Science.gov

Sample records for surface receptor aggregates

  1. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  2. Surface aggregation patterns of LDL receptors near coated pits. I. The radially convective diffusion and generalized insertion mechanism.

    PubMed

    Solana-Arellano, E; Echaverría-Heras, H; Leal-Ramírez, C

    1998-12-01

    In this paper we formulate a mathematical model for the receptor mediated endocytotic cycle under the influence of diffusion, radial convection, and generalized receptor reinsertion. The steady state radial concentration function of unbound receptors admits an explicit representation. This can be expressed as a functional of the insertion rate, the diffusion coefficient, and the flow strength. Using the referred functional we study the influence of the aforementioned mechanisms on the surface aggregation pattern of low density lipoprotein (LDL) receptors near coated pits. We perform that analysis on both a theoretical level and by means of simulated receptor aggregation patterns obtained by computer graphics techniques. We conclude that radially convective diffusion in combination with suitable characterizations of the insertion mode are consistent with reported cell surface aggregation patterns.

  3. Ultrastructure of acetylcholine receptor aggregates parallels mechanisms of aggregation

    PubMed Central

    Kunkel, Dennis D; Lee, Lara K; Stollberg, Jes

    2001-01-01

    Background Acetylcholine receptors become aggregated at the developing neuromuscular synapse shortly after contact by a motorneuron in one of the earliest manifestations of synaptic development. While a major physiological signal for receptor aggregation (agrin) is known, the mechanism(s) by which muscle cells respond to this and other stimuli have yet to be worked out in detail. The question of mechanism is addressed in the present study via a quantitative examination of ultrastructural receptor arrangement within aggregates. Results In receptor rich cell membranes resulting from stimulation by agrin or laminin, or in control membrane showing spontaneous receptor aggregation, receptors were found to be closer to neighboring receptors than would be expected at random. This indicates that aggregation proceeds heterogeneously: nanoaggregates, too small for detection in the light microscope, underlie developing microaggregates of receptors in all three cases. In contrast, the structural arrangement of receptors within nanoaggregates was found to depend on the aggregation stimulus. In laminin induced nanoaggregates receptors were found to be arranged in an unstructured manner, in contrast to the hexagonal array of about 10 nm spacing found for agrin induced nanoaggregates. Spontaneous aggregates displayed an intermediate amount of order, and this was found to be due to two distinct population of nanoaggregates. Conclusions The observations support earlier studies indicating that mechanisms by which agrin and laminin-1 induced receptor aggregates form are distinct and, for the first time, relate mechanisms underlying spontaneous aggregate formation to aggregate structure. PMID:11749670

  4. Surface aggregation patterns of LDL receptors near coated pits III: potential effects of combined retrograde membrane flow-diffusion and a polarized-insertion mechanism

    PubMed Central

    2014-01-01

    Although the process of endocytosis of the low density lipoprotein (LDL) macromolecule and its receptor have been the subject of intense experimental research and modeling, there are still conflicting hypotheses and even conflicting data regarding the way receptors are transported to coated pits, the manner by which receptors are inserted before they aggregate in coated pits, and the display of receptors on the cell surface. At first it was considered that LDL receptors in human fibroblasts are inserted at random locations and then transported by diffusion toward coated pits. But experiments have not ruled out the possibility that the true rate of accumulation of LDL receptors in coated pits might be faster than predicted on the basis of pure diffusion and uniform reinsertion over the entire cell surface. It has been claimed that recycled LDL receptors are inserted preferentially in regions where coated pits form, with display occurring predominantly as groups of loosely associated units. Another mechanism that has been proposed by experimental cell biologists which might affect the accumulation of receptors in coated pits is a retrograde membrane flow. This is essentially linked to a polarized receptor insertion mode and also to the capping phenomenon, characterized by the formation of large patches of proteins that passively flow away from the regions of membrane exocytosis. In this contribution we calculate the mean travel time of LDL receptors to coated pits as determined by the ratio of flow strength to diffusion-coefficient, as well as by polarized-receptor insertion. We also project the resulting display of unbound receptors on the cell membrane. We found forms of polarized insertion that could potentially reduce the mean capture time of LDL receptors by coated pits which is controlled by diffusion and uniform insertion. Our results show that, in spite of its efficiency as a possible device for enhancement of the rate of receptor trapping, polarized

  5. Surface aggregation patterns of LDL receptors near coated pits III: potential effects of combined retrograde membrane flow-diffusion and a polarized-insertion mechanism.

    PubMed

    Echavarria-Heras, Héctor; Leal-Ramirez, Cecilia; Castillo, Oscar

    2014-05-22

    Although the process of endocytosis of the low density lipoprotein (LDL) macromolecule and its receptor have been the subject of intense experimental research and modeling, there are still conflicting hypotheses and even conflicting data regarding the way receptors are transported to coated pits, the manner by which receptors are inserted before they aggregate in coated pits, and the display of receptors on the cell surface. At first it was considered that LDL receptors in human fibroblasts are inserted at random locations and then transported by diffusion toward coated pits. But experiments have not ruled out the possibility that the true rate of accumulation of LDL receptors in coated pits might be faster than predicted on the basis of pure diffusion and uniform reinsertion over the entire cell surface. It has been claimed that recycled LDL receptors are inserted preferentially in regions where coated pits form, with display occurring predominantly as groups of loosely associated units. Another mechanism that has been proposed by experimental cell biologists which might affect the accumulation of receptors in coated pits is a retrograde membrane flow. This is essentially linked to a polarized receptor insertion mode and also to the capping phenomenon, characterized by the formation of large patches of proteins that passively flow away from the regions of membrane exocytosis. In this contribution we calculate the mean travel time of LDL receptors to coated pits as determined by the ratio of flow strength to diffusion-coefficient, as well as by polarized-receptor insertion. We also project the resulting display of unbound receptors on the cell membrane. We found forms of polarized insertion that could potentially reduce the mean capture time of LDL receptors by coated pits which is controlled by diffusion and uniform insertion. Our results show that, in spite of its efficiency as a possible device for enhancement of the rate of receptor trapping, polarized

  6. Surface aggregation patterns of LDL receptors near coated pits II. The retrograde membrane flow-diffusion and generalized plaque-form insertion mechanism.

    PubMed

    Echavarria-Heras, Hector; Solana-Arellano, Elena; Leal-Ramirez, Cecilia

    2012-06-01

    This study presents a theoretical exploration of the effects of mechanisms that, in addition to diffusion, may influence the surface dynamics and display of unbound receptors in the low-density lipoprotein (LDL) endocytic cycle in human fibroblasts. The factors considered here are a transverse membrane flow and a generalized plaque-form insertion mode. The proposed model permits estimations of aggregation rates of unbound receptors in coated pits as well as pictorial representations of their expected steady-state display on the cell surface. Our findings show that this display is determined in a fundamental way by the ratio of the strength of the flow to the diffusion coefficient. For measured values of the diffusion coefficient and the estimated value of the flow rate strength (and independent of the receptor insertion mode), the display predicted by our model is consistent with the capping phenomenon, i.e., a gradated clustering in the direction of flow streamlines. There could be suitable characterizations of the receptor reinsertion mode that would produce a substantial reduction in the mean capture time of LDL receptors by coated pits. In any event, our results show that the existence of a transverse membrane flow precludes the display of steady-state plaque-form surface clusters.

