Sample records for surface reactor shield

  1. Shield Design for Lunar Surface Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory A.

    2006-01-01

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.

  2. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.

  3. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less

  4. Planetary surface reactor shielding using indigenous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, Michael G.; Poston, David I.; Trellue, Holly R.

    The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials. {copyright} {ital 1999 American Institute of Physics.}

  5. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  6. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  7. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  8. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.

  9. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  10. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2007-01-01

    A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).

  11. Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion.

    PubMed

    Malik, Muhammad Arif; Xiao, Shu; Schoenbach, Karl H

    2012-03-30

    Comparative studies revealed that surface plasmas developing along a solid-gas interface are significantly more effective and energy efficient for remediation of toxic pollutants in air than conventional plasmas propagating in air. Scaling of the surface plasma reactors to large volumes by operating them in parallel suffers from a serious problem of adverse effects of the space charges generated at the dielectric surfaces of the neighboring discharge chambers. This study revealed that a conductive foil on the cathode potential placed between the dielectric plates as a shield not only decoupled the discharges, but also increased the electrical power deposited in the reactor by a factor of about forty over the electrical power level obtained without shielding and without loss of efficiency for NO removal. The shield had no negative effect on efficiency, which is verified by the fact that the energy costs for 50% NO removal were about 60 eV/molecule and the energy constant, k(E), was about 0.02 L/J in both the shielded and unshielded cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    This paper presents a comparison of reactor and power conversion design options for 50 kWe class lunar and Mars surface power applications with scaling from 25 to 200 kWe. Design concepts and integration approaches are provided for three reactor-converter combinations: gas-cooled Brayton, liquid-metal Stirling, and liquid-metal thermoelectric. The study examines the mass and performance of low temperature, stainless steel based reactors and higher temperature refractory reactors. The preferred system implementation approach uses crew-assisted assembly and in-situ radiation shielding via installation of the reactor in an excavated hole. As an alternative, self-deployable system concepts that use earth-delivered, on-board radiation shielding are evaluated. The analyses indicate that among the 50 kWe stainless steel reactor options, the liquid-metal Stirling system provides the lowest mass at about 5300 kg followed by the gas-cooled Brayton at 5700 kg and the liquid-metal thermoelectric at 8400 kg. The use of a higher temperature, refractory reactor favors the gas-cooled Brayton option with a system mass of about 4200 kg as compared to the Stirling and thermoelectric options at 4700 and 5600 kg, respectively. The self-deployed concepts with on-board shielding result in a factor of two system mass increase as compared to the in-situ shielded concepts.

  13. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  14. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.

  15. Reference Reactor Module for the Affordable Fission Surface Power System

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  16. Reference reactor module for NASA's lunar surface fission power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I; Kapernick, Richard J; Dixon, David D

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on themore » lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.« less

  17. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  18. Investigation of Natural and Man-Made Radiation Effects on Crews on Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Parlos, Alexander

    1996-01-01

    Over the past several years, NASA has studied a variety of mission scenarios designed to establish a permanent human presence on the surface of Mars. Nuclear electric propulsion (NEP) is one of the possible elements in this program. During the initial stages of vehicle design work, careful consideration must be given to not only the shielding requirements of natural space radiation, but to the shielding and configuration requirements of the on-board reactors. In this work, the radiation transport code MCNP has been used to make initial estimates of crew exposures to reactor radiation fields for a specific manned NEP vehicle design. In this design, three 25 MW(sub th), scaled SP-100-class reactors are shielded by three identical shields. Each shield has layers of beryllium, tungsten, and lithium hydride between the reactor and the crew compartment. Separate calculations are made of both the exiting neutron and gamma fluxes from the reactors during beginning-of-life, full-power operation. This data is then used as the source terms for particle transport in MCNP. The total gamma and neutron fluxes exiting the reactor shields are recorded and separate transport calculations are then performed for a 10 g/sq cm crew compartment aluminum thickness. Estimates of crew exposures have been assessed for various thicknesses of the shield tungsten and lithium hydride layers. A minimal tungsten thickness of 20 cm is required to shield the reactor photons below the 0.05 Sv/y man-made radiation limit. In addition to a 20-cm thick tungsten layer, a 40-cm thick lithium hydride layer is required to shield the reactor neutrons below the annual limit. If the tungsten layer is 30-cm thick, the lithium hydride layer should be at least 30-cm thick. These estimates do not take into account the photons generated by neutron interactions inside the shield because the MCNP neutron cross sections did not allow reliable estimates of photon production in these materials. These results, along with natural space radiation shielding estimates calculated by NASA Langley Research Center, have been used to provide preliminary input data into a new Macintosh-based software tool. A skeletal version of this tool being developed will allow rapid radiation exposure and risk analyses to be performed on a variety of Lunar and Mars missions utilizing nuclear-powered vehicles.

  19. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  20. Lunar Surface Reactor Shielding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less

  1. SP-100 reactor with Brayton conversion for lunar surface applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Rodriguez, Carlos D.; Mckissock, Barbara I.; Hanlon, James C.; Mansfield, Brian C.

    1992-01-01

    Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility.

  2. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  3. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  4. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  5. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  6. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  7. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  8. NEUTRON REACTOR HAVING A Xe$sup 135$ SHIELD

    DOEpatents

    Stanton, H.E.

    1957-10-29

    Shielding for reactors of the type in which the fuel is a chain reacting liquid composition comprised essentially of a slurry of fissionable and fertile material suspended in a liquid moderator is discussed. The neutron reflector comprises a tank containing heavy water surrounding the reactor, a shield tank surrounding the reflector, a gamma ray shield surrounding said shield tank, and a means for conveying gaseous fission products, particularly Xe/sup 135/, from the reactor chamber to the shield tank, thereby serving as a neutron shield by capturing the thermalized neutrons that leak outwardly from the shield tank.

  9. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  10. Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars

    NASA Astrophysics Data System (ADS)

    Fensin, Michael L.; Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2006-01-01

    The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with ~0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

  11. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  12. Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser F.

    2007-01-01

    On the surface of the moon -and not only during heightened solar activities- the radiation environment As such that crew protection will be required for missions lasting in excess of six months. This study focuses on estimating the optimized crew shielding requirement for lunar surface missions with a nuclear option. Simple, transport-simulation based dose-depth relations of the three (galactic, solar, and fission) radiation sources am employed in a 1-dimensional optimization scheme. The scheme is developed to estimate the total required mass of lunar-regolith separating reactor from crew. The scheme was applied to both solar maximum and minimum conditions. It is shown that savings of up to 30% in regolith mass can be realized. It is argued, however, that inherent variation and uncertainty -mainly in lunar regolith attenuation properties in addition to the radiation quality factor- can easily defeat this and similar optimization schemes.

  13. Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2007-01-01

    On the surface of the moon and not only during heightened solar activities the radiation environment is such that crew protection will be required for missions lasting in excess of six months. This study focuses on estimating the optimized crew shielding requirement for lunar surface missions with a nuclear option. Simple, transport-simulation based dose-depth relations of the three radiation sources (galactic, solar, and fission) are employed in a one-dimensional optimization scheme. The scheme is developed to estimate the total required mass of lunar regolith separating reactor from crew. The scheme was applied to both solar maximum and minimum conditions. It is shown that savings of up to 30% in regolith mass can be realized. It is argued, however, that inherent variation and uncertainty mainly in lunar regolith attenuation properties in addition to the radiation quality factor can easily defeat this and similar optimization schemes.

  14. Top shield temperatures, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, J.D.

    1964-12-28

    A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less

  15. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less

  16. DEVICE FOR TREATING MATERIALS

    DOEpatents

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction in a reactor to facilitate inserting and removing test specimens from the reactor for irradiation therein is discussed. An elongated chamber extends from the outer face of the reactor shield into the reactor. A shield box, having an open end, is sealed to thc outer face of the reactor shield by its open end surrounding the outer end of the chamber. A removable door is provided in the side wall of the shield box for inscrtion and removal of test specimens. A means operable from thc exterior of the shield box is provided for transferring test specimens between the shield box and the irradiation position within the chamber and consists of an elongated rod having a specimen tray engaging member on its inner end, which may be manipulated by the operator.

  17. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  18. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  19. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  20. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  2. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Thomas A.; Disney, Richard K.

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  3. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  4. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  5. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  6. Atmospheric reentry of the in-core thermionic SP-100 reactor system

    NASA Technical Reports Server (NTRS)

    Stamatelatos, M. G.; Barsell, A. W.; Harris, P. A.; Francisco, J.

    1987-01-01

    Presumed end-of-life atmospheric reentry of the GA SP-100 system was studied to assess dispersal feasibility and associated hazards. Reentry was studied by sequential use of an orbital trajectory and a heat analysis computer program. Two heating models were used. The first model assumed a thermal equilibrium condition between the stagnation point aerodynamic heating and the radiative cooling of the skin material surface. The second model allowed for infinite conductivity of the skin material. Four reentering configurations were studied representing stages of increased SP-100 breakup: (1) radiator, shield and reactor, (2) shield and reactor, (3) reactor with control drums, and (4) reactor without control drums. Each reentering configuration was started from a circular orbit at 116 km having an inertial velocity near Mach 25. The assumed failing criterion was the attainment of melting temperature of a critical system component. The reentry analysis revealed breakup of the vessel in the neighborhood of 61 km altitude and scattering of the fuel elements. Subsequent breakup of the fuel elements was not predicted. Oxidation of the niobium skin material was calculated to cause an increase in surface temperature of less than ten percent. The concept of thermite analogs for enhancing reactor reentry dispersal was assessed and found to be feasible in principle. A conservative worst-case hazards analysis was performed for radioactive and nonradioactive toxic SP-100 materials assumed to be dispersed during end-of-life reentry. The hazards associated with this phase of the SP-100 mission were calculated to be insignificant.

  7. 63. REACTOR CHAMBER (BASF) FROM NORTH SHOWING NEUTRON SHIELD TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. REACTOR CHAMBER (BASF) FROM NORTH SHOWING NEUTRON SHIELD TANK AND REACTOR PIPING (LOCATION RRR) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  8. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  9. Nuclear design of a very-low-activation fusion reactor

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Hopkins, G. R.

    1983-06-01

    The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.

  10. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    PubMed

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling.

  11. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  12. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  13. Nuclear reactor fuel containment safety structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.

  14. MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED OUTSIDE OF MTR FOR EXPERIMENTS. THE AIRCRAFT NUCLEAR PROPULSION PROJECT DOMINATED THE USE OF THIS PART OF THE MTR. INL NEGATIVE NO. 7225. Unknown Photographer, 11/28/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. A Practical Approach to Starting Fission Surface Power Development

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.

  16. IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Typical detail during Snaptran reactor experiments. Shielding bricks protect ion chamber beneath reactor on dolly. Photographer: Page Comiskey. Date: August 11, 1965. INEEL negative no. 65-4039 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  18. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.

  19. FASTER 3: A generalized-geometry Monte Carlo computer program for the transport of neutrons and gamma rays. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1970-01-01

    The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.

  20. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  1. Split-core heat-pipe reactors for out-of-pile thermionic power systems.

    NASA Technical Reports Server (NTRS)

    Niederauer, G.; Lantz, E.; Breitweiser, R.

    1971-01-01

    Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-

  2. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  3. LOFT. Reactor apparatus leaves A&M building (TAN607). Shielded locomotive has ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor apparatus leaves A&M building (TAN-607). Shielded locomotive has aerojet logo, which replaced old general electric logo, pulls reactor from assembly shop on dolly. Camera facing easterly. Date: 1973. INEEL negative no. 73-3700 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Evaluation of the concrete shield compositions from the 2010 criticality accident alarm system benchmark experiments at the CEA Valduc SILENE facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Celik, Cihangir; Dunn, Michael E

    In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereasmore » in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available that show much better agreement with the measured values.« less

  5. PWR upper/lower internals shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homyk, W.A.

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use ofmore » lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.« less

  6. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  7. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  8. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    NASA Astrophysics Data System (ADS)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  9. Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-02-01

    A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.

  10. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  11. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  12. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  13. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  15. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  16. Determination and Fabrication of New Shield Super Alloys Materials for Nuclear Reactor Safety by Experiments and Cern-Fluka Monte Carlo Simulation Code, Geant4 and WinXCom

    NASA Astrophysics Data System (ADS)

    Aygun, Bünyamin; Korkut, Turgay; Karabulut, Abdulhalik

    2016-05-01

    Despite the possibility of depletion of fossil fuels increasing energy needs the use of radiation tends to increase. Recently the security-focused debate about planned nuclear power plants still continues. The objective of this thesis is to prevent the radiation spread from nuclear reactors into the environment. In order to do this, we produced higher performanced of new shielding materials which are high radiation holders in reactors operation. Some additives used in new shielding materials; some of iron (Fe), rhenium (Re), nickel (Ni), chromium (Cr), boron (B), copper (Cu), tungsten (W), tantalum (Ta), boron carbide (B4C). The results of this experiments indicated that these materials are good shields against gamma and neutrons. The powder metallurgy technique was used to produce new shielding materials. CERN - FLUKA Geant4 Monte Carlo simulation code and WinXCom were used for determination of the percentages of high temperature resistant and high-level fast neutron and gamma shielding materials participated components. Super alloys was produced and then the experimental fast neutron dose equivalent measurements and gamma radiation absorpsion of the new shielding materials were carried out. The produced products to be used safely reactors not only in nuclear medicine, in the treatment room, for the storage of nuclear waste, nuclear research laboratories, against cosmic radiation in space vehicles and has the qualities.

  17. Starlight: A stationary inertial-confinement-fusion reactor with nonvaporizing walls

    NASA Astrophysics Data System (ADS)

    Pitts, John H.

    1989-09-01

    The Starlight concept for an inertial-confinement-fusion (ICF) reactor utilizes a softball-sized solid-lithium x ray and debris shield that surrounds each fuel pellet as it is injected into the reactor. The shield is sacrificial and vaporizes as it absorbs x ray and ion-debris energy emanating from the fusion reactions in the fuel pellets. However, the energy deposition time at the surface if the first wall is lengthened by four orders of magnitude (to greater than 100 microns) which allows the energy to be conducted into the wall fast enough to prevent vaporization. Starlight operates at 5 Hz with 300-MJ-yield fuel pellets. It features a stationary, nonvaporizing first wall that eliminates erosion and shock waves which can destroy the wall; also, it allows arbitrary fuel pellet illumination geometries so that efficient coupling of either laser or heavy ion beam driver energy to the fuel pellet can be achieved. When neutrons penetrate the shield, the wall experiences neutron damage that limits its lifetime. Hence, we must choose wall materials that have ab economic lifetime. We describe the general concept and a specific design for laser drivers using a 6-m-radius, 2 1/4 Cr 1 Mo steel first wall. We include heat transfer calculations used to establish the radius and structural analysis that shows stresses are within allowable limits. A wall lifetime of over six years is predicted.

  18. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  19. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  20. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  1. Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.; Willenberg, H. J.; Robertson, C.

    1985-01-01

    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

  2. Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Sawyer, C. D.; Nakashima, A.

    1972-01-01

    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.

  3. Interior of the Plum Brook Reactor Facility

    NASA Image and Video Library

    1961-02-21

    A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.

  4. Bibliography, subject index, and author index of the literature examined by the Radiation Shielding Information Center (Reactor and Weapons Radiation Shielding). [1973--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    An indexed bibliography is presented of literature selected by the Radiation Shielding Information Center since the previous volume was published in 1974 in the area of radiation transport and shielding against radiation from nuclear reactors, x-ray machines, radioisotopes, nuclear weapons (including fallout), and low-energy accelerators (e.g., neutron generators). In addition to lists of literature titles by subject categories (accessions 3501-4950), author and keyword indexes are given. Most of the literature selected for Vol. V was published in the years 1973 to 1976.

  5. 11. Photocopy of drawing, February 1958. WATERTOWN ARSENAL REACTOR, SHIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of drawing, February 1958. WATERTOWN ARSENAL REACTOR, SHIELD STRUCTURE, SECTIONS, AND PLANS. Bendix Aviation Corporation; and Giffels & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan. Drawing Number 53-198. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  6. PBF Reactor Building (PER620) basement, inside cubicle 13. Lead bricks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement, inside cubicle 13. Lead bricks shield the fission product detection system (FPDS). The system detected fission products in pressure loop from in-pile tube. shielding was to prevent other radiation in cubicle from interfering. Assembly of bricks in foreground will slide back to enclose and shield equipment in the three chambers. Date: 1982. INEEL negative no. 82-6376 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  9. SOC-DS computer code provides tool for design evaluation of homogeneous two-material nuclear shield

    NASA Technical Reports Server (NTRS)

    Disney, R. K.; Ricks, L. O.

