallic surfaces are performed to investigate their effects on the hydrogenation activity of the C-O bond. The production of the desired unsaturated alcohol, allyl alcohol, has been observed for the first time on Pt-Ni-Pt(111) under UHV conditions. However, the propionaldehyde yield is five times higher than the allyl alcohol yield. Thus, a preferential isomerization reaction of allyl alcohol to propionaldehyde is very likely to occur on the Pt-Ni-Pt(111) surface as observed on the desorption studies of allyl alcohol on this surface. The hydrogenation of acrolein is also carried out under UHV conditions on other 3d-transition metal/Pt(111) surfaces such as Co/Pt(111), Fe/Pt(111), and Cu/Pt(111). So far, the highest activity and allyl alcohol yield are found on the Pt-Ni-Pt(111) surface with pre-adsorbed hydrogen.

  10. An immunohistochemical study of placental syncytiotrophoblasts in neonatal hemochromatosis.

    PubMed

    Shimono, Aiko; Imoto, Yuko; Sakamoto, Haruhiko; Chiba, Yoichi; Matsumoto, Koichi; Kawauchi, Machi; Kusaka, Takashi; Tanaka, Hirokazu; Hata, Toshiyuki; Kushida, Yoshio; Ueno, Masaki

    2016-12-01

    Neonatal hemochromatosis (NH) is a rare neonatal disorder that results in liver cirrhosis with hemosiderin deposition in the liver and other organs, similarly to hereditary hemochromatosis. Excess iron is transferred from the mother to fetus through the placenta in NH. We examined the expression of iron metabolism-related substances in placental syncytiotrophoblasts (STB) by immunostaining to clarify how the transfer of iron through STB increases in NH. Immunostaining was performed using formalin-fixed, paraffin-embedded sections of placentae from three NH cases, four gestational age-matched controls, and, depending on the antibody examined, five to seven full-term controls. The reactivity of immunostaining was assessed by averages of scores assigned by 3 researchers. On the microvillar surface of STB, the reactions of the antibodies against transferrin receptor 1 (TFR1), transferrin, ferritin, hepcidin, ferroportin, divalent metal transporter-1 (DMT1), hephaestin, and HFE were stronger in NH than in controls. In the cytoplasm, the reactions of antibodies against TFR1, transferrin, ferritin, hepcidin, DMT1, hephaestin, HFE, and ZIP 14 were stronger in NH than in gestational age-matched controls. Among these reactions, those of anti-TFR1 antibody on the surface of STB in NH was especially marked. In the placenta of NH, increases in expressions of TFR1, transferrin, and ferritin of which those of TFR1 were especially marked, reflect increased iron influx from the mother to fetus. The hepcidin observed on the surface and in the cytoplasm of STB of NH is suggested to be from the mother, possibly to compensate for the decreased fetal liver-derived hepcidin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  12. Analysis of reaction schemes using maximum rates of constituent steps

    PubMed Central

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  13. Analysis of reaction schemes using maximum rates of constituent steps

    DOE PAGES

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-05-09

    In this paper, we show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, r max,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of r max,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of r max,i can be used to predict themore » rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. Finally, this approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.« less

  14. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.

    PubMed

    Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne

    2009-05-05

    The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.

  15. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Amanda K; Wu, Zili; Calaza, Florencia

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumptionmore » of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.« less

  16. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  17. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Ptmore » surface, mostly in the (II) oxidation state.« less

  18. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less

  19. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE PAGES

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; ...

    2017-10-04

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less

  20. Development and design of nanomaterial reagents in conjunction with new methods for their synthetic applications

    NASA Astrophysics Data System (ADS)

    Kwaramba, Farai Brian

    This Ph.D. deals with the integration of nanotechnology with organometallic/ organic synthetic technologies. The first part of this research sought to develop a library of novel molecular gears programmed to exploit photo-switching and electrostatic repulsion to control the molecular rotation of covalently linked triptypyrazines. Incorporation of these two modes allows for control of triptycene based gear systems using unexplored external methods. The triptypyrazine was an attractive scaffold because of its intrinsic pH and electrochemical activity, thus providing a novel construct for controlling molecular motion. This design finds relevance in the fabrication of nano-electromechanical devices and understanding controlled molecular motion. This Ph.D. also sought to address the need to generate and recycle low cost hydrosilylation catalysts. Metal nanoparticle catalysts can potentially meet this need due to their high surface area and reactivity. Their morphology and surface texture provide avenues for selectivity in reactions. Metal-nanoparticles on a silicon matrix can be formed by reducing metal salts with silicon hydrides. Investigations towards iron-nanoparticle catalyzed hydrosilylation of unsaturated bonds were conducted. Furthermore, this research sought to develop highly functionalized silanes, as guiding scaffolds for generating chiral silicon hydrides. Fabrication of metal-nanoparticle catalysts with the same, could install surface definition on these heterogeneous green catalysts, thus allowing selectivity in their catalysis. A bottom up approach to nanofabrication, started with the generation of a library of highly functionalized alkynyl-silane building blocks using the hydrosilylation reaction. Hydrosilylation of carbon-carbon and carbon-heteroatom unsaturated bonds has proven to be an important reaction in organic syntheses. Additionally, silicon tethers have been utilized in complex organic syntheses as a way to increase reaction rates, and selectivity. The most commonly employed silicon tethers have been disiloxanes followed by siloxanes, then silanes. Of these methods the synthesis and utilization of tethered silyl-alkynes was limited. To address this gap, this work developed methodology to prepare tethered silyl alkynes through a hydrosilylation reaction. It was established that [IrCl(COD)]2 in the presence of excess COD can selectively catalyze the hydrosilylation of alkenes with alkynyl-silanes. This approach overrides traditional hydrosilylation catalysts' reactivity trends.

  1. Multimetallic nanosheets: synthesis and applications in fuel cells.

    PubMed

    Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun

    2018-04-03

    Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.

  2. CH4 dissociation in the early stage of graphene growth on Fe-Cu(100) surface: Theoretical insights

    NASA Astrophysics Data System (ADS)

    Tian, Baoyang; Liu, Tianhui; Yang, YanYan; Li, Kai; Wu, Zhijian; Wang, Ying

    2018-01-01

    The mechanism of CH4 dissociation and carbon nucleation process on the Fe doped Cu(100) surface were investigated systematically by using the density functional theory (DFT) calculations and microkinetic model. The activity of the Cu(100) surface was improved by the doped Fe atom and the atomic Fe on the Fe-Cu(100) surface was the reaction center due to the synergistic effect. In the dissociation process of CH4, CH3 → CH2 + H was regarded as the rate-determining step. The results obtained from the microkinetic model showed that the coverage of CHx(x = 1-3) was gradually decreased with the temperature increasing and CH3 was always the major intermediate at the broad range of the temperature (from 1035 to 1080 °C) and the ratio of H2/CH4 (from 0 to 5). It is also found that the reaction rates were increased with the temperature increasing. However, the reaction rates were reduced (or increased) at the range of H2/CH4 = 0-0.2 (or H2/CH4 > 0.2). It is noted that controlling the H2 partial pressure was an effective method to regulate the major intermediates and reaction rates of CH4 dissociation and further influence the growing process of graphene.

  3. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.

    PubMed

    Aizawa, Masato; Buriak, Jillian M

    2005-06-29

    Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates.

  4. Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene.

    PubMed

    Sangiovanni, D G; Gueorguiev, G K; Kakanakova-Georgieva, A

    2018-06-19

    Metal organic chemical vapor deposition (MOCVD) of group III nitrides on graphene heterostructures offers new opportunities for the development of flexible optoelectronic devices and for the stabilization of conceptually-new two-dimensional materials. However, the MOCVD of group III nitrides is regulated by an intricate interplay of gas-phase and surface reactions that are beyond the resolution of experimental techniques. We use density-functional ab initio molecular dynamics (AIMD) with van der Waals corrections to identify atomistic pathways and associated electronic mechanisms driving precursor/surface reactions during metal organic vapor phase epitaxy at elevated temperatures of aluminum nitride on graphene, considered here as model case study. The results presented provide plausible interpretations of atomistic and electronic processes responsible for delivery of Al, C adatoms, and C-Al, CHx, AlNH2 admolecules on pristine graphene via precursor/surface reactions. In addition, the simulations reveal C adatom permeation across defect-free graphene, as well as exchange of C monomers with graphene carbon atoms, for which we obtain rates of ∼0.3 THz at typical experimental temperatures (1500 K), and extract activation energies Eexca = 0.28 ± 0.13 eV and attempt frequencies Aexc = 2.1 (×1.7±1) THz via Arrhenius linear regression. The results demonstrate that AIMD simulations enable understanding complex precursor/surface reaction mechanisms, and thus propose AIMD to become an indispensable routine prediction-tool toward more effective exploitation of chemical precursors and better control of MOCVD processes during synthesis of functional materials.

  5. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298K from Quantum Mechanics Free Energy Calculations with Explicit Water.

    PubMed

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2016-10-11

    Copper is the only elemental metal that reduces a significant fraction of CO 2 to hydrocarbons and alcohols, but the atomistic reaction mechanism that controls the product distributions are not known because it has not been possible to detect the reaction intermediates on the electrode surface experimentally, or carry out Quantum Mechanics (QM) calculations with a realistic description of the electrolyte (water). Here, we carry out Quantum Mechanics (QM) calculations with an explicit description of water on the Cu(100) surface (experimentally shown to be stable under CO2RR conditions) to examine the initial reaction pathways to form CO and formate (HCOO - ) from CO 2 through free energy calculations at 298K and pH 7. We find that CO formation proceeds from physisorbed CO 2 to chemisorbed CO 2 (*CO 2 δ- ), with a free energy barrier of ΔG ‡ =0.43 eV, the rate determining step (RDS). The subsequent barriers of protonating *CO 2 δ- to form COOH* and then dissociating COOH* to form *CO are 0.37 eV and 0.30 eV, respectively. HCOO - formation proceeds through a very different pathway in which physisorbed CO 2 reacts directly with a surface H* (along with electron transfer), leading to ΔG ‡ = 0.80 eV. Thus, the competition between CO formation and HCOO - formation occurs in the first electron transfer step. On Cu(100), the RDS for CO formation is lower, making CO the predominant product. Thus, to alter the product distribution we need to control this first step of CO 2 binding, which might involve alloying or changing the structure at the nanoscale.

  6. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    PubMed

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  7. REACTOR AND NOVEL METHOD

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  8. Oxidation State Discrimination in the Atomic Layer Deposition of Vanadium Oxides

    DOE PAGES

    Weimer, Matthew S.; Kim, In Soo; Guo, Peijun; ...

    2017-06-02

    We describe the use of a vanadium 3+ precursor for atomic layer deposition (ALD) of thin films that span the common oxidation states of vanadium oxides. Self-limiting surface synthesis of V 2O 3, VO 2, and V 2O 5 are realized via four distinct reaction mechanisms accessed via judicious choice of oxygen ALD partners. In situ quartz crystal microbalance and quadrupole mass spectrometry were used to study the reaction mechanism of the vanadium precursor with O 3, H 2O 2, H 2O/O 2, and H 2O 2/H 2. A clear distinction between non-oxidative protic ligand exchange and metal oxidation ismore » demonstrated through sequential surface reactions with different non-metal precursors. This synergistic effect, provides greater control of the resultant metal species in the film, as well as reactive surface species during growth. In an extension of this approach, we introduce oxidation state control through reducing equivalents of H 2 gas. When H 2 is dosed after H 2O 2 during growth, amorphous films of VO 2 are deposited that are readily crystallized with a low temperature anneal. These VO 2 films show a temperature dependent Raman spectroscopy response in the expected range and consistent with the well-known phase-change behavior of VO 2.« less

  9. Development of a Detailed Surface Chemistry Framework in DSMC

    NASA Technical Reports Server (NTRS)

    Swaminathan-Gopalan, K.; Borner, A.; Stephani, K. A.

    2017-01-01

    Many of the current direct simulation Monte Carlo (DSMC) codes still employ only simple surface catalysis models. These include only basic mechanisms such as dissociation, recombination, and exchange reactions, without any provision for adsorption and finite rate kinetics. Incorporating finite rate chemistry at the surface is increasingly becoming a necessity for various applications such as high speed re-entry flows over thermal protection systems (TPS), micro-electro-mechanical systems (MEMS), surface catalysis, etc. In the recent years, relatively few works have examined finite-rate surface reaction modeling using the DSMC method.In this work, a generalized finite-rate surface chemistry framework incorporating a comprehensive list of reaction mechanisms is developed and implemented into the DSMC solver SPARTA. The various mechanisms include adsorption, desorption, Langmuir-Hinshelwood (LH), Eley-Rideal (ER), Collision Induced (CI), condensation, sublimation, etc. The approach is to stochastically model the various competing reactions occurring on a set of active sites. Both gas-surface (e.g., ER, CI) and pure-surface (e.g., LH, desorption) reaction mechanisms are incorporated. The reaction mechanisms could also be catalytic or surface altering based on the participation of the bulk-phase species (e.g., bulk carbon atoms). Marschall and MacLean developed a general formulation in which multiple phases and surface sites are used and we adopt a similar convention in the current work. Microscopic parameters of reaction probabilities (for gas-surface reactions) and frequencies (for pure-surface reactions) that are require for DSMC are computed from the surface properties and macroscopic parameters such as rate constants, sticking coefficients, etc. The energy and angular distributions of the products are decided based on the reaction type and input parameters. Thus, the user has the capability to model various surface reactions via user-specified reaction rate constants, surface properties and parameters.

  10. Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control.

    PubMed

    Zhang, Kuan; Fraxedas, Jordi; Sepulveda, Borja; Esplandiu, Maria J

    2017-12-27

    Self-propelled micro/nanomotors that can transform chemical energy from the surrounding environment into mechanical motion are cutting edge nanotechnologies with potential applications in biomedicine and environmental remediation. These applications require full understanding of the propulsion mechanisms to improve the performance and controllability of the motors. In this work, we demonstrate that there are two competing chemomechanical mechanisms at semiconductor/metal (Si/Pt) micromotors in a pump configuration under visible light exposure. The first propulsion mechanism is driven by an electro-osmotic process stemmed from a photoactivation reaction mediated by H 2 O 2 , which takes place in two separated redox reactions at the Si and Pt interfaces. One reaction involves the oxidation of H 2 O 2 at the silicon side, and the other the H 2 O 2 reduction at the metal side. The second mechanism is not light responsive and is triggered by the redox decomposition of H 2 O 2 exclusively at the Pt surface. We show that it is possible to enhance/suppress one mechanism over the other by tuning the surface roughness of the micromotor metal. More specifically, the actuation mechanism can be switched from light-controlled electrokinetics to light-insensitive diffusio-osmosis by only increasing the metal surface roughness. The different actuation mechanisms yield strikingly different fluid flow velocities, electric fields, and light sensitivities. Consequently, these findings are very relevant and can have a remarkable impact on the design and optimization of photoactivated catalytic devices and, in general, on bimetallic or insulating-metallic motors.

  11. Kinetics of gibbsite dissolution under low ionic strength conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganor, J.; Mogollon, J.L.; Lasaga, A.C.

    1999-06-01

    Experiments measuring synthetic gibbsite dissolution rates were carried out using both a stirred-flow-through reactor and a column reactor at 25 C, and pH range of 2.5--4.1. All experiments were conducted under far from equilibrium conditions ({Delta}G < {minus}1.1 kcal/mole). The experiments were performed with perchloric acid under relatively low (and variable) ionic strength conditions. An excellent agreement was found between the results of the well-mixed flow-through experiments and those of the (nonmixed) column experiments. This agreement shows that the gibbsite dissolution rate is independent of the stirring rate and therefore supports the conclusion of Bloom and Erich (1987) that gibbsitemore » dissolution reaction is surface controlled and not diffusion controlled. The Brunauer-Emmett-Teller (BET) surface area of the gibbsite increased during the flow-through experiments, while in the column experiments no significant change in surface area was observed. The significant differences in the BET surface area between the column experiments and the flow-through experiments, and the excellent agreement between the rates obtained by both methods, enable the authors to justify the substitution of the BET surface area for the reactive surface area. The dissolution rate of gibbsite varied as a function of the perchloric acid concentration. The authors interpret the gibbsite dissolution rate as a result of a combined effect of proton catalysis and perchlorate inhibition. Following the theoretical study of Ganor and Lasaga (1998) they propose specific reaction mechanisms for the gibbsite dissolution in the presence of perchloric acid. The mathematical predictions of two of these reaction mechanisms adequately describe the experimental data.« less

  12. Control the wettability of poly(n-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more Ada, the bigger impact?

    PubMed

    Shi, Xiu-Juan; Chen, Gao-Jian; Wang, Yan-Wei; Yuan, Lin; Zhang, Qiang; Haddleton, David M; Chen, Hong

    2013-11-19

    Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.

  13. Rapid and Clean Covalent Attachment of Methylsiloxane Polymers and Oligomers to Silica Using B(C6F5)3 Catalysis.

    PubMed

    Flagg, Daniel H; McCarthy, Thomas J

    2017-08-22

    The rapid, room-temperature covalent attachment of alkylhydridosilanes (R 3 Si-H) to silicon oxide surfaces to form monolayers using tris(pentafluorophenyl)borane (B(C 6 F 5 ) 3 , BCF) catalysis has recently been described. This method, unlike alternative routes to monolayers, produces only unreactive H 2 gas as a byproduct and reaches completion within minutes. We report the use of this selective reaction between surface silanols and hydridosilanes to prepare surface-grafted poly(dimethylsiloxane)s (PDMSs) with various graft architectures that are controlled by the placement of hydridosilane functionality at one end, both ends, or along the chain of PDMS samples of controlled molecular weight. We also report studies of model methylsiloxane monolayers prepared from pentamethyldisiloxane, heptamethyltrisiloxane (two isomers), heptamethylcyclotetrasiloxane, and tris(trimethylsiloxy)silane. These modified silica surfaces with structurally defined methylsiloxane groups are not accessible by conventional silane surface chemistry and proved to be useful in exploring the steric limitations of the reaction. Linear monohydride- and dihydride-terminated PDMS-grafted surfaces exhibit increasing thickness and decreasing contact angle hysteresis with increasing molecular weight up to a particular molecular weight value. Above this value, the hysteresis increases with increasing molecular weight of end-grafted polymers. Poly(hydridomethyl-co-dimethylsiloxane)s with varied hydride content (3-100 mol %) exhibit decreasing thickness, decreasing contact angle, and increasing contact angle hysteresis with increasing hydride content. These observations illustrate the importance of molecular mobility in three-phase contact line dynamics on low-hysteresis surfaces. To calibrate our preparative procedure against both monolayers prepared by conventional approaches as well as the recent reports, a series of trialkylsilane (mostly, n-alkyldimethylsilane) monolayers was prepared to determine the reaction time required to achieve the maximum bonding density using dynamic contact angle analysis. Monolayers prepared from hydridosilanes with BCF catalysis have lower bonding densities than those derived from chlorosilanes, and the reactions are more sensitive to alkyl group sterics. This lower bonding density renders greater flexibility to the n-alkyl groups in monolayers and can decrease the contact angle hysteresis.

  14. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00795c

  15. Final Technical Report: Metal—Organic Surface Catalyst for Low-temperature Methane Oxidation: Bi-functional Union of Metal—Organic Complex and Chemically Complementary Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Steven L.

    Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suuberg, E.M.; Lilly, W.D.; Aarna, I.

    This project is concerned with the mechanism of reduction of both NO and N{sub 2}O by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}. The precise role of carbon in N{sub 2} reduction and formation has yet to be established. Interest in themore » N{sub 2} and N{sub 2}O-char reactions has been significant in connection with both combustor modeling, as well as in design of post-combustion NO{sub x} control strategies. In our studies, a DuPont thermogravimetric analyzer (TGA) is used for the char reactivity studies. The temperature and mass are recorded as function of time, using a Macintosh computer and software for simultaneous apparatus control and data acquisition. Specific surface areas of char samples were determined by the N{sub 2} BET method at 77 K. A standard flow-type adsorption device (Quantasorb) was used for the measurements. Prior to surface area analysis, all samples were outgassed in a flow of nitrogen at 573 K for 3 hours. The carbonaceous solids used were resin char, graphite, coconut char and a Wyodak coal char. As was noted in the last report, carbons derived from different original materials show quite similar behaviors, in terms of the trends, but there are significant differences in actual reaction rates. It was shown that the spread of the reaction rate data from different studies, when expressed on a mass of carbon reactant- or surface area-basis, was almost the same.« less

  17. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O'Connell, Deborah

    2018-01-01

    The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He-H2O radio-frequency micro APP jet (COST-μ APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.

  18. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  19. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks.

    PubMed

    Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng; Thomas, Arne; Antonietti, Markus

    2008-10-08

    High surface area organic materials featuring both micro- and mesopores were synthesized under ionothermal conditions via the formation of polyaryltriazine networks. While the polytrimerization of nitriles in zinc chloride at 400 degrees C produces microporous polymers, higher reaction temperatures induce the formation of additional spherical mesopores with a narrow dispersity. The nitrogen-rich carbonaceous polymer materials thus obtained present surface areas and porosities up to 3300 m(2) g(-1) and 2.4 cm(3) g(-1), respectively. The key point of this synthesis relies on the occurrence of several high temperature polymerization reactions, where irreversible carbonization reactions coupled with the reversible trimerization of nitriles allow the reorganization of the dynamic triazine network. The ZnCl2 molten salt fulfills the requirement of a high temperature solvent, but is also required as catalyst. Thus, this dynamic polymerization system provides not only highly micro- and mesoporous materials, but also allows controlling the pore structure in amorphous organic materials.