  7. Surface fractals in liposome aggregation.

    PubMed

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2009-01-01

    In this work, the aggregation of charged liposomes induced by magnesium is investigated. Static and dynamic light scattering, Fourier-transform infrared spectroscopy, and cryotransmission electron microscopy are used as experimental techniques. In particular, multiple intracluster scattering is reduced to a negligible amount using a cross-correlation light scattering scheme. The analysis of the cluster structure, probed by means of static light scattering, reveals an evolution from surface fractals to mass fractals with increasing magnesium concentration. Cryotransmission electron microscopy micrographs of the aggregates are consistent with this interpretation. In addition, a comparative analysis of these results with those previously reported in the presence of calcium suggests that the different hydration energy between lipid vesicles when these divalent cations are present plays a fundamental role in the cluster morphology. This suggestion is also supported by infrared spectroscopy data. The kinetics of the aggregation processes is also analyzed through the time evolution of the mean diffusion coefficient of the aggregates.

  8. Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations.

    PubMed

    Kadokawa, Hiroya; Pandey, Kiran; Nahar, Asrafun; Nakamura, Urara; Rudolf, Faidiban O

    2014-11-30

    The presence of gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) on gonadotrophs in the anterior pituitary (AP) is an important factor for reproduction control. However, little is known regarding GnRHR gene expression in gonadotrophs of cattle owing to the lack of an appropriate anti-GnRHR antibody. Therefore, an anti-GnRHR antibody for immunohistochemistry, flow cytometry, and immunocytochemistry assays was developed to characterize GnRHR gene expression in gonadotrophs. The anti-GnRHR antibody could suppress GnRH-induced LH secretion from cultured AP cells of cattle. The GnRHR, luteinizing hormone (LH), and follicle stimulating hormone (FSH) in the AP tissue was analyzed by fluorescence immunohistochemistry. The GnRHRs were aggregated on a limited area of the cell surface of gonadotrophs, possibly localized to lipid rafts. The LH secretion was stimulated with increasing amounts of GnRH; however, excessive concentrations (> 1 nM) resulted in a decrease in LH secretion. A novel method to purify gonadotrophs was developed using the anti-GnRHR antibody and fluorescence-activated cell sorting. Flow cytometric analysis using the anti-GnRHR antibody for cultured bovine AP cells, however, failed to support the hypothesis that GnRH induces GnRHR internalization and decreases GnRHR on the surface of GnRHR-positive AP cells. In contrast, immunocytochemistry using primary antibodies for cultured bovine AP cells showed that 10 nM (P < 0.05) and 100 nM (P < 0.01) GnRH, but not 0.01-1 nM GnRH, increased GnRHR in the cytoplasm of LH-positive cells. In conclusion, these data suggested that GnRHRs were aggregated on the surface of gonadotrophs and GnRHR inside gonadotrophs increased with elevated concentrations of GnRH.

  9. Particle aggregation with simultaneous surface growth

    SciTech Connect

    pablo.mitchell@cal.Berkeley.EDU

    2003-04-29

    Particle aggregation with simultaneous surface growth was modeled using a dynamic Monte Carlo method. The Monte Carlo algorithm begins in the particle inception zone and constructs aggregates via ensemble-averaged collisions between spheres and deposition of gaseous species on the sphere surfaces. Simulations were conducted using four scenarios. The first, referred to as scenario 0, is used as a benchmark and simulates aggregation in the absence of surface growth. Scenario 1 forces all balls to grow at a uniform rate while scenario 2 only permits them to grow once they have collided and stuck to each other. The last one is a test scenario constructed to confirm conclusions drawn from scenarios 0-2. The transition between the coalescent and the fully-developed fractal aggregation regimes is investigated using shape descriptors to quantify particle geometry. They are used to define the transition between the coalescent and fractal growth regimes. The simulations demonstrate that the morphology of aggregating particles is intimately related to both the surface deposition and particle nucleation rates.

  10. Colloidal Aggregation Causes Inhibition of G Protein-Coupled Receptors

    PubMed Central

    2013-01-01

    Colloidal aggregation is the dominant mechanism for artifactual inhibition of soluble proteins, and controls against it are now widely deployed. Conversely, investigating this mechanism for membrane-bound receptors has proven difficult. Here we investigate the activity of four well-characterized aggregators against three G protein-coupled receptors (GPCRs) recognizing peptide and protein ligands. Each of the aggregators was active at micromolar concentrations against the three GPCRs in cell-based assays. This activity could be attenuated by either centrifugation of the inhibitor stock solution or by addition of Tween-80 detergent. In the absence of agonist, the aggregators acted as inverse agonists, consistent with a direct receptor interaction. Meanwhile, several literature GPCR ligands that resemble aggregators themselves formed colloids, by both physical and enzymological tests. These observations suggest that some GPCRs may be artifactually antagonized by colloidal aggregates, an effect that merits the attention of investigators in this field. PMID:23437772

  11. STAND: Surface Tension for Aggregation Number Determination.

    PubMed

    Garrido, Pablo F; Brocos, Pilar; Amigo, Alfredo; García-Río, Luis; Gracia-Fadrique, Jesús; Piñeiro, Ángel

    2016-04-26

    Taking advantage of the extremely high dependence of surface tension on the concentration of amphiphilic molecules in aqueous solution, a new model based on the double equilibrium between free and aggregated molecules in the liquid phase and between free molecules in the liquid phase and those adsorbed at the air/liquid interface is presented and validated using literature data and fluorescence measurements. A key point of the model is the use of both the Langmuir isotherm and the Gibbs adsorption equation in terms of free molecules instead of the nominal concentration of the solute. The application of the model should be limited to non ionic compounds since it does not consider the presence of counterions. It requires several coupled nonlinear fittings for which we developed a software that is publicly available in our server as a web application. Using this tool, it is straightforward to get the average aggregation number of an amphiphile, the micellization free energy, the adsorption constant, the maximum surface excess (and so the minimum area per molecule), the distribution of solute in the liquid phase between free and aggregate species, and the surface coverage in only a couple of seconds, just by uploading a text file with surface tension vs concentration data and the corresponding uncertainties.

  12. Aggregation propensity of neuronal receptors: potential implications in neurodegenerative disorders.

    PubMed

    Navarro, Susanna; Diaz-Caballero, Marta; Illa, Ricard; Ventura, Salvador

    2015-09-01

    Misfolding and aggregation of proteins in tissues is linked to the onset of a diverse set of human neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. In these pathologies proteins usually aggregate into highly ordered and β-sheet enriched amyloid fibrils. However, the formation of these toxic structures is not restricted to a reduced set of polypeptides but rather an intrinsic property of proteins. This suggests that the number of proteins involved in conformational disorders might be much larger than previously thought. The propensity of a protein to form amyloid assemblies is imprinted in its sequence and can be read using computational approaches. Here, we exploit four of these algorithms to analyze the presence of aggregation-prone regions in the sequence and structure of the extracellular domains of several neuroreceptors, with the idea of identifying patches that can interact anomalously with other aggregation-prone molecules such as the amyloid-β peptide or promote their self-assembly. The number of amyloidogenic regions in these domains is rather low but they are significantly exposed to solvent and therefore are suitable for interactions. We find a significant overlap between aggregation-prone regions and receptors interfaces and/or ligand-binding sites, which illustrates an unavoidable competition between the formation of functional native interactions and that of dangerous amyloid-like contacts leading to disease.