    1967-01-01

    SOC-DS Code /Shield Optimization Code-Direc Search/, selects a nuclear shield material of optimum volume, weight, or cost to meet the requirments of a given radiation dose rate or energy transmission constraint. It is applicable to evaluating neutron and gamma ray shields for all nuclear reactors.

  10. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Multi-physics design and analyses of long life reactors for lunar outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.

    Future human exploration of the solar system is likely to include establishing permanent outposts on the surface of the Moon. These outposts will require reliable sources of electrical power in the range of 10's to 100's of kWe to support exploration and resource utilization activities. This need is best met using nuclear reactor power systems which can operate steadily throughout the long ˜27.3 day lunar rotational period, irrespective of location. Nuclear power systems can potentially open up the entire lunar surface for future exploration and development. Desirable features of nuclear power systems for the lunar surface include passive operation, the avoidance of single point failures in reactor cooling and the integrated power system, moderate operating temperatures to enable the use of conventional materials with proven irradiation experience, utilization of the lunar regolith for radiation shielding and as a supplemental neutron reflector, and safe post-operation decay heat removal and storage for potential retrieval. In addition, it is desirable for the reactor to have a long operational life. Only a limited number of space nuclear reactor concepts have previously been developed for the lunar environment, and these designs possess only a few of these desirable design and operation features. The objective of this research is therefore to perform design and analyses of long operational life lunar reactors and power systems which incorporate the desirable features listed above. A long reactor operational life could be achieved either by increasing the amount of highly enriched uranium (HEU) fuel in the core or by improving the neutron economy in the reactor through reducing neutron leakage and parasitic absorption. The amount of fuel in surface power reactors is constrained by the launch safety requirements. These include ensuring that the bare reactor core remains safely subcritical when submerged in water or wet sand and flooded with seawater in the unlikely event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete Element Method (DEM) analysis in lunar gravity. In addition, this research addresses the post-operation storage of the SCoRe and PeBR concepts, below the lunar surface, to determine the time required for the radioactivity in the used fuel to decrease to a low level to allow for its safe recovery. The SCoRe and PeBR concepts are designed to operate at coolant temperatures ≤ 900 K and use conventional stainless steels and superalloys for the structure in the reactor core and power system. They are emplaced below grade on the Moon to take advantage of the regolith as a supplemental neutron reflector and as shielding of the lunar outpost from the reactors' neutron and gamma radiation.

  12. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  13. Concepts and Tests for the Remote-Controlled Dismantling of the Biological Shield and Form work of the KNK Reactor - 13425

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Sylvia; Graf, Anja; Petrick, Holger

    The compact sodium-cooled nuclear reactor facility Karlsruhe (KNK), a prototype Fast Breeder, is currently in an advanced stage of dismantling. Complete dismantling is based on 10 partial licensing steps. In the frame of the 9. decommissioning permit, which is currently ongoing, the dismantling of the biological shield is foreseen. The biological shield consists of heavy reinforced concrete with built-in steel fitments, such as form-work of the reactor tank, pipe sleeves, ventilation channels, and measuring devices. Due to the activation of the inner part of the biological shield, dismantling has to be done remote-controlled. During a comprehensive basic design phase amore » practical dismantling strategy was developed. Necessary equipment and tools were defined. Preliminary tests revealed that hot wire plasma cutting is the most favorable cutting technology due to the geometrical boundary conditions, the varying distance between cutter and material, and the heavy concrete behind the steel form-work. The cutting devices will be operated remotely via a carrier system with an industrial manipulator. The carrier system has expandable claws to adjust to the varying diameter of the reactor shaft during dismantling progress. For design approval of this prototype development, interaction between manipulator and hot wire plasma cutting was tested in a real configuration. For the demolition of the concrete structure, an excavator with appropriate tools, such as a hydraulic hammer, was selected. Other mechanical cutting devices, such as a grinder or rope saw, were eliminated because of concrete containing steel spheres added to increase the shielding factor of the heavy concrete. Dismantling of the biological shield will be done in a ring-wise manner due to static reasons. During the demolition process, the excavator is positioned on its tripod in three concrete recesses made prior to the dismantling of the separate concrete rings. The excavator and the manipulator carrier system will be operated alternately. Main boundary condition for all the newly designed equipment is the decommissioning housing of limited space within the reactor building containment. To allow for a continuous removal of the concrete rubble, an additional opening on the lowest level of the reactor shaft will be made. All equipment and the interaction of the tools have to be tested before use in the controlled area. Therefore a full-scale model of the biological shield will be provided in a mock-up. The tests will be performed in early 2014. The dismantling of the biological shield is scheduled for 2015. (authors)« less

  14. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  15. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  16. ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  18. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  19. Optimizing stellarator coil winding surfaces with Regcoil

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris

    2017-10-01

    We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  20. MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILELIKE STEPS) PROJECTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILE-LIKE STEPS) PROJECTS FROM THE SOUTHEAST CORNER OF THE MTR TOWARD SOUTHEAST CORNER OF BUILDING, WHERE SHIELDING BLOCKS BEGIN TO SURROUND THE TUNNEL AS IT NEARS DETECTING INSTRUMENTS NEAR THE BUILDING WALL. GEAR RELATED TO CRYSTAL NEUTRON SPECTROMETER IS IN FOREGROUND SURROUNDED BY SHIELDING. DATA CONSOLES ARE AT MID-LEVEL OF EAST FACE. OTHER WORK PROCEEDS ON TOP OF AND ELSEWHERE AROUND REACTOR. NOTE TOOLS HANGING AGAINST SOUTHEAST CORNER, USED TO CHANGE FUEL ELEMENTS AND OTHER REACTOR ITEMS DURING REFUELING CYCLES. INL NEGATIVE NO. 10439. Unknown Photographer, 4/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  2. Research reactor decommissioning experience - concrete removal and disposal -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Mark R.; Gardner, Frederick W.

    1990-07-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less

  3. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    PubMed

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  5. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  6. MTR,TRA603. EXPERIMENTERS' SPACE ALLOCATIONS IN BASEMENT AS OF 1963. SHIELDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR,TRA-603. EXPERIMENTERS' SPACE ALLOCATIONS IN BASEMENT AS OF 1963. SHIELDED CUBICLES WERE IDENTIFIED BY SPONSORING LABORATORY AND ITS TEST HOLE NUMBER IN THE REACTOR, IE, "KAPL HB-1" SIGNIFIED KNOLLS ATOMIC POWER LABORATORY, HORIZONTAL BEAM NO. 1. "WAPD" WAS WESTINGHOUSE ATOMIC POWER DIVISION. CATCH TANKS AND SAMPLE STATIONS FOR TEST LOOPS WERE ASSOCIATED WITH THESE CUBICLES. NOTE DESKS, STORAGE CABINETS, SWITCH GEAR, INSTRUMENT PANELS. PHILLIPS PETROLEUM COMPANY MTR-E-5205, 4/1963. INL INDEX NO. 531-0603-00-706-009757, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  8. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  9. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.

  10. Two-dimensional over-all neutronics analysis of the ITER device

    NASA Astrophysics Data System (ADS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

    1993-07-01

    The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

  11. ETR BUILDING, TRA642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS AT DOOR TO M-3 CUBICLE. CUBICLE WALLS ARE MADE OF LEAD SHIELDING BRICKS. VALVE HANDLES AND STEMS PERTAIN TO SAMPLING. METAL SHIELDING DOOR. NOTE GLOVE BOX TO RIGHT OF CUBICLE DOOR. INL NEGATIVE NO. HD-46-21-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Goals of thermionic program for space power

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1981-01-01

    The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.

  13. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  14. LOFT. Containment and service building (TAN650). Section through north/south axis. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Section through north/south axis. Shows basement and four additional levels of pre-amp tower, shielded roadway, chambers below reactor floor, railroad door, sumps, shielding. Section C shows basement sumps and chambers below reactor floor. Kaiser engineers 6413-11-STEP/LOFT-650-A-5. Date: October 1964. INEEL index code no. 036-650-00-486-122217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broughton, J.; Butler, J.; Brimstone, M.

    1969-10-31

    The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less

  16. SPERTI Reactor Pit Building (PER605). Earth shielding protect adjacent Instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Reactor Pit Building (PER-605). Earth shielding protect adjacent Instrument Cell (PER-606). Security fencing surrounds complex, to which gate entry is provided next to Guard House (PER-607). Note gravel road leading to control area. Earth-covered conduit leads from instrument cell to terminal building out of view. Photographer: R.G. Larsen. Date: June 22, 1955. INEEL negative no. 55-1701 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2009-06-01

    It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety,more » and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.« less

  18. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is sealed by rolling its ends into the rolled joint area. During reactor refurbishment, the original FC calandria tubes are removed, potentially scratching the rolled joint area and, thereby, compromising the seal with the new FC calandria tube. The procedure involves delivering an inspection module having a radiation-resistant camera, standard lighting, and a structured lighting projector. The surface is inspected by rotating the module within the rolled joint area. If a flaw is detected, its depth and width are gauged from the profile variation of the structured lighting in a captured image. As well, the diameter profile of the area is measured from the analysis of a series of captured circumferential images of the structured lighting profiles on the surface.

  19. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  20. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOEpatents

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  1. HOT CELL BUILDING, TRA632, INTERIOR. DETAIL OF HOT CELL NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. DETAIL OF HOT CELL NO. 2 SHOWS MANIPULATION INSTRUMENTS AND SHIELDED OPERATING WINDOWS. PENETRATIONS FOR OPERATING INSTRUMENTS GO THROUGH SHIELDING ABOVE WINDOWS. CONDUIT FOR UTILITIES AND CONTROLS IS BEHIND METAL CABINET BELOW WINDOWS NEAR FLOOR. CAMERA FACES WEST. WARNING SIGN LIMITS FISSILE MATERIAL TO SPECIFIED NUMBER OF GRAMS OF URANIUM AND PLUTONIUM. INL NEGATIVE NO. HD46-28-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Remote Assessment of Lunar Resource Potential

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1992-01-01

    Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.

  3. SPERTI. Detail view of Reactor Pit Building (PER605) and Instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I. Detail view of Reactor Pit Building (PER-605) and Instrument Cell (PER-606). Earth shielding covers side of Cell Building next to reactor. Instrumentation required protection from radiation emitted during reactor operation. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1290 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.

    2007-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.

  5. Design considerations for a Space Station radiation shield for protection from both man-made and natural sources

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Peddicord, K. Lee; Felsher, Harry; Smith, Simon

    1994-01-01

    This study was conducted to analyze scenarios involving the use of nuclear-power vehicles in the vicinity of a manned Space Station (SS) in low-earth-orbit (LEO) to quantify their radiological impact to the station crew. In limiting the radiant dose to crew members, mission planners may (1) shut the reactor down prior to reentry, (2) position the vehicle at a prescribed parking distance, and (3) deploy radiation shield about the shutdown reactor. The current report focuses on the third option in which point-kernel gamma-ray shielding calculations were performed for a variety of shield configurations for both nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles. For a returning NTR vehicle, calculations indicate that a 14.9 MT shield would be needed to limit the integrated crew exposure to no more than 0.05 Sv over a period of six months (25 percent of the allowable exposure to man-made radiation sources). During periods of low vehicular activity in LEO, the shield may be redeployed about the SS habitation module in order to decrease crew exposures to trapped proton radiations by approximately a factor of 10. The corresponding shield mass required for deployment at a returning NEP vehicle is 2.21 MT. Additional scenarios examined include the radioactivation of various metals as might be found in tools used in EVA activities.

  6. Gross decontamination experiment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, R.; Kinney, K.; Dettorre, J.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established formore » the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.« less

  7. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  8. Neutronic reactor thermal shield

    DOEpatents

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  9. Nuclear reactor system study for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.

    1982-01-01

    Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  10. A portable instrument for measuring emissivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perinic, G.; Schulz, K.; Scherber, W.

    1995-12-01

    The quality control of surface emissivities is an important aspect in the manufacturing of cryopumps and other cryogenics equipment. It is particularly important in fusion reactor applications where standard coating techniques cannot be applied for the cryocondensation panels and for the thermal shielding baffles. The paper describes the working principle of a table top instrument developed by Dornier for measuring the mean emissivity in the spectral range 0.6-40 {mu}m at ambient temperature and the further development of the instrument to a portable version which can be used for on site measurements.

  11. Integrated head package for top mounted nuclear instrumentation

    DOEpatents

    Malandra, Louis J.; Hornak, Leonard P.; Meuschke, Robert E.

    1993-01-01

    A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.

  12. PBF Reactor Building (PER620) basement. Workers wearing protective gear work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement. Workers wearing protective gear work inside cubicle 13 on the fission product detection system. Man on left is atop shielded box shown in previous photo. Posture of second man illustrates waist-high height of shielding box. His hand rests on the access panel, which has been filled with lead bricks and which has been slid shut to enclose detection instruments within box. Photographer: John Capek. Date: January 24, 1983. INEEL negative no. 83-41-3-5 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    PubMed

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  15. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  16. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  17. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  18. Neutron shielding panels for reactor pressure vessels

    DOEpatents

    Singleton, Norman R [Murrysville, PA

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  19. Measurement of carbon distribution in nuclear fuel pin cladding specimens by means of a secondary ion mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs

    1986-11-01

    Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.

  20. LPT. Shield test facility test building interior (TAN646). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Decommissioning of the Northrop TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozens, George B.; Woo, Harry; Benveniste, Jack

    1986-07-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  2. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  3. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  4. A Stainless-Steel, Uranium-Dioxide, Potassium-Heatpipe-Cooled Surface Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, Benjamin W.; Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611; Sims, Bryan T.

    2006-01-20

    One of the primary goals in designing a fission power system is to ensure that the system can be developed at a low cost and on an acceptable schedule without compromising reliability. The Heatpipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The Heatpipe Operated Moon Exploration Reactor (HOMER-25) is a HPS designed to produce 25-kWe on the lunar surface for 5 full-power years. The HOMER-25 core is made up of 93% enriched UO2 fuel pins and stainless-steel (SS)/potassium (K) heatpipes in a SS monolith. The heatpipes transport heat generated in the core throughmore » the water shield to a potassium boiler, which drives six Stirling engines. The operating heatpipe temperature is 880 K and the peak fast fluence is 1.6e21 n/cm2, which is well within an established database for the selected materials. The HOMER-25 is designed to be buried in 1.5 m of lunar regolith during operation. By using technology and materials which do not require extensive technology development programs, the HOMER-25 could be developed at a relatively low cost. This paper describes the attributes, specifications, and performance of the HOMER-25 reactor system.« less

  5. Reflector and Shield Material Properties for Project Prometheus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  6. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pape, Yann; Huang, Hai

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  7. Venting of fission products and shielding in thermionic nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Salmi, E. W.

    1972-01-01

    Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.

  8. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and

  9. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  10. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-01

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.

  11. Wing shielding of high velocity jet and shock-associated noise with cold and hot flow jets

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.; Wagner, J.

    1976-01-01

    Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1,100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various sheilding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise, however, long shielding surfaces did shield shock noise effectively.

  12. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    PubMed Central

    Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang

    2015-01-01

    Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808

  13. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  14. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.« less

  15. ETR, TRA642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF FLOOR AND FACES NORTH. OUTER WALL OF STORAGE CANAL IS AT RIGHT. SHIELDING IS THICKER AT LOWER LEVEL, WHERE SPENT FUEL ELEMENTS WILL COOL AFTER REMOVAL FROM REACTOR. INL NEGATIVE NO. 56-1401. Jack L. Anderson, Photographer, 5/1/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. APPARATUS FOR LOADING AND UNLOADING A MACHINE

    DOEpatents

    Payne, J.H. Jr.

    1962-07-17

    An arrangement for loading and unloading a nuclear reactor is described. Depleted fuel elements are removed from the reactor through one of a small number of holes in a shielding plug that is rotatably mounted in an eccentric annular plug rotatably mounted in the top of the reactor. The fuel elements removed are stored in a plurality of openings in a rotatable magazine or storage means rotatably mounted over the plugs. (AEC)

  18. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  19. A laser scanning system for metrology and viewing in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spampinato, P.T.; Barry, R.E.; Menon, M.M.

    1996-05-01

    The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics tomore » the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.« less

  20. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeo; Murata, Isao; Nakagawa, Tsutomu; Saito, Isao

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  1. TECHNICAL AND MEDICAL ASPECTS OF NUCLAR-POWERED AIRPLANES: THE ROLE OF NUCLEAR POWER IN THE ATMOSPHERE AND IN SPACE (in Swedish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Ublisch, H.