  20. Spent fuel reaction - the behavior of the {epsilon}-phase over 3.1 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Hoh, J.C.; Wolf, S.F.

    The release fractions of the five elements in the {epsilon}-phase ({sup 99}Tc, {sup 97}Mo, Ru, Rh, and Pd) as well as that of {sup 238}U are reported for the reaction of two oxide fuels (ATM-103 and ATM-106) in unsaturated tests under oxidizing conditions. The {sup 99}Tc release fractions provide a lower limit for the magnitude of the spent fuel reaction. The {sup 99}Tc release fractions indicate that a surface reaction might be the rate controlling mechanism for fuel reaction under unsaturated conditions and the oxidant is possibly H{sub 2}O{sub 2}, a product of alpha radiolysis of water.

  1. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.

  2. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Tao

    Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited from the rich chemistry of Cu which catalyzed the C-C bond formation, controlled the size of the macromolecular products, and organized the macromolecules in a highly ordered manner on the surface. Secondly, we demonstrated a two-step approach for assembling metal-organic coordination network exhibiting very large pores. The first step involves obtaining one kind of building blocks via on-surface Ullmann coupling and the second step is coordination self-assembly. Moreover, the modulation of the surface-state electrons in the network was studied. These results provide new approaches to design and fabricate on-surface nanostructures. In summary, we resolved the structures and studied the on-surface assembly and reaction mechanisms of supramolecular and macromolecular nanostructures at a sub-molecular level. These fundamental studies may shed lights on design and fabrication of low-dimensional organic materials.

  3. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.

    PubMed

    Somorjai, Gabor A; Frei, Heinz; Park, Jeong Y

    2009-11-25

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  5. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach

    PubMed Central

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Abstract Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins. PMID:29491797

  6. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach.

    PubMed

    Saeb, Mohammad Reza; Rezaee, Babak; Shadman, Alireza; Formela, Krzysztof; Ahmadi, Zahed; Hemmati, Farkhondeh; Kermaniyan, Tayebeh Sadat; Mohammadi, Yousef

    2017-01-01

    Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.

  7. On-surface synthesis on a bulk insulator surface

    NASA Astrophysics Data System (ADS)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.

  8. Controlling condensation and frost growth with chemical micropatterns.

    PubMed

    Boreyko, Jonathan B; Hansen, Ryan R; Murphy, Kevin R; Nath, Saurabh; Retterer, Scott T; Collier, C Patrick

    2016-01-22

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

  9. Controlling condensation and frost growth with chemical micropatterns

    PubMed Central

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-01

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events. PMID:26796663

  10. Modeling of control forces for kinematical constraints in the dynamics of multibody systems: A new approach

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal

    1989-01-01

    Conventionally kinematical constraints in multibody systems are treated similar to geometrical constraints and are modeled by constraint reaction forces which are perpendicular to constraint surfaces. However, in reality, one may want to achieve the desired kinematical conditions by control forces having different directions in relation to the constraint surfaces. The conventional equations of motion for multibody systems subject to kinematical constraints are generalized by introducing general direction control forces. Conditions for the selections of the control force directions are also discussed. A redundant robotic system subject to prescribed end-effector motion is analyzed to illustrate the methods proposed.

  11. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-04-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  12. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-02-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  13. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  14. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    NASA Astrophysics Data System (ADS)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  15. Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size.

    PubMed

    Min, Yujia; Li, Qingyun; Voltolini, Marco; Kneafsey, Timothy; Jun, Young-Shin

    2017-11-07

    The performance of geologic CO 2 sequestration (GCS) can be affected by CO 2 mineralization and changes in the permeability of geologic formations resulting from interactions between water-bearing supercritical CO 2 (scCO 2 ) and silicates in reservoir rocks. However, without an understanding of the size effects, the findings in previous studies using nanometer- or micrometer-size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects of particle sizes on the carbonation of wollastonite (CaSiO 3 ) at 60 °C and 100 bar in water-bearing scCO 2 . After normalization by the surface area, the thickness of the reacted wollastonite layer on the surfaces was independent of particle sizes. After 20 h, the reaction was not controlled by the kinetics of surface reactions but by the diffusion of water-bearing scCO 2 across the product layer on wollastonite surfaces. Among the products of reaction, amorphous silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-bearing scCO 2 . The product layer was not highly porous, with a specific surface area 10 times smaller than that of the altered amorphous silica formed at the wollastonite surface in aqueous solution. These findings can help us evaluate the impacts of mineral carbonation in water-bearing scCO 2 .

  16. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  17. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    PubMed

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  18. Geometric phase effects in ultracold chemistry

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  19. Experiments Developed to Study Microgravity Smoldering Combustion

    NASA Technical Reports Server (NTRS)

    Vergilii, Franklin

    2001-01-01

    The overall objective of the Microgravity Smoldering Combustion (MSC) research program is to understand and predict smoldering combustion under normal and microgravity (near-zero-gravity) conditions to help prevent and control smolder-originated fires, in both environments. Smoldering is defined as a nonflaming, self-sustaining, propagating, exothermic surface reaction. If a material is sufficiently permeable, smoldering is not confined to its outer surface, but can propagate as a reaction wave through the interior of the material. The MSC program will accomplish its goals by conducting smolder experiments on the ground and in a space-based laboratory, and developing theoretical models of the process. Space-based experiments are necessary because smoldering is a very slow process and, consequently, its study in a microgravity environment requires extended periods of time that can only be achieved in space. Smoldering can occur in a variety of processes ranging from the smolder of porous insulating materials to underground coal combustion. Many materials can sustain smoldering, including wood, cloth, foams, tobacco, other dry organic materials, and charcoal. The ignition, propagation, transition to flaming, and extinction of the smolder reaction are controlled by complex, thermochemical mechanisms that are not well understood. As with many forms of combustion, gravity affects the availability of the oxidizer and the transport of heat, and therefore, the rate of combustion. The smoldering combustion of porous materials has been studied both experimentally and theoretically, usually in the context of fire safety. Smoldering encompasses a number of fundamental processes, including heat and mass transfer in a porous media; endothermic pyrolysis of combustible material; ignition, propagation, and extinction of heterogeneous exothermic reactions at the solid-gas pore interface; and the onset of gas phase reactions (flaming) from existing surface reactions. Smoldering presents a serious fire risk because the combustion can propagate slowly in a material's interior and go undetected for long periods of time. It typically yields a substantially higher conversion of fuel to toxic compounds than does flaming (though more slowly), and may undergo a sudden transition to flaming.

  20. Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition.

    PubMed

    Zheng, Yuanxia; Hong, Sungwook; Psofogiannakis, George; Rayner, G Bruce; Datta, Suman; van Duin, Adri C T; Engel-Herbert, Roman

    2017-05-10

    Atomic layer deposition (ALD) has matured into a preeminent thin film deposition technique by offering a highly scalable and economic route to integrate chemically dissimilar materials with excellent thickness control down to the subnanometer regime. Contrary to its extensive applications, a quantitative and comprehensive understanding of the reaction processes seems intangible. Complex and manifold reaction pathways are possible, which are strongly affected by the surface chemical state. Here, we report a combined modeling and experimental approach utilizing ReaxFF reactive force field simulation and in situ real-time spectroscopic ellipsometry to gain insights into the ALD process of Al 2 O 3 from trimethylaluminum and water on hydrogenated and oxidized Ge(100) surfaces. We deciphered the origin for the different peculiarities during initial ALD cycles for the deposition on both surfaces. While the simulations predicted a nucleation delay for hydrogenated Ge(100), a self-cleaning effect was discovered on oxidized Ge(100) surfaces and resulted in an intermixed Al 2 O 3 /GeO x layer that effectively suppressed oxygen diffusion into Ge. In situ spectroscopic ellipsometry in combination with ex situ atomic force microscopy and X-ray photoelectron spectroscopy confirmed these simulation results. Electrical impedance characterizations evidenced the critical role of the intermixed Al 2 O 3 /GeO x layer to achieve electrically well-behaved dielectric/Ge interfaces with low interface trap density. The combined approach can be generalized to comprehend the deposition and reaction kinetics of other ALD precursors and surface chemistry, which offers a path toward a theory-aided rational design of ALD processes at a molecular level.

  1. Age-Related Differences in Postural Control and Attentional Cost During Tasks Performed in a One-Legged Standing Posture.

    PubMed

    Ihira, Hikaru; Makizako, Hyuma; Mizumoto, Atsushi; Makino, Keitarou; Matsuyama, Kiyoji; Furuna, Taketo

    2016-01-01

    In dual-task situations, postural control is closely associated with attentional cost. Previous studies have reported age-related differences between attentional cost and postural control, but little is known about the association in conditions with a one-legged standing posture. The purpose of this study was to determine age-related differences in postural control and attentional cost while performing tasks at various difficulty levels in a one-legged standing posture. In total, 29 healthy older adults aged 64 to 78 years [15 males, 14 females, mean (SD) = 71.0 (3.8) years] and 29 healthy young adults aged 20 to 26 years [14 males, 15 females, mean (SD) = 22.5 (1.5) years] participated in this study. We measured the reaction time, trunk accelerations, and lower limb muscle activity under 3 different one-legged standing conditions-on a firm surface, on a soft surface with a urethane mat, and on a softer more unstable surface with 2 piled urethane mats. Reaction time as an indication of attentional cost was measured by pressing a handheld button as quickly as possible in response to an auditory stimulus. A 2-way repeated-measures analysis of variance was performed to examine the differences between the 3 task conditions and the 2 age groups for each outcome. Trunk accelerations showed a statistically significant group-by-condition interaction in the anteroposterior (F = 9.1, P < .05), mediolateral (F = 9.9, P < .05), and vertical (F = 9.3, P < .05) directions. Muscle activity did not show a statistically significant group-by-condition interaction, but there was a significant main effect of condition in the tibialis anterior muscle (F = 33.1, P < .01) and medial gastrocnemius muscle (F = 14.7, P < .01) in young adults and the tibialis anterior muscle (F = 24.8, P < .01) and medial gastrocnemius muscle (F = 10.8, P < .01) in older adults. In addition, there was a statistically significant interaction in reaction time (F = 8.2, P < .05) for group-by-condition. The study results confirmed that reaction times in older adults are more prolonged than young adults in the same challenging postural control condition.

  2. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  3. Chemical reaction CO+OH • → CO 2+H • autocatalyzed by carbon dioxide: Quantum chemical study of the potential energy surfaces

    DOE PAGES

    Masunov, Artem E.; Wait, Elizabeth; Vasu, Subith S.

    2016-06-28

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO 2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO 2 to OH radical and CO molecule, hydrogen transfer frommore » oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO 2 medium. Furthermore, tt may open a new venue for controlling reaction rates for chemical manufacturing.« less

  4. Space Shuttle third flight /STS-3/ entry RCS analysis. [Reaction Control System

    NASA Technical Reports Server (NTRS)

    Scallion, W. I.; Compton, H. R.; Suit, W. T.; Powell, R. W.; Blackstock, T. A.; Bates, B. L.

    1983-01-01

    Flight data obtained from three Space Transportation System orbiter entries (STS-1, 2, and 3) are processed and analyzed to determine the roll interactions caused by the firing of the entry reaction control system (RCS). Comparisons between the flight-derived parameters and the predicted derivatives without interaction effects are made. The flight-derived RCS Plume flow-field interaction effects are independently deduced by direct integration of the incremental changes in the wing upper surface pressures induced by RCS side thruster firings. The separately obtained interaction effects are compared to the predicted values and the differences are discussed.

  5. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    PubMed

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  6. A Limited Comparison of the Thermal Durability of Polyimide Candidate Matrix Polymers with PMR-15

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Papadopoulos, Demetrios S.; Scheiman, Daniel A.; Inghram, Linda L.; McCorkle, Linda S.; Klans, Ojars V.

    2003-01-01

    Studies were conducted with six different candidate high-temperature neat matrix resin specimens of varied geometric shapes to investigate the mechanisms involved in the thermal degradation of polyimides like PMR-15. The metrics for assessing the quality of these candidates were chosen to be glass transition temperature (T(sub g)), thermo-oxidative stability, dynamic mechanical properties, microstructural changes, and dimensional stability. The processing and mechanical properties were not investigated in the study reported herein. The dimensional changes and surface layer growth were measured and recorded. The data were in agreement with earlier published data. An initial weight increase reaction was observed to be dominating at the lower temperatures. However, at the more elevated temperatures, the weight loss reactions were prevalent and probably masked the weight gain reaction. These data confirmed the findings of the existence of an initial weight gain reaction previously reported. Surface- and core-dependent weight losses were shown to control the polymer degradation at the higher temperatures.

  7. Rechargeable biofilm-controlling tubing materials for use in dental unit water lines.

    PubMed

    Luo, Jie; Porteous, Nuala; Sun, Yuyu

    2011-08-01

    A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 in., or 1.6 mm) to diffuse DCP into the tubing's inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications.

  8. Rechargeable Biofilm-Controlling Tubing Materials for Use in Dental Unit Water Lines

    PubMed Central

    Luo, Jie; Porteous, Nuala; Sun, Yuyu

    2011-01-01

    A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 inch, or 1.6 mm) to diffuse DCP into the tube’s inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications. PMID:21721534

  9. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    PubMed

    Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian

    2015-11-24

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.

  10. Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2013-03-12

    Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts.« less

  11. Passenger comfort response times as a function of aircraft motion

    NASA Technical Reports Server (NTRS)

    Rinalducci, E. J.

    1975-01-01

    The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.

  12. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  13. Probing Conformational Change of Bovine Serum Albumin–Dextran Conjugates under Controlled Dry Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Shuqin; Li, Yunqi; Zhao, Qin

    2015-04-29

    The time-dependent conformational change of bovine serum album (BSA) during Maillard reaction with dextran under controlled dry heating has been studied by small-angle X-ray scattering, fluorescence spectroscopy, dynamic light scattering, and circular dichroism analysis. Through the research on the radii of gyration (R g), intrinsic fluorescence, and secondary structure, conjugates with dextran coating were found to inhibit BSA aggregation and preserve the secondary structure of native BSA against long-time heat treatment during Maillard reaction. The results suggested that the hydrophilic dextran was conjugated to the compact protein surface and enclosed it and more dextran chains were attached to BSA withmore » the increase of the heating time. The study presented here will be beneficial to the understanding of the conformational evolution of BSA molecules during the dry-heating Maillard reaction and to the control of the protein–polysaccharide conjugate structure.« less

  14. A Uranium Bioremediation Reactive Transport Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introducesmore » acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.« less

  15. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH 3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH 2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H eliminationmore » to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr 3+ cations.« less

  16. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith

    NASA Astrophysics Data System (ADS)

    Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.

    2012-09-01

    The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.

  17. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    NASA Technical Reports Server (NTRS)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-01-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  18. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  19. Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform.

    PubMed

    Parakhonskiy, B V; Svenskaya, Yu I; Yashchenok, A М; Fattah, H A; Inozemtseva, O A; Tessarolo, F; Antolini, R; Gorin, D A

    2014-06-01

    An elegant route for hydroxyapatite (HA) particle synthesis via ionic exchange reaction is reported. Calcium carbonate particles (CaCO3) were recrystallized into HA beads in water solution with phosphate ions. The size of initial CaCO3 particles was controlled upon the synthesis by varying the amount of ethylene glycol (EG) in aqueous solution. The average size of HA beads ranged from 0.6±0.1 to 4.3±1.1μm. Silver nanoparticles were deposited on the surface of HA and CaCO3 particles via silver mirror reaction. Surface enhanced Raman scattering of silver functionalized beads was demonstrated by detecting Rhodamine B. CaCO3 and HA particles have a great potential for design of carrier which can provide diagnostic and therapeutic functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL)

    NASA Astrophysics Data System (ADS)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.

    2012-02-01

    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  1. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    NASA Astrophysics Data System (ADS)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-06-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  2. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis.

    PubMed

    Wang, Wei; Lv, Fan; Lei, Bo; Wan, Sheng; Luo, Mingchuan; Guo, Shaojun

    2016-12-01

    Developing new synthetic methods for the controlled synthesis of Pt-based or non-Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel-cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one-dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt-based, Pd-based, or 1D metal-free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel-cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt-based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt-based NWs or NTs, non-Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel-cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel-cell technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of iron-containing minerals on hydrothermal reactions of ketones

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  4. Quantum chemistry study of dielectric materials deposition

    NASA Astrophysics Data System (ADS)

    Widjaja, Yuniarto

    The drive to continually decrease the device dimensions of integrated circuits in the microelectronics industry requires that deposited films approach subnanometer thicknesses. Hence, a fundamental understanding of the physics and chemistry of film deposition is important to obtain better control of the properties of the deposited film. We use ab initio quantum chemistry calculations to explore chemical reactions at the atomic level. Important thermodynamic and kinetic parameters are then obtained, which can then be used as inputs in constructing first-principles based reactor models. Studies of new systems for which data are not available can be conducted as well. In this dissertation, we use quantum chemistry simulations to study the deposition of gate dielectrics for metal-oxide-semiconductor (MOS) devices. The focus of this study is on heterogeneous reactions between gaseous precursors and solid surfaces. Adsorbate-surface interactions introduce additional degrees of complexity compared to the corresponding gas-phase or solid-state reactions. The applicability and accuracy of cluster approximations to represent solid surfaces are first investigated. The majority of our results are obtained using B3LYP density functional theory (DFT). The structures of reactants, products, and transition states are obtained, followed by calculations of thermochemical and kinetic properties. Whenever experimental data are available, qualitative and/or quantitative comparisons are drawn. Atomistic mechanisms and the energetics of several reactions leading to the deposition of SiO2, Si3N4, and potential new high-kappa materials such as ZrO2, HfO2, and Al 2O3 have been explored in this dissertation. Competing reaction pathways are explored for each of the deposition reactions studied. For example, the potential energy surface (PES) for ZrO2 ALD shows that the reactions proceed through a trapping-mediated mechanism, which results in a competition between desorption and decomposition of the gaseous reactants, i.e. ZrCl4 and H2O, on the ZrO2 surface. This competition results in relatively low saturation coverage, which consequently leads to a slow growth rate and possibly affects the thickness uniformity and conformality. The insights gained are then used to systematically improve deposition reactions. For instance, from the ZrO2 ALD PES, we are able to suggest the use of high temperature and pressure to obtain higher surface coverage.

  5. The Importance of Nanometric Passivating Films on Cathodes forLi - Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Black, Robert; Radtke, Claudio

    2014-12-23

    Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methodsmore » to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm*can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.« less

  6. SurfKin: an ab initio kinetic code for modeling surface reactions.

    PubMed

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  7. Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis

    NASA Astrophysics Data System (ADS)

    Di Giovannantonio, Marco; Contini, Giorgio

    2018-03-01

    Surface-confined polymerization is a bottom-up strategy to create one- and two-dimensional covalent organic nanostructures with a π-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.

  8. The geometric phase controls ultracold chemistry

    DOE PAGES

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-07-30

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + Omore » 2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less

  9. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  10. Synthesis of Stable Citrate-Capped Silver Nanoprisms.

    PubMed

    Haber, Jason; Sokolov, Konstantin

    2017-10-10

    Citrate-stabilized silver nanoprisms (AgNPrs) can be easily functionalized using well-developed thiol based surface chemistry that is an important requirement for biosensor applications utilizing localized surface plasmon resonance (LSPR) and surface-enhanced Raman Scattering (SERS). Unfortunately, currently available protocols for synthesis of citrate-coated AgNPrs do not produce stable nanoparticles thus limiting their usefulness in biosensing applications. Here we address this problem by carrying out a systematic study of citrate-stabilized, peroxide-based synthesis of AgNPrs to optimize reaction conditions for production of stable and reproducible nanoprisms. Our analysis showed that concentration of secondary reducing agent, l-ascorbic acid, is critical to AgNPr stability. Furthermore, we demonstrated that optimization of other synthesis conditions such as stabilizer concentration, rate of silver nitrate addition, and seed dilution result in highly stable nanoprisms with narrow absorbance peaks ranging from 450 nm into near-IR. In addition, the optimized reaction conditions can be used to produce AgNPrs in a one-pot synthesis instead of a previously described two-step reaction. The resulting nanoprisms can readily interact with thiols for easy surface functionalization. These studies provide an optimized set of parameters for precise control of citrate stabilized AgNPr synthesis for biomedical applications.

  11. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    NASA Astrophysics Data System (ADS)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  12. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  13. On the attitude control and flight result of winged reentry test vehicle

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki

    The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.

  14. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part I. Surface modification and characterization.

    PubMed

    Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F

    2007-03-01

    Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.

  15. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  16. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Neural dynamics of object-based multifocal visual spatial attention and priming: Object cueing, useful-field-of-view, and crowding

    PubMed Central

    Foley, Nicholas C.; Grossberg, Stephen; Mingolla, Ennio

    2015-01-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how “attentional shrouds” are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of crowding shows how the cortical magnification factor, among other variables, can cause multiple object surfaces to share a single surface-shroud resonance, thereby preventing recognition of the individual objects. PMID:22425615

  18. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.