  13. Dopamine D2 Receptor antagonism suppresses tau aggregation and neurotoxicity

    PubMed Central

    McCormick, Allyson V.; Wheeler, Jeanna M.; Guthrie, Chris R.; Liachko, Nicole F.; Kraemer, Brian C.

    2012-01-01

    Background Tauopathies, including Alzheimer’s disease (AD) and frontotemporal dementia, are diseases characterized by the formation of pathological tau protein aggregates in the brain and progressive neurodegeneration. Presently no effective disease modifying treatments exist for tauopathies. Methods To identify drugs targeting tau neurotoxicity, we have used a C. elegans model of tauopathy to screen a drug library containing 1120 compounds approved for human use for the ability to suppress tau-induced behavioral effects. Results One compound, the typical antipsychotic azaperone, improved the motility of tau transgenic worms, reduced levels of insoluble tau, and was protective against neurodegeneration. We found that azaperone reduces insoluble tau in a human cell culture model of tau aggregation, and that other antipsychotic drugs (flupenthixol, perphenazine, and zotepine) also ameliorate the effects of tau expression in both models. Conclusions Reduction of dopamine signaling through the dopamine D2 receptor with the use of gene knockouts in C. elegans or RNAi knockdown in human cell culture have similar protective effects against tau toxicity. These results suggest dopamine D2 receptor antagonism holds promise as a potential neuroprotective strategy for targeting tau aggregation and neurotoxicity. PMID:23140663

  14. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.

    PubMed Central

    Tandon, P; Diamond, S L

    1997-01-01

    We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at

  15. BHK21 fibroblast aggregation inhibited by glycopeptides from the cell surface.

    PubMed

    Vicker, M G

    1976-06-01

    Glycopeptides were removed by trypsinization from the surface of baby hamster kidney cells (line BHK21-C13), digested by pronase and separated into 2 fractions by exclusion chromatography. The addition of small amounts of either glycopeptide fraction to shaken suspensions of lightly trypsinzied cells inhibited their rapid aggregation, but one fraction was more active than the other and in higher concentrations it was able to inhibit aggregation completely. After this fraction was purified by high-voltage electrophoresis one subfraction also inhibited aggregation. The effect of the glycopeptides increased following their pretreatment with neuraminidase, but preincubation with periodiate or galactose oxidase destroyed all activity. Galactose oxidase also inhibited cell aggregation directly. Similar glycopeptides from virus-transformed BHK21 cells, oligosaccharides and intact and desialysed human urinary glycoproteins had comparatively little or no effect on BHK21 cell aggregation. The results suggest terminal beta-galactosides and possible alpha-galactosides, and to some extent a particular substructure of cell surface heteroglycans are necessary for their inhibitory activity. The parent, plasma membrane of glycoproteins might serve as adhesive binding sites in cell cohesion, but some evidence indicates cell surface sialyl- and galactosyltransferases may not ordinarily act as their complementary binding receptors.

  16. Reversible surface aggregation in pore formation by pardaxin.

    PubMed

    Rapaport, D; Peled, R; Nir, S; Shai, Y

    1996-06-01

    The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin.

  17. Fractal properties of aggregates of metal nanoclusters on solid surface

    NASA Astrophysics Data System (ADS)

    Samsonov, V. M.; Kuznetsova, Yu. V.; D'yakova, E. V.

    2016-02-01

    AFM images are used to determine and analyze fractal characteristics (cluster fraction dimension and lacunarity) of aggregates of Au and Ag nanoclusters on metal films of the same metal produced with the aid of thermal vacuum deposition on mica surface. A fractal dimension of 1.6 that corresponds to typical samples with relatively uniform distribution of nanoclusters on the film surface is in agreement with the mean value calculated from experimental data of Belko et al., who studied the fractal dimension of Au nanoclusters on a different dielectric (quartz) surface. When a compact single aggregate of Au nanoclusters is formed on a certain active center or defect, the fractal cluster dimension decreases to 1.4. The experimental data are compared with the results of existing theoretical models of association of nanoclusters in 2D systems.

  18. Measurement of aggregate cohesion by tissue surface tensiometry.

    PubMed

    Butler, Christine M; Foty, Ramsey A

    2011-04-08

    Rigorous measurement of intercellular binding energy can only be made using methods grounded in thermodynamic principles in systems at equilibrium. We have developed tissue surface tensiometry (TST) specifically to measure the surface free energy of interaction between cells. The biophysical concepts underlying TST have been previously described in detail. The method is based on the observation that mutually cohesive cells, if maintained in shaking culture, will spontaneously assemble into clusters. Over time, these clusters will round up to form spheres. This rounding-up behavior mimics the behavior characteristic of liquid systems. Intercellular binding energy is measured by compressing spherical aggregates between parallel plates in a custom-designed tissue surface tensiometer. The same mathematical equation used to measure the surface tension of a liquid droplet is used to measure surface tension of 3D tissue-like spherical aggregates. The cellular equivalent of liquid surface tension is intercellular binding energy, or more generally, tissue cohesivity. Previous studies from our laboratory have shown that tissue surface tension (1) predicts how two groups of embryonic cells will interact with one another, (2) can strongly influence the ability of tissues to interact with biomaterials, (3) can be altered not only through direct manipulation of cadherin-based intercellular cohesion, but also by manipulation of key ECM molecules such as FN and 4) correlates with invasive potential of lung cancer, fibrosarcoma, brain tumor and prostate tumor cell lines. In this article we will describe the apparatus, detail the steps required to generate spheroids, to load the spheroids into the tensiometer chamber, to initiate aggregate compression, and to analyze and validate the tissue surface tension measurements generated.

  19. Insulin receptor aggregation and autophosphorylation in the presence of cationic polyamino acids

    SciTech Connect

    Kohanski, R.A. )

    1989-12-15

    Aggregation and autophosphorylation of the insulin receptor-protein kinase, from cultured 3T3-L1 adipocytes, were studied in the presence of cationic polyamino acids. Poly-L-lysine and poly-L-arginine produced the following effects with the purified receptor: first, the autophosphorylation rate was increased by polycations. Half-maximal stimulation was proportional to polymer length. The rate enhancement was greater at lower ATP concentrations. Second, near-endpoint (equilibrium) autophosphorylation was greater in the presence of the polycations. Polycations inhibited the reverse reaction: ADP + phosphoreceptor yielding ATP + aporeceptor. Third, the (32P)phosphopeptides generated by trypsin digestion of the 32P-beta-subunit, showed that no new autophosphorylation sites resulted from the presence of polycations. Fourth, the polycations, but not insulin, promoted receptor aggregation, and phosphoreceptor aggregated more readily than aporeceptor. Insulin receptor enriched through the wheat germ agglutinin eluate step was compared with purified receptor. Higher concentrations of poly-L-arginine were required to stimulate autophosphorylation and to promote aggregation. Finally, several polycation-dependent substrates present in the wheat germ agglutinin eluate co-aggregated with the insulin receptor. Polycation-stimulated receptor autophosphorylation is linked to a lower KM,app for ATP, but substrate phosphorylation may require the aggregation.