    1961-01-01

    An evaluation is given of the merits of potential nuclear propulsion systems for aircraft and rockets as well as of small nuclear power plants for auxiliary use in space exploration. The protection of personnel and passengers against gamma and high-velocity radiation is discussed, and the shielding properties of various materials are analysed. Mobile shielding would be required for airplanes even when landed and the reactor is shut down. No significant pollutton of the atmosphere is expected from leaking reactors, but accidents constitute a real danger. The prospects of realizing the ion motor and the photon motor are speculated upon. (auth)

  2. HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-05-01

    Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)

  4. Thermos reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labrousse, M.; Lerouge, B.; Dupuy, G.

    1978-04-01

    THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.

  5. PBF Reactor Building (PER620). Cubicle 10 detail. Camera facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 detail. Camera facing west toward brick shield wall. Valve stems against wall penetrate through east wall of cubicle. Photographer: John Capek. Date: August 19, 1970. INEEL negative no. 70-3469 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  6. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Contributions of each isotope in some fluids on neutronic performance in a fusion-fission hybrid reactor: a Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Günay, M.; Şarer, B.; Kasap, H.

    2014-08-01

    In the present investigation, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa ferritic steel structural material and 99-95 % Li20Sn80-1-5 % SFG-Pu, 99-95 % Li20Sn80-1-5 % SFG-PuF4, 99-95 % Li20Sn80-1-5 % SFG-PuO2 the molten salt-heavy metal mixtures, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium zone with the width of 3 cm was used for the neutron multiplicity between liquid first wall and blanket. The contributions of each isotope in fluids on the nuclear parameters of a fusion-fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, heat deposition rate were computed in liquid first wall, blanket and shield zones. Three-dimensional analyses were performed by using Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  8. The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground

    NASA Astrophysics Data System (ADS)

    Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.

    2018-01-01

    From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.

  9. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.

  10. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  11. In-Plane Shielding for CT: Effect of Off-Centering, Automatic Exposure Control and Shield-to-Surface Distance

    PubMed Central

    Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.

    2009-01-01

    Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862

  12. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  13. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  14. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and tested. The resulting epithermal beam of 1 x 10{sup 9} n/sec-cm{sup 2} was measured by Idaho National Laboratory with assistance from WSU's Neutron Activation Analysis Group. The beam is as good as our initial proposals for the project had predicted. In addition to all of the design, construction and insertion of the hardware, shielding, electronics and radiation monitoring systems there was considerable manpower and effort put into changes in the Technical Specifications of the reactor and implementing procedures for use of the new facility. This staff involvement is one of the reasons we requested special facility support from the DOE. Once the facility was competed and all of the recalibrations and measurements made to characterize the differences between this reactor core and the previous core we began to assist INL in making their beam measurements with foils and phantoms. Although we proposed support for only one additional staff position to support this new NCT facility the staff support provided by the WSU Nuclear Radiation Center was greater than had been anticipated by our initial proposal. INL was also assisted in the testing of a heavy water (deuterated water) bladder that can be inserted into the collimator in order to produce an intense, external thermal neutron beam. The external epithermal and/or thermal neutron beam capability remains available for use, if funding becomes available for future research projects.« less

  15. Removal of the Plutonium Recycle Test Reactor - 13031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, C. Brad; Guercia, Rudolph; LaCome, Matt

    2013-07-01

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associatedmore » underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)« less

  16. Gamma heating in reflector heat shield of gas core reactor

    NASA Technical Reports Server (NTRS)

    Lofthouse, J. H.; Kunze, J. F.; Young, T. E.; Young, R. C.

    1972-01-01

    Heating rate measurements made in a mock-up of a BeO heat shield for a gas core nuclear rocket engine yields results nominally a factor of two greater than calculated by two different methods. The disparity is thought to be caused by errors in neutron capture cross sections and gamma spectra from the low cross-section elements, D, O, and Be.

  17. Isomer Energy Source for Space Propulsion Systems

    DTIC Science & Technology

    2004-03-01

    1,590 Engine F/W (no shield) 3.4 5.0 20.0 A similar core design replacing the fission fuel with the isomer 178Hfm2 is the starting point for this...particles interact and collide with other atoms in the fuel material, reactor core , or coolant, their energy can be transferred to thermal energy...thrust (44). The program produced several reactors that made it all the way through the testing stages of development . The reactors used uranium-235

  18. PBF Reactor Building (PER620). Camera facing southeast in second basement. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera facing southeast in second basement. Round form and reinforcing steel surround reactor vessel pit, which will be heavily shielded by several feet of concrete. Block-out is for door to sub-pile room. Rectangular form and rebar beyond pit is for canal wall. Photographer: John Capek. Date: March 10, 1967. INEEL negative no. 67-1643 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. PBF Reactor Building (PER620). Cubicle 10 area in basement. Highdensity ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10 area in basement. High-density shielding bricks will protect personnel from radiation coming from in-pile-tube coolant and blowdown tank. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-348 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  20. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  1. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  2. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  3. NPR Reactor shield calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E.G.

    1961-09-27

    At the request of IPD Personnel, calculations on neutron and gamma attenuation were made for the NPR shield. The calculations were made using a new shielding computer code developed for the IBM 7090. The calculations show the thermal neutron flux, total neutron dose rate, and gamma dose rate distribution through the entire shield assembly. The calculations show that the side and top primary shield design is adequate to reduce the radiation level below design tolerances. The radiation leakage through the front shield was higher than the design tolerances. Two alternate biological shield materials were studied for use on the frontmore » face. These two materials were iron serpentine concrete mixtures with densities of 245 lb/ft{sup 3} and 265 lb/ft{sup 3} (designated by I-S-245-P and I-S-265-P, respectively). Both of these concretes reduced the radiation below design tolerances. It is recommended that the present front face biological shield be changed from I-S-220-P to I-S-245-P. With this change the NPR shield is adequate according to these calculations. The calculations reported here do not include leakage through penetration in the shield.« less

  4. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    PubMed

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  5. Atomic oxygen recombination on the ODS PM 1000 at high temperature under air plasma

    NASA Astrophysics Data System (ADS)

    Balat-Pichelin, M.; Bêche, E.

    2010-06-01

    High temperature materials are necessary for the design of primary heat shields for future reusable space vehicles re-entering atmospheric planet at hypersonic velocity. During the re-entry phase on earth, one of the most important phenomena occurring on the heat shield is the recombination of atomic oxygen and this phenomenon is more or less catalyzed by the material of the heat shield. PM 1000 is planned to be use on the EXPERT capsule to study in real conditions its catalycity. Before the flight, it is necessary to perform measurements on ground test facility. Experimental data of the recombination coefficient of atomic oxygen under air plasma flow were obtained in the diffusion reactor MESOX on pre-oxidized PM 1000, for two total pressures 300 and 1000 Pa in the temperature range (850-1650 K) using actinometry and optical emission spectroscopy. In this investigation, the evolution of the recombination coefficient is dependent of temperature, pressure level and also of the chemical composition of the surface leading to one order of magnitude for a given temperature. The recombination coefficient is increasing with temperature and also dependent on the static pressure. The surface change due to the plasma exposure is inspected with SEM, XRD and XPS. As chromium oxide is the main part of the oxide layer formed during the oxidation in air plasma conditions, a sintered Cr 2O 3 sample was elaborated from powders to compare the data of the recombination coefficient obtained on PM 1000. Pre- and post-test analyses on the several materials were carried out using SEM, WDS, XRD and XPS.

  6. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  7. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  8. Dismantlement of the TSF-SNAP Reactor Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretz, Fred J

    2009-01-01

    This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less

  9. Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Howard, David; Abney, Morgan

    2015-01-01

    This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.

  10. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  11. WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. A Programmable Liquid Collimator for Both Coded Aperture Adaptive Imaging and Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2012-03-01

    environments where a source is either weak or shielded. A vehicle of this type could survey large areas after a nuclear attack or a nuclear reactor accident...to prevent its detection by γ-rays. The best application for unmanned vehicles is the detection of radioactive material after a nuclear reactor ...accident or a nuclear weapon detonation [70]. Whether by a nuclear detonation or a nuclear reactor accident, highly radioactive substances could be dis

  13. Neutron Deep Penetration Calculations in Light Water with Monte Carlo TRIPOLI-4® Variance Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Kang

    2017-09-01

    Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.

  14. 75 FR 20398 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP1000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP1000; Notice of Meeting The ACRS Subcommittee on the AP1000 will hold a meeting on April 22... Loss of Large Areas due to Fire/Explosions, and by Westinghouse on the subject of Shield Building...

  15. PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Tethered nuclear power for the Space Station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  17. Tethered nuclear power for the space station

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1985-01-01

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  18. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  19. Reactor design and integration into a nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Koenig, D. R.

    1978-01-01

    One of the well-defined applications for nuclear power in space is nuclear electric propulsion (NEP). Mission studies have identified the optimum power level (400 kWe). A single Shuttle launch requirement and science-package integration have added additional constraints to the design. A reactor design which will meet these constraints has been studied. The reactor employs 90 fuel elements, each heat pipe cooled. Reactor control is obtained with BeO/B4C drums in a BeO reflector. The balance of the spacecraft is shielded from the reactor with LiH. Power conditioning and reactor control drum drives are located behind the LiH with the power conditioning. Launch safety, mechanical design and integration with the power conversion subsystem are discussed.

  20. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  1. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    NASA Astrophysics Data System (ADS)

    Stuhr, U.; Roessli, B.; Gvasaliya, S.; Rønnow, H. M.; Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.,; Keller, P.; Mühlebach, T.

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  2. S8DR shield examination

    NASA Technical Reports Server (NTRS)

    Mason, D. G.; Mccurnin, W. R.

    1973-01-01

    The SNAP 8 developmental reactor lithium hydride shield was examined after being irradiated for over 7000 hours at relatively low temperature. A crack was located in the seam weld of the containment vessel, probably the result of hot short cracking under thermal stress. The LiH was visually examined at two locations and its appearance was typical of low temperature irradiated LiH. The adherence of the chrome oxide emittance coating was found to be excellent.

  3. MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changho; Yang, Won Sik

    This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo solutions.« less

  4. Curiosity Heat Shield in Detail

    NASA Image and Video Library

    2012-08-08

    This color full-resolution image showing the heat shield of NASA Curiosity rover was obtained during descent to the surface of Mars. This image shows the inside surface of the heat shield, with its protective multi-layered insulation.

  5. NUCLEAR POWER INSTALLATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1962-12-01

    An arrangement is described for nuclear power plants including a reactor and at least one heat exchanger having primary and secondary circuits through which are passed heat-conveying fluids. Pressure-resisting walls about the heat exchangers and the reactor are either integral with or rigidly connected to one another. The heat exchangers are arranged so that their casings tend to shield withdrawn control rods from damage by radiation. (R.J.S.)

  6. RER SPECTRA OBTAINED WITH A MULTICRYSTAL SPECTROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W.E.; Champion, W.R.

    1959-11-01

    Relative gamma spectra were obtained twenty feet from the Hadiation Effects Reactor. The measurements were made using a multicry-stal spectrometer. This design incorporates pair and anticompton spectrometers in combination. Two reactor configurations were used; with shield tanks empty- and water filled. The spectra were obtained before the fuel elements were run at high power. Consequently very little of the fission product spectrum is tntermined. (J.R.D.)

  7. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  8. [Radiation conditions and radiation risks for cosmonauts flying to Mars using electrical jet microthrusters].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V

    2008-01-01

    According to recent workups, the Mars mission spacecraft will be designed with an electrical jet microthrusters rather than a power reactor facility. The article contains analysis of the main sources of radiation hazard during the exploration mission using this cost-efficient, ecological, easy-to-operate propulsion powered by solar arrays. In addition, the authors make predictions of the generalized doses of ionizing radiation for mission durations of 730 and 900 days behind various shielding thicknesses, and on the Martian surface. Calculation algorithms are described and radiation risks are estimated for the crew life span and possible life time reduction in consequence of participation in the mission.

  9. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less

  10. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  11. PRESSURIZED WATER REACTOR PROGRAM TECHNICAL PROGRESS REPORT FOR THE PERIOD MAY 5, 1955 TO JUNE 16, 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The current PWR plant and core parameters are listed. Resign requirements are briefly summarized for a radiation monitoring system, a fuel handling water system, a coolant purification system, an electrical power distribution system, and component shielding. Results of studies on thermal bowing and stressing of UO/sub 2/ are reported. A graph is presented of reactor power vs. reactor flow for various hot channel conditions. Development of U-- Mo and U-Nb alloys has been stopped because of the recent selection of UO/sub 2/ fuel material for the PWR core and blanket. The fabrication characteristics of UO/sub 2/ powders are being studied.more » Seamless Zircaloy-2 tubing has been tested to determine elastic limits, bursting pressures, and corrosion resistance. Fabrication techniques and tests for corrosion and defects in Zircaloy-clad U-Mo and UO/sub 2/ fuel rods are described. The preparation of UO/sub 2/ by various methods is being studied to determine which method produces a material most suitable for PWR fuel elements. The stability of UO/sub 2/ compacts in high temperature water and steam is being determined. Surface area and density measurements have been performed on samples of UO/sub 2/ powder prepared by various methods. Revelopment work on U-- Mo and U--Nb alloys has included studies of the effect on corrosion behavior of additions to the test water, additions to the alloys, homogenization of the alloys, annealing times, cladding, and fabrication techniques. Data are presented on relaxation in spring materials after exposure to a corrosive environment. Results are reported from loop and autoclave tests on fission product and crud deposition. Results of irradiation and corrosion testing of clad and unclad U--Mo and U-Nh alloys are described. The UO/sub 2/ irradiation program has included studies of dimensional changes, release of fission gases, and activity in the water surrounding the samples. A review of the methods of calculating reactor physics parameters has been completed, and the established procedures have been applied to determination of PWR reference design parameters. Critical experiments and primary loop shielding analyses are described. (D.E.B.)« less

  12. LPT. Aerial of low power test facility (TAN640 and 641) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  13. Selection and use of TLDS for high precision NERVA shielding measurements

    NASA Technical Reports Server (NTRS)

    Woodsum, H. C.

    1972-01-01

    An experimental evaluation of thermoluminescent dosimeters was performed in order to select high precision dosimeters for a study whose purpose is to measure gamma streaming through the coolant passages of a simulated flight type internal NERVA reactor shield. Based on this study, the CaF2 chip TLDs are the most reproducible dosimeters with reproducibility generally within a few percent, but none of the TLDs tested met the reproducibility criterion of plus or minus 2%.

  14. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  15. EMP Preferred Test Procedures. Revision

    DTIC Science & Technology

    1977-02-01

    r _ -P ~PREFERRED TEST PROCEDURES,r- -Hnbo -Tkeltted Elec-ront’c Parts) .... . ITR Projs.E6230,E6261, J.E. Bridges W.C. Emberson V.P. Nanda DNA QQ-72...Connectors Surface Transfer Impedance Shielded Enclosures Surface Transfer Admittance Shielded Rooms E- Field Shielding Conduits Effectiveness Resistor Damage H... Field Shielding Capacitor Damage Effectiveness Inductor Damage Conduit Couplers Transformer Damage Capacitor Characterization Resistor

  16. Radiation protection using Martian surface materials in human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.

    2001-01-01

    To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.

  17. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Three-dimensional Monte Carlo calculation of some nuclear parameters

    NASA Astrophysics Data System (ADS)

    Günay, Mehtap; Şeker, Gökmen

    2017-09-01

    In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  19. Role of a single shield in thermocouple measurements in hot air flow

    NASA Astrophysics Data System (ADS)

    Ma, Hongwei; Shi, Lei; Tian, Yangtao

    2017-12-01

    To investigate the role of a single shield on steady temperature measurement using thermocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In order to compare with the experimental results, a cylindrical computational domain is established, which is the same size with the hot calibration wind-tunnel. In the computational domain, two kinds of thermocouples, the bare-bead and the single-shielded thermocouples, are simulated respectively. Surface temperature distribution and the temperature measurement bias of the two typical thermocouples are compared. The simulation results indicate that: 1) The existence of the shield reduces bead surface heat flux and changes the direction of wires inner heat conduction in a colder surrounding; 2) The existence of the shield reduces the temperature measurement bias both by improving bead surface temperature and by reducing surface temperature gradient; 3) The shield effectively reduces the effect of the ambient temperature on the temperature measurement bias; 4) The shield effectively reduces the influence of airflow velocity on the temperature measurement bias.

  20. PWR PRELIMINARY DESIGN FOR PL-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, G. E.

    1962-02-28

    The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)

  1. PROCESS WATER BUILDING, TRA605. SECTIONS B, C AND D SHOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SECTIONS B, C AND D SHOW RELATIONSHIP BETWEEN FLASH EVAPORATORS (ABOVE) AND SEAL AND SUMP TANKS (BELOW). BASEMENT FLOOR IS BELOW GRADE; FIRST FLOOR, ABOVE GRADE. SHIELDING TOLERANCES. BLAW-KNOX 3150-5-7, 8/1950. INL INDEX NO. 531-605-00-098-100012, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  3. Galileo Probe forebody thermal protection

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Davy, W. C.