    PubMed

    Foley, Nicholas C; Grossberg, Stephen; Mingolla, Ennio

    2012-08-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of crowding shows how the cortical magnification factor, among other variables, can cause multiple object surfaces to share a single surface-shroud resonance, thereby preventing recognition of the individual objects. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  20. EDITORIAL: Tribocorrosion: fundamentals, materials and applications

    NASA Astrophysics Data System (ADS)

    MORE ADDRESSES--> Alfons Fischer,

  1. Replacement of Calcite (CaCO 3) by Cerussite (PbCO 3)

    DOE PAGES

    Yuan, Ke; Lee, Sang Soo; De Andrade, Vincent; ...

    2016-10-21

    The mobility of toxic elements, such as lead (Pb) can be attenuated by adsorption, incorporation, and precipitation on carbonate minerals in subsurface environments. Here in this paper, we report a study of the bulk transformation of single-crystal calcite (CaCO 3) into polycrystalline cerussite (PbCO 3) through reaction with acidic Pb-bearing solutions. This reaction began with the growth of a cerussite shell on top of calcite surfaces followed by the replacement of the remaining calcite core. The external shape of the original calcite was preserved by a balance between calcite dissolution and cerussite growth controlled by adjusting the Pb 2+ concentration and pH. The relation between the rounded calcite core and the surrounding lath-shaped cerussite aggregates was imaged by transmission X-ray microscopy, which revealed preferentially elongated cerussite crystals parallel to the surface and edge directions of calcite. The replacement reaction involved concurrent development ~100 nm wide pores parallel to calcite c-glide or (1more » $$\\overline{20}$$) planes, which may have provided permeability for chemical exchange during the reaction. X-ray reflectivity measurements showed no clear epitaxial relation of cerussite to the calcite (104) surface. These results demonstrate Pb sequestration through mineral replacement reactions and the critical role of nanoporosity (3% by volume) on the solid phase transformation through a dissolution-recrystallization mechanism.« less

  2. Dimensional and compositional change of 1D chalcogen nanostructures leading to tunable localized surface plasmon resonances.

    PubMed

    Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae

    2018-08-24

    As part of the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here, we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation.

  3. Attention Demand and Postural Control in Children with Hearing Deficit

    ERIC Educational Resources Information Center

    Derlich, Malgorzata; Krecisz, Krzysztof; Kuczynski, Michal

    2011-01-01

    To elucidate the mechanisms responsible for deteriorated postural control in children with hearing deficit (CwHD), we measured center-of-pressure (COP) variability, mean velocity and entropy in bipedal quiet stance (feet together) with or without the concurrent cognitive task (reaction to visual stimulus) on hard or foam surface in 29 CwHD and a…

  4. Kinetic or Dynamic Control on a Bifurcating Potential Energy Surface? An Experimental and DFT Study of Gold-Catalyzed Ring Expansion and Spirocyclization of 2-Propargyl-β-tetrahydrocarbolines.

    PubMed

    Zhang, Lei; Wang, Yi; Yao, Zhu-Jun; Wang, Shaozhong; Yu, Zhi-Xiang

    2015-10-21

    In classical transition state theory, a transition state is connected to its reactant(s) and product(s). Recently, chemists found that reaction pathways may bifurcate after a transition state, leading to two or more sets of products. The product distribution for such a reaction containing a bifurcating potential energy surface (bPES) is usually determined by the shape of the bPES and dynamic factors. However, if the bPES leads to two intermediates (other than two products), which then undergo further transformations to give different final products, what factors control the selectivity is still not fully examined. This missing link in transition state theory is founded in the present study. Aiming to develop new methods for the synthesis of azocinoindole derivatives, we found that 2-propargyl-β-tetrahydrocarbolines can undergo ring expansion and spirocyclization under gold catalysis. DFT study revealed that the reaction starts with the intramolecular cyclization of the gold-activated 2-propargyl-β-tetrahydrocarboline with a bPES. The cyclization intermediates can not only interconvert into each other via a [1,5]-alkenyl shift, but also undergo ring expansion (through fragmentation/protodeauration mechanism) or spirocyclization (through deprotonation/protodeauration mechanism). Detailed analysis of the complex PESs for substrates with different substituents indicated that the reaction selectivity is under dynamic control if the interconversion of the intermediates is slower than the ring expansion and spirocyclization processes. Otherwise, the chemical outcome is under typical kinetic control and determined by the relative preference of ring expansion versus spirocyclization pathways. The present study may enrich chemist's understanding of the determinants for selectivities on bPESs.

  5. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands

    PubMed Central

    Gavia, Diego J.

    2015-01-01

    This Minireview summarizes a variety of intriguing catalytic studies accomplished by employing unsupported, either solubilized or freely mobilized, and small organic ligand-capped palladium nanoparticles as catalysts. Small organic ligands are gaining more attention as nanoparticle stabilizers and alternates to larger organic supports, such as polymers and dendrimers, owing to their tremendous potential for a well-defined system with spatial control in surrounding environments of reactive surfaces. The nanoparticle catalysts are grouped depending on the type of surface stabilizers with reactive head groups, which include thiolate, phosphine, amine, and alkyl azide. Applications for the reactions such as hydrogenation, alkene isomerization, oxidation, and carbon-carbon cross coupling reactions are extensively discussed. The systems defined as “ligandless” Pd nanoparticle catalysts and solvent (e.g. ionic liquid)-stabilized Pd nanoparticle catalysts are not discussed in this review. PMID:25937846

  6. On-Surface Synthesis and Reactivity of Functional Organic and Metal-Organic Adsorbates at Metal Surfaces by Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Glen

    Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous catalysts. We accomplished this by metal coordination to redox non-innocent dipyridyl-tetrazine ligands. We utilize HREELS to observe a surface confined redox process of dipyridyl-tetrazine with V, Fe, Ag, and Pt. With the formation of the V-dipyridyl-tetrazine species, we are able to see that oxygen exposures to the surface results in a more selective vanadyl species formation as opposed to the multiple binding conformations observed with metallic vanadium nanoparticles. This thesis also reveals that the metal substrate used does not play a passive role with the metal-organic complex. Instead, we are the first to characterize a replacement of the coordinating metal species with atoms from the Ag(111) substrate. This replacement results in the redox reaction between the coordinating metal species and the substrate metal.

  7. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  8. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  9. High performance N2O4/amine elements: Blowapart

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.

    1977-01-01

    The mechanisms controlling hypergolic propellant reactive stream separation (RRS) were studied and used to develop design criteria for injectors free from both steady state RSS and cyclic propellant stream separation. This was accomplished through the analysis of single element injectors using N204/MMH propellants; the injectors were representative of the space shuttle orbit maneuvering engine and space tug applications. A gas phase/surface reaction mechanism which controls RSS was identified. Injector design criteria were developed, which defined a critical chamber pressure for those operating conditions above which RSS occurs. It was found that the amount of interfacial surface area at impingement is controlled by injector hydraulics.

  10. Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions.

    PubMed

    Avens, Heather J; Randle, Thomas James; Bowman, Christopher N

    2008-10-17

    Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm(2)) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities.

  11. Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions

    PubMed Central

    Avens, Heather J.; Randle, Thomas James; Bowman, Christopher N.

    2008-01-01

    Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm2) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities. PMID:19838291

  12. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  13. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1992-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  14. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  15. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  16. Some fundamental properties and reactions of ice surfaces at low temperatures.

    PubMed

    Park, Seong-Chan; Moon, Eui-Seong; Kang, Heon

    2010-10-14

    Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.

  17. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  18. Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis.

    PubMed

    Wege, H A; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2002-05-15

    A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.

  19. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Chen, Junzheng; Cao, Ruiguo; Murugesan, Vijay; Rajput, Nav Nidhi; Han, Kee Sung; Persson, Kristin; Estevez, Luis; Engelhard, Mark H.; Zhang, Ji-Guang; Mueller, Karl T.; Cui, Yi; Shao, Yuyan; Liu, Jun

    2017-10-01

    High-surface-area, nanostructured carbon is widely used for encapsulating sulfur and improving the cyclic stability of Li-S batteries, but the high carbon content and low packing density limit the specific energy that can be achieved. Here we report an approach that does not rely on sulfur encapsulation. We used a low-surface-area, open carbon fibre architecture to control the nucleation and growth of the sulfur species by manipulating the carbon surface chemistry and the solvent properties, such as donor number and Li+ diffusivity. Our approach facilitates the formation of large open spheres and prevents the production of an undesired insulating sulfur-containing film on the carbon surface. This mechanism leads to 100% sulfur utilization, almost no capacity fading, over 99% coulombic efficiency and high energy density (1,835 Wh kg-1 and 2,317 Wh l-1). This finding offers an alternative approach for designing high-energy and low-cost Li-S batteries through controlling sulfur reaction on low-surface-area carbon.

  20. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. Themore » latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.« less

  1. Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent

    NASA Astrophysics Data System (ADS)

    Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy

    2017-03-01

    A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.

  2. Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation.

    PubMed

    Santos, A; Ajbary, M; Morales-Flórez, V; Kherbeche, A; Piñero, M; Esquivias, L

    2009-09-15

    This paper presents the results of the carbonation reaction of two sample types: larnite (Ca(2)SiO(4)) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO(2) for 15 min. This indicates that for this reaction time, 1t of larnite could eliminate about 550 kg of CO(2). The grain size, porosity, and specific surface area are the factors controlling the reaction.

  3. 2013 Chemical reactions at surfaces. Surfaces in Energy and the Environment. Gordon Research Conference and Gordon Research Seminar (April 28 - May 3, 2013 - Les Diablerets, Switzerland)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, Peter C.

    presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.

  4. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.

    PubMed

    Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph

    2018-07-02

    Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    NASA Astrophysics Data System (ADS)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  6. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    NASA Astrophysics Data System (ADS)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.

  7. Field ion microscopic studies of the CO oxidation on platinum: Field ion imaging and titration reactions

    NASA Astrophysics Data System (ADS)

    Gorodetskii, V.; Drachsel, W.; Block, J. H.

    1994-05-01

    Elementary steps of the CO oxidation—which are important for understanding the oscillatory behavior of this catalytic reaction—are investigated simultaneously on different Pt-single crystal surfaces by field ion microscopy. Due to preferential ionization probabilities of oxygen as imaging gas on those surface sites, which are adsorbed with oxygen, these sites can be imaged in a lateral resolution on the atomic scale. In the titration reaction a COad-precovered field emitter surface reacts with gaseous oxygen adsorbed from the gas phase or, vice versa, the Oad-precovered surface with carbon monoxide adsorbed from the gas phase. The competition of the manifold of single crystal planes exposed to the titration reaction at the field emitter tip is studied. The surface specificity can be documented in the specific reaction delay times of the different planes and in the propagation rates of the reaction-diffusion wave fronts measured on these individual planes during the titration reaction with a time resolution of 40 ms. At 300 K the COad-precovered surfaces display the {011} regions, precisely the {331} planes as the most active, followed by {012}, {122}, {001}, and finally by {111}. Reaction wave fronts move with a velocity of 8 Å/s at {012}, with ≊0.8 Å/s at {111}, and have a very fast ``switch-on'' reaction at the (001) plane with 500 Å/s. At higher temperature, T=350 K, an acceleration of reaction rates is combined with shorter delay times. The titration reaction of a precovered Oad surface with COgas at T=373 K shows the formation of CO islands starting in the {011} regions with a quickly moving reaction front into the other surface areas without showing particular delay times for different surface symmetries. The two reverse titration reactions have a largely different character. The titration of COad with oxygen adsorbed from the gas phase consists of three different steps, (i) the induction times, (ii) the highly surface specific reaction, and (iii) different rates of wave front propagation. The reaction of COgas with a precovered Oad layer on the other hand starts with nucleating islands around the {011} planes from where the whole emitter surface is populated with COad without pronounced surface specifity.

  8. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis.

    PubMed

    Morrison, S; Rynders, C A; Sosnoff, J J

    2016-09-01

    A major health concern faced by individuals with Multiple Sclerosis (MS) is the heightened risk of falling. Reasons for this increased risk can often be traced back to declines in neurophysiological mechanisms underlying balance control and/or muscular strength. The aim of this study was to assess differences between persons with MS and age-matched healthy adults in regards to their falls risk, strength, reactions and directional control of balance. Twenty-two persons with multiple sclerosis (mean age 56.3±8.9 years) and 22 age-matched healthy adults (mean age 59.1±7.1 years) participated in the study. Assessments of falls risk, balance, fear of falling, lower limb strength, and reaction time were performed. Balance control was assessed under four conditions where the combined effects of vision (eyes open/closed) and standing surface (firm/pliable surface) were evaluated. Results demonstrated that, in comparison to healthy older adults, persons with MS had a significantly higher falls risk, slower reaction times, and weaker lower- limb strength. For balance, persons with MS exhibited greater overall COP motion in both the medio-lateral (ML) and anterior-posterior (AP) directions compared to older adults. Additionally, during more challenging balance conditions, persons from the MS group exhibited greater ML motion compared to sway in the AP direction. Overall, the results confirm that persons with MS are often at a heightened risk of falling, due to the multitude of neuromuscular changes brought about by this disease process. However, the increased ML sway for the MS group could reflect a decreased ability to control side-to-side motion in comparison to controlling AP sway. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    NASA Astrophysics Data System (ADS)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.

  10. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    PubMed

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3 , whereas on a water surface, the HNO 3 -mediated stepwise hydration of anti-CH 3 CHOO is dominantly observed. The high surface/volume ratio of interfacial water molecules at the aerosol water surface can significantly lower the energy barriers for the proton transfer reactions in the atmosphere. Such catalysis by the aerosol water surface is shown to cause the barrier-less formation of ammonium bisulfate from hydrated NH 3 and SO 3 molecules rather than from the reaction of H 2 SO 4 with NH 3 . Finally, an aerosol water droplet is a polar solvent, which would favorably interact with high polarity substrates. This can accelerate interconversion of different conformers (e.g., anti and syn) of atmospheric species, such as glyoxal, depending on their polarity. The results discussed here enable an improved understanding of atmospheric processes on the aerosol water surface.

  11. Nanoscale Engineering of Efficient Oxygen Reduction Electrocatalysts by Tailoring the Local Chemical Environment of Pt Surface Sites

    DOE PAGES

    Cleve, Tim Van; Moniri, Saman; Belok, Gabrielle; ...

    2016-11-16

    The oxygen reduction reaction is the limiting half-reaction in hydrogen fuel cells. While Pt is the most active single component electrocatalyst for the reaction, it is hampered by high cost and low reaction rates. Most research to overcome these limitations has focused on Pt/3d alloys, which offer higher rates and lower cost. Here, we have synthesized, characterized, and tested alloy materials belonging to a multilayer family of electrocatalysts. The multilayer alloy materials contain an AuCu alloy core of precise composition, surrounded by Au layers and covered by a catalytically active Pt surface layer. Their performance relative to that of themore » commercial Pt standards reaches up to 4 times improved area-specific activity. Characterization studies support the hypothesis that the activity improvement originates from a combination of Au–Pt ligand effects and local strain effects manipulated through the AuCu alloy core. The approach we present to control the strain and ligand effects in the synthesis of Pt-based alloys for the ORR is very general and could lead to promising alloy materials.« less

  12. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE PAGES

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    2017-12-05

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less

  13. Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO 3 Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili

    For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less

  14. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  15. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2O 5-WO 3/TiO 2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less

  16. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram

    2015-11-01

    We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (ΘCNad). The results demonstrate that small variations in ΘCNad have dramatic effect on the ORR activity and peroxide production, resulting in “volcano-like” dependence with an optimal surface coverage of ΘCNad = 0.3 ML. These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4more » interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces.« less

  17. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    NASA Astrophysics Data System (ADS)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua

    2017-08-01

    Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.

  18. Surface grafted antibodies: controlled architecture permits enhanced antigen detection.

    PubMed

    Sebra, Robert P; Masters, Kristyn S; Bowman, Christopher N; Anseth, Kristi S

    2005-11-22

    The attachment of antibodies to substrate surfaces is useful for achieving specific detection of antigens and toxins associated with clinical and field diagnostics. Here, acrylated whole antibodies were produced through conjugation chemistry, with the goal of covalently photografting these proteins from surfaces in a controlled fashion, to facilitate rapid and sensitive antigenic detection. A living radical photopolymerization chemistry was used to graft the acrylated whole antibodies on polymer surfaces at controlled densities and spatial locations by controlling the exposure time and area, respectively. Copolymer grafts containing these antibodies were synthesized to demonstrate two principles. First, PEG functionalities were introduced to prevent nonspecific protein interactions and improve the reaction kinetics by increasing solvation and mobility of the antibody-containing chains. Both of these properties lead to sensitive (pM) and rapid (<20 min) detection of antigens with this surface modification technique. Second, graft composition was tailored to include multiple antibodies on the same grafted chains, establishing a means for simultaneously detecting multiple antigens on one grafted surface area. Finally, the addition of PEG spacers between the acrylate functionality and the pendant detection antibodies was tuned to enhance the detection of a short-half-life molecule, glucagon, in a complex biological environment, plasma.

  19. Characterization of ozone decomposition in a soil slurry: kinetics and mechanism.

    PubMed

    Lim, Hyung-Nam; Choi, Hechul; Hwang, Tae-Moon; Kang, Joon-Wun

    2002-01-01

    A series of soil slurry experiments were performed in a carefully conceived reactor set-up to investigate the characteristics of the catalytic decomposition of ozone on a sand and iron surface. Real time on-line monitoring of ozone in the reaction module was possible using flow injection analysis coupled with a computer-controlled UV detector and data acquisition system. The effects of the soil media and size, ozone dosage, pH and p-CBA as a probe compound were examined at the given experimental conditions. Two apparent phases existed, and ozone instantaneously decomposed within one second in the first phase. These were defined as the instantaneous ozone demand (ID) phase, and the relatively slow decay stage. The interactions of ozone with the soil organic matter (SOM) and metal oxides were attributed mostly to the instantaneous decomposition of ozone. From the probe (p-CBA) experiments, 60-68% of total p-CBA removal occurred during the ID phase. The generation of hydroxyl radicals (OH.) was demonstrated and was closely related with metal oxides as well as SOM. Metal oxides in soil surface were considered to have relatively faster reaction rate with ozone and provide more favorable reactive sites to generate higher amount of OH. than SOM. Even at one-tenth concentration of the sands, a goethite-induced catalytic reaction outfitted the removal rate ofp-CBA among all the soils tested. More than 40% of total p-CBA removal occurred on the soil surface. It was inferred that the radical reaction with the probe compound seemed to take place not only on the soil surface but also in the solid-liquid interface. Ozone decomposition and the reaction between OH. and p-CBA appeared to be independent of any change in pH.

  20. Adaptive boundary concentration control using Zakai equation

    NASA Astrophysics Data System (ADS)

    Tenno, R.; Mendelson, A.

    2010-06-01

    A mean-variance control problem is formulated with respect to a partially observed nonlinear system that includes unknown constant parameters. A physical prototype of the system is the cathode surface reaction in an electrolysis cell, where the controller aim is to keep the boundary concentration of species in the near vicinity of the cathode surface low but not zero. The boundary concentration is a diffusion-controlled process observed through the measured current density and, in practice, controlled through the applied voltage. The former incomplete data control problem is converted to complete data-to the so-called separated control problem whose solution is given by the infinite-dimensional Zakai equation. In this article, the separated control problem is solved numerically using pathwise integration of the Zakai equation. This article demonstrates precise tracking of the target trajectory with a rapid convergence of estimates to unknown parameters, which take place simultaneously with control.

  1. Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic.

    PubMed

    Mertaniemi, Henrikki; Forchheimer, Robert; Ikkala, Olli; Ras, Robin H A

    2012-11-08

    When water droplets impact each other while traveling on a superhydrophobic surface, we demonstrate that they are able to rebound like billiard balls. We present elementary Boolean logic operations and a flip-flop memory based on these rebounding water droplet collisions. Furthermore, bouncing or coalescence can be easily controlled by process parameters. Thus by the controlled coalescence of reactive droplets, here using the quenching of fluorescent metal nanoclusters as a model reaction, we also demonstrate an elementary operation for programmable chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  3. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    NASA Astrophysics Data System (ADS)

    Asplund, Erik; Klüner, Thorsten

    2012-03-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.

  4. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  5. Space shuttle orbiter rear mounted reaction control system jet interaction study. [hypersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1977-01-01

    The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  6. Control of a chemical reaction (photodegradation of the p3ht polymer) with nonlocal dielectric environments

    PubMed Central

    Peters, V. N.; Tumkur, T. U.; Zhu, G.; Noginov, M. A.