  20. Activation of Gi-coupled receptors releases a tonic state of inhibited platelet aggregation.

    PubMed

    Maayani, S; Schwarz, T; Martinez, R; Tagliente, T M

    2001-03-01

    Single-receptor pharmacology does not satisfactorily explain the physiology of the ADP-induced platelet aggregation response. It has been shown that, in addition to Gq-coupled receptor activation, one Gi-coupled receptor, either the ADP P2T or the alpha2-adrenoceptor, is required for elicitation of aggregation. The underlying mechanism of this action, however, has not been elucidated. By systematically assaying the entire time course of the aggregation and its fade using two methods of aggregometry, we have investigated the role of graded activation of these two Gi-coupled receptors. We demonstrate that constant activation of either of two Gq-coupled receptors, the ADP P2Y1 or the 5-HT2A, and incremental activation of either of the two Gi-coupled receptors, tightly regulates the aggregation response in vitro, through the apparent release of a tonic inhibition of platelet aggregation. This tightly regulated release of inhibition, which appears analogous to the phenomena of disinhibition observed in the central nervous system, may be instrumental for the continuous adaptation of the aggregation response to variable physiological conditions.

  1. Multistep Aggregation Pathway of Human Interleukin-1 Receptor Antagonist: Kinetic, Structural, and Morphological Characterization

    PubMed Central

    Krishnan, Sampathkumar; Raibekas, Andrei A.

    2009-01-01

    Abstract The complex, multistep aggregation kinetic and structural behavior of human recombinant interleukin-1 receptor antagonist (IL-1ra) was revealed and characterized by spectral probes and techniques. At a certain range of protein concentration (12–27 mg/mL) and temperature (44–48°C), two sequential aggregation kinetic transitions emerge, where the second transition is preceded by a lag phase and is associated with the main portion of the aggregated protein. Each kinetic transition is linked to a different type of aggregate population, referred to as type I and type II. The aggregate populations, isolated at a series of time points and analyzed by Fourier-transform infrared spectroscopy, show consecutive protein structural changes, from intramolecular (type I) to intermolecular (type II) β-sheet formation. The early type I protein spectral change resembles that seen for IL-1ra in the crystalline state. Moreover, Fourier-transform infrared data demonstrate that type I protein assembly alone can undergo a structural rearrangement and, consequently, convert to the type II aggregate. The aggregated protein structural changes are accompanied by the aggregate morphological changes, leading to a well-defined population of interacting spheres, as detected by scanning electron microscopy. A nucleation-driven IL-1ra aggregation pathway is proposed, and assumes two major activation energy barriers, where the second barrier is associated with the type I → type II aggregate structural rearrangement that, in turn, serves as a pseudonucleus triggering the second kinetic event. PMID:19134476

  2. Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor

    SciTech Connect

    Green, S.J.; Underhill, C.B. ); Tarone, G. )

    1988-10-01

    To examine the role of the hyaluronate receptor in cell to cell adhesion, the authors have employed the K-3 monoclonal antibody (MAb) which specifically binds to the hyaluronate receptor and blocks its ability to interact with hyaluronate. In the first set of experiments, they investigated the spontaneous aggregation of SV-3T3 cells, which involves two distinct mechanisms, one of which is dependent upon the presence of divalent cation and the other is independent. The divalent cation-independent aggregation was found to be completely inhibited by both intact and Fab fragments of the K-3 MAb. In contrast, the K-3 MAb had no effect on the divalent cation-dependent aggregation of cells. In a second set of experiments, we examined alveolar macrophages. The presence of hyaluronate receptors on alveolar macrophages was demonstrated by the fact that detergent extracts of these cells could bind ({sup 3})hyaluronate, and this binding was blocked by the K-3 MAb. Immunoblot analysis of alveolar macrophages showed that the hyaluronate receptor had a M{sub r} of 99,500, which is considerably larger than the 85,000 M{sub r} for that on BHK cells. When hyaluronate was added to suspensions of alveolar macrophages, the cells were induced to aggregate. This effect was inhibited by the K-3 MAb, suggesting that the hyaluronate-induced aggregation was mediated by the receptor.

  3. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Roberts, R.; Reitstetter, R.

    1994-01-01

    We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.

  4. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Roberts, R.; Reitstetter, R.

    1994-01-01

    We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.

  5. Detection of cell surface dopamine receptors.

    PubMed

    Xiao, Jiping; Bergson, Clare

    2013-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbent assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact.

  6. Detection of Cell Surface Dopamine Receptors

    PubMed Central

    Xiao, Jiping; Bergson, Clare

    2014-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbant assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, cells surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact. PMID:23296774

  7. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  8. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release.

    PubMed

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz

    2002-10-01

    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  9. Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membranes by fluorescence resonance energy transfer. Correlation of receptor activation with aggregation.

    PubMed

    Carraway, K L; Koland, J G; Cerione, R A

    1989-05-25

    Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.

  10. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  11. Characterization of nanoparticle formation and aggregation on mineral surfaces

    SciTech Connect

    Glenn Waychunas; Young-Shin Jun

    2007-04-19

    The research effort in the Waychunas group is focused on the characterization and measurement of processes at the mineral-water interfaces specifically related to the onset of precipitation. This effort maps into one of the main project groups with the Penn State University EMSI (CEKA) known as PIG (Precipitation Interest Group), and involves collaborations with several members of that group. Both synchrotron experimentation and technique development are objectives, with the goals of allowing precipitation from single molecule attachment to sub-monolayer coverage to be detected and analyzed. The problem being addressed is the change in reactivity of mineral interfaces due to passivation or activation by precipitates or sorbates. In the case of passivation, fewer active sites may be involved in reactions with environmental fluids, while in the activated case the precipitate may be much more reactive than the substrate, or result in the creation of a higher density of active sites. We approach this problem by making direct measurements of several types of precipitation reactions: iron-aluminum oxide formation on quartz and other substrates from both homogeneous (in solution) nucleation, and heterogeneous (on the surface) nucleation; precipitation and sorption of silicate monomers and polymers on Fe oxide surfaces; and development of grazing-incidence small angle x-ray scattering (GISAXS) as a tool for in-situ measurement of precipitate growth, morphology and aggregation. We expect that these projects will produce new fundamental information on reactive interface growth, passivation and activation, and be applicable to a wide range of environmental interfaces.

  12. Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor.

    PubMed

    Diamond, M I; Robinson, M R; Yamamoto, K R

    2000-01-18

    Spinobulbar muscular atrophy and Huntington's disease are caused by polyglutamine expansion in the androgen receptor and huntingtin, respectively, and their pathogenesis has been associated with abnormal nuclear localization and aggregation of truncated forms of these proteins. Here we show, in diverse cell types, that glucocorticoids can up- or down-modulate aggregation and nuclear localization of expanded polyglutamine polypeptides derived from the androgen receptor and huntingtin through specific regulation of gene expression. Wild-type glucocorticoid receptor (GR), as well as C-terminal deletion derivatives, suppressed the aggregation and nuclear localization of these polypeptides, whereas mutations within the DNA binding domain and N terminus of GR abolished this activity. Surprisingly, deletion of a transcriptional regulatory domain within the GR N terminus markedly increased aggregation and nuclear localization of the expanded polyglutamine proteins. Thus, aggregation and nuclear localization of expanded polyglutamine proteins are regulated cellular processes that can be modulated by a well-characterized transcriptional regulator, the GR. Our findings suggest approaches to study the molecular pathogenesis and selective neuronal degeneration of polyglutamine expansion diseases.

  13. Regulation of expanded polyglutamine protein aggregation and nuclear localization by the glucocorticoid receptor

    PubMed Central

    Diamond, Marc I.; Robinson, Melissa R.; Yamamoto, Keith R.