    1981-01-01

    Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.

  4. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  5. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  6. Evaluation of a Method for Remote Detection of Fuel Relocation Outside the Original Core Volumes of Fukushima Reactor Units 1-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas W. Akers; Edwin A. Harvego

    2012-08-01

    This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and datamore » on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the RPV will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues, such as the detector/collimator design, are included in the paper.« less

  7. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    NASA Technical Reports Server (NTRS)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing oxidation of the shielding and HE, and reacting with the oxygen to form water vapor. The water vapor is filtered through solid regolith to remove unwanted extraction byproducts, and then condensed to a liquid state and stored at 300 to 325 K. Conversion to usable oxygen is achieved by pumping liquid water into a high-pressure electrolyzer, storing the gaseous oxygen at high pressure for use, and diverting the hydrogen back to the reactor or to storage. The results from this design effort show that this oxygen-generating concept can be developed in an efficient system with low specific mass. Advantages include use of regolith as an oxygen source, filter, and thermal insulator. The system can be tested in Earth gravity and can be expected to operate similarly in lunar gravity. The system is scalable, either by increasing the power level and output of a standard module, or by employing multiple modules.

  8. A Full-Core Resonance Self-Shielding Method Using a Continuous-Energy Quasi–One-Dimensional Slowing-Down Solution that Accounts for Temperature-Dependent Fuel Subregions and Resonance Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Martin, William; Williams, Mark

    In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less

  9. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  10. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  11. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  12. An analytical and experimental evaluation of shadow shields and their support members

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.; Boyle, R. J.

    1972-01-01

    Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.

  13. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  14. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  15. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  16. Research and Engineering Operation, Irradiation Processing Department monthly record report, May 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, T.W.

    1965-06-04

    Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less

  17. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  18. Recent results from Daya Bay

    NASA Astrophysics Data System (ADS)

    Chua, Ming-chung

    2016-11-01

    Utilizing powerful nuclear reactors as antineutrino sources, high mountains to provide ample shielding from cosmic rays in the vicinity, and functionally identical detectors with large target volume for near-far relative measurement, the Daya Bay Reactor Neutrino Experiment has achieved unprecedented precision in measuring the neutrino mixing angle θ13 and the neutrino mass squared difference |Δm2ee|. I will report the latest Daya Bay results on neutrino oscillations and light sterile neutrino search.

  19. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  20. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  1. DETECTION OF COATING FAILURES IN A NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.; Allison, S.K.

    1958-02-11

    This patent relates to water-cooled reactor systems and discloses a means to detect leaks in the jackets of jacketed fuel elements comprising a neutron detector located in the cooling water discharge pipe,the pipe being provided with an enlarged portion for housing the detector so that the latter is completely surrounded by the water in its passage through the pipe, said enlarged portion and detector being shielded from the reactor for the purpose of detecting only those delayed neutrons emitted in the cooling water and due to the latter picking up fission fragments from the defective fuel elements.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  3. ETR, TRA642, CAMERA IS BELOW, BUT NEAR THE CEILING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642, CAMERA IS BELOW, BUT NEAR THE CEILING OF THE GROUND FLOOR, AND LOOKS DOWN TOWARD THE CONSOLE FLOOR. CAMERA FACES WESTERLY. THE REACTOR PIT IS IN THE CENTER OF THE VIEW. BEYOND IT TO THE LEFT IS THE SOUTH SIDE OF THE WORKING CANAL. IN THE FOREGROUND ON THE RIGHT IS THE SHIELDING FOR THE PROCESS WATER TUNNEL AND PIPING. SPIRAL STAIRCASE AT LEFT OF VIEW. INL NEGATIVE NO. 56-2237. Jack L. Anderson, Photographer, 7/6/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE PAGES

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  5. Depletion optimization of lumped burnable poisons in pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodah, Z.H.

    1982-01-01

    Techniques were developed to construct a set of basic poison depletion curves which deplete in a monotonical manner. These curves were combined to match a required optimized depletion profile by utilizing either linear or non-linear programming methods. Three computer codes, LEOPARD, XSDRN, and EXTERMINATOR-2 were used in the analyses. A depletion routine was developed and incorporated into the XSDRN code to allow the depletion of fuel, fission products, and burnable poisons. The Three Mile Island Unit-1 reactor core was used in this work as a typical PWR core. Two fundamental burnable poison rod designs were studied. They are a solidmore » cylindrical poison rod and an annular cylindrical poison rod with water filling the central region.These two designs have either a uniform mixture of burnable poisons or lumped spheroids of burnable poisons in the poison region. Boron and gadolinium are the two burnable poisons which were investigated in this project. Thermal self-shielding factor calculations for solid and annular poison rods were conducted. Also expressions for overall thermal self-shielding factors for one or more than one size group of poison spheroids inside solid and annular poison rods were derived and studied. Poison spheroids deplete at a slower rate than the poison mixture because each spheroid exhibits some self-shielding effects of its own. The larger the spheroid, the higher the self-shielding effects due to the increase in poison concentration.« less

  6. Shielding and activation calculations around the reactor core for the MYRRHA ADS design

    NASA Astrophysics Data System (ADS)

    Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.

    2017-09-01

    In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.

  7. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    PubMed

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  8. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    NASA Technical Reports Server (NTRS)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  9. Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaughnessy, D A; Gostic, J M; Moody, K J

    2011-11-21

    The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10{sup 15} atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactionsmore » can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten of these pieces were fielded at the equator and one was fielded on the pole. The shields were analyzed using a combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF), neutron activation analysis (NAA) and chemical leaching followed by mass spectrometry. On each shield, gold debris originating from the gold hohlraum was observed, as well as large quantities of debris that were present in the center of the target chamber at the time of the shot (i.e., stainless steel, indium, copper, etc.) Debris was visible in the SEM as large blobs or splats of material that had encountered the surface of the aluminum and stuck. The aluminum itself had obviously melted and condensed, and some of the large debris splats arrived after the surface had already hardened. Melt depth was determined by cross sectioning the pieces and measuring the melted surface layers via SEM. After the SEM analysis was completed, the pieces were sent for NAA at the USGS reactor and were analyzed by U. Greife at the Colorado School of Mines. The NAA showed that the majority of gold mass present on the shields was not in the form of large blobs and splats, but was present as small particulates that had most likely formed as condensed vapor. Further analysis showed that the gold was entrained in the melted aluminum surface layers and did not extend down into the bulk of the aluminum. Once the gold mass was accounted for from the NAA, it was determined that the aluminum fielded at the equator was collecting a fraction of the total gold hohlraum mass equivalent to 120% {+-} 10% of the solid angle subtended by the shield. The attached presentation has more information on the results of the aluminum blast shield analysis. In addition to the information given in the presentation, the surfaces of the shields have been chemically leached and submitted for mass spectrometric analysis. The results from that analysis are expected to arrive after the due date of this report and will be written up at a later time. Based on the results of the aluminum blast shield analysis, it was determined that additional materials needed to be tested as potential collectors in the NIF chamber. 1-2 mm thick pieces of tantalum, niobium, vanadium, silver, titanium, molybdenum, and graphite foil were fielded in the Wedge Range Filter (WRF) mount at a distance of 50 cm from target chamber center during the shock timing campaign. The pieces were subsequently removed and analyzed in a similar fashion to the aluminum shields. As of this writing, the pieces are still under analysis, but initial results indicate that gold debris was collected on the various materials. Currently, the pieces are being cross-sectioned so that the melt depths of each material can be compared. In addition, NAA and/or mass spectrometry will be performed in order to determine the total gold mass that was collected on each surface.« less

  10. PINCHED PLASMA REACTOR

    DOEpatents

    Phillips, J.A.; Suydam, R.; Tuck, J.L.

    1961-07-01

    BS>A plasma confining and heating reactor is described which has the form of a torus with a B/sub 2/ producing winding on the outside of the torus and a helical winding of insulated overlapping tunns on the inside of the torus. The inner helical winding performs the double function of shielding the plasma from the vitreous container and generating a second B/sub z/ field in the opposite direction to the first B/sub z/ field after the pinch is established.

  11. LOADING MACHINE FOR REACTORS

    DOEpatents

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  12. FAST CHOPPER BUILDING, TRA665. CAMERA FACING NORTH. NOTE BRICKEDIN WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER BUILDING, TRA-665. CAMERA FACING NORTH. NOTE BRICKED-IN WINDOW ON RIGHT SIDE (BELOW PAINTED NUMERALS "665"). SLIDING METAL DOOR ON COVERED RAIL AT UPPER LEVEL. SHELTERED ENTRANCE TO STEEL SHIELDING DOOR. DOOR INTO MTR SERVICE BUILDING, TRA-635, STANDS OPEN. MTR BEHIND CHOPPER BUILDING. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Research on Protective Coating on Inner Surface of Alloy Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Liu, Y. H.; Zhou, Z. J.; Zheng, M. M.; Kong, S. Y.; Xia, H. H.; Li, H. L.

    2017-09-01

    Materials are one of the most important factors which limit reactor development. Molten salt not only used as the coolant but used as application in which fissile materials and fission products are dissolved in Molten Salt Reactors (MSRs). Therefore the corrosion resistance of structure materials is the one of most important aspects for application in MSRs. Compatibility and chemical stability with the molten salt should be considered for some common structural alloys such as Incoloy-800H. In this research, the pure nickel coating was obtained by electroplating on the inner surface of nickel alloy to improve the corrosion resistance. However, there are some problems for plating on the inner surface of tube. For example the current is shielded and the anode is easy to passivate. The inner anode was used for solving these problems in this study. Pure nickel coating was obtain and the microstructure and properties of coating were analysed using this method. The thickness, hardness and microstructure of coating were observed by metallographic microscope, micro hardness tester and field emission scanning electron microscope, and the influence of deposition duration and annealing treatment duration on properties were analysed. Thermal shock performance was investigated as well. The results showed that the coating thickness increased linearly with the increasing of plating durations and the size of grain increased with the durations as well, the surface of coating became inhomogeneous correspondingly. The hardness of coating changed as the change of durations of annealing treatment. The thermal shock test showed that bonding strength of coating with substrate was good.

  14. Space ultra-vacuum facility and method of operation

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor)

    1986-01-01

    A wake shield facility providing an ultrahigh vacuum level for space processing is described. The facility is in the shape of a truncated, hollow hemispherical section, one side of the shield convex and the other concave. The shield surface is preferably made of material that has low out-gassing characteristics such as stainless steel. A material sample supporting fixture in the form of a carousel is disposed on the convex side of the shield at its apex. Movable arms, also on the convex side, are connected by the shield in proximity to the carousel, the arms supporting processing fixtures, and providing for movement of the fixtures to predetermined locations required for producing interations with material samples. For MBE processes a vapor jet projects a stream of vaporized material onto a sample surface. The fixtures are oriented to face the surface of the sample being processed when in their extended position, and when not in use they are retractable to a storage position. The concave side of the shield has a support structure including metal struts connected to the shield, extending radially inward. The struts are joined to an end plate disposed parallel to the outer edge of the shield. This system eliminates outgassing contamination.

  15. Thermomechanical and chemical properties of porous W/liquid Li hybrid systems as plasma-facing self-healing surfaces

    NASA Astrophysics Data System (ADS)

    Kapat, Aveek; Lang, Eric; Neff, Anton; Allain, Jean Paul

    2017-10-01

    The environmental conditions at the plasma-material interface of a future nuclear fusion reactor interacting will be extreme. The incident plasma will carry heat fluxes of the order of 100's of MWm-2 and particle fluxes that can average 1024 m-2s-1. The fusion reactor wall would need to operate at high temperatures near 800 C and the incident energy of particles will vary from a few eV ions to MeV neutrons. A hybrid system, inspired by self-healing solid-state concepts, combines the ductile phase of liquid Li within a solid phase porous W. The liquid Li serves to control hydrogen retention and provide vapor shielding, within the framework of a tunable porosity to optimize edge plasma conditions [2]. Additionally, the porous interface can also provide for effective defect sinks for high duty cycle neutron damage. The surface chemistry of liquid Li on a porous surface varied with D irradiation is studied and its effect on retention. Prior results with refractory alloys have demonstrated effective wetting properties [3]. These hybrid systems, as well as traditional W samples, are bombarded with 500eV D2+and Ar+ at 230oC and 300oC. The Li, O, and C XPS peaks were examined and compared to controls. Additionally, the porous W is characterized for thermo-mechanical properties. Work supported by USDOE Contract DE- DE-SC0014267.

  16. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  17. Radiation shielding evaluation of the BNCT treatment room at THOR: a TORT-coupled MCNP Monte Carlo simulation study.

    PubMed

    Chen, A Y; Liu, Y-W H; Sheu, R J

    2008-01-01

    This study investigates the radiation shielding design of the treatment room for boron neutron capture therapy at Tsing Hua Open-pool Reactor using "TORT-coupled MCNP" method. With this method, the computational efficiency is improved significantly by two to three orders of magnitude compared to the analog Monte Carlo MCNP calculation. This makes the calculation feasible using a single CPU in less than 1 day. Further optimization of the photon weight windows leads to additional 50-75% improvement in the overall computational efficiency.

  18. PROSPECT - A precision oscillation and spectrum experiment

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; PROSPECT Collaboration

    2015-08-01

    Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays (IBD) and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.

  19. Current and prospective safety issues at the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, P.R.

    The Brookhaven high-flux beam reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated, and reflected by heavy water and uses materials test reactor and engineering test reactor type of fuel elements containing enriched uranium. The reactor power when operation began in 1965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time, safety questions have been raised that resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper discusses the principalmore » safety issues and plans for their resolution and return to 60-MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its effect on the life of the facility are briefly discussed.« less

  20. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  1. Analysis of the Browns Ferry Unit 3 irradiation experiments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, G.L.

    1984-11-01

    The results of the analysis of two experiments performed at the Browns Ferry-3 reactor are presented. These calculations utilize state-of-the-art neutron transport techniques and a new neutron cross-section library that has been developed for LWR applications. The calculations agree well with the experimental data obtained in irradiations inside the reactor vessel. For the measurements performed in the reactor cavity, the calculations agree well at the reactor midplane. Accurate determination of the axial distribution of the neutron fluence in the reactor cavity depends on having a concise representation of the axial-void distribution in the core. Detailed data are presented describing themore » procedures used in the generation of the new cross-section library that has been named SAILOR. This library is available from the Radiation-Shielding Information Center.« less

  2. Gas-cooled reactor programs. High-temperature gas-cooled reactor technology development program. Annual progress report, December 31, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1984-06-01

    ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Componentmore » Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.« less

  3. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  4. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    PubMed

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  5. TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

  6. Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Buksa, John J.; Kirk, William L.; Cappiello, Michael W.

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

  7. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  8. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications

    DOE PAGES

    Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...

    2015-03-09

    A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less

  9. HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    NASA Technical Reports Server (NTRS)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  11. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  12. Novel limiter pump topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.

  13. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGES

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; ...

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  14. The effect of tip shields on a horizontal tail surface

    NASA Technical Reports Server (NTRS)

    Dronin, Paul V; Ramsden, Earl I; Higgins, George J

    1928-01-01

    A series of experiments made in the wind tunnel of the Daniel Guggenheim School of Aeronautics, New York University, on the effect of tip shields on a horizontal tail surface are described and discussed. It was found that some aerodynamic gain can be obtained by the use of tip shields though it is considered doubtful whether their use would be practical.

  15. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  16. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer†

    PubMed Central

    Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E.; Zhang, Jianzhong; Buchsbaum, Monte S.; Kolb, Hartmuth C.; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of 18F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [18F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on “split-box architecture”, with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [18F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  17. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  18. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  19. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  20. Shields for protecting cables from the effects of electromagnetic noise and interference

    NASA Astrophysics Data System (ADS)

    Hoeft, L. O.; Hofstra, J. S.; Karaskiewicz, R. J.; Torres, B. W.

    1988-12-01

    The intrinsic electromagnetic property of a cable or connector shield is its surface transfer impedance. This is the ratio of the longitudinal open circuit voltage measured on one side of the shield (normally the inside) to the axial current on the other side (normally the outside). In cases where a high electric field is present at the surface of the shield, the transfer admittance or charge transfer elastance is also important. Measurements of typical cables, connectors, backshells and cable terminations are presented and explained in terms of simple models.

  1. Umbilical mechanism assembly for the international space station

    NASA Technical Reports Server (NTRS)

    Mandvi, A. Ali

    1996-01-01

    Mechanisms for engaging and disengaging electrical and fluid line connectors are required to be operated repeatedly in hazardous or remote locations on space station, nuclear reactors, toxic chemical and undersea environments. Such mechanisms may require shields to protect the mating faces of the connectors when connectors are not engaged and move these shields out of the way during connector engagement. It is desirable to provide a force-transmitting structure to react the force required to engage or disengage the connectors. It is also desirable that the mechanism for moving the connectors and shields is reliable, simple, and the structure as lightweight as possible. With these basic requirements, an Umbilical Mechanism Assembly (UMA) was originally designed for the Space Station Freedom and now being utilized for the International Space Station.