    2015-01-01

    Proximity to metallic surfaces, plasmonic structures, cavities and other inhomogeneous dielectric environments is known to control spontaneous emission, energy transfer, scattering, and many other phenomena of practical importance. The aim of the present study was to demonstrate that, in spirit of the Marcus theory, the rates of chemical reactions can, too, be influenced by nonlocal dielectric environments, such as metallic films and metal/dielectric bilayer or multilayer structures. We have experimentally shown that metallic, composite metal/dielectric substrates can, indeed, control ordering as well as photodegradation of thin poly-3-hexylthiophene (p3ht) films. In many particular experiments, p3ht films were separated from metal by a dielectric spacer, excluding conventional catalysis facilitated by metals and making modification of the nonlocal dielectric environment a plausible explanation for the observed phenomena. This first step toward understanding of a complex relationship between chemical reactions and nonlocal dielectric environments is to be followed by the theory development and a broader scope of thorough experimental studies. PMID:26434679

  7. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.

    PubMed

    Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki

    2005-11-08

    By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.

  8. Probing mass-transport and binding inhomogeneity in macromolecular interactions by molecular interferometric imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2009-02-01

    In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.

  9. Insight into association reactions on metal surfaces: Density-functional theory studies of hydrogenation reactions on Rh(111)

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Pan; Hu, P.; Lee, Ming-Hsien

    2003-09-01

    Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N2+3H2→2NH3). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H→NH, NH+H→NH2 and NH2+H→NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H→CH and O+H→OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors.

  10. Electrografting of alkyl films at low driving force by diverting the reactivity of aryl radicals derived from diazonium salts.

    PubMed

    Hetemi, Dardan; Kanoufi, Frédéric; Combellas, Catherine; Pinson, Jean; Podvorica, Fetah I

    2014-11-25

    Alkyl and partial perfluoroalkyl groups are strongly attached to carbon surfaces through (i) the abstraction of the iodine atom from an iodoalkane by the sterically hindered 2,6-dimethylphenyl radical and (ii) the reaction of the ensuing alkyl radical with the carbon surface. Since the 2,6-dimethylphenyl radical is obtained at -0.25 V/Ag/AgCl by reducing the corresponding diazonium salt, the electrografting reaction is facilitated by ∼1.7 V by comparison with the direct electrografting of the iodo compounds. Layers of various thicknesses, including monolayers, are obtained by controlling the time duration of the electrolysis. The grafted films are characterized by electrochemistry, IR, XPS, ellipsometry, and water contact angles.

  11. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH 3 in promoting H + NH 3 → H 2 + NH 2 reaction

    DOE PAGES

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-07

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-ofthe- art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH 3 → H 2 + NH 2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH 3 stretching modes, ismore » demonstrated. In conclusion, it is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH 3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.« less

  12. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  13. Assessing occupational exposure to sea lamprey pesticides.

    PubMed

    Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin

    2015-01-01

    Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide(TM) into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. To assess occupational exposures to sea lamprey pesticides. We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker's skin contaminated with pesticides. We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment.

  14. REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.

    1960-01-01

    A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less

  15. Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan

    2014-10-28

    In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.

  16. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  17. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; He, Kai; Meng, Qingping

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  18. Deep eutectic-solvothermal synthesis of nanostructured ceria

    PubMed Central

    Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura

    2017-01-01

    Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829

  19. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities.

    PubMed

    Chen, Wei-Hsin; Lu, Ke-Miao; Liu, Shih-Hsien; Tsai, Chi-Ming; Lee, Wen-Jhy; Lin, Ta-Chang

    2013-10-01

    The reaction characteristics of four biomass materials (i.e. oil palm fiber, coconut fiber, eucalyptus, and Cryptomeria japonica) with non-oxidative and oxidative torrefaction at various superficial velocities are investigated where nitrogen and air are used as carrier gases. Three torrefaction temperatures of 250, 300, and 350 °C are considered. At a given temperature, the solid yield of biomass is not affected by N2 superficial velocity, revealing that the thermal degradation is controlled by heat and mass transfer in biomass. Increasing air superficial velocity decreases the solid yield, especially in oil palm fiber and coconut fiber, implying that the torrefaction reaction of biomass is dominated by surface oxidation. There exists an upper limit of air superficial velocity in the decrement of solid yield, suggesting that beyond this limit the thermal degradation of biomass is no longer governed by surface oxidation, but rather is controlled by internal mass transport. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface

    NASA Astrophysics Data System (ADS)

    Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang

    2017-04-01

    To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.

  1. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becknell, Nigel; Son, Yoonkook; Kim, Dohyung

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less

  2. Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation.

    PubMed

    Abdelkader, A M; Fray, D J

    2017-10-05

    Chemically-doped graphenes are promising electrode materials for energy storage and electrosorption applications. Here, an affordable electrochemical green process is introduced to dope graphene with nitrogen. The process is based on reversing the polarity of two identical graphene oxide (GO) electrodes in molten KCl-LiCl-Li 3 N. During the cathodic step, the oxygen functional groups on the GO surface are removed through direct electro-deoxidation reactions or a reaction with the deposited lithium. In the anodic step, nitrogen is adsorbed onto the surface of graphene and subsequently reacts to form nitrogen-doped graphene. The doping process is controllable, and graphene with up to 7.4 at% nitrogen can be produced. The electrochemically treated electrodes show a specific capacitance of 320 F g -1 in an aqueous KOH electrolyte and maintain 96% of this value after 10 000 cycles. The electrodes also display excellent electrosorption performance in capacitive deionisation devices with the salt removal efficiency reaching up to 18.6 mg g -1 .

  3. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Sanjay; Woehl, Taylor J; Liu, Xunpei

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using inmore » situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.« less

  4. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-ofthe- art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH 3 → H 2 + NH 2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH 3 stretching modes, ismore » demonstrated. In conclusion, it is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH 3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.« less

  6. Active-Controlled Fluid Film Based on Wave-Bearing Technology

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Hendricks, Robert C.

    2011-01-01

    It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.

  7. Ultrasound assisted deposition of silica coatings on titanium

    NASA Astrophysics Data System (ADS)

    Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür

    2012-10-01

    We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.

  8. Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow

    Treesearch

    Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski

    1993-01-01

    Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...

  9. Radio frequency glow discharge-induced acidification of fluoropolymers.

    PubMed

    Krawczyk, Benjamin M; Baltrusaitis, Jonas; Yoder, Colin M; Vargo, Terrence G; Bowden, Ned B; Kader, Khalid N

    2011-12-01

    Fluoropolymer surfaces are unique in view of the fact that they are quite inert, have low surface energies, and possess high thermal stabilities. Attempts to modify fluoropolymer surfaces have met with difficulties in that it is difficult to control the modification to maintain bulk characteristics of the polymer. In a previously described method, the replacement of a small fraction of surface fluorine by acid groups through radio frequency glow discharge created a surface with unexpected reactivity allowing for attachment of proteins in their active states. The present study demonstrates that 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) reacts with the acid groups on fluoropolymer surfaces in a novel reaction not previously described. This reaction yields an excellent leaving group in which a primary amine on proteins can substitute to form a covalent bond between a protein and these surfaces. In an earlier study, we demonstrated that collagen IV could be deposited on a modified PTFE surface using EDC as a linker. Once collagen IV is attached to the surface, it assembles to form a functional stratum resembling collagen IV in native basement membrane. In this study, we show data suggesting that the fluorine to carbon ratio determines the acidity of the fluoropolymer surfaces and how well collagen IV attaches to and assembles on four different fluoropolymer surfaces. Copyright © 2011 Wiley Periodicals, Inc.

  10. Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui

    2018-01-01

    Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.

  11. Pyrrole Hydrogenation over Rh(111) and Pt(111) Single-Crystal Surfaces and Hydrogenation Promotion Mediated by 1-Methylpyrrole: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.

    Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate,more » which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.« less

  12. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  13. Localized heating on silicon field effect transistors: device fabrication and temperature measurements in fluid.

    PubMed

    Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid

    2009-10-07

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.

  14. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  15. Temperature-controlled cross-linking of silver nanoparticles with diels-alder reaction and its application on antibacterial property

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-05-01

    Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  16. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  17. Experimental study of the interaction of HO2 radicals with soot surface.

    PubMed

    Bedjanian, Yuri; Lelièvre, Stéphane; Le Bras, Georges

    2005-01-21

    The reaction of HO2 with toluene and kerosene flame soot was studied over the temperature range 240-350 K and at P = 0.5-5 Torr of helium using a discharge flow reactor coupled to a modulated molecular beam mass spectrometer. A flat-flame burner was used for the preparation and deposition of soot samples from premixed flames of liquid fuels under well controlled and adjustable combustion conditions. The independent of temperature in the range 240-350 K value of gamma = (7.5 +/- 1.5) x 10(-2) (calculated with geometric surface area) was found for the uptake coefficient of HO2 on kerosene and toluene soot. No significant deactivation of soot surface during its reaction with HO2 was observed. Experiments on soot ageing under ambient conditions showed that the reactivity of aged soot is similar to that of freshly prepared soot samples. The results show that the HO2 + soot reaction could be a significant loss process for HOx in the urban atmosphere with a potential impact on photochemical ozone formation. In contrast this process will be negligible in the upper troposphere even in flight corridors.

  18. New Approach for Studying Slow Fragmentation Kinetics in FT-ICR: Surface-Induced Dissociation Combined with Resonant Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Futrell, Jean H.

    2015-02-01

    We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less

  19. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces

    NASA Astrophysics Data System (ADS)

    Hodgson, Murray; Wareing, Andrew

    2008-01-01

    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  20. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  1. Control of the Intrinsic Sensor Response to Volatile Organic Compounds with Fringing Electric Fields.

    PubMed

    Henning, Alex; Swaminathan, Nandhini; Vaknin, Yonathan; Jurca, Titel; Shimanovich, Klimentiy; Shalev, Gil; Rosenwaks, Yossi

    2018-01-26

    The ability to control surface-analyte interaction allows tailoring chemical sensor sensitivity to specific target molecules. By adjusting the bias of the shallow p-n junctions in the electrostatically formed nanowire (EFN) chemical sensor, a multiple gate transistor with an exposed top dielectric layer allows tuning of the fringing electric field strength (from 0.5 × 10 7 to 2.5 × 10 7 V/m) above the EFN surface. Herein, we report that the magnitude and distribution of this fringing electric field correlate with the intrinsic sensor response to volatile organic compounds. The local variations of the surface electric field influence the analyte-surface interaction affecting the work function of the sensor surface, assessed by Kelvin probe force microscopy on the nanometer scale. We show that the sensitivity to fixed vapor analyte concentrations can be nullified and even reversed by varying the fringing field strength, and demonstrate selectivity between ethanol and n-butylamine at room temperature using a single transistor without any extrinsic chemical modification of the exposed SiO 2 surface. The results imply an electric-field-controlled analyte reaction with a dielectric surface extremely compelling for sensitivity and selectivity enhancement in chemical sensors.

  2. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    DOE PAGES

    Taylor, Christopher D.

    2012-01-01

    Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies ofmore » the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.« less

  3. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less

  4. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    DOE PAGES

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; ...

    2016-07-28

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less

  5. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    PubMed

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  6. Integrated active mixing and biosensing using low frequency vibrating mixer and Love-wave sensor for real time detection of antibody binding event

    NASA Astrophysics Data System (ADS)

    Kardous, F.; El Fissi, L.; Friedt, J.-M.; Bastien, F.; Boireau, W.; Yahiaoui, R.; Manceau, J.-F.; Ballandras, S.

    2011-05-01

    The development of lab-on-chip devices is expected to dramatically change biochemical analyses, allowing for a notable increase of processing quality and throughput, provided the induced chemical reactions are well controlled. In this work, we investigate the impact of local acoustic mixing to promote or accelerate such biochemical reactions, such as antibody grafting on activated surfaces. During microarray building, the spotting mode leads to low efficiency in the ligand grafting and heterogeneities which limits its performances. To improve the transfer rate, we induce a hydrodynamic flow in the spotted droplet to disrupt the steady state during antibody grafting. To prove that acoustic mixing increases the antibody transfer rate to the biochip surface, we have used a Love-wave sensor allowing for real-time monitoring of the biological reaction for different operating conditions (with or without mixing). An analysis of the impact of the proposed mixing on grafting kinetics is proposed and finally checked in the case of antibody-antigen combination.

  7. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Erdene, Norov; Lee, Seung-Ki; Jeong, Dae-Hong; Park, Jae-Hyoung

    2011-12-01

    A fiber-optic localized surface plasmon (FO LSPR) sensor was fabricated by gold nanoparticles (Au NPs) immobilized on the end-face of an optical fiber. When Au NPs were formed on the end-face of an optical fiber by chemical reaction, Au NPs aggregation occurred and the Au NPs were immobilized in various forms such as monomers, dimers, trimers, etc. The component ratio of the Au NPs on the end-face of the fabricated FO LSPR sensor was slightly changed whenever the sensors were fabricated in the same condition. Including this phenomenon, the FO LSPR sensor was fabricated with high sensitivity by controlling the density of Au NPs. Also, the fabricated sensors were measured for the resonance intensity for the different optical systems and analyzed for the effect on sensitivity. Finally, for application as a biosensor, the sensor was used for detecting the antibody-antigen reaction of interferon-gamma.

  8. Functional improvements in dried egg white through the Maillard reaction.

    PubMed

    Handa, A; Kuroda, N

    1999-05-01

    The effects of the Maillard reaction on the functional properties of dried egg white (DEW) were investigated. Maillard-reacted DEW (M-DEW) was prepared by storing sugar-preserved DEW (SP-DEW) at 55 degrees C and 35% relative humidity for 0-12 days. The M-DEW developed an excellent gelling property, and hydrogen sulfide production from heat-induced M-DEW gels decreased. Surface sulfhydryl (SH) group content of M-DEW increased while total SH group and alpha-helix contents decreased with increasing heating time in the dry state. Breaking strength, breaking strain, water-holding capacity, and hydrogen sulfide of heat-induced M-DEW gels significantly correlated with surface and total SH group contents in M-DEW. SDS-PAGE revealed that M-DEW proteins were polymerized in which covalent bonds were involved. The present study demonstrated that the Maillard reaction partially unfolds and polymerizes proteins of SP-DEW and, consequently, improved gelling property of SP-DEW under certain controlled conditions.

  9. Salt flux synthesis of single and bimetallic carbide nanowires

    NASA Astrophysics Data System (ADS)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  10. Sulfate aerosols and polar stratospheric cloud formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, M.A.

    Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most importantmore » heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.« less

  11. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    PubMed

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  12. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters.

    PubMed

    Paananen, Riku O; Rantamäki, Antti H; Parshintsev, Jevgeni; Holopainen, Juha M

    2015-12-01

    Tear film lipid layer (TFLL) is constantly exposed to reactive ozone in the surrounding air, which may have detrimental effects on ocular health. Behenyl oleate (BO), a representative tear film wax ester, was used to study the reaction with ozone at the air-water interface. Time-dependent changes in mean molecular area of BO monolayers were measured at different ozone concentrations and surface pressures. In addition, the effect of ascorbic acid on the reaction rate was determined. Reaction was followed using thin-layer chromatography and reaction products were identified using liquid chromatography-electrospray ionization mass spectrometry (LC-MS). Tear fluid samples from healthy subjects were analyzed with LC-MS for any ozonolysis reaction products. Behenyl oleate was found to undergo rapid ozonolysis at the air-water interface at normal indoor ozone concentrations. The reaction was observed as an initial expansion followed by a contraction of the film area. Ascorbic acid was found to decrease the rate of ozonolysis. Main reaction products were identified as behenyl 9-oxononanoate and behenyl 8-(5-octyl-1,2,4-trioxolan-3-yl)octanoate. Similar ozonolysis products were not detected in the tear fluid samples. At the air-water interface, unsaturated wax esters react readily with ozone in ambient air. However, no signs of ozonolysis products were found in the tear fluid. This is most likely due to the antioxidant systems present in tear fluid. Last, the results show that ozonolysis needs to be controlled in future surface chemistry studies on tear film lipids.

  14. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    NASA Astrophysics Data System (ADS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina

    2015-12-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.

  15. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies.

    PubMed

    Gurlo, Aleksander

    2011-01-01

    Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

  16. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  17. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: a density functional study.

    PubMed

    Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup

    2014-12-21

    Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.

  18. Reaction Dynamics Following Ionization of Ammonia Dimer Adsorbed on Ice Surface.

    PubMed

    Tachikawa, Hiroto

    2016-09-22

    The ice surface provides an effective two-dimensional reaction field in interstellar space. However, how the ice surface affects the reaction mechanism is still unknown. In the present study, the reaction of an ammonia dimer cation adsorbed both on water ice and cluster surface was theoretically investigated using direct ab initio molecular dynamics (AIMD) combined with our own n-layered integrated molecular orbital and molecular mechanics (ONIOM) method, and the results were compared with reactions in the gas phase and on water clusters. A rapid proton transfer (PT) from NH3(+) to NH3 takes place after the ionization and the formation of intermediate complex NH2(NH4(+)) is found. The reaction rate of PT was significantly affected by the media connecting to the ammonia dimer. The time of PT was calculated to be 50 fs (in the gas phase), 38 fs (on ice), and 28-33 fs (on water clusters). The dissociation of NH2(NH4(+)) occurred on an ice surface. The reason behind the reaction acceleration on an ice surface is discussed.

  19. Pulsed ion beam investigation of the kinetics of surface reactions

    NASA Technical Reports Server (NTRS)

    Horton, C. C.; Eck, T. G.; Hoffman, R. W.

    1989-01-01

    Pulsed ion beam measurements of the kinetics of surface reactions are discussed for the case where the width of the ion pulse is comparable to the measured reaction time, but short compared to the time between successive pulses. Theoretical expressions are derived for the time dependence of the ion-induced signals for linear surface reactions. Results are presented for CO emission from surface carbon and CF emission from Teflon induced by oxygen ion bombardment. The strengths and limitations of this technique are described.

  20. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  1. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  2. Assessing occupational exposure to sea lamprey pesticides

    PubMed Central

    Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin

    2015-01-01

    Background: Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and BayluscideTM into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. Objectives: To assess occupational exposures to sea lamprey pesticides. Methods: We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. Results: We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker’s skin contaminated with pesticides. Conclusion: We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment. PMID:25730600

  3. Modified dry limestone process for control of sulfur dioxide emissions

    DOEpatents

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  4. The Implications of the Rise of China’s Military for Mongolian Security

    DTIC Science & Technology

    2010-06-01

    Regional Forum ASAT – Anti-satellite ASUW – Anti- surface warfare ASW – Antisubmarine Warfare AWACS – Airborne Warning and Control System CCP – Chinese...Military Region NAM – Non-Aligned Movements NATO – North Atlantic Treaty Organization NCO – Non-commissioned Officer NWFZ – Nuclear-Weapon- Free Zone...currency ROC – Republic of China RRU – Rapid Reaction Units SAM – Surface to Air Missile SCO – Shanghai Cooperation Organization SIPRI – Stockholm

  5. Kaolinite-catalyzed air oxidation of hydrazine: Consideration of several compositional, structural and energetic factors in surface activation

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Mariner, R.; Rice, A.

    1991-01-01

    Clay minerals have been shown to have numerous, curious, energetic properties by virtue of ultra-violet light release which can be triggered by gentle environmental changes such as wetting and dewetting by a variety of liquids, unique among them water and hydrazine. Since both water and hydrazine play multiple key roles in the air-oxidation of hydrazine on kaolinite surfaces, this reaction would seem to have prime potential for studying interrelationships of energy storage, release and chemical reactivity of clay surfaces, capacities basic to either the Bernal or Cairns-Smith roles of minerals in the origin of life. Establishment of the capacity for stored electronic energy to significantly alter surface chemistry is important, regardless of the reaction chosen to demonstrate it. Hydrazine air oxidation is overawingly complex, given the possibilities for step-wise control and monitoring of parameters. In the light of recently extended characterization of the kaolinite and model sheet catalysts we used to study hydrazine oxidation and gamma-irradiated silica, previous studies of hydrazine air-oxidation on aluminosilicate surfaces have been reevaluated. Our former conclusion remains intact that, whereas trace structural and surface contaminants do play some role in the catalysis of oxidation, they are not the only, nor even the dominant, catalytic centers. Initial intermediates in the oxidation can now be proposed which are consistent with production via O(-)-centers as well as ferric iron centers. The greater than square dependence of the initial reaction rate on the weight of the clay is discussed in the light of these various mechanistic possibilities.

  6. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  7. Preliminary Study Using Forward Reaction Control System Jets During Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Valasek, John

    2006-01-01

    Failure or degradation of the flight control system, or hull damage, can lead to loss of vehicle control during entry. Possible failure scenarios are debris impact and wing damage that could result in a large aerodynamic asymmetry which cannot be trimmed out without additional yaw control. Currently the space shuttle uses aerodynamic control surfaces and Reaction Control System jets to control attitude. The forward jets are used for orbital maneuvering only, while the aft jets are used for yaw control during entry. This paper develops a controller for using the forward reaction control system jets as an additional control during entry, and assesses its value and feasibility during failure situations. Forward-aft jet blending logic is created, and implemented on a simplified model of the space shuttle entry flight control system. The model is validated and verified on the nonlinear, six degree-of-freedom Shuttle Engineering Simulator. A rudimentary human factors study was undertaken using the forward cockpit simulator at Johnson Space Center, to assess flying qualities of the new system and pilot workload. Results presented in the paper show that the combination of forward and aft jets provides useful additional yaw control, in addition to potential fuel savings and the ability to balance the use of the fuel in the forward and aft tanks to meet availability constraints of both forward and aft fuel tanks. Piloted simulation studies indicated that using both sets of jets while flying a damaged space shuttle reduces pilot workload, and makes the vehicle more responsive.