    2000-01-01

    Spinobulbar muscular atrophy and Huntington's disease are caused by polyglutamine expansion in the androgen receptor and huntingtin, respectively, and their pathogenesis has been associated with abnormal nuclear localization and aggregation of truncated forms of these proteins. Here we show, in diverse cell types, that glucocorticoids can up- or down-modulate aggregation and nuclear localization of expanded polyglutamine polypeptides derived from the androgen receptor and huntingtin through specific regulation of gene expression. Wild-type glucocorticoid receptor (GR), as well as C-terminal deletion derivatives, suppressed the aggregation and nuclear localization of these polypeptides, whereas mutations within the DNA binding domain and N terminus of GR abolished this activity. Surprisingly, deletion of a transcriptional regulatory domain within the GR N terminus markedly increased aggregation and nuclear localization of the expanded polyglutamine proteins. Thus, aggregation and nuclear localization of expanded polyglutamine proteins are regulated cellular processes that can be modulated by a well-characterized transcriptional regulator, the GR. Our findings suggest approaches to study the molecular pathogenesis and selective neuronal degeneration of polyglutamine expansion diseases. PMID:10639135

  14. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  15. An Investigation of Techniques for Achieving Exposed Aggregate Surfaces for Site-Cast Concrete

    DTIC Science & Technology

    1975-06-01

    obtaining concrete structures free of placement defects is the use of cast- in-place exposed aggregate . Objective. The objective of this investigation...7 AD-A012 110 AN INVESTIGATION OF TECHNIQUES FOR ACHIEVING EXPOSED AGGREGATE SURFACES FOR SITE-CAST CONCRETE Daniel J. Naus, et...research laboratory TECHNICAL REPORT M-61 (RevlMd) June 1975 w AN INVESTIGATION OF TECHNIQUES FOR ACHIEVING EXPOSED AGGREGATE SURFACES FOR SITE

  16. Controlling the Surface Organization of Conjugated Donor-Acceptor Polymers by their Aggregation in Solution.

    PubMed

    Li, Mengmeng; An, Cunbin; Marszalek, Tomasz; Baumgarten, Martin; Yan, He; Müllen, Klaus; Pisula, Wojciech

    2016-11-01

    The aggregation of conjugated polymers is found to have a significant influence on the surface organization of deposited films. Difluorobenzothiadiazole-based polymers show a strong pre-aggregation in solution, but the addition of 1,2,4-trichlorobenzene efficiently reduces such aggregates, leading to the transition of the surface organization from edge- to face-on orientation in deposited films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Collective behavior in two-dimensional biological systems: Receptor clustering and beta-sheet aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Chinlin

    We studied two particular biomedical systems which exhibit collective molecular behavior. One is clustering of tumor necrosis factor receptor I (TNFR1), and another is β-sheet folding and aggregation. Receptor clustering has been shown to be a crucial step in many signaling events but its biological meaning has not been adequately addressed. Here, via a simple lattice model, we show how cells use this clustering machinery to enhance sensitivity as well as robustness. On the other hand, intracellular deposition of aggregated protein rich in β-sheet is a prominent cytopathological feature of most neurodegenerative diseases. How this aggregation occurs and how it responds to therapy is not completely understood. Here, we started from a reconstruction of the H-bond potential and carry out a full investigation of β-sheet thermodynamics as well as kinetics. We show that β-sheet aggregation is most likely due to molecular stacking and found that the minimal length of an aggregate mutant polymer corresponds well with the number observed in adult Huntington's disease. We have also shown that molecular agents such as dendrimers might fail at high-dose therapy; instead, a potential therapy strategy is to block β-turn formation. Our predictions can be used for future experimental tests and clinical trials.

  18. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    PubMed

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  19. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces.

    PubMed

    Monier, J-M; Lindow, S E

    2004-01-01

    Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 10(4) cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 10(3) cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.

  20. The balance of concurrent aggregation and deaggregation processes in platelets is linked to differential occupancy of ADP receptor subtypes.

    PubMed

    Maayani, S; Tagliente, T M; Schwarz, T; Martinelli, G; Martinez, R; Shore-Lesserson, L

    2001-03-01

    Deaggregation, the partial reversal of the initial aggregation of platelets is observed following low, but not higher, micromolar ADP concentrations. This study tested the hypothesis that deaggregation results from a balance between concurrent, opposing, aggregation and deaggregation processes which are ADP (adenosine 5'-diphosphate) receptor occupancy-dependent. Aggregation of human platelet-rich plasma (PRP) prepared in r-hirudin was assayed in a 96-well plate reader over 20 min by measurement of the optical density (OD) at 580 nm. Aggregation and the time to reach peak aggregation were directly proportional to ADP receptor occupancy. The magnitude and time course of the response to ADP were comparable to those previously reported with standard aggregometry. The rate constant of platelet deaggregation, as assessed by a four-compartment kinetic model, was inversely proportional to agonist concentration. The ratio of the rate constants of aggregation and deaggregation was receptor occupancy-dependent and directly proportional to aggregation. Consequently, platelet aggregation was proportional, and deaggregation inversely proportional, to ADP receptor occupancy. We propose that the response of PRP to ADP and to 2-MeS-ADP (2-methylthioadenosine-diphosphate), in vitro, consists of at least two active, concurrent processes, aggregation and deaggregation. Incremental occupancy of the P2T ADP receptor subtype attenuates deaggregation and governs the balance between these two processes.

  1. Anomalous Formation of Multilayer Protein Aggregates on the Surface of Nanotubular TiO2

    NASA Astrophysics Data System (ADS)

    Forstater, Jacob; Kleinhammes, Alfred; Wu, Yue

    2012-02-01

    Significant evidence links protein aggregation to the pathology and progression of most protein misfolding diseases. Protein aggregation also poses a significant problem for the safe and cost-effective production of therapeutic proteins. A comprehensive understanding of these problems requires both a detailed understanding native protein-protein interactions as well as an understanding of how protein-material interactions may alter protein aggregation phenomenon. Here we report on the anomalous formation of multilayered protein aggregates of globular proteins on the surface of TiO2 nanotubes. Our findings suggest that minor alterations of the surface hydration properties of the nanotubes may drastically alter protein aggregation phenomenon. We further highlight the role of electrostatic and Van der Waals forces in this aggregation process.

  2. Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    NASA Astrophysics Data System (ADS)

    Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.

    2016-12-01

    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.

  3. Predictive approach for protein aggregation: Correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity.

    PubMed

    Galm, Lara; Amrhein, Sven; Hubbuch, Jürgen

    2016-02-08

    The aggregation of proteins became one of the major challenges in the development of biopharmaceu-ticals since the formation of aggregates can affect drug quality and immunogenicity. However, aggregation mechanisms are highly complex and the investigation requires cost, time, and material intensive experi-mental effort. In the present work, the predictive power of protein characteristics for the phase behavior of three different proteins which are very similar in size and structure was studied. In particular, the surface hydrophobicity, zeta potential, and conformational flexibility of human lysozyme, lysozyme from chicken egg white, and α-lactalbumin at pH 3, 5, 7, and 9 were assessed and examined for correlation with experimental stability studies focusing on protein phase behavior induced by sodium chloride and ammonium sulfate. The molecular dynamics (MD) simulation based study of the conformational flexibility without precipitants was able to identify highly flexible protein regions which could be associated to the less regular secondary structure elements and random coiled and terminal regions in particular. Conformational flex-ibility of the entire protein structure and protein surface hydrophobicity could be correlated to differing aggregation propensities among the studied proteins and could be identified to be applicable for predic-tion of protein phase behavior in aqueous solution without precipitants. For prediction of protein phase behavior and aggregation propensity in aqueous solution with precipitants, protein flexibility was further studied in dependency of salt concentration and species by means of human lysozyme. Even though the results of the salt dependent MD simulations could not be shown to be sufficient for prediction of salt depending phase behavior, this study revealed a more pronounced destabilizing effect of ammonium sulfate in comparison to sodium chloride and thus, was found to be in good agreement with theoretical considerations

  4. Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors.