  2. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  3. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  4. Design and fabrication of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolytic oil production in Bangladesh

    NASA Astrophysics Data System (ADS)

    Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN

    2017-03-01

    In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.

  5. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  6. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  7. ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, Scott W.; Johnson, Seth R.; Bevill, Aaron M.

    2015-08-01

    The primary objective of ADVANTG is to reduce both the user effort and the computational time required to obtain accurate and precise tally estimates across a broad range of challenging transport applications. ADVANTG has been applied to simulations of real-world radiation shielding, detection, and neutron activation problems. Examples of shielding applications include material damage and dose rate analyses of the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source and High Flux Isotope Reactor (Risner and Blakeman 2013) and the ITER Tokamak (Ibrahim et al. 2011). ADVANTG has been applied to a suite of radiation detection, safeguards, and special nuclear materialmore » movement detection test problems (Shaver et al. 2011). ADVANTG has also been used in the prediction of activation rates within light water reactor facilities (Pantelias and Mosher 2013). In these projects, ADVANTG was demonstrated to significantly increase the tally figure of merit (FOM) relative to an analog MCNP simulation. The ADVANTG-generated parameters were also shown to be more effective than manually generated geometry splitting parameters.« less

  8. Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, J.O.; Schmitt, B.E.

    1988-02-01

    A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less

  9. CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR

    DOEpatents

    King, L.D.P.

    1960-07-01

    A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.

  10. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  12. Fission Surface Power for the Exploration and Colonization of Mars

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Porter, Ron; Gaddis, Steve; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    The colonization of Mars will require abundant energy. One potential energy source is nuclear fission. Terrestrial fission systems are highly developed and have the demonstrated ability to safely produce tremendous amounts of energy. In space, fission systems not only have the potential to safely generate tremendous amounts of energy, but could also potentially be used on missions where alternatives are not practical. Programmatic risks such as cost and schedule are potential concerns with fission surface power (FSP) systems. To be mission enabling, FSP systems must be affordable and programmatic risk must be kept acceptably low to avoid jeopardizing exploration efforts that may rely on FSP. Initial FSP systems on Mars could be "workhorse" units sized to enable the establishment of a Mars base and the early growth of a colony. These systems could be nearly identical to FSP systems used on the moon. The systems could be designed to be safe, reliable, and have low development and recurring costs. Systems could also be designed to fit on relatively small landers. One potential option for an early Mars FSP system would be a 100 kWt class, NaK cooled system analogous to space reactors developed and flown under the U.S. "SNAP" program or those developed and flown by the former Soviet Union ("BUK" reactor). The systems could use highly developed fuel and materials. Water and Martian soil could be used to provide shielding. A modern, high-efficiency power conversion subsystem could be used to reduce required reactor thermal power. This, in turn, would reduce fuel burnup and radiation damage .effects by reducing "nuclear" fuels and materials development costs. A realistic, non-nuclear heated and fully integrated technology demonstration unit (TDU) could be used to reduce cost and programmatic uncertainties prior to initiating a flight program.

  13. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well.

  14. New Methodologies for Generation of Multigroup Cross Sections for Shielding Applications

    NASA Astrophysics Data System (ADS)

    Arzu Alpan, F.; Haghighat, Alireza

    2003-06-01

    Coupled neutron and gamma multigroup (broad-group) libraries used for Light Water Reactor shielding and dosimetry commonly include 47-neutron and 20-gamma groups. These libraries are derived from the 199-neutron, 42-gamma fine-group VITAMIN-B6 library. In this paper, we introduce modifications to the generation procedure of the broad-group libraries. Among these modifications, we show that the fine-group structure and collapsing technique have the largest impact. We demonstrate that a more refined fine-group library and the bi-linear adjoint weighting collapsing technique can improve the accuracy of transport calculation results.

  15. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  16. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  17. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  18. High-Voltage Isolation Transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-01-01

    Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.

  19. Skyshine study for next generation of fusion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Yang, S.

    1987-02-01

    A shielding analysis for next generation of fusion devices (ETR/INTOR) was performed to study the dose equivalent outside the reactor building during operation including the contribution from neutrons and photons scattered back by collisions with air nuclei (skyshine component). Two different three-dimensional geometrical models for a tokamak fusion reactor based on INTOR design parameters were developed for this study. In the first geometrical model, the reactor geometry and the spatial distribution of the deuterium-tritium neutron source were simplified for a parametric survey. The second geometrical model employed an explicit representation of the toroidal geometry of the reactor chamber and themore » spatial distribution of the neutron source. The MCNP general Monte Carlo code for neutron and photon transport was used to perform all the calculations. The energy distribution of the neutron source was used explicitly in the calculations with ENDF/B-V data. The dose equivalent results were analyzed as a function of the concrete roof thickness of the reactor building and the location outside the reactor building.« less

  20. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  1. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  2. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  3. Fast reactor core concepts to improve transmutation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  4. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  5. Boron filled siloxane polymers for radiation shielding

    NASA Astrophysics Data System (ADS)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl

    2018-03-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  6. Boron Filled Siloxane Polymers for Radiation Shielding

    DOE PAGES

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton Otto; ...

    2017-09-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield,more » and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. In conclusion, our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.« less

  7. Boron Filled Siloxane Polymers for Radiation Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton Otto

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield,more » and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. In conclusion, our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.« less

  8. Radiation effects in concrete for nuclear power plants Part I: Quantification of radiation exposure and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Pape, Yann Le; Remec, Igor

    A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review ofmore » the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less

  10. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  11. Status of Experiment NEUTRINO-4 Search for Sterile Neutrino

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-01-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.

  12. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  13. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  14. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  15. Jet-Surface Interaction Test: Far-Field Noise Results

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2012-01-01

    Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet/Surface Interaction Test was intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. During phase one, the goal was to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet/surface interaction is creating additional noise, and (2) determine regions of interest for more detailed tests in phase two. To meet these phase one objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer (microphone array) and (2) as a reflecting surface on the opposite side of the jet from the observer.

  16. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  17. ARMY GAS-COOLED REACTOR SYSTEMS PROGRAM. Quarterly Progress Report, October 1-December 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1964-02-15

    The ML-1 power plant did not operate during the report period; low power reactor physics and shielding experiments were conducted with the ML-1 reactor. Evaluation of moderate corrosion observed on aluminum parts exposed to the ML-1 shield solution indicated no loss of performance capability. Preliminary tests showed that the corrosion probably was caused by heavy metal ions or chlorides in the solution, Massive corrosion observed on the ML-1 fuel element lower spiders was attributed to sub-standard material; failure of some spiders was attributed to a combination of corrosion and sub-standard fabrication. Evaluation indicated that the upper spiders will perform satisfactorilymore » for the design lifetime. Modification, repair, and reassembly of the CSN-1A t-c set was completed. Operation demonstrated bearing stability, but showed that the turbine effective flow area was too large. A bypass flow path in the turbine was being corrected. The TCS-670 t-c set will be stored indefinitely. Since a commercial alternator will be used for the ML-1A, further development of the brushless alternator was postponed indefinitely. Evaluation revealed that the ML-1 improved precooler design was not compatible with ML-1A requirements. Operntion of the IB-17R-2 and -3 test elements in the GETR continued without incident. Preliminary design of the ML-1A power plant was initiated. Design of modifications to the GCRE facility to adapt it to testing the ML-1 reactor skid was initiated. (auth)« less

  18. ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M

    2013-01-01

    en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.« less

  19. Zirconium hydride reactor control reflector systems: summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, P.H.; Kurzeka, W.J.

    1972-06-30

    The beryllium reflector control system development for SNAP reactors is documented, from the initial SNAP 10A System through the current 5-kW(e) Thermoelectric System. Described are the various reflector concepts used in these systems for shadowshielded and 4 pi -shielded nuclear systems. The development of the key components, such as the actuators, bearings, and drive mechanisms for these systems, is also traced from the SNAP 10A concept through to the current system. Developmental test results are outlined, showing the performance capability improvements made throughout the life of the SNAP programs. Component development was highly successful, as proven by a number ofmore » reactor systems tests, including the launch and operation of the SNAP 10A flight. 46 references. (auth)« less

  20. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  1. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  2. A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

    DOE PAGES

    Stimpson, Shane G.; Liu, Yuxuan; Collins, Benjamin S.; ...

    2017-07-17

    An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly 2×. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilitiesmore » have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly 3–4×, with a corresponding 15–20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of 2×. In total, the improvements yield roughly a 7–8× speedup. Furthermore given these performance benefits, these approaches have been adopted as the default in MPACT.« less

  3. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le

    2017-09-01

    Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  4. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  5. Development of a New 47-Group Library for the CASL Neutronics Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Williams, Mark L; Wiarda, Dorothea

    The CASL core simulator MPACT is under development for the neutronics and thermal-hydraulics coupled simulation for the pressurized light water reactors. The key characteristics of the MPACT code include a subgroup method for resonance self-shielding, and a whole core solver with a 1D/2D synthesis method. The ORNL AMPX/SCALE code packages have been significantly improved to support various intermediate resonance self-shielding approximations such as the subgroup and embedded self-shielding methods. New 47-group AMPX and MPACT libraries based on ENDF/B-VII.0 have been generated for the CASL core simulator MPACT of which group structure comes from the HELIOS library. The new 47-group MPACTmore » library includes all nuclear data required for static and transient core simulations. This study discusses a detailed procedure to generate the 47-group AMPX and MPACT libraries and benchmark results for the VERA progression problems.« less

  6. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  7. The energy release and temperature field in the ultracold neutron source of the WWR-M reactor at the Petersburg Nuclear Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kislitsin, B. V.; Onegin, M. S.

    2016-12-15

    Results of calculations of energy releases and temperature fields in the ultracold neutron source under design at the WWR-M reactor are presented. It is shown that, with the reactor power of 18 MW, the power of energy release in the 40-L volume of the source with superfluid helium will amount to 28.5 W, while 356 W will be released in a liquid-deuterium premoderator. The lead shield between the reactor core and the source reduces the radiative heat release by an order of magnitude. A thermal power of 22 kW is released in it, which is removed by passage of water.more » The distribution of temperatures in all components of the vacuum structure is presented, and the temperature does not exceed 100°C at full reactor power. The calculations performed make it possible to go to design of the source.« less

  8. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  9. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  10. Rock Magnetic Fields Shield the Surface of Mars from Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Alves, E. I.; Baptista, A. R.

    2004-03-01

    We intend to show that there is a negative correlation between areas of magnetic anomalies and areas of energetic particles bombardment on the surface of Mars, by comparing MGS MAG-ER and Mars Odyssey MARIE maps. Terra Sirenum is the most shielded area.

  11. Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Tashjian, R. A.; Jentner, T. A.

    1975-01-01

    Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors.

  12. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be determined using the same basis as that used for the pre-anneal operating period. (B) The post... Annealing Report must include: a Thermal Annealing Operating Plan; a Requalification Inspection and Test... insulation, and on detrimental effects, if any, on containment and the biological shield. If the design...

  13. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  14. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  15. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  16. Preliminary survey of 21st century civil mission applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Olivieri, J.; Hepenstal, A.

    1987-01-01

    The purpose was to collect and categorize a forecast of civilian space missions and their power requirements, and to assess the suitability of an SP-100 class space reactor power system to those missions. A wide variety of missions were selected for examination. The applicability of an SP-100 type of nuclear power system was assessed for each of the selected missions; a strawman nuclear power system configuration was drawn up for each mission. The main conclusions are as follows: (1) Space nuclear power in the 50 kW sub e plus range can enhance or enable a wide variety of ambitious civil space mission; (2) Safety issues require additional analyses for some applications; (3) Safe space nuclear reactor disposal is an issue for some applications; (4) The current baseline SP-100 conical radiator configuration is not applicable in all cases; (5) Several applications will require shielding greater than that provided by the baseline shadow-shield; and (6) Long duration, continuous operation, high reliability missions may exceed the currently designed SP-100 lifetime capabilities.

  17. Acoustic characteristics of a large-scale wind tunnel model of an upper-surface blown flap transport having two engines

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aoyagi, K.; Koenig, D. G.

    1973-01-01

    The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.

  18. Superhydrophilic poly (styrene co acrylonitrile)-ZnO nanocomposite surfaces for UV shielding and self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj

    2017-11-01

    UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.

  19. Shielding techniques tackle EMI excesses. V - EMI shielding

    NASA Astrophysics Data System (ADS)

    Grant, P.

    1982-10-01

    The utilization of shielding gaskets in EMI design is presented in terms of seam design, gasket design, groove design, and fastener spacing. The main function of seam design is to minimize the coupling efficiency of a seam, and for effective shielding, seam design should include mating surfaces which are as flat as possible, and a flange width at least five times the maximum anticipated separation between mating surfaces. Seam surface contact with a gasket should be firm, continuous, and uniform. Gasket height, closure pressure, and compression set as a function of the applied pressure parameters are determined using compression/deflection curves. Environmental seal requirements are given and the most common materials used are neoprene, silicone, butadiene-acrylonitrile, and natural rubber. Groove design is also discussed, considering gasket heights and cross-sectional areas. Finally, fastener spacing is considered, by examining deflection as a percentage of gasket height.

  20. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.

  1. Visualization of particle flux in the human body on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  2. Visualization of particle flux in the human body on the surface of Mars.

    PubMed

    Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter

    2002-12-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  3. Electrodynamic Dust Shield for Surface Exploration Activities on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Immer, C. D.; Clements, J. S.; Chen, A.; Buhler, C. R.; Lundeen, P.; Mantovani, J. G.; Starnes, J. W.; Michalenko, M.; Mazumder, M. K.

    2006-01-01

    The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.

  4. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  5. In-Package Chemistry Abstraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less

  6. Multiple-Cone Sunshade for a Spaceborne Telescope

    NASA Technical Reports Server (NTRS)

    Cafferty, Terry; Ford, Virginia

    2008-01-01

    A document describes a sunshade assembly for the spaceborne telescope of the Terrestrial Planet Finder Coronagraph mission. During operation, the telescope is aimed at target stars in the semihemisphere away from the Earth's Sun. The observatory rotates about its pointing axis during a single star observation, resulting in relative movement of the Sun. The sunshade assembly protects the telescope against excessive solar-induced thermal distortions for times long enough to complete observations. The assembly includes a cylindrical baffle immediately surrounding the telescope, and a series of coaxial conical shields at half-cone angle increments of between 3 and 6. The black inner surface of the cylindrical baffle suppresses stray light. The outer surface of the cylindrical baffle and all the surfaces of the conical shields except the outermost one are specular and highly reflective in the infrared. The outer surface of the outer shield is a material with low solar absorptance and high infrared emittance, such as silverized Teflon or white paint. This arrangement strongly radiatively couples each shield layer more effectively to cold space than to adjacent shield layers. The result is that the solar-driven temperature gradients in the cylindrical baffle are nearly negated, and only weakly communicated to the highly-infrared-reflective face of the primary telescope mirror.

  7. Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, S Y; Barron, D A

    2011-08-03

    Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}.more » All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.« less

  8. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  9. Impact of Radiation Hardness and Operating Temperatures of Silicon Carbide Electronics on Space Power System Mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Schwarze, Gene E.

    1998-01-01

    The effect of silicon carbide (SiC) electronics operating temperatures on Power Management and Distribution (PMAD), or Power Conditioning (PC), subsystem radiator size and mass requirements was evaluated for three power output levels (100 kW(e) , 1 MW(e), and 10 MW(e)) for near term technology ( i.e. 1500 K turbine inlet temperature) Closed Cycle Gas Turbine (CCGT) power systems with a High Temperature Gas Reactor (HTGR) heat source. The study was conducted for assumed PC radiator temperatures ranging from 370 to 845 K and for three scenarios of electrical energy to heat conversion levels which needed to be rejected to space by means of the PC radiator. In addition, during part of the study the radiation hardness of the PC electronics was varied at a fixed separation distance to estimate its effect on the mass of the instrument rated reactor shadow shield. With both the PC radiator and the conical shadow shield representing major components of the overall power system the influence of the above on total power system mass was also determined. As expected, results show that the greatest actual mass savings achieved by the use of SiC electronics occur with high capacity power systems. Moreover, raising the PC radiator temperature above 600 K yields only small additional system mass savings. The effect of increased radiation hardness on total system mass is to reduce system mass by virtue of lowering the shield mass.

  10. GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, M.

    1959-06-01

    GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less

  11. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  12. Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.

    2000-01-01

    Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.