  8. Polymeric Coatings that Mimic the Endothelium: Combining Nitric Oxide Release with Surface-Bound Active Thrombomodulin and Heparin

    PubMed Central

    Wu, Biyun; Gerlitz, Bruce; Grinnell, Brian W.; Meyerhoff, Mark E.

    2007-01-01

    Multi-functional bilayer polymeric coatings are prepared with both controlled nitric oxide (NO) release and surface-bound active thrombomodulin (TM) alone or in combination with immobilized heparin. The outer-layer is made of CarboSil, a commercially available copolymer of silicone rubber (SR) and polyurethane (PU). The CarboSil is either carboxylated or aminated via an allophanate reaction with a diisocyanate compound followed by a urea-forming reaction between the generated isocyanate group of the polymer and the amine group of an amino acid (glycine), an oligopeptide (triglycine) or a diamine. The carboxylated CarboSil can then be used to immobilize TM through the formation of an amide bond between the surface carboxylic acid groups and the lysine residues of TM. Aminated CarboSil can also be employed to initially couple heparin to the surface, and then the carboxylic acid groups on heparin can be further used to anchor TM. Both surface-bound TM and heparin’s activity are evaluated by chromogenic assays and found to be at clinically significant levels. The underlying NO release layer is made with another commercial SR-PU copolymer (PurSil) mixed with a lipophilic NO donor (N-diazeniumdiolated dibutylhexanediamine (DBHD/N2O2)). The NO release rate can be tuned by changing the thickness of top coatings, and the duration of NO release at physiologically relevant levels can be as long as 2 weeks. The combination of controlled NO release as well as immobilized active TM and heparin from/on the same polymeric surface mimics the highly thromboresistant endothelium layer. Hence, such multifunctional polymer coatings should provide more blood-compatible surfaces for biomedical devices. PMID:17597201

  9. Electrochemistry and dissolution kinetics of magnetite and ilmenite

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.; Hochella, M.F.

    1994-01-01

    Natural samples of magnetite and ilmenite were experimentally weathered in pH 1-7 anoxic solutions at temperatures of 2-65 ??C. Reaction of magnetite is described as [Fe2+Fe23+]O4(magnetite) + 2H+ ??? ??[Fe23+]O3(maghemite) + Fe2+ + H2O. Dynamic polarization experiments using magnetite electrodes confirmed that this reaction is controlled by two electrochemical half cells, 3[Fe2+Fe23+]O4(magnetite) ??? 4??[Fe23+]O3(maghemite) + Fe2+ + 2e- and [Fe2+Fe23+]O4(magnetite) + 8 H+ + 2e- ??? 3Fe2+ + 4H2O, which result in solid state Fe3+ reduction, formation of an oxidized layer and release of Fe(II) to solution. XPS data revealed that iron is present in the ferric state in the surfaces of reacted magnetite and ilmenite and that the Ti Fe ratio increased with reaction pH for ilmenite. Short-term (<36 h) release rates of Fe(II) were linear with time. Between pH 1 and 7, rates varied between 0.3 and 13 ?? 10-14 mol ?? cm-2 ?? s-1 for magnetite and 0.05 and 12.3 ?? 10-14 mol ?? cm-2 ?? s-1 for ilmenite. These rates are two orders of magnitude slower than electrochemical rates determined by Tafel and polarization resistance measurements. Discrepancies are due to both differences in geometric and BET surface area estimates and in the oxidation state of the mineral surface. In long-term closed-system experiments (<120 days), Fe(II) release slowed with time due to the passivation of the surfaces by increasing thicknesses of oxide surface layers. A shrinking core model, coupling surface reaction and diffusion transport, predicted that at neutral pH, the mean residence time for sand-size grains of magnetite and ilmenite will exceed 107 years. This agrees with long-term stability of these oxides in the geologic record. ?? 1994.

  10. Methanol partial oxidation on Ag(111) from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  11. Methanol partial oxidation on Ag(111) from first principles

    DOE PAGES

    Aljama, Hassan; Yoo, Jong Suk; Nørskov, Jens K.; ...

    2016-10-26

    In this work, we examine the thermochemistry and kinetics of the partial oxidation of methanol to formaldehyde on silver surfaces. Periodic density functional theory calculations employing the BEEF-vdW functional are used to identify the most stable phases of the silver surface under relevant reaction conditions and the reaction energetics are obtained on these surfaces. The calculated binding energies and transition state energies are used as input in a mean-field microkinetic model providing the reaction kinetics on silver surfaces under different reaction conditions. Our results show that, under conditions pertaining to methanol partial oxidation, oxygen is present at low concentrations andmore » it plays a critical role in the catalytic reaction. Surface oxygen promotes the reaction by activating the OH bond in methanol, thus forming a methoxy intermediate, which can react further to form formaldehyde. Finally, the dissociation of molecular oxygen is identified as the most critical step.« less

  12. Linking Surface Topography Variations To Subsurface Mixing And Reaction Patterns

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bandopadhyay, A.; Davy, P.

    2017-12-01

    Fluctuations in surface topography generate nested streamline patterns in the subsurface over scales ranging from millimeters to kilometers. Because solute residence times can be very different for each streamlines, these patterns exert a strong control on biogeochemical reactions. While this effect has been quantified in reactive transport models, solute transfer across streamlines has been generally neglected. Yet, this process can lead to significant solute dilution and may trigger reactions by mixing water with different chemical compositions. Considering topography-driven subsurface flow cells of different sizes, we show that the resulting streamline structures act as shear flows, with shear rates that can vary over orders of magnitude depending on scale, permeability and hydraulic head gradient. This leads to the formation of localized layers of enhanced dilution and reaction, where mixing rates can be orders of magnitude larger than diffusion limited rates (Bandopadhyay et al. under review). We develop a theoretical model that predicts the depth and magnitude of these mixing hotspots and quantifies the resulting exports of conservative and reactive chemical species at discharge locations. We discuss consequences of these findings by applying this model at hyporheic zone, hillslope, and catchment scales.

  13. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    PubMed

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. New insights into the photocatalytic activity of 3-D core-shell P25@silica nanocomposites: impact of mesoporous coating.

    PubMed

    Gong, Yichao; Wang, Dan Ping; Wu, Renbing; Gazi, Sarifuddin; Soo, Han Sen; Sritharan, Thirumany; Chen, Zhong

    2017-04-11

    In this report, a three-dimensional (3-D) network of core-shell TiO 2 (P25)-mesoporous SiO 2 (P25@mSiO 2 ) nanocomposites was prepared via a controllable surfactant-assisted sol-gel method. The nanocomposites were investigated for photocatalytic reactions of organic dye degradation, water splitting, and CO 2 reduction to understand the roles of the mSiO 2 shell in these photocatalytic reactions. It was found that the mSiO 2 shell accelerates the photodegradation of the organic dye, but dramatically reduces the photocatalytic activity of P25 in water splitting and CO 2 reduction. The roles played by the mSiO 2 shell in the photocatalytic reactions are summarized as: (1) effective prevention of agglomeration of P25 nanoparticles, (2) facilitating the transfer of uncharged photo-generated ˙OH radicals via the abundant -OH groups on the mesoporous surface, (3) provision of increased reaction sites between ˙OH radicals and dye molecules by its mesoporous nanostructure and large surface area, and (4) prevention of diffusion of the photo-generated charge carriers (photoelectrons and photoholes) because of its insulating nature.

  15. Processing of monolayer materials via interfacial reactions

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  16. The Reaction of Oxygen-Nitrogen Mixtures with Granular Activated Carbons Below the Spontaneous Ignition Temperature.

    DTIC Science & Technology

    1983-01-14

    A16-R123 238 THE REACTION"OF OXYGEN-NITROGEN MIXTURES WITH GRANULARR i/i ACTIVATED CARBONS..(U) NAVAL RESEARCH LAB WASHINGTON)C I V R DEITZ 14 JAN 83...Temperature VICTOR R. Dull r Surface CIhenrisrv Braiwl Ciernisiry Divisioni January 14 , 1983 tr ID. .4 ~NAVAL RESEARCH LABORATORY i tC. Washington, D.C. Cu...12. REPORT DATE CDR ARRADCOM January 14,1983 Dve-r, NJ 07801 13. NUMBER OF PAGES 30 14 . MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling

  17. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  18. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water

    PubMed Central

    Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang

    2016-01-01

    Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001

  19. Mussel adhesion – essential footwork

    PubMed Central

    2017-01-01

    ABSTRACT Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid–fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. PMID:28202646

  20. Efficient Bioconjugation of Protein Capture Agents to Biosensor Surfaces Using Aniline-Catalyzed Hydrazone Ligation

    PubMed Central

    Byeon, Ji-Yeon; Limpoco, F. T.; Bailey, Ryan C.

    2010-01-01

    Aniline-catalyzed hydrazone ligation between surface immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH dependent non-covalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent. PMID:20809595

  1. Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties

    NASA Astrophysics Data System (ADS)

    Wang, Wenxing; Yan, Yucong; Zhou, Ning; Zhang, Hui; Li, Dongsheng; Yang, Deren

    2016-02-01

    Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules.Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08613b

  2. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    PubMed

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  3. Localized Heating on Silicon Field Effect Transistors: Device Fabrication and Temperature Measurements in Fluid

    PubMed Central

    Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2010-01-01

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115

  4. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis.more » With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  5. CO2 hydrogenation on a metal hydride surface.

    PubMed

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. This journal is © the Owner Societies 2012

  6. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu; Hammond, Karl D.

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes ofmore » helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.« less

  7. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenier, Antonin; Liu, Hao; Wiaderek, Kamila M.

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surfacemore » impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.« less

  8. Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin

    2015-02-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.

  9. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  10. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  11. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  12. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  13. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    PubMed

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  14. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  15. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  16. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  17. Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jiatao

    2016-10-01

    Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466, 91.

  18. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis.

    PubMed

    Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian

    2017-06-14

    A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.

  19. Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications.

    PubMed

    Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A

    1999-06-11

    The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.

  20. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting

    PubMed Central

    Zhang, Guigang; Lan, Zhi-An

    2017-01-01

    Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usually hindered by the huge activation energy barrier and sluggish surface redox reaction kinetics. Herein, we provide a concise overview of cocatalyst modified graphitic carbon nitride based photocatalysts, with our main focus on the modulation of the water splitting redox reaction kinetics. We believe that a timely and concise review on this promising but challenging research topic will certainly be beneficial for general readers and researchers in order to better understand the property–activity relationship towards overall water splitting, which could also trigger the development of new organic architectures for photocatalytic overall water splitting through the rational control of surface chemistry. PMID:28959425

  1. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    NASA Astrophysics Data System (ADS)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  2. Effect of surface curvature on diffusion-limited reactions on a curved surface

    NASA Astrophysics Data System (ADS)

    Eun, Changsun

    2017-11-01

    To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.

  3. Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.

    PubMed

    Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert

    2013-06-25

    Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1000 yr. The increase of effective pressure with depth also prevents cracking, which positions the peak in serpentinisation rate at shallower depths, 4 km above previous predictions.

  5. Study of aerodynamic surface control of space shuttle boost and reentry, volume 1

    NASA Technical Reports Server (NTRS)

    Chang, C. J.; Connor, C. L.; Gill, G. P.

    1972-01-01

    The optimization technique is described which was used in the study for applying modern optimal control technology to the design of shuttle booster engine reaction control systems and aerodynamic control systems. Complete formulations are presented for both the ascent and reentry portions of the study. These formulations include derivations of the 6D perturbation equations of motion and the process followed in the control and blending law selections. A total hybrid software concept applied to the study is described in detail. Conclusions and recommendations based on the results of the study are included.

  6. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Da-Jiang; Evans, James W.

    2013-12-01

    A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (1 0 0) or M(1 0 0) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(1 0 0) and O/M(1 0 0), as well as the interaction and reaction between different reactant species in mixed adlayers, such as (CO + O)/M(1 0 0). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(1 0 0) and O/M(1 0 0) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(1 0 0) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction-diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis.

  7. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dajiang; Evans, James W.

    2013-12-01

    A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (100) or M(100) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(100) and O/M(100), as well as the interaction and reaction between different reactant species in mixed adlayers,more » such as (CO + O)/M(100). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(100) and O/M(100) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(100) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis. (C) 2013 Elsevier Ltd. All rights reserved.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  9. Synthesis and characterization of redox-active ferric nontronite

    DOE PAGES

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; ...

    2017-07-12

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; but, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and itsmore » natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. Here, we demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.« less

  11. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.

  12. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    PubMed

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors.

  13. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  14. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  15. Surface Defect Passivation and Reaction of c-Si in H2S.

    PubMed

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  16. Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear.

    PubMed

    Khajeh, Arash; He, Xin; Yeon, Jejoon; Kim, Seong H; Martini, Ashlie

    2018-05-29

    Shear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step. Such activation takes place more readily on the dehydroxylated surface. During this activation, the most strained part of the α-pinene molecules undergoes a partial distortion from its equilibrium geometry, which appears to be related to the critical activation volume for mechanical activation. Once α-pinene molecules are activated, association reactions occur between the newly attached oxygen and one of the carbon atoms in another molecule, forming ether bonds. These findings have general implications for mechanochemistry because they reveal that shear-driven reactions may occur through reaction pathways very different from their thermally induced counterparts and specifically the critical role of molecular distortion in such reactions.

  17. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.

  18. Reversible and irreversible reactions of three oxygen precursors on InAs(0 0 1)-(4 × 2)/ c(8 × 2)

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Droopad, Ravi; Kummel, Andrew C.

    2010-10-01

    The substrate reactions of three common oxygen sources for gate oxide deposition on the group III rich InAs(0 0 1)-(4 × 2)/ c(8 × 2) surface are compared: water, hydrogen peroxide (HOOH), and isopropyl alcohol (IPA). Scanning tunneling microscopy reveals that surface atom displacement occurs in all cases, but via different mechanisms for each oxygen precursor. The reactions are examined as a function of post-deposition annealing temperature. Water reaction shows displacement of surface As atoms, but it does not fully oxidize the As; the reaction is reversed by high temperature (450 °C) annealing. Exposure to IPA and subsequent low-temperature annealing (100 °C) show the preferential reaction on the row features of InAs(0 0 1)-(4 × 2)/ c(8 × 2), but higher temperature anneals result in permanent surface atom displacement/etching. Etching of the substrate is observed with HOOH exposure for all annealing temperatures. While nearly all oxidation reactions on group IV semiconductors are irreversible, the group III rich surface of InAs(0 0 1) shows that oxidation displacement reactions can be reversible at low temperature, thereby providing a mechanism of self-healing during oxidation reactions.

  19. Modification of heterogeneous chemistry by complex substrate morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henson, B.F.; Buelow, S.J.; Robinson, J.M.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Chemistry in many environmental systems is determined at some stage by heterogeneous reaction with a surface. Typically the surface exists as a dispersion or matrix of particulate matter or pores, and a determination of the heterogeneous chemistry of the system must address the extent to which the complexity of the environmental surface affects the reaction rates. Reactions that are of current interest are the series of chlorine nitrate reactions important in polar ozone depletion. The authors have applied surfacemore » spectroscopic techniques developed at LANL to address the chemistry of chlorine nitrate reactions on porous nitric and sulfuric acid ice surfaces as a model study of the measurement of complex, heterogeneous reaction rates. The result of the study is an experimental determination of the surface coverage of one adsorbed reagent and a mechanism of reactivity based on the dependence of this coverage on temperature and vapor pressure. The resulting mechanism allows the first comprehensive modeling of chlorine nitrate reaction probability data from several laboratories.« less

  20. Basic Research Plan.

    DTIC Science & Technology

    1996-05-01

    detection, catalysts for enhancing and controlling energetic reactions, synthesis of new compounds (e.g., narrow band-gap materials and non-linear...design for synthesis of advanced materials Fabricate porous lightweight and resilient structural materials with novel properties and uses Demonstrate...elements for 10 nm computer memory elements Demonstrate enhanced propellants and explosives with nanoparticle surface chemistry Demonstrate sensing of

  1. Method of removing bulk sodium from metallic surfaces

    DOEpatents

    Maffei, H.P.; Borisch, R.R.

    1975-11-11

    A process of removing sodium from an article, particularly one made of stainless steel, by treating it with a mixture of water vapor and a gas which is inert to sodium is described. By selecting combinations of temperature and water vapor-to-gas ratio, the reaction temperature is controlled to prevent damage to the articles.

  2. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  3. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  4. Surface grafting of Eu3+ doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    We reported a simple and efficient method to prepare the hydrophilic luminescent HAp polymer nanocomposites through the combination of ligand exchange and metal free light initiated surface-initiated atom transfer radical polymerization (SI-ATRP) using 10-phenylphenothiazine (PTH) as organic catalyst and 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as monomers. The biological imaging and drug delivery performance of HAp-poly(MPC-IA) nanorods were examined to evaluate their potential for biomedical applications. Results suggested that hydrophilic HAp-poly(MPC-IA) nanorods can be successfully prepared. More importantly, the HAp-poly(MPC-IA) exhibited excellent water dispersibility, desirable biocompatibility and good performance for biological imaging and controlled drug delivery applications. As compared with other controlled living polymerization reactions, the metal free light initiated SI-ATRP displayed many advantages such as easy for handle, mild reaction conditions, toxicity and fluorescence quenching from metal catalysts. Therefore, we believe that this strategy should be a useful and effective strategy for preparation of HAp nanomaterials for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Controlling the Growth and Catalytic Activity of Platinum Nanoparticles Using Peptide and Polymer Ligands

    NASA Astrophysics Data System (ADS)

    Forbes, Lauren Marie

    Heterogeneous catalysts have widespread industrial applications. Platinum nanomaterials in particular, due to their particularly high electrocatalytic activity and durability, are used to catalyze a wide variety of reactions, including oxygen reduction, which is frequently used as the cathode reaction in fuel cells. As platinum is a very expensive material, a high priority in fuel cell research is the exploration of less expensive, more efficient catalysts for the oxygen reduction reaction (ORR). We demonstrate here the use of phage display to identify peptides that bind to Pt (100) which were then used to synthesize platinum cubes in solution. However, while the peptides were able to control particle growth, the bio-synthesized Pt particles showed extremely poor activity when tested for ORR. This could be attributed to peptide coverage on the surface or strong interactions between particular amino acids and the metal that are detrimental for catalysis. To investigate this further, we decided to investigate the role of individual amino acids on Pt nanocrystal synthesis and catalysis. For this, we conjugated the R-groups of single amino acids to polyethylene glycol (PEG) chains. Through this work we have determined that the identity of the amino acid R-group is important in both the synthesis and the catalytic activity of the particles. For Pt nanoparticle synthesis, we found that the hydrophobicity of the functional groups affected their ability to interact well with the particles during nucleation and growth, and thus only the hydrophilic functional groups were capable of mediating the synthesis to produce well-defined faceted particles. With respect to ORR, we found distinct trends that showed that the inclusion of certain amino acids could significantly enhance catalysis---even at high polymer loadings. This work presents evidence that counters the common conception that organic capping ligands decrease catalytic activity; in fact activity may actually be improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.

  6. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  7. Construction of super - hydrophobic copper alloy surface by one - step mixed solution immersion method

    NASA Astrophysics Data System (ADS)

    Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting

    2018-01-01

    This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.

  8. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Ruming; Liu, Meiying; Huang, Hongye; Huang, Long; Huang, Qiang; Wen, Yuanqing; Cao, Qian-yong; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Hydroxyapatite (HAp), as an important biomaterial for the regeneration and reconstruction of bone tissue, has attracted more and more attention of researchers and scientists due to its unique structure and compositions. However, the preparation of fluorescent HAp with controllable morphology has achieved only limited success. In this work, we reported a novel strategy to construct the water dispersible fluorescent HAp nanorods via the combination of ligand exchange and metal-free atom transfer radical polymerization (ATRP). The Br-containing fluorescent HAp nanorods with controllable size and morphology were first prepared through hydrothermal treatment. A multifunctional organic molecule (named as PTH-Br) with aggregation-induced emission feature was immobilized on the surface of hydrophobic HAp nanorods through ligand exchange reaction. The PTH-Br could be used as the initiator and catalyst for surface-initiated metal-free ATRP using poly(ethylene glycol) methacrylate as monomer to obtain hydrophilic fluorescent HAp polymer nanoparticles. This strategy successfully endowed HAp nanorods excellent fluorescence properties and favorable water dispersibility but well preserved their regular morphology. Biological assays demonstrated that the HAp-PTH-poly(PEGMA) nanoparticles exhibited good biocompatibility and efficient cell uptake performance. Taken together, we have developed a rather facile strategy based on the surface ligand exchange reaction and metal-free photoATRP to fabricate fluorescent HAp with controllable size and morphology, high water dispersibility and biological properties. These HAp-PTH-poly(PEGMA) nanoparticles should be novel and promising candidates for biomedical applications.

  9. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    PubMed

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.

  10. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  11. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  12. Flexible Hybrid Battery/Pseudocapacitor

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  13. Biconvection flow of Carreau fluid over an upper paraboloid surface: A computational study

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.