    PubMed

    Sasaki, Hirotaka; White, Stephen H

    2008-07-01

    The innate immune systems of humans and other animals are activated by lipopolysaccharides (LPS), which are glucosamine-based phospholipids that form the outer leaflet of the outer membranes of Gram-negative bacteria. Activation involves interactions of LPS with the innate immunity-receptor comprised of toll-like receptor 4 in complex with so-called MD-2 protein and accessory proteins, such as CD14 and LPS binding protein. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) Consortium has isolated in large amounts a nearly homogeneous LPS, Kdo(2)-Lipid A, and demonstrated that it activates macrophages via toll-like receptor 4. The active form of LPS, monomer or aggregate, is controversial. We have therefore examined the aggregation behavior and other physical properties of Kdo(2)-Lipid A. Differential scanning calorimetry of Kdo(2)-Lipid A suspensions revealed a gel-to-liquid crystalline phase transition at 36.4 degrees C (T(m)). The nominal critical aggregation concentration, determined by dynamic light scattering, was found to be 41.2 +/- 1.6 nM below the T(m) (25 degrees C), but only 8.1 +/- 0.3 nM above the T(m) (37 degrees C). The specific molecular volume of Kdo(2)-Lipid A, obtained by densitometry measurements was found to be 3159 +/- 71 A(3) at 25 degrees C, from which the number of molecules in each aggregate was estimated to be 5.8 x 10(5). The aggregation behavior of Kdo(2)-Lipid A in the presence of lipoprotein-deficient serum suggests that Re LPS monomers and multimers are the active units for the immune system in the CD14-dependent and -independent pathways, respectively.

  5. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    PubMed Central

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-01-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane

  6. Effect of mixing soil aggregates on the phosphorus concentration in surface waters.

    PubMed

    Maguire, R O; Edwards, A C; Sims, J T; Kleinman, P J A; Sharpley, A N

    2002-01-01

    At any time, the phosphorus (P) concentration in surface waters is determined by a complex interaction of inputs of soluble P and sorption-desorption reactions of P with sediments. This study investigated what factors control P in solution when various soil aggregates were mixed, seen as being analogous to selective soil erosion events, transport, and mixing within river systems. Fifteen soils with widely differing properties were each separated into three aggregate size fractions (2-52 microm, 53-150 microm, and 151-2,000 microm). Resin P, water-soluble phosphorus (WSP), and the phosphorus buffer capacity (PBC = resin P/WSP) were measured for each aggregate size fraction and WSP was also measured for 11 mixes of the aggregate fractions. The smallest aggregates tended to be enriched with resin P relative to the larger aggregates and the whole soils, while the opposite was true for WSP. As the PBC was a function of resin P and WSP, the PBC was greatest in the 2- to 52-microm aggregate size fraction in most cases. When two aggregate size fractions were mixed, the measured WSP was always lower than the predicted WSP (i.e., the average of the WSP in the two individual aggregates), indicating that WSP released by one aggregate fraction could be resorbed by another aggregate fraction. This resorption of P may result in lower than expected solution P concentration in some surface waters. The strength with which an eroded aggregate can release or resorb P to or from solution is in part determined by that aggregate's PBC.

  7. Modification of proteins with cyclodextrins prevents aggregation and surface adsorption and increases thermal stability.

    PubMed

    Prashar, Deepali; Cui, DaWei; Bandyopadhyay, Debjyoti; Luk, Yan-Yeung

    2011-11-01

    This work describes a general approach for preventing protein aggregation and surface adsorption by modifying proteins with β-cyclodextrins (βCD) via an efficient water-driven ligation. As compared to native unmodified proteins, the cyclodextrin-modified proteins (lysozyme and RNase A) exhibit significant reduction in aggregation, surface adsorption and increase in thermal stability. These results reveal a new chemistry for preventing protein aggregation and surface adsorption that is likely of different mechanisms than that by modifying proteins with poly(ethylene glycol).

  8. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands.

    PubMed Central

    Bourguignon, L Y; Singer, S J

    1977-01-01

    The mechanism of capping of cell surface receptors has been examined by a double fluorescence staining procedure that permitted simultaneous observations of the distribution of a surface-bound ligand together with intracellular actin or myosin. At an early stage in the capping of the T-25 antigen or the H2 histocompatibility antigens on mouse splenic T lymphocytes, or of concanavalin A receptors on HeLa cells, when the specific receptors in question were collected into patches that were distributed over the entire cell surface, the intracellular membrane-associated actin or myosin was also accumulated into patches that were located directly under the receptor patches. These and other results have led us to propose a general molecular mechanism for the process of capping, in which actin and myosin are directly involved. It is suggested that membrane-associated actin is directly or indirectly bound to an integral protein or class of proteins, X, in the plasma membranes of eukaryotic cells. When any receptor in the membrane is aggregated by an external multivalent ligand, the aggregate binds effectively to X, whereas unaggregated receptors do not bind to X. The receptor aggregates, linked to actin (and myosin) through X, are then actively collected into a cap by an analogue of the actin--myosin sliding filament mechanism of muscle contraction. Images PMID:337308

  9. Investigation of protein aggregation dynamics with a Bloch surface wave sensor

    NASA Astrophysics Data System (ADS)

    Paeder, Vincent; Santi, Sara; Musi, Valeria; Herzig, Hans Peter

    2011-07-01

    We present a study of the dynamics of protein aggregation using a common path heterodyne Bloch surface wave sensing scheme. We demonstrate the ability to detect, during thermal incubation, the early events linked to the aggregation of proteins related to conformational diseases. Alzheimer's amyloid-β 1-42 is used to demonstrate the efficiency of the method. A model based on elementary interactions is shown to describe accurately the aggregation process. The described sensing scheme is sensitive to the early events of the aggregation process. is hence proposed as a method for the detection of early stages of the evolution of conformational diseases.

  10. Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner

    PubMed Central

    Wisniewski, Meagan L.; Hwang, Jeannie; Bahr, Ben A.

    2011-01-01

    Synaptic pathology in Alzheimer's disease brains is thought to involve soluble Aβ42 peptide. Here, sterile incubation in PBS caused small Aβ42 oligomer formation as well as heterogeneous, 6E10-immunopositive aggregates of 80-100 kDa. High molecular weight aggregates (H-agg) formed in a time-dependent manner over an extended 30-day period. Interestingly, an inverse relationship between dimeric and H-agg formation was more evident when incubations were performed at 37°C as compared to 23°C, thus providing an experimental strategy with which to address synaptic compromise produced by the different Aβ aggregates. H-agg species formed faster and to higher levels at 37°C compared to 23°C, and the two aggregate preparations were evaluated in hippocampal slice cultures, a sensitive system for monitoring synaptic integrity. Applied daily at 80-600 nM for 7 days, the Aβ42 preparations caused dose-dependent and aggregation-dependent declines in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits as well as in presynaptic components. Unlike the synaptic effects, Aβ42 induced only trace cellular degeneration that was CA1 specific. The 37°C preparation was less effective at decreasing synaptic markers, corresponding with its reduced levels of Aβ42 monomers and dimers. Aβ42 dimers decayed significantly faster at 37°C than 23°C, and more rapidly than monomers at either temperature. These findings indicate that Aβ42 can self-aggregate into potent synaptotoxic oligomers as well as into larger aggregates that may serve to neutralize the toxic formations. These results will add to the growing debate concerning whether high molecular weight Aβ complexes that form amyloid plaques are protective through the sequestration of oligomeric species. PMID:21978994

  11. Xylan-mediated aggregation of Lactobacillus brevis and its relationship with the surface properties and mucin-mediated aggregation of the bacteria.