  13. Heat flow from the West African Shield

    NASA Astrophysics Data System (ADS)

    Brigaud, Frédéric; Lucazeau, Francis; Ly, Saidou; Sauvage, Jean François

    1985-09-01

    The heat flow over Precambrian shields is generally lower than over other continental provinces. Previous observations at 9 sites of the West African shield have shown that heat flow ranges from 20 mW m -2 in Niger to 38-42 mW m -2 in Liberia, Ghana and Nigeria. Since some of these values are lower than expected for Precambrian shields, it is important to find out whether or not they are representative of the entire shield before trying to derive its thermal structure. In this paper, we present new heat flow determinations from seven sites of the West African shield. These indicate that the surface heat flow is comparable with that of other Precambrian shields in the world.

  14. Supplemental heating of deposition tooling shields

    DOEpatents

    Ohlhausen, James A.; Peebles, Diane E.; Hunter, John A.; Eckelmeyer, Kenneth H.

    2000-01-01

    A method of reducing particle generation from the thin coating deposited on the internal surfaces of a deposition chamber which undergoes temperature variation greater than 100.degree. C. comprising maintaining the temperature variation of the internal surfaces low enough during the process cycle to keep thermal expansion stresses between the coating and the surfaces under 500 MPa. For titanium nitride deposited on stainless steel, this means keeping temperature variations under approximately 70.degree. C. in a chamber that may be heated to over 350.degree. C. during a typical processing operation. Preferably, a supplemental heater is mounted behind the upper shield and controlled by a temperature sensitive element which provides feedback control based on the temperature of the upper shield.

  15. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  16. Flow-Tube Reactor Experiments on the High Temperature Oxidation of Carbon Weaves

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; White, Jason D.; Robertson, Robert; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.

    2017-01-01

    Under entry conditions carbon weaves used in thermal protection systems (TPS) decompose via oxidation. Modeling this phenomenon is challenging due to the different regimes encountered along a flight trajectory. Approaches using equilibrium chemistry may lead to over-estimated mass loss and recession at certain conditions. Concurrently, there is a shortcoming of experimental data on carbon weaves to enable development of improved models. In this work, a flow-tube test facility was used to measure the oxidation of carbon weaves at temperatures up to 1500 K. The material tested was the 3D carbon weave used for the heat shield of the NASA Adaptive Deployable Entry and Placement Technology, ADEPT. Oxidation was characterized by quantifying decomposition gases (CO and CO2), by mass measurements, and by microscale surface analysis. The current set of measurements contributes to the development of finite rate chemistry models for carbon fabrics used in woven TPS materials.

  17. SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    2016-06-06

    The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shieldingmore » method is the subgroup method.« less

  18. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  19. NEUTRON PHYSICS DIVISION ANNUAL PROGRESS REPORT. Period Ending September 1, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-01-11

    A total of 74 subsections are included in the report. The information in 4 subsections was previously abstracted in NSA. Separate abstracts were prepared for 38 of the subsections. Those sections for which no abstracts were prepared contain information on prompt neutron lifetime, Rover critical experiments, Pu/sup 239/ fission, neutron decay, the O5R code, alpha scattering, 8 and P wavelengths, proton scattering, deuteron scattering, local optical potentials, N. S. Savamah radiation leakage, reactor shielding, cross section data analysis, gamma transport, gamma energy deposition, gaussian integration, data interpolation, neutron scattering, neutron energy deposition, space vehicles, computer analyses, shielding, positron sources, andmore » secondary particles. (J.R.D.)« less

  20. Orion Heat Shield Move

    NASA Image and Video Library

    2017-10-23

    Technicians move the Orion heat shield for Exploration Mission-1 toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Protective pads are being attached to the heat shield surface. The heat shield will undergo a thermal cycle test to verify acceptable workmanship and material quality. The test also serves to verify the heat shield's thermal protection systems have been manufactured and assembled correctly. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.

  1. Processing and validation of JEFF-3.1.1 and ENDF/B-VII.0 group-wise cross section libraries for shielding calculations

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Sinitsa, V.; Orsi, R.; Frisoni, M.

    2013-03-01

    This paper presents a synthesis of the ENEA-Bologna Nuclear Data Group programme dedicated to generate and validate group-wise cross section libraries for shielding and radiation damage deterministic calculations in nuclear fission reactors, following the data processing methodology recommended in the ANSI/ANS-6.1.2-1999 (R2009) American Standard. The VITJEFF311.BOLIB and VITENDF70.BOLIB finegroup coupled n-γ (199 n + 42 γ - VITAMIN-B6 structure) multi-purpose cross section libraries, based on the Bondarenko method for neutron resonance self-shielding and respectively on JEFF-3.1.1 and ENDF/B-VII.0 evaluated nuclear data, were produced in AMPX format using the NJOY-99.259 and the ENEA-Bologna 2007 Revision of the SCAMPI nuclear data processing systems. Two derived broad-group coupled n-γ (47 n + 20 γ - BUGLE-96 structure) working cross section libraries in FIDO-ANISN format for LWR shielding and pressure vessel dosimetry calculations, named BUGJEFF311.BOLIB and BUGENDF70.BOLIB, were generated by the revised version of SCAMPI, through problem-dependent cross section collapsing and self-shielding from the cited fine-group libraries. The validation results on the criticality safety benchmark experiments for the fine-group libraries and the preliminary validation results for the broad-group working libraries on the PCA-Replica and VENUS-3 engineering neutron shielding benchmark experiments are reported in synthesis.

  2. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  3. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  4. The aftermath of the Fukushima nuclear accident: Measures to contain groundwater contamination.

    PubMed

    Gallardo, Adrian H; Marui, Atsunao

    2016-03-15

    Several measures are being implemented to control groundwater contamination at the Fukushima Daiichi Nuclear Plant. This paper presents an overview of work undertaken to contain the spread of radionuclides, and to mitigate releases to the ocean via hydrological pathways. As a first response, contaminated water is being held in tanks while awaiting treatment. Limited storage capacity and the risk of leakage make the measure unsustainable in the long term. Thus, an impervious barrier has been combined with a drain system to minimize the discharge of groundwater offshore. Caesium in seawater at the plant port has largely dropped, although some elevated concentrations are occasionally recorded. Moreover, a dissimilar decline of the radioactivity in fish could indicate additional sources of radionuclides intake. An underground frozen shield is also being constructed around the reactors. This structure would reduce inflows to the reactors and limit the interaction between fresh and contaminated waters. Additional strategies include groundwater abstraction and paving of surfaces to lower water levels and further restrict the mobilisation of radionuclides. Technical difficulties and public distrust pose an unprecedented challenge to the site remediation. Nevertheless, the knowledge acquired during the initial work offers opportunities for better planning and more rigorous decisions in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Conformational Heterogeneity of the HIV Envelope Glycan Shield.

    PubMed

    Yang, Mingjun; Huang, Jing; Simon, Raphael; Wang, Lai-Xi; MacKerell, Alexander D

    2017-06-30

    To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.

  6. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Treesearch

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  7. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  8. Measurement of neutron spectra in the experimental reactor LR-0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important taskmore » is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)« less

  9. Apparatus and process for the surface treatment of carbon fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  10. Blanket design and optimization demonstrations of the first wall/blanket/shield design and optimization system (BSDOS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Nuclear Engineering Division

    2005-05-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  11. Blanket Design and Optimization Demonstrations of the First Wall/Blanket/Shield Design and Optimization System (BSDOS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Yousry

    2005-05-15

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  12. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  13. Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors

    DOE PAGES

    Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...

    2016-11-17

    Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.

  14. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  15. SPERT1. Contextual aerial view of SPERTI Reactor Pit Building (PER605) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-1. Contextual aerial view of SPERT-I Reactor Pit Building (PER-605) at top of view, and its accessories: the earth-shielded instrument cell (PER-606) immediately adjacent to it; the Guard House (PER-607) to its right; and the Terminal Building in lower center of view (PER-604). Camera faces west. Road and buried line leaving view at right lead to Control Building (PER-601) out of view. Sagebrush vegetation has been scraped from around buildings. Photographer: R.G. Larsen. Date: June 6, 1955. INEEL negative no. 55-1477. - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. MCNP6 simulated performance of Micro-Pocket Fission Detectors (MPFDs) in the Transient REActor Test (TREAT) Facility

    DOE PAGES

    Reichenberger, Michael A.; Patel, Vishal K.; Roberts, Jeremy A.; ...

    2017-03-03

    Here, Micro-Pocket Fission Detectors (MPFDs) are under development for in-core neutron flux measurements at the Transient REActor Test facility (TREAT) and in other experiments at Idaho National Laboratory (INL). The sensitivity of MPFDs to the energy dependent neutron flux at TREAT has been determined for 0.0300-μm thick active material coatings of 242Pu, 232Th, natural uranium, and 93% enriched 235U. Self-shielding effects in the active material of the MPFD was also confirmed to be negligible. Finally, fission fragment energy deposition was found to be in conformance with previously reported results.

  17. Physical models and primary design of reactor based slow positron source at CMRR

    NASA Astrophysics Data System (ADS)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  18. Thermionic reactor ion propulsion system /TRIPS/ - Its multi-mission capability.

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1972-01-01

    The unmanned planetary exploration to be conducted in the last two decades of this century includes many higher energy missions which tax all presently available propulsion systems beyond their limit. One candidate with the versatility and performance to meet these mission objectives is nuclear electric propulsion (NEP). Additionally, the NEP System is feasible in orbit raising operations with the Shuttle or Shuttle/Tug combination. A representative planetary mission is described (Uranus-Neptune flyby with probe), and geocentric performance and tradeoffs are discussed. The NEP System is described in more detail with particular emphasis on the power subsystem consisting of the thermionic reactor, heat rejection subsystem, and neutron shield.

  19. Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael

    Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.

  20. Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.

    PubMed

    Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J

    1996-06-01

    The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.

  1. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Rodriquez, Mitchell A.

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.

  2. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  3. A new self-shielding method based on a detailed cross-section representation in the resolved energy domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, H.; Hebert, A.

    The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less

  4. Integrated NTP Vehicle Radiation Design

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis; Rodriquez, Mitchell

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves

  5. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  6. Current and prospective safety issues at the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, P.R.

    The Brookhaven High Flux Beam Reactor (HFBR) was designed primarily to produce external neutron beams for experimental research. It is cooled, moderated and reflected by heavy water and uses MTR-ETR type fuel elements containing enriched uranium. The reactor power when operation began in 19965 was 40 MW, was raised to 60 MW in 1982 after a number of plant modifications, and operated at that level until 1989. Since that time safety questions have been raised which resulted in extended shutdowns and a reduction in operating power to 30 MW. This paper will discuss the principle safety issues, plans for theirmore » resolution and return to 60 MW operation. In addition, radiation embrittlement of the reactor vessel and thermal shield and its affect on the life of the facility will be briefly discussed.« less

  7. Vapor shielding models and the energy absorbed by divertor targets during transient events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and, therefore, strongly influence resulting erosion rate. Thus, E{sub max} cannot be used for validation of shielding models and codes, aimed at the target material erosion calculations.« less

  8. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  9. Development of a double plasma gun device for investigation of effects of vapor shielding on erosion of PFC materials under ELM-like pulsed plasma bombardment

    NASA Astrophysics Data System (ADS)

    Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is considered that thermal transient events such as type I edge localized modes (ELMs) could limit the lifetime of plasma-facing components (PFCs) in ITER. We have investigated surface damage of tungsten (W) materials under transient heat and particle loads by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The capacitor bank energy for the plasma discharge is 144 kJ (2.88 mF, 10 kVmax). Surface melting of a W material was clearly observed at the energy density of ˜2 MJ/m2. It is known that surface melting and evaporation during a transient heat load could generate a vapor cloud layer in front of the target material [1]. Then, the subsequent erosion could be reduced by the vapor shielding effect. In this study, we introduce a new experiment using two MCPG devices (MCPG-1, 2) to understand vapor shielding effects of a W surface under ELM-like pulsed plasma bombardment. The capacitor bank energy of MCPG-2 is almost same as that of MCPG-1. The second plasmoid is applied with a variable delay time after the plasmoid produced by MCPG-1. Then, a vapor cloud layer could shield the second plasma load. To verify the vapor shielding effects, surface damage of a W material is investigated by changing the delay time. In the conference, the preliminary experimental results will be shown.[4pt] [1] A. Hassanein et al., J. Nucl. Mater. 390-391, pp. 777-780 (2009).

  10. ALARA radiation considerations for the AP600 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, F.L.

    1995-03-01

    The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less

  11. A Comparison of Monte Carlo and Deterministic Solvers for keff and Sensitivity Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeck, Wim; Parsons, Donald Kent; White, Morgan Curtis

    Verification and validation of our solutions for calculating the neutron reactivity for nuclear materials is a key issue to address for many applications, including criticality safety, research reactors, power reactors, and nuclear security. Neutronics codes solve variations of the Boltzmann transport equation. The two main variants are Monte Carlo versus deterministic solutions, e.g. the MCNP [1] versus PARTISN [2] codes, respectively. There have been many studies over the decades that examined the accuracy of such solvers and the general conclusion is that when the problems are well-posed, either solver can produce accurate results. However, the devil is always in themore » details. The current study examines the issue of self-shielding and the stress it puts on deterministic solvers. Most Monte Carlo neutronics codes use continuous-energy descriptions of the neutron interaction data that are not subject to this effect. The issue of self-shielding occurs because of the discretisation of data used by the deterministic solutions. Multigroup data used in these solvers are the average cross section and scattering parameters over an energy range. Resonances in cross sections can occur that change the likelihood of interaction by one to three orders of magnitude over a small energy range. Self-shielding is the numerical effect that the average cross section in groups with strong resonances can be strongly affected as neutrons within that material are preferentially absorbed or scattered out of the resonance energies. This affects both the average cross section and the scattering matrix.« less

  12. Electrodynamic Dust Shield for Lunar/ISS Experiment Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul

    2015-01-01

    The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.

  13. Estimation of coolant void reactivity for CANDU-NG lattice using DRAGON and validation using MCNP5 and TRIPOLI-4.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, R.; Tellier, R. L.; Hebert, A.

    2006-07-01

    The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advancedmore » self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)« less

  14. Results from the decontamination of and the shielding arrangements in the reactor pressure vessel in Oskarshamn 1-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowendahl, B.

    1995-03-01

    In September 1992 Oskarshamn 1 was shut down in order to carry out measures to correct discovered deficiencies in the emergency cooling systems. Due to the results of a comprehensive non destructive test programme it was decided to perform a major replacement of pipes in the primary systems including a full system decontamination using the Siemens CORD process. The paper briefly presents the satisfying result of the decontamination performed in May-June 1993. When in late June 1993 cracks also were detected in the feed-water pipes situated inside the reactor pressure vessel (RPV) the plans were reconsidered and a large projectmore » was formed with the aim, in a first phase, to verify the integrity of the RPV. In order to make it possible to perform work manually inside the RPV special radiation protection measures had to be carried out. In January 1994 the lower region of the RPV was decontaminated, again using the CORD-process, followed by the installation of a special shielding construction in the RPV. The surprisingly good results of these efforts are also briefly described in the paper.« less

  15. Modified Laser and Thermos cell calculations on microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.

    1987-01-01

    In the course of designing and operating nuclear reactors, many fuel pin cell calculations are required to obtain homogenized cell cross sections as a function of burnup. In the interest of convenience and cost, it would be very desirable to be able to make such calculations on microcomputers. In addition, such a microcomputer code would be very helpful for educational course work in reactor computations. To establish the feasibility of making detailed cell calculations on a microcomputer, a mainframe cell code was compiled and run on a microcomputer. The computer code Laser, originally written in Fortran IV for the IBM-7090more » class of mainframe computers, is a cylindrical, one-dimensional, multigroup lattice cell program that includes burnup. It is based on the MUFT code for epithermal and fast group calculations, and Thermos for the thermal calculations. There are 50 fast and epithermal groups and 35 thermal groups. Resonances are calculated assuming a homogeneous system and then corrected for self-shielding, Dancoff, and Doppler by self-shielding factors. The Laser code was converted to run on a microcomputer. In addition, the Thermos portion of Laser was extracted and compiled separately to have available a stand alone thermal code.« less

  16. Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noise.

    DTIC Science & Technology

    1983-05-01

    proximnity of the turbulent jet flow to the The Spectral Dynamics DSP 360 is a two channel real time analyzer incor- shielding surface, the edge will interact...However, this is achieved with a very long shield length equal to 190 unorthodox configurations. The emphasis is placed on the concept, times the slit...16 dB/dec. .Vn With this solid-gaseous combination, a 10 0 diameter shield of length 14 DVf =- sin 0 with a burner attached to the trailing edge

  17. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.

    PubMed

    Bidinosti, C P; Kravchuk, I S; Hayden, M E

    2005-11-01

    We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.