    Present article explored the physical characteristics of biconvection effects on the MHD flow of Carreau nanofluid over upper horizontal surface of paraboloid revolution along with chemical reaction. The concept of the Carreau nanofluid was introduced the new parameterization achieve the momentum governing equation. Using similarity transformed, the governing partial differential equations are converted into the ordinary differential equations. The obtained governing equations are solved computationally by using implicit finite difference method known as the Keller box technique. The numerical solutions are obtained for the velocity, temperature, concentration, friction factor, local heat and mass transfer coefficients by varying controlling parameters i.e. Biconvection parameter, fluid parameter, Weissenberg number, Hartmann number, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number and chemical reaction parameter. The obtained results are discussed via graphs and tables.

  14. Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.

    We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less

  15. Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs

    DOE PAGES

    Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.; ...

    2017-06-05

    We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less

  16. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.

    PubMed

    Sarkar, Santanu; Bhattacharjee, Chiranjib; Curcio, Stefano

    2015-11-01

    The photocatalytic degradation of chlorhexidine digluconate (CHD), a disinfectant and topical antiseptic and adsorption of CHD catalyst surface in dark condition has been studied. Moreover, the value of kinetic parameters has been measured and the effect of adsorption on photocatalysis has been investigated here. Substantial removal was observed during the photocatalysis process, whereas 40% removal was possible through the adsorption route on TiO2 surface. The parametric variation has shown that alkaline pH, ambient temperature, low initial substrate concentration, high TiO2 loading were favourable, though at a certain concentration of TiO2 loading, photocatalytic degradation efficiency was found to be maximum. The adsorption study has shown good confirmation with Langmuir isotherm and during the reaction at initial stage, it followed pseudo-first-order reaction, after that Langmuir Hinshelwood model was found to be appropriate in describing the system. The present study also confirmed that there is a significant effect of adsorption on photocatalytic degradation. The possible mechanism for adsorption and photocatalysis has been shown here and process controlling step has been identified. The influences of pH and temperature have been explained with the help of surface charge distribution of reacting particles and thermodynamic point of view respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  18. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  19. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: the roles of capping agent and surface diffusion.

    PubMed

    Xie, Shuifen; Peng, Hsin-Chieh; Lu, Ning; Wang, Jinguo; Kim, Moon J; Xie, Zhaoxiong; Xia, Younan

    2013-11-06

    This article describes a systematic study of the spatially confined growth of Rh atoms on Pd nanocrystal seeds, with a focus on the blocking effect of a surface capping agent and the surface diffusion of adatoms. We initially used Pd cuboctahedrons as the seeds to illustrate the concept and to demonstrate the capabilities of our approach. Because the Pd{100} facets were selectively capped by a layer of chemisorbed Br(–) or I(–) ions, we were able to confine the nucleation and deposition of Rh atoms solely on the {111} facets of a Pd seed. When the synthesis was conducted at a relatively low temperature, the deposition of Rh atoms followed an island growth mode because of the high Rh–Rh interatomic binding energy. We also facilitated the surface diffusion of deposited Rh atoms by increasing the reaction temperature and decreasing the injection rate for the Rh precursor. Under these conditions, the deposition of Rh on the Pd{111} facets was switched to a layered growth mode. We further successfully extended this approach to a variety of other types of Pd polyhedral seeds that contained Pd{111} and Pd{100} facets in different proportions on the surface. As expected, a series of Pd–Rh bimetallic nanocrystals with distinctive elemental distributions were obtained. We could remove the Pd cores through selective chemical etching to generate Rh hollow nanoframes with different types and degrees of porosity. This study clearly demonstrates the importance of facet capping, surface diffusion, and reaction kinetics in controlling the morphologies of bimetallic nanocrystals during a seed-mediated process. It also provides a new direction for the rational design and synthesis of nanocrystals with spatially controlled distributions of elements for a variety of applications.

  20. Chemisorption studies of Pt/SnO2 catalysts

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Ohorodnik, Susan K.; Vannorman, John D.; Schryer, Jacqueline; Upchurch, Billy T.; Schryer, David R.

    1990-01-01

    The low temperature CO oxidation catalysts that are being developed and tested at NASA-Langley are fairly unique in their ability to efficiently oxidize CO at low temperatures (approx. 303 K). The bulk of the reaction data that has been collected in the laboratory has been determined using plug flow reactors with a low mass of Pt/SnO2/SiO2 catalyst (approx. 0.1 g) and a modest flow rate (5 to 10 sc sm). The researchers have previously characterized the surface solely in terms of N2 BET surface areas. These surface areas have not been that indicative of reaction rate. Indeed, some of the formulations with high BET surface area have yielded lower reaction rates than those with lower BET surface areas. As a result researchers began a program of determining the chemisorption of the various species involved in the reaction; CO, O2 and CO2. Such a determination of will lead to a better understanding of the mechanism and overall kinetics of the reaction. The pulsed-reactor technique, initially described by Freel, is used to determine the amount of a particular molecule that is adsorbed on the catalyst. Since there is some reaction of CO with the surface to produce CO2, the pulsed reactor had to be coupled with a gas chromatograph in order to distinguish between the loss of CO that is due to adsorption by the surface and the loss that is due to reaction with the surface.

  1. SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.

    1996-05-01

    This document is the user`s manual for the SURFACE CHEMKIN-III package. Together with CHEMKIN-III, this software facilitates the formation, solution, and interpretation of problems involving elementary heterogeneous and gas-phase chemical kinetics in the presence of a solid surface. The package consists of two major software components: an Interpreter and a Surface Subroutine Library. The Interpreter is a program that reads a symbolic description of a user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Surface Subroutine Library, which is a collection of about seventy modular Fortran subroutines that may bemore » called from a user`s application code to return information on chemical production rates and thermodynamic properties. This version of SURFACE CHEMKIN-III includes many modifications to allow treatment of multi-fluid plasma systems, for example modeling the reactions of highly energetic ionic species with a surface. Optional rate expressions allow reaction rates to depend upon ion energy rather than a single thermodynamic temperature. In addition, subroutines treat temperature as an array, allowing an application code to define a different temperature for each species. This version of SURFACE CHEMKIN-III allows use of real (non-integer) stoichiometric coefficients; the reaction order with respect to species concentrations can also be specified independent of the reaction`s stoichiometric coefficients. Several different reaction mechanisms can be specified in the Interpreter input file through the new construct of multiple materials.« less

  2. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yongchun; Ma, Jinzhu; Ma, Qingxin; He, Hong

    2017-03-01

    The conversion of SO2 to sulfates on the surface of soot is still poorly understood. Soot samples with different fractions of unsaturated hydrocarbons and oxygen-containing groups were prepared by combusting n-hexane under well-controlled conditions. The heterogeneous reaction of SO2 with soot was investigated using in situ attenuated total internal reflection infrared (ATR-IR) spectroscopy, ion chromatography (IC) and a flow tube reactor at the ambient pressure and relative humidity (RH). Water promoted SO2 adsorption and sulfate formation at the RH range from 6% to 70%, while exceeded water condensed on soot was unfavorable for sulfate formation due to inhibition of SO2 adsorption when RH was higher than 80%. The surface composition of soot, which was governed by combustion conditions, also played an important role in the heterogeneous reaction of SO2 with soot. This effect was found to greatly depend on RH. At low RH of 6%, soot with the highest fuel/oxygen ratio of 0.162 exhibited a maximum uptake capacity for SO2 because it contained a large amount of aromatic Csbnd H groups, which acted as active sites for SO2 adsorption. At RH of 54%, soot produced with a fuel/oxygen ratio of 0.134 showed the highest reactivity toward SO2 because it contained appropriate amounts of aromatic Csbnd H groups and oxygen-containing groups, subsequently leading to the optimal surface concentrations of both SO2 and water. These results suggest that variation in the surface composition of soot from different sources and/or resulting from chemical aging in the atmosphere likely affects the conversion of SO2 to sulfates.

  3. Vibrations At Surfaces During Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Aragno, A.; Basini, Luca; Marchionna, M.; Raffaelli, A.

    1989-12-01

    FTIR spectroscopies can be used in a wide range of temperature and pressure conditions to investigate on the chemistry and the physics of heterogeneous catalytic reactions. In this paper we have shortly discussed the spectroscopic results obtained during the study of two different reactions; the skeletal isomerization of 1-butene to obtain 2-methylpropene and the surface aggregation and fragmentation of rhodium carbonyl complexes during thermal treatments in N2, H2, CO, CH4 atmospheres. In the first case high temperature proton tran-sfer reactions are proposed to be responsible for the skeletal isomerization reaction. In the second case our experiments have shown a partial reversibility of the nucleation processes at the surfaces and revealed a low temperature reactivity of methane on rhodium car-bonyl surface complexes.

  4. Etching nano-holes in silicon carbide using catalytic platinum nano-particles

    NASA Astrophysics Data System (ADS)

    Moyen, E.; Wulfhekel, W.; Lee, W.; Leycuras, A.; Nielsch, K.; Gösele, U.; Hanbücken, M.

    2006-09-01

    The catalytic reaction of platinum during a hydrogen etching process has been used to perform controlled vertical nanopatterning of silicon carbide substrates. A first set of experiments was performed with platinum powder randomly distributed on the SiC surface. Subsequent hydrogen etching in a hot wall reactor caused local atomic hydrogen production at the catalyst resulting in local SiC etching and hole formation. Secondly, a highly regular and monosized distribution of Pt was obtained by sputter deposition of Pt through an Au membrane serving as a contact mask. After the lift-off of the mask, the hydrogen etching revealed the onset of well-controlled vertical patterned holes on the SiC surface.

  5. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  6. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Wang, Lu; Wang, Jing, E-mail: Jingwang@home.ipe.ac.cn

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The asmore » prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic polymer micelles.« less

  7. Experiential study on temperature and emission performance of micro burner during porous media combustion

    NASA Astrophysics Data System (ADS)

    Janvekar, Ayub Ahmed; Abdullah, M. Z.; Ahmad, Z. A.; Abas, A.; Ismail, A. K.; Hussien, A. A.; Kataraki, P. S.; Ishak, M. H. H.; Mazlan, M.; Zubair, A. F.

    2018-05-01

    Addition of porous materials in reaction zone give rise to significant improvements in combustion performance. In this work, a dual layered micro porous media burner was tested for stable flame and emissions. Reaction and preheat layer was made up of discrete (zirconia) and foam (porcelain) type of materials respectively. Three different thickness of reaction zone was tested, each with 10, 20 and 30mm. Interestingly, only 20mm thick layer can able to show better thermal efficiency of 72% as compared to 10 and 30mm. Best equivalence ratio came out to be 0.7 for surface and 0.6 for submerged flame conditions. Moreover, emission was continuously monitored to detect presence of NOx and CO, which were under controlled limits.

  8. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    PubMed Central

    Hein, Jason E.

    2011-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science. PMID:20309487

  9. Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.

    1981-01-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  10. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    PubMed

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the C α -H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol -1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.

  11. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed.

    PubMed

    Gilroy, Kyle D; Yang, Xuan; Xie, Shuifen; Zhao, Ming; Qin, Dong; Xia, Younan

    2018-06-01

    Controlling the surface structure of metal nanocrystals while maximizing the utilization efficiency of the atoms is a subject of great importance. An emerging strategy that has captured the attention of many research groups involves the conformal deposition of one metal as an ultrathin shell (typically 1-6 atomic layers) onto the surface of a seed made of another metal and covered by a set of well-defined facets. This approach forces the deposited metal to faithfully replicate the surface atomic structure of the seed while at the same time serving to minimize the usage of the deposited metal. Here, the recent progress in this area is discussed and analyzed by focusing on the synthetic and mechanistic requisites necessary for achieving surface atomic replication of precious metals. Other related methods are discussed, including the one-pot synthesis, electrochemical deposition, and skin-layer formation through thermal annealing. To close, some of the synergies that arise when the thickness of the deposited shell is decreased controllably down to a few atomic layers are highlighted, along with how the control of thickness can be used to uncover the optimal physicochemical properties necessary for boosting the performance toward a range of catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Molecule–Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic Performance of Molecularly Modified Si

    PubMed Central

    2013-01-01

    We report on the passivation properties of molecularly modified, oxide-free Si(111) surfaces. The reaction of 1-alcohol with the H-passivated Si(111) surface can follow two possible paths, nucleophilic substitution (SN) and radical chain reaction (RCR), depending on adsorption conditions. Moderate heating leads to the SN reaction, whereas with UV irradiation RCR dominates, with SN as a secondary path. We show that the site-sensitive SN reaction leads to better electrical passivation, as indicated by smaller surface band bending and a longer lifetime of minority carriers. However, the surface-insensitive RCR reaction leads to more dense monolayers and, therefore, to much better chemical stability, with lasting protection of the Si surface against oxidation. Thus, our study reveals an inherent dissonance between electrical and chemical passivation. Alkoxy monolayers, formed under UV irradiation, benefit, though, from both chemical and electronic passivation because under these conditions both SN and RCR occur. This is reflected in longer minority carrier lifetimes, lower reverse currents in the dark, and improved photovoltaic performance, over what is obtained if only one of the mechanisms operates. These results show how chemical kinetics and reaction paths impact electronic properties at the device level. It further suggests an approach for effective passivation of other semiconductors. PMID:24205409

  13. Long-Term Adaptations to Unexpected Surface Perturbations: Postural Control During Stance and Gait in Train Conductors.

    PubMed

    Baumgart, Christian; Hoppe, Matthias Wilhelm; Freiwald, Jürgen

    2016-01-01

    The authors aimed to evaluate the differences in postural control during stance and gait between train conductors and controls. Twenty-one train conductors and 21 office workers performed 6 unilateral and bilateral balance tests on stable and unstable surfaces as well as a gait analysis. In the balance tests, the mean velocity of the center of pressure and unstable surface was measured. In the bilateral balance tests the selected stance width was measured. During gait the length, width, frequency, and velocity of the steps were calculated from the ground reaction forces. Train conductors showed a significantly greater step width during gait (15.4 ± 4.7 vs. 13.0 ± 3.4 cm; p = .035) and stance width during the bilateral stance on the unstable surface (21.0 ± 5.1 vs. 17.8 ± 3.7 cm; p = .026) than the office workers, while no differences were revealed in balance variables. The revealed differences between train conductors and office workers may represent task-specific feedforward control strategies, which increase the base of support and may be helpful to resist unexpected perturbations in trains.

  14. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces at the atomic level. Then the dynamic processes, including surface reconstruction, roughening, sintering, and phase separation, studied by SPM will be discussed. Furthermore, SPM provides valuable insights toward identifying the active sites and understanding the reaction mechanisms. We also illustrate here how both ultrahigh vacuum STM and high pressure STM provide valuable information, expanding the understanding provided by traditional surface science. We conclude with highlighting remarkable recent progress in noncontact atomic force microscopy (NC-AFM) and inelastic electron tunneling spectroscopy (IETS), and their impact on single-chemical-bond level characterization for catalytic reaction processes in the future.

  15. Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Li, Guang-qiang; Yang, Yong-xiang; Qin, Qin-wei; Wei, Ming-xing

    2017-12-01

    Copper and zinc were recovered from waste diamond cutters through leaching with an ammonia-ammonium sulfate system and air as an oxidant. The effects of experimental parameters on the leaching process were investigated, and the potential-pH ( E-pH) diagrams of Cu-NH3-SO4 2--H2O and Zn-NH3-SO4 2--H2O at 25°C were drawn. Results showed that the optimal parameters for the leaching reaction are as follows: reaction temperature, 45°C; leaching duration, 3 h; liquid-to-solid ratio, 50:1 (mL/g); stirring speed, 200 r/min; ammonia concentration, 4.0 mol/L; ammonium sulfate concentration, 1.0 mol/L; and air flow rate, 0.2 L/min. The results of the kinetics study indicated that the leaching is controlled by the surface chemical reaction at temperatures below 35°C, and the leaching is controlled by diffusion through the product layer at temperatures above 35°C.

  16. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Jin, Zhong; Kim, Ki Kang; Hilmer, Andrew J.; Paulus, Geraldine L. C.; Shih, Chih-Jen; Ham, Moon-Ho; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Jarillo-Herrero, Pablo; Strano, Michael S.

    2012-09-01

    Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO2 and Al2O3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.

  17. Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO 2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2015-09-16

    The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO 2(110) surfaces is studied using infrared reflection-absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IRAS peaks at 2737 cm-1 and 3711 cm -1 are observed for stretching vibrations of OD b and OH b on TiO 2(110), respectively. IRAS measurements with s- and p-polarized light demonstrate that the bridging hydroxyls are oriented normal to the (110) surface. The IR peaks disappear after the sample is exposed to O 2 or annealed in the temperature range of 400 – 600more » K (correlating with the temperature at which pairs of OHb’s reform water and then desorb), which is consistent with their identification as bridging hydroxyls. We have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls (using IRAS) as a function of the annealing temperature for a small amount of water initially dosed on the TiO 2(110) at low temperature. Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions largely complete for T > 250 K. The temperature-dependent water-VO reaction kinetics are consistent with a Gaussian distribution of activation energies with E a = 0.545 eV, ΔE a(FWHM) = 0.125 eV, and a “normal” prefactor, v = 10 12 s -1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti 5c rows on the reduced TiO 2(110) surface, which suggests that the diffusion of water controls the water – V O reaction rate.« less

  18. Methylene migration and coupling on a non-reducible metal oxide: The reaction of dichloromethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2014-09-17

    The reaction of CH 2Cl 2 over the nearly-stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane and surface chlorine adatoms. The reaction is initiated by the decomposition of CH 2Cl 2 into surface methylene and chlorine. Photoemission indicates that surface cations are the preferred binding sites for both methylene and chlorine adatoms. Two reaction channels are observed for methylene coupling to ethylene in temperature-programmed desorption (TPD). A desorption-limited, low-temperature route is attributed to two methylenes bound at a single site. The majority of ethylene is produced by a reaction-limited process involving surface migration (diffusion) of methylene as themore » rate-limiting step. DFT calculations indicate the surface diffusion mechanism is mediated by surface oxygen anions. The source of hydrogen for methane formation is adsorbed background water. Chlorine adatoms produced by the dissociation of CH 2Cl 2 deactivate the surface by simple site-blocking of surface Cr 3+ sites. Finally, a comparison of experiment and theory shows that DFT provides a better description of the surface chemistry of the carbene intermediate than DFT+U using reported parameters for a best representation of the bulk electronic properties of α-Cr 2O 3.« less

  19. Training to Facilitate Adaptation to Novel Sensory Environments

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  20. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.

  1. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar.

    PubMed

    Cao, Leichang; Yu, Iris K M; Chen, Season S; Tsang, Daniel C W; Wang, Lei; Xiong, Xinni; Zhang, Shicheng; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol; Poon, Chi Sun

    2018-03-01

    Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO 3 H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis

    NASA Astrophysics Data System (ADS)

    Aslam, Umar; Chavez, Steven; Linic, Suljo

    2017-10-01

    It has been shown that photoexcitation of plasmonic metal nanoparticles (Ag, Au and Cu) can induce direct photochemical reactions. However, the widespread application of this technology in catalysis has been limited by the relatively poor chemical reactivity of noble metal surfaces. Despite efforts to combine plasmonic and catalytic metals, the physical mechanisms that govern energy transfer from plasmonic metals to catalytic metals remain unclear. Here we show that hybrid core-shell nanostructures in which a core plasmonic metal harvests visible-light photons can selectively channel that energy into catalytically active centres on the nanostructure shell. To accomplish this, we developed a synthetic protocol to deposit a few monolayers of Pt onto Ag nanocubes. This model system allows us to conclusively separate the optical and catalytic functions of the hybrid nanomaterial and determine that the flow of energy is strongly biased towards the excitation of energetic charge carriers in the Pt shell. We demonstrate the utility of these nanostructures for photocatalytic chemical reactions in the preferential oxidation of CO in excess H2. Our data demonstrate that the reaction occurs exclusively on the Pt surface.

  3. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elimelech, Orian; Liu, Jing; Plonka, Anna M.

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sizedmore » NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.« less

  4. B, N co-doped carbon from cross-linking induced self-organization of boronate polymer for supercapacitor and oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chang, Ying; Yuan, Conghui; Liu, Cheng; Mao, Jie; Li, Yuntong; Wu, Haiyang; Wu, Yuzhe; Xu, Yiting; Zeng, Birong; Dai, Lizong

    2017-10-01

    A novel strategy has been developed to generate B, N co-doped carbon materials (CNBs) through the pyrolysis of boronate polymer nanoparticles (BPNs) derived from the condensation reaction between catechol and boronic monomers. The morphology, surface area and heteroatom (viz. B and N) content of the CNBs can be easily adjusted by altering the molar ratio between catechol and boronic monomers. The supercapacitor and oxygen reduction reaction (ORR) performance of the CNBs are optimized. CNBs derived from equal molar ratio of catechol and boronic monomers exhibit favorable performance for supercapacitor, featuring a specific capacitance of up to 299.4 F/g at 0.2 A/g, an improved rate capability and excellent cycle stability. Notably, CNBs prepared using 1/2 molar ratio of catechol to boronic monomers show excellent ORR performance, as they demonstrate good electrocatalytic activity, high tolerance for methanol and long durability. Our findings may be of interest in the design of carbon materials with optimized electrochemical properties through the control over surface area and the content of heteroatom.