    PubMed

    Saito, Katsuichi; Nakamura, Toshihide; Kobayashi, Isao; Ohnishi-Kameyama, Mayumi; Ichinose, Hitomi; Kimura, Keitarou; Funane, Kazumi

    2014-01-01

    Some Lactobacillus brevis strains were found to aggregate upon the addition of xylan after screening for lactic acid bacteria that interact with plant materials. The S-layer proteins of cell surface varied among the strains. The strains that displayed xylan-mediated aggregation retained its ability even after the removal of S-layer proteins. L. brevis had negative zeta potentials. A correlation between the strength of aggregation and zeta potential was not observed. However, partial removal of S-layer proteins resulted in decreases in the electric potential and aggregation ability of some strains. Therefore, xylan-mediated aggregation of L. brevis was considered to be caused by an electrostatic effect between the cells and xylan. L. brevis also aggregated in the presence of mucin, and the strengths of aggregation among the strains were similar to that induced by xylan. Thus, xylan- and mucin-mediated L. brevis aggregation was supposed to be caused by a similar mechanism.

  12. Biophysical Insights into How Surfaces, Including Lipid Membranes, Modulate Protein Aggregation Related to Neurodegeneration

    PubMed Central

    Burke, Kathleen A.; Yates, Elizabeth A.; Legleiter, Justin

    2013-01-01

    There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes. PMID:23459674

  13. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y12 Receptor and Aggregation

    PubMed Central

    Gündüz, Dursun; Tanislav, Christian; Sedding, Daniel; Parahuleva, Mariana; Santoso, Sentot; Troidl, Christian; Hamm, Christian W.; Aslam, Muhammad

    2017-01-01

    Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention. PMID:28146050

  14. Diffusion limited aggregation. The role of surface diffusion

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan M.; Otálora, Fermín

    1991-11-01

    We present a growth model in which the hitting particles are able to diffuse to more stable growth sites in the perimeter of a cluster growing by diffusion limited aggregation. By tuning the diffusion path Ls, the morphological output - from disordered fractal to perfect single crystals - can be controlled. Instabilities appear when the mean length of the crystal faces Lf are greater than 2 Ls.

  15. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    NASA Astrophysics Data System (ADS)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  16. The Effect of Surface Charge Saturation on Heat-induced Aggregation of Firefly Luciferase.

    PubMed

    Gharanlar, Jamileh; Hosseinkhani, Saman; Sajedi, Reza H; Yaghmaei, Parichehr

    2015-01-01

    We present here the effect of firefly luciferase surface charge saturation and the presence of some additives on its thermal-induced aggregation. Three mutants of firefly luciferase prepared by introduction of surface Arg residues named as 2R, 3R and 5R have two, three and five additional arginine residues substituted at their surface compared to native luciferase; respectively. Turbidimetric study of heat-induced aggregation indicates that all three mutants were reproducibly aggregated at higher rates relative to wild type in spite of their higher thermostability. Among them, 2R had most evaluated propensity to heat-induced aggregation. Therefore, the hydrophilization followed by appearing of more substituted arginine residues with positive charge on the firefly luciferase surface was not reduced its thermal aggregation. Nevertheless, at the same condition in the presence of charged amino acids, e.g. Arg, Lys and Glu, as well as a hydrophobic amino acid, e.g. Val, the heat-induced aggregation of wild type and mutants of firefly luciferases was markedly decelerated than those in the absence of additives. On the basis of obtained results it seems, relinquishment of variety in charge of amino acid side chains, they via local interactions with proteins cause to decrease rate and extent of their thermal aggregation.

  17. Effects of ocean acidification on the ballast of surface aggregates sinking through the twilight zone.

    PubMed

    de Jesus Mendes, Pedro A; Thomsen, Laurenz

    2012-01-01

    The dissolution of CaCO(3) is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO(2) conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.

  18. From aggregative adsorption to surface depletion: Aqueous systems of CnEm amphiphiles at hydrophilic surfaces

    DOE PAGES

    Rother, Gernot; Müter, Dirk; Bock, Henry; ...

    2017-03-27

    Adsorption of a short-chain nonionic amphiphile (C6E3) at the surface of mesoporous silica glass (CPG-10) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C6E3 + water system show that no adsorption occurs up to the critical micelle concentration (cmc), at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes negative, which corresponds to preferential adsorption of water rather than amphiphilemore » at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics (DPD) simulations were performed to reveal the structural origin of this transition from aggregative adsorption to surface depletion. Finally, the simulations indicate that this transition can be attributed to the repulsive interaction between head groups, causing amphiphilic depletion in the region around the corona of the surface micelles.« less

  19. Effect of surface properties of elastomer colloids on their coalescence and aggregation kinetics.

    PubMed

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2009-10-20

    We study the aggregation kinetics of two elastomer colloids with similar bulk polymer properties but with different surface charge groups in order to understand the role of the surface properties in particle coalescence during aggregation. It is confirmed that clusters of the elastomer particles stabilized purely by ionic surfactants coalesce in both reaction-limited and diffusion-limited aggregation (RLCA and DLCA) regimes and that the coalescence is independent of the coagulant type. On the other hand, clusters formed by elastomer particles stabilized by charged polymer end groups, which are fixed on the particle surface, are fractal objects with a fractal dimension of 1.7 in the DLCA and 2.1 in the RLCA regime. This indicates insignificant cluster coalescence during aggregation, most likely due to a hindrance effect of the fixed charges.

  20. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  1. Linking aggregation of Aspergillus niger spores to surface electrostatics: a theoretical approach.

    PubMed

    Wargenau, Andreas; Kampen, Ingo; Kwade, Arno

    2013-12-01

    The effect of medium pH on conidial aggregation during submerged cultivation of Aspergillus niger is considered to originate from the electrostatic surface properties of the spores. As previously shown, these properties are greatly influenced by the presence of a melanin-containing surface coating covering the outer spore wall layer. The present study was designed to elucidate the impact of such a coating on the spores' surface potential and their electrostatic repulsion under acidic conditions. A Poisson-Boltzmann model was proposed and potential profiles across the surface coating of noninteracting and interacting spores were calculated. The surface potentials thus obtained were in line with the observed pH dependence of the zeta potential. This dependence was consistent with the outcome of aggregation experiments. Apparently contradictory results regarding the zeta potential and the aggregation behavior of the spores were obtained when the ionic strength was varied. However, both of these observations could be explained by the model.

  2. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    NASA Astrophysics Data System (ADS)

    Honda, K.; Yamaguchi, H.; Kobayashi, M.; Morita, M.; Takahara, A.