  18. Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements

    USGS Publications Warehouse

    Terando, Adam J.; Youngsteadt, Elsa; Meineke, Emily K.; Prado, Sara G.

    2017-01-01

    In light of global climate change, ecological studies increasingly address effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. Sensors must be shielded from solar radiation to provide accurate temperature measurements, but our review of 18 years of ecological literature indicates that shielding practices vary across studies (when reported at all), and that ecologists often invent and construct ad hoc radiation shields without testing their efficacy. We performed two field experiments to examine the accuracy of temperature observations from three commonly used portable data loggers (HOBO Pro, HOBO Pendant, and iButton hygrochron) housed in manufactured Gill shields or ad hoc, custom‐fabricated shields constructed from everyday materials such as plastic cups. We installed this sensor array (five replicates of 11 sensor‐shield combinations) at weather stations located in open and forested sites. HOBO Pro sensors with Gill shields were the most accurate devices, with a mean absolute error of 0.2°C relative to weather stations at each site. Error in ad hoc shield treatments ranged from 0.8 to 3.0°C, with the largest errors at the open site. We then deployed one replicate of each sensor‐shield combination at five sites that varied in the amount of urban impervious surface cover, which presents a further shielding challenge. Bias in sensors paired with ad hoc shields increased by up to 0.7°C for every 10% increase in impervious surface. Our results indicate that, due to variable shielding practices, the ecological literature likely includes highly biased temperature data that cannot be compared directly across studies. If left unaddressed, these errors will hinder efforts to predict biological responses to climate change. We call for greater standardization in how temperature data are recorded in the field, handled in analyses, and reported in publications.

  19. Parametric study for use of stainless steel as a material for thermal shield in PIP2IT transferline at Fermilab

    NASA Astrophysics Data System (ADS)

    Rane, Tejas; Chakravarty, Anindya; Klebaner, Arkadiy

    2017-12-01

    Transferline thermal shields are cooled by dedicated cooling lines welded/brazed to the shield at a single point along the circumference. Copper/Aluminium is widely used to fabricate thermal shields because of their higher thermal diffusivity. This causes uniformity of temperature along the surface of the shield thus reducing thermal stresses within allowable values. However, factors such as raw material price, the cost of fabrication depending on standard sizes of pipes/tubes, often drives up the final price of thermal shields. To reduce the cost by making use of easily available stock of standard pipe/tube, it is decided to use stainless steel as a material for thermal shields in the PIP2IT transferline. The present paper discusses the design approach, various factors affecting the conservative selection of thermal shield design.

  20. Numerical Simulation and Monitoring of Surface Environment Influence of Waterless Sand Layer Shield Tunneling

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Han, Tongyin; Shi, Wenjun; Du, Shouji; Qin, Zhichao

    2017-10-01

    The development of urban subway is becoming more and more rapid and plays an increasingly important role. The shield tunneling method has become the first choice for the construction of urban subway tunnel in the construction of urban subway. The paper takes the interval of Shijiazhuang Metro Line 3 Administrative Center Station and Garden Park Station as the engineering background. The establishment of double shield finite difference model by considering the thickness of covering soil, tunnel excavation and excavation at the same time, distance and other factors, the surface deformation, and soil thickness. The ground deformation law is obtained, the surface settlement is inversely proportional to the overburden thickness and the double line spacing, and the gradual excavation is smaller than the synchronous excavation.

  1. 6. Workers laying up the graphite core of the 105B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA

  2. Search for the permanent electric dipole moment of 129Xe

    NASA Astrophysics Data System (ADS)

    Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep

    2017-09-01

    CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.

  3. Contoured inner after-heater shield for reducing stress in growing crystalline bodies

    DOEpatents

    Kalejs, Juris P.

    1996-09-24

    An apparatus for growing hollow crystalline bodies by the EFG process, comprising an EFG die having a top surface shaped for growing a hollow crystalline body having a cross-sectional configuration in the shape of a polygon having n faces, and a radiation shield adjacent to and surrounded by the top end surface of the die, characterized in that the shield has an inner edge defining a similar polygon with n sides, and the inner edge of the shield is notched so that the spacing between the n faces and the n sides is greatest between the central portions of the n faces and the n sides, whereby the greater spacing at the central portions helps to reduce lateral temperature gradients in the crystalline body that is grown by use of the die.

  4. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  5. Apparatus and method for controlling plating uniformity

    DOEpatents

    Hachman Jr., John T.; Kelly, James J.; West, Alan C.

    2004-10-12

    The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.

  6. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  7. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis

    PubMed Central

    Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.

    2016-01-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346

  8. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis.

    PubMed

    Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M

    2016-07-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.

  9. Evaluation of an alternative shielding materials for F-127 transport package

    NASA Astrophysics Data System (ADS)

    Gual, Maritza R.; Mesquita, Amir Z.; Pereira, Cláubia

    2018-03-01

    Lead is used as radiation shielding material for the Nordion's F-127 source shipping container is used for transport and storage of the GammaBeam -127's cobalt-60 source of the Nuclear Technology Development Center (CDTN) located in Belo Horizonte, Brazil. As an alternative, Th, Tl and WC have been evaluated as radiation shielding material. The goal is to check their behavior regarding shielding and dosing. Monte Carlo MCNPX code is used for the simulations. In the MCNPX calculation was used one cylinder as exclusion surface instead one sphere. Validation of MCNPX gamma doses calculations was carried out through comparison with experimental measurements. The results show that tungsten carbide WC is better shielding material for γ-ray than lead shielding.

  10. High Tc superconductors as thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    1990-06-01

    The feasibility of using high-Tc superconductor films as IR-radiation shields for liquid-helium-temperature dewars is investigated. Calculations show that a Ba-Ca-Sr-Cu-O superconductor with Tc of 110 K, combined with a liquid-nitrogen temperature shield with an emissivity of 0.03 should produce an upper limit to the radiative heat transfer of 15 mW/sq m. The reduction of reflectivity depends on the field level and the extent of field penetration into the superconductor film, whose surface also would provide magnetic shielding for low magnetic fields. Such shields, providing both magnetic and thermal radiation shielding would be useful for spaceborne applications where exposure to the degrading effects of moist air would not be a problem.

  11. Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.

    PubMed

    Russell, S W; Dinehart, S M; Davis, I; Flock, S T

    1996-07-01

    The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.

  12. Breast surface radiation dose during coronary CT angiography: reduction by breast displacement and lead shielding.

    PubMed

    Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D

    2011-08-01

    The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.

  13. LOFT. Containment and service building (TAN650) ground floor plan. Penetrations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650) ground floor plan. Penetrations in dome wall. Shielded personnel maze at airlock door. Reactor chamber floor hatches and holddowns. Rails in concrete floor. Kaiser engineers 6413-11-STEP/LOFT-650-A-2. Date: October 1964. INEEL index code no. 036-650-00-486-122214 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  14. Bulk shielding facility quarterly report, October, November, and December 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, III, S. S.; Lance, E. D.; Thomas, J. R.

    1977-08-01

    The BSR operated at an average power level of 1,836 kw for 78.01 percent of the time during October, November, and December. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training programs and was operated on two occasions when the University of Kentucky students actively participated in training laboratories.

  15. Neutron Physics Division progress report for period ending February 28, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, F.C.

    1977-05-01

    Summaries are given of research progress in the following areas: (1) measurements of cross sections and related quantities, (2) cross section evaluations and theory, (3) cross section processing, testing, and sensitivity analysis, (4) integral experiments and their analyses, (5) development of methods for shield and reactor analyses, (6) analyses for specific systems or applications, and (7) information analysis and distribution. (SDF)

  16. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE depletion with TRITON (T5-DEPL/T6-DEPL),• CE sensitivity/uncertainty analysis with TSUNAMI-3D,• Simplified and efficient LWR lattice physics with Polaris,• Large scale detailed spent fuel characterization with ORIGAMI and ORIGAMI Automator,• Advanced fission source convergence acceleration capabilities with Sourcerer,• Nuclear data library generation with AMPX, and• Integrated user interface with Fulcrum.Enhanced capabilities include:• Accurate and efficient CE Monte Carlo methods for eigenvalue and fixed source calculations,• Improved MG resonance self-shielding methodologies and data,• Resonance self-shielding with modernized and efficient XSProc integrated into most sequences,• Accelerated calculations with TRITON/NEWT (generally 4x faster than SCALE 6.1),• Spent fuel characterization with 1470 new reactor-specific libraries for ORIGEN,• Modernization of ORIGEN (Chebyshev Rational Approximation Method [CRAM] solver, API for high-performance depletion, new keyword input format)• Extension of the maximum mixture number to values well beyond the previous limit of 2147 to ~2 billion,• Nuclear data formats enabling the use of more than 999 energy groups,• Updated standard composition library to provide more accurate use of natural abundances, andvi• Numerous other enhancements for improved usability and stability.« less

  17. Shielding Analyses for VISION Beam Line at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  18. Use of LEU in the aqueous homogeneous medical isotope production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, R.M.

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its largemore » negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.« less

  19. Advanced Space Nuclear Reactors from Fiction to Reality

    NASA Astrophysics Data System (ADS)

    Popa-Simil, L.

    The advanced nuclear power sources are used in a large variety of science fiction movies and novels, but their practical development is, still, in its early conceptual stages, some of the ideas being confirmed by collateral experiments. The novel reactor concept uses the direct conversion of nuclear energy into electricity, has electronic control of reactivity, being surrounded by a transmutation blanket and very thin shielding being small and light that at its very limit may be suitable to power an autonomously flying car. It also provides an improved fuel cycle producing minimal negative impact to environment. The key elements started to lose the fiction attributes, becoming viable actual concepts and goals for the developments to come, and on the possibility to achieve these objectives started to become more real because the theory shows that using the novel nano-technologies this novel reactor might be achievable in less than a century.

  20. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  1. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  2. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  3. Search for sterile neutrinos in the neutrino-4 experiment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Polyushkin, A. O.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-03-01

    An experimental search for sterile neutrinos has been carried out at a neutrino facility based on the SM-3 nuclear reactor in Dimitrovgrad, Russia. The movable detector with passive shielding against the external radiation may be positioned at a distance varying between 6 and 12 m from the center of the reactor. The antineutrino flux has for the first time been measured using a movable detector placed close to the antineutrino source. The accuracy of the measurements is largely restricted by the cosmic background. The results of the measurements performed at small and large distances are analyzed in terms of the sterile-neutrino model parameters Δ m 14 2 and sin22θ14.

  4. REACTOR VIEWING APPARATUS

    DOEpatents

    Monk, G.S.

    1959-01-13

    An optical system is presented that is suitable for viewing objects in a region of relatively high radioactivity, or high neutron activity, such as a neutronic reactor. This optical system will absorb neutrons and gamma rays thereby protecting personnel fronm the harmful biological effects of such penetrating radiations. The optical system is comprised of a viewing tube having a lens at one end, a transparent solid member at the other end and a transparent aqueous liquid completely filling the tube between the ends. The lens is made of a polymerized organic material and the transparent solid member is made of a radiation absorbent material. A shield surrounds the tube betwcen the flanges and is made of a gamma ray absorbing material.

  5. 21. View from the work area of the front face ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from the work area of the front face of the pile in the 105 building, in this case at the F Reactor in February 1945. The 2,004 pigtails and process tube nozzles are neatly aligned in rows and columns across the face of the pile. The cooling water risers stand at the left and right of the pile and the distribution crossheaders run across its face. The pipes running vertically at the bottom of the pile carry cooling water to the thermal shield. The low railing along the floor in front of the face prevented workers from accidentally falling into the charging elevator pit. D-8326 - B Reactor, Richland, Benton County, WA

  6. Development of crawler type device using new measuring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, T.; Sasaki, T.; Yagi, T.

    1995-08-01

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-upsmore » and applied examination of RPVs to verify field applicability.« less

  7. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  8. Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Koushki, Amin Reza; Goodarzi, Massoud; Paidar, Moslem

    2016-12-01

    In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.

  9. Natural radiation hazards on the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Letaw, John R.; Silberberg, Rein; Tsao, C. H.

    1986-01-01

    The hazards of the natural radiation environment (cosmic rays and solar energetic particles) on a manned mission to Mars are considered. These hazards are addressed in three different settings: the flight to Mars where the astronauts are shielded only by the spacecraft; on the surface of Mars under an atmosphere of about 10 g/sq cm carbon dioxide; and under the surface of Mars where additional shielding would result.

  10. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  11. Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr

    A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less

  12. Environment Impact Analysis of Shield Passing Alongside Bridge Pile Platform Using Three Dimensional Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji

    2017-10-01

    The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.

  13. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  14. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  15. REACTOR UNLOADING MEANS

    DOEpatents

    Cooper, C.M.

    1957-08-20

    A means for remotely unloading irradiated fuel slugs from a neutronic reactor core and conveying them to a remote storage tank is reported. The means shown is specifically adapted for use with a reactor core wherein the fuel slugs are slidably held in end to end abutting relationship in the horizontal coolant flow tubes, the slugs being spaced from tae internal walls of the tubes to permit continuous circulation of coolant water therethrough. A remotely operated plunger at the charging ends of the tubes is used to push the slugs through the tubes and out the discharge ends into a special slug valve which transfers the slug to a conveying tube leading into a storage tank. Water under pressure is forced through the conveying tube to circulate around the slug to cool it and also to force the slug through the conveving tube into the storage tank. The slug valve and conveying tube are shielded to prevent amy harmful effects caused by the radioactive slug in its travel from the reactor to the storage tank. With the disclosed apparatus, all the slugs in the reactor core can be conveyed to the storage tank shortly after shutdown by remotely located operating personnel.

  16. Removal design report for the 108-F Biological Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieg, R.

    For future pressurized-water reactors, which should be designed against core-meltdown accidents, missiles generated inside the containment present a severe problem for its integrity. The masses and geometries of the missiles, as well as their velocities, may vary to a great extent. Therefore a reliable proof of the containment integrity is very difficult. In this article the potential sources of missiles are discussed, and the conclusion was reached that the generation of heavy missiles must be prevented. Steam explosions must not damage the reactor vessel head. Thus fragments of the head cannot become missiles that endanger the containment shell. Furthermore, duringmore » a melt-through failure of the reactor vessel under high pressure, the resulting forces must not catapult the whole vessel against the containment shell. Only missiles caused by hydrogen explosions may be tolerable, but shielding structures that protect the containment shell may be required. Further investigations are necessary. Finally, measures are described showing that the generation of heavy missiles can indeed be prevented. Investigations are currently being carried out that will confirm the strength of the reactor vessel head. In addition, a device for retaining the fragments of a failing reactor vessel is discussed.« less

  18. Boiling water reactor radiation shielded Control Rod Drive Housing Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baversten, B.; Linden, M.J.

    1995-03-01

    The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclearmore » overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.« less

  19. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.

    PubMed

    Ng, Yee-Hong; Bettens, Ryan P A

    2016-03-03

    Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.

  20. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  1. Integrated evaluation of the geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riograndense Shield, southernmost Brazil.

    PubMed

    Hartmann, Léo A; Lopes, William R; Savian, Jairo F

    2016-03-01

    An integrated evaluation of geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riogran-dense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembó terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Canguçu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Caçapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aerogammaspectrometry or aeromagnetometry.

  2. Space Debris Surfaces - Probability of no penetration versus impact velocity and obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1992-01-01

    A collection of computer codes called Space Debris Surfaces (SD-SURF), have been developed to assist in the design and analysis of space debris protection systems. An SD-SURF analysis will show which obliquities and velocities are most likely to cause a penetration to help the analyst select a shield design best suited to the predominant penetration mechanism. Examples of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration are presented.

  3. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradationa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoffmore » value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants.« less

  4. Shielding concepts for low-background proportional counter arrays in surface laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.

    2016-02-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less

  5. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  6. A Review of Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.

    2008-01-01

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion. With the space program focus m emphasize more on permanent return to the Moon and eventually manned exploration of Mars, there has been a renewed look at fission power to meet the difficult technical & design challenges associated with this effort. This is due to the ability of fission power to provide a power rich environment that is insensitive to solar intensity and related aspects such as duration of night, dusty environments, and distance from the sun, etc. One critical aspect in the utilization of fission power for these applications of manned exploration is shielding. Although not typically considered for space applications, water shields have been identified as one potential option due to benefits in mass savings and reduced development cost and technical risk (Poston, 2006). However, the water shield option requires demonstration of its ability to meet key technical challenges including such things as adequate natural circulation for thermal management and capability for operational periods up to 8 years. Thermal management concerns have begun to be addressed and are not expected to be a problem (Pearson, 2007). One significant concern remaining is the ability to maintain the shield integrity through its operational lifetime. Shield integrity could be compromised through shield pressurization and corrosion resulting from the radiolytic decomposition of water.