  5. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    NASA Astrophysics Data System (ADS)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (<1 atomic %) supported on zinc oxide nanoparticles with controlled crystal structures. The performance of these catalysts was studied in a fixed-bed micro-reactor system at ambient pressures, and their structure was characterized by high-resolution microscopic and spectroscopic techniques. Pre-existing oxygen defects in zinc oxide {0001} surfaces, and those created by a perturbation of the defect equilibrium by addition of gold, provide an anchoring site for highly dispersed gold species. By utilizing shape control of zinc oxide supports, it is found that highly dispersed gold, capable of low-temperature redox behavior is most prominent on zinc oxide {0001} surfaces and leads to high SRM activity and selectivity to carbon dioxide. Like other Group IB metal catalysts the SRM over gold-zinc oxide proceeds through the formation and weak binding of formaldehyde, and subsequent coupling with methoxy to produce methyl formate. Mechanistic clarification of this point was achieved by studying the interaction methanol-water mixtures with model catalyst surfaces. Model catalysts were studied in a UHV chamber where the base pressure was maintained at 10-10 mbar. High resolutions surface science techniques show that hydrogen-bonded networks of water are capable of deprotonating methanol to methoxy on low index surfaces in the absence of atomic oxygen. These UHV studies show that adsorbates, other than oxygen, are capable of activating methanol on Group IB metal surfaces. The second reaction involves the selective hydrogenation of alkynes to alkenes. Selective hydrogenations of carbon-carbon multiple bonds are important for a wide range of industrial processes. The governing hypothesis for this reaction system is that cooperation between a minority metal with a low barrier for hydrogen dissociation, and a less-reactive host metal capable of hydrogen uptake via spillover will lead to high alkene selectivity. A strategy for the preparation of such a catalyst is developed using model catalyst studied in a UHV chamber. The model catalyst features isolated palladium atoms in a copper(111) surface, termed single atom alloy (SAA). Individual, isolated palladium atoms act as sites for hydrogen uptake, dissociation, and spillover onto an otherwise inert copper(111) host. Weak binding offered by copper provides a surface where selective hydrogenation reactions can take place. Palladium-copper SAA model catalysts are highly selective to the partial hydrogenation of acetylene, whereas surfaces containing larger palladium ensembles facilitate complete hydrogenation and decomposition. Nanoparticle analogs of palladium-copper SAAs were prepared to investigate the feasibility of this strategy for practical application. Very small amounts of palladium (<0.2 atomic %) on the surface of copper nanoparticles are highly active and selective catalysts for the partial hydrogenation of phenylacetylene to styrene. The performance of these catalysts was studied in a liquid-phase, stirred-tank batch reactor under a hydrogen head pressure of approximately 7 bar. Palladium alloyed into the surface of otherwise inactive copper nanoparticles shows a marked improvement in selectivity when compared to monometallic palladium catalysts with the same metal loading. This effect is attributed hydrogen spillover onto the copper surface. In summary, the development of new, highly active and selective catalysts for the methanol steam reforming reaction and for the partial hydrogenation of alkynes to alkenes was accomplished by the use of state-of-the-art techniques in both surface science and heterogeneous catalysis. The implications of this work can be extended to a wide variety of catalytic systems.

  6. Catalytic combustion of hydrogen-air mixtures in stagnation flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, H.; Libby, P.A.; Williams, F.A.

    1993-04-01

    The interaction between heterogeneous and homogeneous reactions arising when a mixture of hydrogen and air impinges on a platinum plate at elevated temperature is studied. A reasonably complete description of the kinetic mechanism for homogeneous reactions is employed along with a simplified model for heterogeneous reactions. Four regimes are identified depending on the temperature of the plate, on the rate of strain imposed on the flow adjacent to the plate and on the composition and temperature of the reactant stream: (1) surface reaction alone; (2) surface reaction inhibiting homogeneous reaction; (3) homogeneous reaction inhibiting surface reaction; and (4) homogeneous reactionmore » alone. These regimes are related to those found earlier for other chemical systems and form the basis of future experimental investigation of the chemical system considered in the present study.« less

  7. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, S.L.

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  8. Hydrothermal performance of catalyst supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  9. Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions.

    PubMed

    Mann, Megan A; Bottomley, Lawrence A

    2015-09-01

    The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.

  10. Electrodeposition of organic-inorganic tri-halide perovskites solar cell

    NASA Astrophysics Data System (ADS)

    Charles, U. A.; Ibrahim, M. A.; Teridi, M. A. M.

    2018-02-01

    Perovskite (CH3NH3PbI3) semiconductor materials are promising high-performance light energy absorber for solar cell application. However, the power conversion efficiency of perovskite solar cell is severely affected by the surface quality of the deposited thin film. Spin coating is a low-cost and widely used deposition technique for perovskite solar cell. Notably, film deposited by spin coating evolves surface hydroxide and defeats from uncontrolled precipitation and inter-diffusion reaction. Alternatively, vapor deposition (VD) method produces uniform thin film but requires precise control of complex thermodynamic parameters which makes the technique unsuitable for large scale production. Most deposition techniques for perovskite require tedious surface optimization to improve the surface quality of deposits. Optimization of perovskite surface is necessary to significantly improve device structure and electrical output. In this review, electrodeposition of perovskite solar cell is demonstrated as a scalable and reproducible technique to fabricate uniform and smooth thin film surface that circumvents the need for high vacuum environment. Electrodeposition is achieved at low temperatures, supports precise control and optimization of deposits for efficient charge transfer.

  11. A replaceable dual-enzyme capillary microreactor using magnetic beads and its application for simultaneous detection of acetaldehyde and pyruvate.

    PubMed

    Shi, Jing; Zhao, Wenwen; Chen, Yuanfang; Guo, Liping; Yang, Li

    2012-07-01

    A novel replaceable dual-enzyme capillary microreactor was developed and evaluated using magnetic fields to immobilize the alcohol dehydrogenase (ADH)- and lactate dehydrogenase (LDH)-coated magnetic beads at desired positions in the capillary. The dual-enzyme assay was achieved by measuring the two consumption peaks of the coenzyme β-nicotinamide adenine dinucleotide (NADH), which were related to the ADH reaction and LDH reaction. The dual-enzyme capillary microreactor was constructed using magnetic beads without any modification of the inner surface of the capillary, and showed great stability and reproducibility. The electrophoretic resolution for different analytes can be easily controlled by altering the relative distance of different enzyme-coated magnetic beads. The apparent K(m) values for acetaldehyde with ADH-catalyzed reaction and for pyruvate with LDH-catalyzed reaction were determined. The detection limits for acetaldehyde and pyruvate determination are 0.01 and 0.016 mM (S/N = 3), respectively. The proposed method was successfully applied to simultaneously determine the acetaldehyde and pyruvate contents in beer samples. The results indicated that combing magnetic beads with CE is of great value to perform replaceable and controllable multienzyme capillary microreactor for investigation of a series of enzyme reactions and determination of multisubstrates. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Enzymatic conversion of tetradecanol in heterogenous phase by yeast-alcohol dehydrogenase].

    PubMed

    Rothe, U; Schöpp, W; Aurich, H

    1976-01-01

    Alcohol dehydrogenase from yeast converts long-chain primary alcohols not only in the dissolved state, but also at the surface of undissolved particles. Tetradecanol beads with a defined surface can be produced and employed as model substrate. The reaction rate was determined by the proton release accomplished in the reaction. The initial reaction rate depends on the enzyme concentration. The relation is nonlinear (vi = k-[e]0,4); the numerical value of the exponent (n = 0.4) argues in favour of a reaction occurring at the interface. The Lineweaver-Burk plots become linear if the substrate concentrations are based on the molar surface concentrations of the particles. The pH optimum for the reaction at the surface is displaced by 0.25 pH units towards the alkaline region (compared with ethanol as substrate). The activation energy of the reaction with tetradecanol beads as substrate is 30% lower than that for the ethanol oxydation.

  13. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral-water interface.

  14. Using a Spectral Method to Evaluate Hyporheic Exchange and its Effect on Reach Scale Nitrate Removal.

    NASA Astrophysics Data System (ADS)

    Moren, I.; Worman, A. L. E.; Riml, J.

    2017-12-01

    Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically to evaluate if the mass removal is reaction or transport controlled.

  15. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  16. Understanding and controlling chromaticity shift in LED devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Mills, Karmann; Lamvik, Michael

    Chromaticity shift in light-emitting diode (LED) devices arises from multiple mechanisms, and at least five different chromaticity shift modes (CSMs) have been identified to date. This paper focuses on the impacts of irreversible phosphor degradation as a cause of chromaticity shifts in LED devices. The nitride phosphors used to produce warm white LEDs are especially vulnerable to degradation due to thermal and chemical effects such as reactions with oxygen and water. As a result, LED devices utilizing these phosphors were found to undergo either a green shift or, less commonly, a red shift depending on the phosphor mix in themore » LED devices. These types of chromaticity shifts are classified as CSM-2 (green shift) and CSM-5 (red shift). This paper provides an overview of the kinetic processes responsible for green and red chromaticity shifts along with examples from accelerated stress testing of 6” downlights. Both CSMs appear to proceed through analogous mechanisms that are initiated at the surface of the phosphor. A green shift is produced by the surface oxidation of the nitride phosphor that changes the emission profile to lower wavelengths. As the surface oxidation reaction proceeds, reactant limitations slow the rate and bulk oxidation processes become more prevalent. We found that a red chromaticity shift arises from quenching of the green phosphor, also possibly due to surface reactions of oxygen, which shift the emission chromaticity in the red direction. In conclusion, we discuss the implications of these findings on projecting chromaticity.« less

  17. Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations.

    PubMed

    Cavallotti, Carlo; Masi, Maurizio

    2011-09-01

    Though most of the current silicon photovoltaic technology relies on trichlorosilane (SiHCl3) as a precursor gas to deposit Si, only a few studies have been devoted to the investigation of its gas phase and surface kinetics. In the present work we propose a new kinetic mechanism apt to describe the gas phase and surface chemistry active during the deposition of Si from SiHCl3. Kinetic constants of key reactions were either taken from the literature or determined through ab initio calculations. The capability of the mechanism to reproduce experimental data was tested through the implementation of the kinetic scheme in a fluid dynamic model and in the simulation of both deposition and etching of Si in horizontal reactors. The results of the simulations show that the reactivity of HCl is of key importance in order to control the Si deposition rate. When HCl reaches a critical concentration in the gas phase it starts etching the Si surface, so that the net deposition rate is the net sum of the adsorption rate of the gas phase precursors and the etching rate due to HCl. In these conditions the possibility to further deposit Si is directly related to the rate of consumption of HCl through its reaction with SiHCl3 to give SiCl4. The proposed reaction mechanism was implemented in a 3D fluid dynamic model of a simple Siemens reactor. The simulation results indicate that the proposed interpretation of the growth process applies also to this class of reactors, which operate in what can be defined as a mixed kinetic-transport controlled regime.

  18. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  19. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires.

    PubMed

    Hou, Wen Chi; Hong, Franklin Chau-Nan

    2009-02-04

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 degrees C.

  20. Influence of surface heterogeneity in electroosmotic flows—Implications in chromatography, fluid mixing, and chemical reactions in microdevices

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi

    2007-04-01

    We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.

  1. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  2. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects.

    PubMed

    Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Vahidi, Ehsan

    2017-06-01

    An environmentally-friendly route based on hydrometallurgy was investigated for the recovery of cobalt and lithium from spent lithium ion batteries (LIBs) using different organic acids (citric acid, Dl-malic acid, oxalic acid and acetic acid). In this investigation, response surface methodology (RSM) was utilized to optimize leaching parameters including solid to liquid ratio (S/L), temperature, acid concentration, type of organic acid and hydrogen peroxide concentration. Based on the results obtained from optimizing procedure, temperature was recognized as the most influential parameter. In addition, while 81% of cobalt was recovered, the maximum lithium recovery of 92% was achieved at the optimum leaching condition of 60°C, S/L: 30gL -1 , citric acid concentration: 2M, hydrogen peroxide concentration: 1.25Vol.% and leaching time: 2h. Furthermore, results displayed that ultrasonic agitation will enhance the recovery of lithium and cobalt. It was found that the kinetics of cobalt leaching is controlled by surface chemical reaction at temperatures lower than 45°C. However, diffusion through the product layer at temperatures higher than 45°C controls the rate of cobalt leaching. Rate of lithium reaction is controlled by diffusion through the product layer at all the temperatures studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gas chemistry of Icelandic thermal fluids

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri

    2017-10-01

    The chemistry of gases in thermal fluids from Iceland was studied in order to evaluate the sources and processes affecting volatile concentrations in volcanic geothermal systems at divergent plate boundaries. The fluids included vapor fumaroles and two-phase well discharges with temperatures of 100-340 °C. The vapor was dominated by H2O accounting for 62-100 mol% and generally for > 99 mol%, with CO2, H2S and H2 being the dominant gases followed by N2, CH4, and Ar. Overall mineral-gas and gas-gas equilibria were not observed for the major gases, including CO2, H2S, H2 and CH4 within the geothermal reservoirs. Instead the system proved to be controlled by source(s) and their ratios and various metastable equilibria along a fluid-rock reaction progress with gas concentrations controlled by such metastable equilibria varying at particular temperatures as a functional extent of reaction. The concentrations of H2S and H2 closely reflect mineral-fluid metastable equilibria, whereas CO2 concentrations are controlled by the input of magma gas corresponding to > 0.1 to < 5% mass input. With fluid ascent to the surface, boiling and condensation may occur, further changing the gas concentrations and hence surface fumaroles may not reflect the reservoir fluid characteristics but rather secondary processes.

  4. JSC Materials Laboratory Reproduction and Failure Analysis of Cracked Orbiter Reaction Control System Niobium Thruster Injectors

    NASA Technical Reports Server (NTRS)

    Castner, Willard L.; Jacobs, Jeremy B.

    2006-01-01

    In April 2004 a Space Shuttle Orbiter Reaction Control System (RCS) thruster was found to be cracked while undergoing a nozzle (niobium/C103 alloy) retrofit. As a failure resulting from an in-flight RCS thruster burn-through (initiated from a crack) could be catastrophic, an official Space Shuttle Program flight constraint was issued until flight safety could be adequately demonstrated. This paper describes the laboratory test program which was undertaken to reproduce the cracking in order to fully understand and bound the driving environments. The associated rationale developed to justify continued safe flight of the Orbiter RCS system is also described. The laboratory testing successfully reproduced the niobium cracking, and established specific bounding conditions necessary to cause cracking in the C103 thruster injectors. Each of the following conditions is necessary in combination together: 1) a mechanically disturbed / cold-worked free surface, 2) an externally applied sustained tensile stress near yield strength, 3) presence of fluorine-containing fluids on exposed tensile / cold-worked free surfaces, and 4) sustained exposure to temperatures greater than 400 F. As a result of this work, it was concluded that fluorine-containing materials (e.g. HF acid, Krytox , Brayco etc.) should be carefully controlled or altogether eliminated during processing of niobium and its alloys.

  5. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  6. Hydrothermal replacement of calcite by Mg-carbonates

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product phases increases with increasing distance from the unreacted calcite core, countered by a decrease of Ca incorporated. Both the coexistence of two different product phases and the distinct compositional gradient within the forming reaction rim are unequivocal signs of a chemical zonation of Ca and Mg in the fluid phase which mediates the element exchange between the reaction interface and the bulk solution. Atomic adsorption spectroscopy revealed that the Ca/Mg ratio in the reacted fluid increases as a function of time, reflecting the progressive exchange of Mg and Ca between the fluid and the solid phase. The time-dependence of the evolving Ca/Mg ratio can be fitted with a square root of time relation that indicates a transport controlled reaction. We interpret the hydrothermal replacement of calcite to operate via a dissolution/re-precipitation mechanism, whereas the reaction progress is controlled by the transport of the structure forming elements through the developing reaction rim.

  7. Influences of sample interference and interference controls on quantification of enterococci fecal indicator bacteria in surface water samples by the qPCR method

    EPA Science Inventory

    A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...

  8. Industrial Applications of Low Temperature Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  9. Covalent-Bond Formation via On-Surface Chemistry.

    PubMed

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, John C.

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opensmore » up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.« less

  11. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface.

    PubMed

    den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W

    2013-07-01

    Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

  12. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    PubMed

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  13. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis

    PubMed Central

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-01-01

    Nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a 15N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the 1H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~1013 cm-2 (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~1018 cm-3 (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal 15N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, 1H(15N,αγ)12C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of 15N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100). PMID:27077920

  14. An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus

    2017-03-01

    Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this scheme is approximately half of the original oceanic deposition obtained using the default scheme, and it corresponds to a 10 % decrease in the original estimate of the total global ozone deposition. The previously reported modelled estimate of oceanic deposition is roughly one-third of total deposition and with this new parameterisation it is reduced to 12 % of the modelled total global ozone deposition. Deposition parameterisation influences the predicted atmospheric ozone mixing ratios, especially in the Southern Hemisphere. For the latitudes 45-70° S, the two-layer scheme improves the prediction of ozone observed at an altitude of 1 km by 7 % and that within the altitude range 1-6 km by 5 % compared to the default scheme.

  15. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy.

    PubMed

    Song, Jibin; Yang, Xiangyu; Yang, Zhen; Lin, Lisen; Liu, Yijing; Zhou, Zijian; Shen, Zheyu; Yu, Guocan; Dai, Yunlu; Jacobson, Orit; Munasinghe, Jeeva; Yung, Bryant; Teng, Gao-Jun; Chen, Xiaoyuan

    2017-06-27

    Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au 3+ ). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64 Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.

  16. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  17. Surface treatment process of Al-Mg alloy powder by BTSPS

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Gao, Xinbao; Lu, Yanling; Du, Fengzhen; Zhang, Li; Liu, Dazhi; Chen, Xuefang

    2018-04-01

    The surface of Al-Mg alloy powder was treated by BTSPS(bis(triethoxysilylpropyl)tetrasulfide) in order to avoid easy oxidation in air. The pH value, reaction temperature, reaction time, and reaction concentration were used as test conditions. The results show that the BTSPS can form a protected film on the surface of Al-Mg alloy powder. Select the best test solution by orthogonal test. The study found that the reaction time and reaction temperature have the biggest influence on the two indexes of the orthogonal test (melting enthalpy of heat and enthalpy of oxidation). The optimal conditions were as follows: pH value is 8, reaction concentration is 2%, reaction temperature is 25 °C, reaction time is 2 h. The oxidation weight gain of the alloy reached 74.45% and the decomposition temperature of silane film is 181.8 °C.

  18. Templating Routes to Supported Oxide Catalysts by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas.more » First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MO x-SiO 2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO 2-Al 2O 3 acid catalysts and to control reactant selectivity in Al 2O 3-TiO 2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.« less

  19. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.

  20. Effects of fluorine incorporation into β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Yang, Jiangcheng; Fares, Chaker; Ren, F.; Sharma, Ribhu; Patrick, Erin; Law, Mark E.; Pearton, S. J.; Kuramata, Akito

    2018-04-01

    β-Ga2O3 rectifiers fabricated on lightly doped epitaxial layers on bulk substrates were exposed to CF4 plasmas. This produced a significant decrease in Schottky barrier height relative to unexposed control diodes (0.68 eV compared to 1.22 eV) and degradation in ideality factor (2.95 versus 1.01 for the control diodes). High levels of F (>1022 cm-3) were detected in the near-surface region by Secondary Ion Mass Spectrometry. The diffusion of fluorine into the Ga2O3 was thermally activated with an activation energy of 1.24 eV. Subsequent annealing in the range 350-400 °C brought recovery of the diode characteristics and an increase in barrier height to a value larger than in the unexposed control diodes (1.36 eV). Approximately 70% of the initial F was removed from the Ga2O3 by 400 °C, with the surface outgas rate also being thermally activated with an activation energy of 1.23 eV. Very good fits to the experimental data were obtained by integrating physics of the outdiffusion mechanisms into the Florida Object Oriented Process Simulator code and assuming that the outgas rate from the surface was mediated through fluorine molecule formation. The fluorine molecule forward reaction rate had an activation energy of 1.24 eV, while the reversal rate of this reaction had an activation energy of 0.34 eV. The net carrier density in the drift region of the rectifiers decreased after CF4 exposure and annealing at 400 °C. The data are consistent with a model in which near-surface plasma-induced damage creates degraded Schottky barrier characteristics, but as the samples are annealed, this damage is removed, leaving the compensation effect of Si donors by F- ions. The barrier lowering and then enhancement are due to the interplay between surface defects and the chemical effects of the fluorine.

  1. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    PubMed

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  2. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities.

    PubMed

    Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu

    2006-01-01

    A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc

  3. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  4. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    PubMed

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  5. Mineralogical textural and compositional data on the alteration of basaltic glass from Kilauea, Hawaii to 300 degrees C: Insights to the corrosion of a borosilicate glass waste-form. [Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.K.