  7. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  8. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  9. Shielding Analysis of a Small Compact Space Nuclear Reactor

    DTIC Science & Technology

    1987-08-01

    RESPONSE) =4, MAXWELLIAN FISSION SPECTRUM (ILNTEGRAL RESPONSE) =5, LOS ALAMOS FISSION SPECTRUM, 1982 (INTEGRAL RESPONSE) =6, VITAMIN C NEUTRON SPECTRUM...Appendices Appendix A: Calculations of Effective Radii.. A-1 Appendix B: Atom Density Calculations for FEMPlD and FEMP2D ................ B-I Appendix C ...FEMPID and FEM22D Data........... C -i Appendix D: Energy Group Definition .......... D-I Appendix E: Transport Equation, Legendr4 Polynomial

  10. SCALE Code System 6.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less

  11. Chasing the light sterile neutrino with the STEREO detector

    NASA Astrophysics Data System (ADS)

    Minotti, A.

    2017-09-01

    The standard three-family neutrino oscillation model is challenged by a number of observations, such as the reactor antineutrino anomaly (RAA), that can be explained by the existence of sterile neutrinos at the eV mass scale. The STEREO experiment detects {\\bar ν _e} produced in the 58.3MW Th compact core of the ILL research reactor via inverse beta decay (IBD) interactions in a liquid scintillator. Using 6 identical target cells, STEREO compares {\\bar ν _e} energy spectra at different baselines in order to observe possible distortions due to short-baseline oscillations toward eV sterile neutrinos. IBD events are effectively singled out from γ radiation by selecting events with a two-fold coincidence that is typical of an IBD interaction. External background is reduced by means of layers of shielding material. A Cherenkov veto allows to partially remove background produced by cosmic muons, and the remaining component is measured in reactor-off periods and subtracted statistically. If no evidence of sterile neutrinos after the full statistics of 6 reactor cycles is gathered, STEREO is expected to fully exclude the RAA allowed region.

  12. Closure of the R Reactor Disassembly Basin at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W.E.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.« less

  13. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  14. A gas-puff-driven theta pinch for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2012-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.

  15. Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Volume 1. Basic Theory

    DTIC Science & Technology

    1987-12-29

    when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment

  16. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    NASA Technical Reports Server (NTRS)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  17. Impact of Substratum Surface on Microbial Community Structure and Treatment Performance in Biological Aerated Filters

    PubMed Central

    Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.

    2014-01-01

    The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134

  18. Improved Spacecraft Materials for Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Clowdsley, M. S.; Shinn, J. L.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann; Kim, M.-H. Y.; Heinbockel, John H.; Badhwar, Gautam D.

    2001-01-01

    Methods by which radiation shielding is optimized need to be developed and materials of improved shielding characteristics identified and validated. The galactic cosmic rays (GCR) are very penetrating and the energy absorbed by the astronaut behind the shield is nearly independent of shield composition and even the shield thickness. However, the mix of particles in the transmitted beam changes rapidly with shield material composition and thickness. This results in part from the breakup of the high-energy heavy ions of the GCR which make contributions to biological effects out of proportion to their deposited energy. So the mixture of particles in the radiation field changes with shielding and the control of risk contributions from dominant particle types is critical to reducing the hazard to the astronaut. The risk of biological injury for a given particle type depends on the type of biological effect and is specific to cell or tissue type. Thus, one is faced with choosing materials which may protect a given tissue against a given effect but leave unchanged or even increase the risk of other effects in the same tissue or increase the risks to other adjacent tissues of a different type in the same individual. The optimization of shield composition will then be tied to a specific tissue and risk to that tissue. Such peculiarities arise from the complicated mixture of particles, the nature of their biological response, and the details of their interaction with material constituents. Aside from the understanding of the biological response to specific components, one also needs an accurate understanding of the radiation emerging from the shield material. This latter subject has been a principal element of this project. In the past ten years our understanding of space radiation interactions with materials has changed radically, with a large impact on shield design. For example, the NCRP estimated that only 2 g/sq cm. of aluminum would be required to meet the annual 500 mSv limit for the exposure of the blood forming organs (this limit is strictly for LEO but can be used as a guideline for the Mars mission analysis). The current estimates require aluminum shield thicknesses above 50 g/sq cm., which is impractical. In such a heavily shielded vehicle, the neutrons produced throughout the vehicle also contribute significantly to the exposure and this demands greater care in describing the angular dependence of secondary particle production processes. As such the continued testing of databases and transport procedures in laboratory and spaceflight experiments has continued. This has been the focus of much of the last year's activity and has resulted in improved neutron prediction capability. These new methods have also improved our understanding of the surface environment of Mars. The Mars 2003 NRA HEDS related surface science requirements were driven by the need to validate predictions on the upward flux of neutrons produced in the Martian regolith and bedrock made by the codes developed under this project. The codes used in the surface environment definition are also being used to look at in situ resources for the development of construction material for Martian surface facilities. For example, synthesis of polyimides and polyethylene as binders of regolith for developing basic structural elements has been studied and targets built for accelerator beam testing of radiation shielding properties. Preliminary mechanical tests have also been promising. Improved spacecraft materials have been identified (using the criteria reported by this project at the last conference) as potentially important for future shielding materials. These are liquid hydrogen, hydrogenated nanofibers, liquid methane, LiH, Polyethylene, Polysulfone, and Polyetherimide (in order of decreasing shield performance). Some of the materials are multifunctional and are required for other onboard systems. We are currently preparing software for trade studies with these materials relative to the Mars Reference Mission as required in the project's final year.

  19. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less

  20. A numerically optimized active shield for improved TMS targeting

    PubMed Central

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-01-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451

  1. A numerically optimized active shield for improved transcranial magnetic stimulation targeting.

    PubMed

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-10-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J.; Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago

    2016-07-07

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work,more » we present the unfolding results using the EM algorithm.« less

  3. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    NASA Astrophysics Data System (ADS)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  4. Consumption of the electric power inside silent discharge reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com

    An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodesmore » in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.« less

  5. Safety shield for vacuum/pressure chamber viewing port

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R. S. (Inventor)

    1981-01-01

    Observers are protected from flying debris resulting from a failure of a vacuum or pressure chamber viewing port following an implosion or explosion by an optically clear shatter resistant safety shield which spaced apart from the viewing port on the outer surface of the chamber.

  6. Study of the ablative effects on tektites. [wake shielding during atmospheric entry

    NASA Technical Reports Server (NTRS)

    Sepri, P.; Chen, K. K.

    1976-01-01

    Equations are presented which provide approximate parameters describing surface heating and tektite deceleration during atmosphere passage. Numerical estimates of these parameters using typical initial and ambient conditions support the conclusion that the commonly assumed trajectories would not have produced some of the observed surface markings. It is suggested that tektites did not enter the atmosphere singly but rather in a swarm dense enough to afford wake shielding according to a shock envelope model which is proposed. A further aerodynamic mechanism is described which is compatible with hemispherical pits occurring on tektite surfaces.

  7. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  8. Preliminary analyses of space radiation protection for lunar base surface systems

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Wilson, John W.; Townsend, Lawrence W.

    1989-01-01

    Radiation shielding analyses are performed for candidate lunar base habitation modules. The study primarily addresses potential hazards due to contributions from the galactic cosmic rays. The NASA Langley Research Center's high energy nucleon and heavy ion transport codes are used to compute propagation of radiation through conventional and regolith shield materials. Computed values of linear energy transfer are converted to biological dose-equivalent using quality factors established by the International Commision of Radiological Protection. Special fluxes of heavy charged particles and corresponding dosimetric quantities are computed for a series of thicknesses in various shield media and are used as an input data base for algorithms pertaining to specific shielded geometries. Dosimetric results are presented as isodose contour maps of shielded configuration interiors. The dose predictions indicate that shielding requirements are substantial, and an abbreviated uncertainty analysis shows that better definition of the space radiation environment as well as improvement in nuclear interaction cross-section data can greatly increase the accuracy of shield requirement predictions.

  9. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  10. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  11. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  12. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  13. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  14. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-09-29

    to design a smaller scale version of a naval pressurized water reactor , or to design a new reactor type potentially using a thorium liquid salt...integrated nuclear power system capable of use on destroyer- sized vessels either using a pressurized water reactor or a thorium liquid salt reactor ...nuclear reactors for Navy surface ships. The text of Section 246 is as follows: SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES

  15. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  16. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  17. Bulk Shielding Facility quarterly report, April, May and June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, B.L.; Lance, E.D.

    1984-12-01

    The BSR operated at an average power level of 1310 kW for 3.8% of the time during April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training startups and was operated on five occasions for the NBS and HEDL recheck of a previous experiment run on the LWR pressure vessel surveillance dosimetry improvement program.

  18. IRRADIATION METHOD AND APPARATUS

    DOEpatents

    Cabell, C.P.

    1962-12-18

    A method and apparatus are described for changing fuel bodies into a process tube of a reactor. According to this method fresh fuel elements are introduced into one end of the tube forcing used fuel elements out the other end. When sufficient fuel has been discharged, a reel and tape arrangement is employed to pull the column of bodies back into the center of the tube. Due provision is made for providing shielding in the tube. (AEC)

  19. Microchemical Systems and Their Applications Workshop Held on 16-18 June 1999 in Reston, Virginia

    DTIC Science & Technology

    2000-03-29

    USABLE BY- PRODUCT HYDROGEN, BUT COST OF THE PT COATED CERAMIC TUBES IS HIGH, HEAT TRANSFER EFFICIENCY IS LIMITED, AND THE RISK ASSOCIATED WITH...Monolith reactor Monolith Catalyst A Gas mixture i quartz tube T 1 Radiation Shields GC / analysis 3M Monolith Catalysts *-v.V...polyamide. MicroChannel patterned laminates are fabricated from polyamide while microfin -patterned laminates are fabricated from copper. In addition to

  20. Efficacy of Face Shields Against Cough Aerosol Droplets from a Cough Simulator

    PubMed Central

    Lindsley, William G.; Noti, John D.; Blachere, Francoise M.; Szalajda, Jonathan V.; Beezhold, Donald H.

    2016-01-01

    Health care workers are exposed to potentially infectious airborne particles while providing routine care to coughing patients. However, much is not understood about the behavior of these aerosols and the risks they pose. We used a coughing patient simulator and a breathing worker simulator to investigate the exposure of health care workers to cough aerosol droplets, and to examine the efficacy of face shields in reducing this exposure. Our results showed that 0.9% of the initial burst of aerosol from a cough can be inhaled by a worker 46 cm (18 inches) from the patient. During testing of an influenza-laden cough aerosol with a volume median diameter (VMD) of 8.5 μm, wearing a face shield reduced the inhalational exposure of the worker by 96% in the period immediately after a cough. The face shield also reduced the surface contamination of a respirator by 97%. When a smaller cough aerosol was used (VMD = 3.4 μm), the face shield was less effective, blocking only 68% of the cough and 76% of the surface contamination. In the period from 1 to 30 minutes after a cough, during which the aerosol had dispersed throughout the room and larger particles had settled, the face shield reduced aerosol inhalation by only 23%. Increasing the distance between the patient and worker to 183 cm (72 inches) reduced the exposure to influenza that occurred immediately after a cough by 92%. Our results show that health care workers can inhale infectious airborne particles while treating a coughing patient. Face shields can substantially reduce the short-term exposure of health care workers to large infectious aerosol particles, but smaller particles can remain airborne longer and flow around the face shield more easily to be inhaled. Thus, face shields provide a useful adjunct to respiratory protection for workers caring for patients with respiratory infections. However, they cannot be used as a substitute for respiratory protection when it is needed. PMID:24467190

  1. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    PubMed

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  2. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  3. Twenty years of experience in monitoring 41Ar in a research reactor and decrease of its discharge into the environment.

    PubMed

    Fukui, M

    2004-04-01

    The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.

  4. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Samigullin, E.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.

  5. Extensibility of the fission surface power (FSP) system from the moon to Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David Irvin

    2011-01-28

    Fission reactors have great near-term potential to power human and robotic missions/outposts on the surface of the Moon and Mars (and potentially other planets, moons, and asteroids). The ability to provide a power-rich environment that is independent of solar intensity, nights, dust storms, etc., is of significant (perhaps enabling) importance to the further expansion of humans into our solar system. NASA's Reference Fission Surface Power (FSP) System is a 40 kWe system that has been primarily designed for lunar applications. This paper examines the extensibility of the FSP design and technology for potential missions on Mars. Possible impacts include themore » effects of changes in heat sink, gravity, day-night cycles, mission transit time, communication delay, and the chemistry of the regolith and atmosphere. One of the biggest impacts might be differences in the potential utilization of in-situ materials for shielding. Another major factor is that different missions will likely require different performance requirements, e.g. power, lifetime and mass. This paper concludes that the environmental differences between potential mission locations will not require significant changes in design and technologies, unless performance requirements for a specific mission are substantially different than those adopted for the FSP The primary basis for this conclusion is that the FSP has been designed with robust materials and design margins.« less

  6. NASA Reactor Facility Hazards Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  7. The importance of applicator design for intraluminal brachytherapy of rectal cancer.

    PubMed

    Hansen, Johnny Witterseh; Jakobsen, Anders

    2006-09-01

    An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintended off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multi-channel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.

  8. The importance of applicator design for intraluminal brachytherapy of rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Johnny Witterseh; Jakobsen, Anders; Department of Oncology, Hospital of Vejle, DK-7100 Vejle

    2006-09-15

    An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintendedmore » off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multichannel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.« less

  9. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-09-03

    An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.

  10. DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2016-11-01

    The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m3. High segmentation of the plastic scintillator will allow to suppress a background down to a ~1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GWth reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of sin2(2θnew) ~ 5 × 10-3 with Δ m2 ⊂ (0.02-5.0) eV2.

  11. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  12. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  13. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  14. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  15. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  16. Engineering design constraints of the lunar surface environment

    NASA Astrophysics Data System (ADS)

    Morrison, D. A.

    1992-02-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  17. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  18. Ground-Based Testing of TiB2 and Al2O3/TiB2 Response to Space Environment

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; Logan, Kathryn V.

    2007-01-01

    Two materials, titanium diboride and an alumina/titanium diboride composite, exhibit characteristics favorable for use in multiple space applications. These characteristics include low mass (4.52 gm/cc), high strain rate impact resistance, high temperature use (3000oC M.P.), thermal and electrical conductivity, thermal shock resistance, and high visible-range reflectivity. Additionally, the presence of boron in these materials gives them the potential to shield against neutron radiation as well as charged radiation. These materials are flying on MISSE 6 to assess material changes resulting from exposure to the space environment. This study provides a preliminary, ground-based examination of these materials' interactions with individual components of the space environment, in particular atomic oxygen (AO) and neutron radiation, in order to better predict and understand post-flight results. Individual specimens are exposed to ground state AO and surface oxidation is measured. Equivalent exposures of up to 13 months show no rapid oxidation, however evidence indicates some surface oxidation occurring. Other samples are placed near a polyethylene moderated, one Ci Am/Be neutron source to determine their shielding capability. Comparisons between exposed and shielded indium foil, which is activated by transmitted neutrons, measure each material's ability to shield neutrons. Preliminary results indicate a significant shielding benefit provided by both materials.

  19. Energetic Particle Measurements on Mars and in Lunar Orbit

    NASA Astrophysics Data System (ADS)

    Zeitlin, C. J.; Hassler, D.; Schwadron, N.; Spence, H. E.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. S.; Brinza, D. E.; Burmeister, S.; Ehresmann, B.; Guo, J.; Kohler, J.; Lohf, H.; Martin-Garcia, C.; Posner, A.; Rafkin, S. C.; weigle, G., II; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Radiation Assessment Detector (RAD) aboard the Curiosity rover has been making measurements of energetic particles on the surface of Mars since the rover landed in August 2012. RAD also acquired data for most of the cruise to Mars, from Dec. 2011 through July 2012. In both cruise and on the surface, RAD is under considerable shielding, averaging 22 g cm-2 of CO2 during the surface mission, and ~ 16 g cm-2 during cruise. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the LRO spacecraft in lunar orbit has been making measurements since mid-2009. CRaTER contains three sets of detectors, of which one is unshielded, one is under 6 g cm-2 of tissue-equivalent plastic (TEP) shielding, and one is under 9 g cm-2 of TEP. Taken together, the two experiments provide a wealth of data concerning the effects of shielding on Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Comparison of data from the two instruments is complicated by their different locations in the heliosphere, which at most times causes them to be magnetically connected to different regions on the Sun. Variability of the atmospheric shielding above RAD, which is both diurnal and seasonal, also influences the comparison. During solar quiet time, when the energetic particle flux is due to GCRs, many similarities - and some small but significant differences - are seen in detailed time series data. In contrast, during SEP events, both the shielding and location disparities cause large differences in the measured particle fluxes.

  20. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

Top