    1990-01-01

    Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300{degrees}C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surfacemore » reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 {degrees}C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs.« less

  6. Covalently bonded networks through surface-confined polymerization

    NASA Astrophysics Data System (ADS)

    El Garah, Mohamed; MacLeod, Jennifer M.; Rosei, Federico

    2013-07-01

    The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.

  7. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface reactions on the substrate surface, conductive, convective, inductive and radiative heat transfer, species transport and thereto-elastic stress distributions. Gas phase and surface reactions are studied thermodynamically and kinetically. Based on experimental results, detailed reaction mechanisms are proposed and the deposition rates are predicted. The deposition model proposed could be used for other experiments with similar operating conditions. Four different growth systems are presented in this thesis to discuss comprehensive transport phenomena in crystal growth from vapor. The first is the polysilicon bulk growth by modified Siemens technique in which a silicon tube is used as the starting material. The research effort has been focused on system design, geometric and operating parameters optimization, and heterogeneous and homogeneous silane pyrolysis analysis. The second is the GaN thin film growth by iodine vapor phase epitaxy technique. Heat and mass transport is studied analytically and numerically. Gas phase and surface reactions are analyzed thermodynamically and kinetically. Quasi-equilibrium and kinetic deposition models are developed to predict the growth rate. The third one is the AlN thin film growth by halide vapor phase epitaxy technique. The effects of gas phase and surface reactions on the crystal growth rate and deposition uniformity are studied. The last one is the AlN sublimation growth system. The research effort has been focused on the effect of thermal environment evolution on the crystal growth process. The thermoelastic stress formed in the as-grown AlN crystal is also calculated.

  8. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in themore » subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.« less

  9. Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity.

    PubMed

    Su, Gaoxing; Jiang, Huaqiao; Zhu, Hongyan; Lv, Jing-Jing; Yang, Guohai; Yan, Bing; Zhu, Jun-Jie

    2017-08-31

    Plasmonic Au-Pd nanostructures have drawn significant attention for use in heterogeneous catalysis. In this study, palladium nanodendrite-tipped gold nanorods (PdND-T-AuNRs) were subjected to a facile fabrication under mild reaction conditions. The palladium amounts on the two tips were tunable. In the preparation of PdND-T-AuNRs, dense capped AuNRs, a low reaction temperature, and suitable stabilizing agents were identified as critical reaction parameters for controlling palladium nanodendrites deposited on both ends of AuNRs. After overgrowth with palladium nanodendrites, the longitudinal surface plasmonic resonance peaks of PdND-T-AuNRs were red-shifted from 810 nm to 980 nm. The electrocatalytic activity of PdND-T-AuNRs for ethanol oxidation was examined, which was a bit weaker than that of cuboid core-shell Au-Pd nanodendrites; however, PdND-T-AuNRs were more stable in ethanol electrooxidation. Moreover, the photocatalytic activity of PdND-T-AuNRs for Suzuki cross-coupling reactions was investigated. At room temperature, nearly 100% yield was obtained under laser irradiation. The results can further enhance our capability of fine-tuning the optical, electronic, and catalytic properties of the bimetallic Au-Pd nanostructures.

  10. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud

  11. [Studies on the tolerance of the organism to X 5 CrNiMo 18.10 steel (Königsee). II. Light microscopic studies of the surrounding tissue of metal implants (X 5 CrNiMo 18.10 steel) in guinea pigs].

    PubMed

    Höhndorf, H; Drössler, K; Stiehl, P

    1977-06-01

    The tissue around X 5 CrNiMo 18.10-steel implantates with different surfaces was examined in 72 guinea-pigs. Aside from controls, these animals were preoperatively sensibilized against chromium and nickel. The results can be summarized since the histologic findings showed no different peculiarities. The authors describe an intussusception of the implantate in connective tissue which evidently depends on time and surface. Further the spreading of alien material in the surrounding of the implantate, and morphologic findings are reported. The morphologic evidences are described and discussed in detail, since they are interpreted as signs of cell-mediated immune reactions. The presence of lymphocytes, lymphoblasts, histiocytes (mostly carrying alien material), and granulocytes, as well as proliferations at the arterioles suggest an overlapping of immune reactions.

  12. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  13. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    A broad range of electrochemical techniques are employed in this dissertation to investigate a selected set of aqueous electrochemical systems that are relevant for materials processing in the fabrication of microelectronic devices and direct alcohol fuel cells. In terms of technical applications, this work covers three main experimental systems: (i) chemical mechanical planarization (CMP), (ii) electro-less nickel deposition, and (iii) direct alkaline glycerol fuel cells. The first two areas are related to electronic device fabrications and the third topic is related to cost-effective energy conversion. The common electrochemical aspect of these different systems is that, in all these cases the active material characteristics are governed by complex (often multi-step) reactions occurring at metal-liquid (aqueous) interfaces. Electro-analytical techniques are ideally suited for studying the detailed mechanisms of such reactions, and the present investigation is largely focused on developing adequate analytical strategies for probing these reaction mechanisms. In the fabrication of integrated circuits, certain steps of materials processing involve CMP of Al deposited on thin layers of diffusion barrier materials like Ta/TaN, Co, or Ti/TiN. A specific example of this situation is found in the processing of replacement metal gates used for high-k/metal-gate transistors. Since the commonly used barrier materials are nobler than Al, the Al interface in contact with the barrier can become prone to galvanic corrosion in the wet CMP environment. Using model systems of coupon electrodes and two specific barrier metals, Ta and Co, the electrochemical factors responsible for these corrosion effects are investigated here in a moderately acidic (pH = 4.0) abrasive-free solution. The techniques of cyclic voltammetry and impedance spectroscopy are combined with strategic measurements of galvanic currents and open circuit potentials (OCPs). L-ascorbic acid (AA) is employed as a surface modifying agent for controlling galvanic corrosions of Al in the Ta-Al and Co-Al bimetallic combinations. The results elaborate the chemical and electrochemical mechanisms responsible for activating and suppressing the corrosion processes in these systems. Defect-control is a critical requirement for CMP of the ultrathin diffusion barriers considered for the new Cu-interconnects. The challenging task of developing advanced CMP slurries for such systems can be aided by electrochemical evaluations of model CMP schemes under tribological conditions. The present work uses this strategy to characterize an alkaline slurry formulation aimed at minimizing galvanic corrosion in the CMP systems involving Ru, Ta (barrier metals) and Cu (wiring metal). This slurry is based on percarbonate and guanidine additives, and the test metals are polycrystalline disc samples. A particular goal of this study is to explore the essential analytical aspects of evaluating CMP systems in the tribo-electrochemical approach. The CMP specific surface reactions are characterized by potentiodynamic polarization and open circuit voltage measurements, performed both in the presence and in the absence of polishing, and by employing abrasive free as well as abrasive (colloidal SiO 2) added solutions. The findings of these experiments are further checked by using impedance spectroscopy. The electrochemical mixed potential steps of the CMP promoting reactions are analyzed, and the removable surface species formed by these reactions are discussed. Electro-oxidation of hypophosphite plays an important role in the electro-less deposition of Ni used to fabricate surface engineered films, alloys, and coatings for a variety of applications. At the same time, the kinetic details of this oxidation reaction comprise an ideal framework for studying many general mechanistic aspects of electrocatalysis on transition metal substrates. The present study utilizes these specific attributes of hypophosphite oxidation to probe the underlying function of the incipient hydrous oxide of Ni in promoting the catalytic properties of this metal in an alkaline medium. The experiments reported here use time-resolved Fourier-transform electrochemical impedance spectroscopy (FT-EIS), strategically coupled with scan-rate controlled voltammetry. The results suggest that the incipient hydrous oxide Ni(OH)ad formed at the onset of hypophosphite oxidation catalytically promotes the latter's precursor de-hydrogenation step. While voltammetry provides suggestive evidence for these Ni(OH)ad induced effects, the FT-EIS data serve to gather more direct signatures of the catalytic function of Ni(OH)ad. The mechanism of energy conversion in a direct glycerol fuel cell (DGFC) is governed by the anode-supported heterogeneous steps of glycerol electro-oxidation. In aerated alkaline electrolytes, glycerol also participates in a base catalyzed process, which can release certain species mixing with the anode catalyzed surface products. As a result, selective probing of the surface catalytic reactions involving such systems can be difficult. The present work addresses this issue for a gold anode by using the analytical capability of cyclic voltammetry (CV). In addition, surface plasmon resonance measurements are used to optically probe the adsorption characteristics of the electrolyte species. The net exchange current of the oxidation process and the transfer coefficient of the rate determining step are evaluated by analyzing the CV data. The interfacial reactions and their products on Au are identified by measuring the number of electrons released during the electro-oxidation of glycerol. The results indicate that these reactions are facilitated by the surface bound hydroxyl species on Au (chemisorbed OH-- and faradaically formed Au-OH). By comparing the findings for stationary and rotating electrodes, it is shown that, convective mass transport is critical to maintaining efficient progression of the consecutive oxidation steps of glycerol. In the absence of hydrodynamic support, the main surface products of glycerol oxidation appear to be glyceraldehyde, glycerate and malonate, formed through a net six-electron route. In the presence of controlled convection, a ten-electron process is activated, where mesaxolate is the likely additional product.

  14. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  15. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.

    2016-03-04

    Here we demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. Our results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order tomore » achieve comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  16. Chemical reactions induced by oscillating external fields in weak thermal environments

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto

    2015-02-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations.

  17. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE PAGES

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.; ...

    2016-02-02

    We demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. These results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order to achievemore » comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work then provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  18. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    NASA Astrophysics Data System (ADS)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  19. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    PubMed Central

    Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430

  20. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  2. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  3. Real-space characterization of reactivity towards water at the B i 2 T e 3 (111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai-Wen; Ding, Ding; Yang, Chao-Long

    2016-06-01

    Surface reactivity is important in modifying the physical and chemical properties of surface-sensitive materials, such as the topological insulators. Even though many studies addressing the reactivity of topological insulators towards external gases have been reported, it is still under heavy debate whether and how the topological insulators react with H2O. Here, we employ scanning tunneling microscopy to directly probe the surface reaction of Bi2Te3 towards H2O. Surprisingly, it is found that only the top quintuple layer is reactive to H2O, resulting in a hydrated Bi bilayer as well as some Bi islands, which passivate the surface and prevent subsequent reaction.more » A reaction mechanism is proposed with H2Te and hydrated Bi as the products. Unexpectedly, our study indicates that the reaction with water is intrinsic and not dependent on any surface defects. Since water inevitably exists, these findings provide key information when considering the reactions of Bi2Te3 with residual gases or atmosphere.« less

  4. Fracture and failure: Analyses, mechanisms and applications; Proceedings of the Symposium, Los Angeles, CA, March 17-20, 1980

    NASA Technical Reports Server (NTRS)

    Tung, P. P. (Editor); Agrawal, S. P.; Kumar, A.; Katcher, M.

    1981-01-01

    Papers are presented on the application of fracture mechanics to spacecraft design, fracture control applications on the Space Shuttle reaction control thrusters, and an assessment of fatigue crack growth rate relationships for metallic airframe materials. Also considered are fracture mechanisms and microstructural relationships in Ni-base alloy systems, the use of surface deformation markings to determine crack propagation directions, case histories of metallurgical failures in the electronics industry, and a failure analysis of silica phenolic nozzle liners.

  5. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Glenn Charles

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, andmore » separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less

  6. A novel approach for application of nylon membranes in the biosensing domain

    NASA Astrophysics Data System (ADS)

    Farahmand, Elham; Ibrahim, Fatimah; Hosseini, Samira; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Djordjevic, Ivan

    2015-10-01

    In this paper we report the polymer-coated microporous nylon membranes and their application as platforms for protein immobilization and subsequent detection of the dengue virus (DV) in blood serum. Protein recognition experiments were performed with enzyme-linked immunosorbent assay (ELISA). The polymers used for coatings were synthesized by free-radical polymerization reaction between methyl methacrylate (MMA) and methacrylic acid (MAA) in different concentrations. The MAA monomer has carefully been chosen to generate polymers with pendant carboxyl (-COOH) groups, which also exist on polymer surfaces. A high degree of control over surface-exposed -COOH groups has been achieved through variation of monomers concentration in polymerization reaction. The general aspect of this work relies on the dengue antibody (Ab) immobilization on surface -COOH groups via physical attachment or covalent immobilization. Prior to Ab immobilization and ELISA experiment, polymer-coated nylon samples were analyzed in detail for their physical properties by atomic force microscopy (AFM), scanning electron microscopy (SEM), and water-in-air contact angle (WCA) measurements. Membranes were further analyzed by Fourier transform infrared spectroscopy (FTIR) in order to establish the relationship between wettability, porosity, and surface roughness with chemical composition and concentration of -COOH groups on the coating's surface. Optimized coatings have shown high sensitivity towards dengue Ab molecules, revealing fundamental aspect of polymer-protein interfaces as a function of surface -COOH groups' concentration.

  7. Catalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts

    PubMed Central

    Liu, Wei; Jiang, Yingda; Dostert, Karl-Heinz; O’Brien, Casey P.; Riedel, Wiebke; Savara, Aditya; Schauermann, Swetlana; Tkatchenko, Alexandre

    2017-01-01

    The mechanistic understanding and control over transformations of multi-unsaturated hydrocarbons on transition metal surfaces remains one of the major challenges of hydrogenation catalysis. To reveal the microscopic origins of hydrogenation chemoselectivity, we performed a comprehensive theoretical investigation on the reactivity of two α,β-unsaturated carbonyls—isophorone and acrolein—on seven (111) metal surfaces: Pd, Pt, Rh, Ir, Cu, Ag, and Au. In doing so, we uncover a general mechanism that goes beyond the celebrated frontier molecular orbital theory, rationalizing the C═C bond activation in isophorone and acrolein as a result of significant surface-induced broadening of high-energy inner molecular orbitals. By extending our calculations to hydrogen-precovered surface and higher adsorbate surface coverage, we further confirm the validity of the “inner orbital broadening mechanism” under realistic catalytic conditions. The proposed mechanism is fully supported by our experimental reaction studies for isophorone and acrolein over Pd nanoparticles terminated with (111) facets. Although the position of the frontier molecular orbitals in these molecules, which are commonly considered to be responsible for chemical interactions, suggests preferential hydrogenation of the C═O double bond, experiments show that hydrogenation occurs at the C═C bond on Pd catalysts. The extent of broadening of inner molecular orbitals might be used as a guiding principle to predict the chemoselectivity for a wide class of catalytic reactions at metal surfaces. PMID:28782033

  8. An investigation into the effect of surface roughness of stainless steel on human umbilical vein endothelial cell gene expression.

    PubMed

    McLucas, E; Moran, M T; Rochev, Y; Carroll, W M; Smith, T J

    2006-01-01

    The surface properties of vascular devices dictate the initial postimplantation reactions that occur and thus the efficacy of the implantation procedure. Over the last number of years, a number of different stent designs have emerged and stents are generally polished to a mirror finish during the manufacturing procedure. This study sought to investigate the effect of stainless steel surface roughness on endothelial cell gene expression using an appropriate cell culture in vitro assay system. Stainless steel discs were roughened by shot blasting or polished by mechanical polishing. The surface roughness of the treated and untreated discs was determined by atomic force microscopy (AFM). Cells were seeded on collagen type 1 gels and left to attach for 24 h. Stainless steel discs of varying roughness were then placed in contact with the cells and incubated for 24 h. RNA extractions and quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed to determine the expression levels of candidate genes in the treated cells compared to suitable control cells. E-selectin and vascular cellular adhesion molecule (VCAM-1) were found to be significantly up-regulated in cells incubated with polished and roughened samples, indicating endothelial cell activation and inflammation. This study indicates that the surface roughness of stainless steel is an important surface property in the development of vascular stents.

  9. Controllable Surface Reorganization Engineering on Cobalt Phosphide Nanowire Arrays for Efficient Alkaline Hydrogen Evolution Reaction.

    PubMed

    Xu, Kun; Cheng, Han; Lv, Haifeng; Wang, Jingyu; Liu, Linqi; Liu, Si; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2018-01-01

    Developing highly efficient hydrogen evolution reaction (HER) catalysts in alkaline media is considered significant and valuable for water splitting. Herein, it is demonstrated that surface reorganization engineering by oxygen plasma engraving on electocatalysts successfully realizes a dramatically enhanced alkaline HER activity. Taking CoP nanowire arrays grown on carbon cloth (denoted as CoP NWs/CC) as an example, the oxygen plasma engraving can trigger moderate CoO x species formation on the surface of the CoP NWs/CC, which is visually verified by the X-ray absorption fine structure, high-resolution transmission electron microscopy, and energy-dispersive spectrometer (EDS) mapping. Benefiting from the moderate CoO x species formed on the surface, which can promote the water dissociation in alkaline HER, the surface reorganization of the CoP NWs/CC realizes almost fourfold enhanced alkaline HER activity and a 180 mV decreased overpotential at 100 mA cm -2 , compared with the pristine ones. More interestingly, this surface reorganization strategy by oxygen plasma engraving can also be effective to other electrocatalysts such as free-standing CoP, Co 4 N, O-CoSe 2 , and C-CoSe 2 nanowires, which verifies the universality of the strategy. This work thus opens up new avenues for designing alkaline HER electrocatalysts based on oxygen plasma engraving. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reactive solid surface morphology variation via ionic diffusion.

    PubMed

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  11. TOPICAL REVIEW: Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    NASA Astrophysics Data System (ADS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-08-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  12. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-10-01

    Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.

  13. Nummular eczema: An addition of senile xerosis and unique cutaneous reactivities to environmental aeroallergens.

    PubMed

    Aoyama, H; Tanaka, M; Hara, M; Tabata, N; Tagami, H

    1999-01-01

    The pathogenesis of nummular eczema (NE) is still unknown. It often develops on the lower legs of elderly individuals with xerotic changes during the winter months. Such winter exacerbation is also observed in atopic dermatitis, in which there is a high incidence of cutaneous immune reactivities against environmental aeroallergens. Because of the total lack of information about skin reactivities in NE patients, we performed immunological as well as functional studies in their uninvolved skin. Prick tests and chamber scarification patch tests for representative aeroallergens were conducted on the flexor surface of the forearm in 26 NE patients, in 21 age-matched elderly persons without NE and in 43 healthy young controls. We found that the elderly subjects, regardless of their background, showed a significantly higher immediate skin reactivity to Candida albicans than the young controls. In contrast, patch testing revealed that, unlike the age-matched elderly subjects who showed a decrease in incidence of positive patch test reactions, the NE patients retained delayed contact sensitivity at a level comparable to that of the young healthy controls. They showed a significantly higher percentage of positive patch test reactions to Dermatophagoides farinae allergen (46%) and house dust allergen (35%) than the age-matched controls. Moreover, they also showed a significantly higher percentage of delayed hypersensitive reactions to C. albicans allergen (85%) than the age-matched controls (48%). Noninvasive functional assessment of the stratum corneum (SC) in unaffected skin areas of the lower legs in 8 NE patients demonstrated that, though the water barrier function of the SC was comparable to that of the age-matched controls, they showed a significantly lower hydration state of the SC than the age-matched controls. The xerotic skin of elderly individuals facilitates the development of cracking and fissuring of the skin surface in dry and cold winter. Such damage in the SC is sometimes aggravated by inadvertent scratching due to pruritus, allowing skin permeation of various environmental allergens. They may induce eczematous changes in those with preserved adequate delayed hypersensitivity despite their advanced age.

  14. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  15. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    PubMed Central

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  16. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  17. Theory of the reaction dynamics of small molecules on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H 2, H 2O and CH 4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimentalmore » data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).« less

  18. Reaction of gas phase OH with unsaturated self-assembled monolayers and relevance to atmospheric organic oxidations.

    PubMed

    Moussa, Samar G; Finlayson-Pitts, Barbara J

    2010-08-28

    The kinetics and mechanisms of the reaction of gas phase OH radicals with organics on surfaces are of fundamental chemical interest, as well as relevant to understanding the degradation of organics on tropospheric surfaces or when they are components of airborne particles. We report here studies of the oxidation of a terminal alkene self-assembled monolayer (7-octenyltrichlorosilane, C8= SAM) on a germanium attenuated total reflectance crystal by OH radicals at a concentration of 2.1 x 10(5) cm(-3) at 1 atm total pressure and 298 K in air. Loss of the reactant SAM and the formation of surface products were followed in real time using infrared spectroscopy. From the rate of loss of the C=C bond, a reaction probability within experimental error of unity was derived. The products formed on the surface include organic nitrates and carbonyl compounds, with yields of 10 +/- 4% and < or = 7 +/- 4%, respectively, and there is evidence for the formation of organic products with C-O bonds such as alcohols, ethers and/or alkyl peroxides and possibly peroxynitrates. The yield of organic nitrates relative to carbonyl compounds is higher than expected based on analogous gas phase mechanisms, suggesting that the branching ratio for the RO(2) + NO reaction is shifted to favor the formation of organic nitrates when the reaction occurs on a surface. Water uptake onto the surface was only slightly enhanced upon oxidation, suggesting that oxidation per se cannot be taken as a predictor of increased hydrophilicity of atmospheric organics. These experiments indicate that the mechanisms for the surface reactions are different from gas phase reactions, but the OH oxidation of surface species will still be a significant contributor to determining their lifetimes in air.

  19. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  20. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically characterized.

Top