    2008-03-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-Cy, where y is fluoromethylene number in Rf group] thin films were systematically investigated. Spin-coated PFA-Cy thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-Cy with short side chain (y<=6) and increased above y>=8. GIXD revealed that fluoroalkyl side chain of PFA-Cy with y>=8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-Cy can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity.

  3. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Aβ42

    PubMed Central

    Persaud-Sawin, Dixie-Ann; Banach, Lynna; Harry, G. Jean

    2009-01-01

    Microglial phagocytosis contributes to the maintenance of brain homeostasis. Mechanisms involved however, remain unclear. Using Aβ42 solely as a stimulant, we provide novel insight into regulation of microglial phagocytosis by rafts. We demonstrate the existence of an Aβ42 threshold level of 250pg/ml, above which microglial phagocytic function is impaired. Low levels of Aβ42 facilitate fluorescent bead uptake, whereas phagocytosis is inhibited when Aβ42 accumulates. We also show that region-specific raft clustering occurs prior to microglial phagocytosis. Low Aβ42 levels stimulated this type of raft aggregation, but high Aβ42 levels inhibited it. Additionally, treatment with high Aβ42 concentrations caused a redistribution of the raft structural protein flotillin1 from low to higher density fractions along a sucrose gradient. This suggests a loss of raft structural integrity. Certain non-steroidal anti-inflammatory drugs, e.g. the COX-2-specific NSAID, celecoxib, raise Aβ42 levels. We demonstrated that prolonged celecoxib exposure can disrupt rafts in a manner similar to that seen in an elevated Aβ42 environment: abnormal raft aggregation and Flot1 distribution. This resulted in aberrant receptor recruitment to rafts and impaired receptor-mediated phagocytosis by microglial cells. Specifically, recruitment of the scavenger receptor CD36 to rafts during active phagocytosis was affected. Thus, we propose that maintaining raft integrity is crucial to determining microglial phagocytic outcomes and disease progression. PMID:18756527

  4. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells

    PubMed Central

    1984-01-01

    The synaptic portion of a muscle fiber's basal lamina sheath has molecules tightly bound to it that cause aggregation of acetylcholine receptors (AChRs) on regenerating myofibers. Since basal lamina and other extracellular matrix constituents are insoluble in isotonic saline and detergent solutions, insoluble detergent-extracted fractions of tissues receiving cholinergic input may provide an enriched source of the AChR-aggregating molecules for detailed characterization. Here we demonstrate that such an insoluble fraction from Torpedo electric organ, a tissue with a high concentration of cholinergic synapses, causes AChRs on cultured chick muscle cells to aggregate. We have partially characterized the insoluble fraction, examined the response of muscle cells to it, and devised ways of extracting the active components with a view toward purifying them and learning whether they are similar to those in the basal lamina at the neuromuscular junction. The insoluble fraction from the electric organ was rich in extracellular matrix constituents; it contained structures resembling basal lamina sheaths and had a high density of collagen fibrils. It caused a 3- to 20-fold increase in the number of AChR clusters on cultured myotubes without significantly affecting the number or size of the myotubes. The increase was first seen 2-4 h after the fraction was added to cultures and it was maximal by 24 h. The AChR-aggregating effect was dose dependent and was due, at least in part, to lateral migration of AChRs present in the muscle cell plasma membrane at the time the fraction was applied. Activity was destroyed by heat and by trypsin. The active component(s) was extracted from the insoluble fraction with high ionic strength or pH 5.5 buffers. The extracts increased the number of AChR clusters on cultured myotubes without affecting the number or degradation rate of surface AChRs. Antiserum against the solubilized material blocked its effect on AChR distribution and bound to the

  5. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  6. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.

    PubMed

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus; Allesen-Holm, Marie; van Gennip, Maria; Christensen, Louise D; Jensen, Peter Østrup; Nielsen, Anne K; Parsek, Matt; Wozniak, Dan; Molin, Søren; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael; Bjarnsholt, Thomas

    2011-01-01

    For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial

  7. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

    PubMed Central

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus; Allesen-Holm, Marie; van Gennip, Maria; Christensen, Louise D.; Jensen, Peter Østrup; Nielsen, Anne K.; Parsek, Matt; Wozniak, Dan; Molin, Søren; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael; Bjarnsholt, Thomas

    2011-01-01

    For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial

  8. Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation

    PubMed Central

    Danov, Krassimir D.; Petkov, Plamen V.

    2016-01-01

    Non-densely packed interfacial monolayers from charged micrometre-sized colloid particles find applications for producing micropatterned surfaces. The soft electrostatic repulsion between the particles in a monolayer on an air/water (or oil/water) interface is mediated by the non-polar fluid, where Debye screening is absent and the distances between the particles are considerably greater than their diameters. Surface pressure versus area isotherms were measured at the air/water interface. The experiments show that asymptotically the surface pressure is inversely proportional to the third power of the interparticle distance. A theoretical model is developed that predicts not only the aforementioned asymptotic law but also the whole surface pressure versus area dependence. An increase in the surface pressure upon aggregation of charged particles in the interfacial monolayers is experimentally established. This effect is explained by the developed theoretical model, which predicts that the surface pressure should linearly increase with the square root of the particle mean aggregation number. The effect of added electrolyte on the aggregation is also investigated. The data lead to the conclusion that ‘limited aggregation’ exists in the monolayers of charged particles. In brief, the stronger electrostatic repulsion between the bigger aggregates leads to a higher barrier to their coalescence that, in turn, prevents any further aggregation, i.e. negative feedback is present. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298437

  9. Cell surface alterations during blood-storage characterized by artificial aggregation of washed red blood cells.

    PubMed

    Hessel, E; Lerche, D

    1985-01-01

    Aggregation measurement of washed human erythrocytes (RBC) were carried out in a NaCl-PBS solution under laminar shear conditions. Artificial aggregation of fresh and stored erythrocytes was caused by decreased pH and reduced ionic strength and characterized by collision efficiency alpha. Generally, the collision efficiency alpha of stored erythrocytes rises with the increased storage time. Such an aggregation technique might be useful to detect and quantify changes of the membrane and/or the surface structure due to aging and/or storage.

  10. Redistribution of the fibrinogen receptor of human platelets after surface activation

    PubMed Central

    1984-01-01

    We investigated the whole cell distribution of the platelet membrane receptor for fibrinogen in surface-activated human platelets. Fibrinogen-labeled colloidal gold was used in conjunction with platelet whole mount preparations to visualize directly the fibrinogen receptor. Unstimulated platelets fail to bind fibrinogen, and binding was minimal in the stages of activation immediately following adhesion. The amount of fibrinogen bound per platelet increased rapidly during the shape changes associated with surface activation until 7,600 +/- 500 labels were present at saturation. Maximal binding of fibrinogen was followed by receptor redistribution. During the early stages of spreading, fibrinogen labels were uniformly distributed over the entire platelet surface, including pseudopodia, but the labels become progressively centralized as the spreading process continued. In well spread platelets, labels were found over the central regions, whereas peripheral areas were cleared of receptors. Receptor redistribution during spreading was accompanied by cytoskeletal reorganization such that a direct correlation was seen between the development of specific ultrastructural zones and the distribution of surface receptor sites suggesting a link between the surface receptors and the cytoskeleton. The association of fibrinogen receptors with contractile elements of the cytoskeleton, which permits coordinated receptor centralization, is important to the understanding of the role of fibrinogen in normal platelet aggregation and clot retraction. PMID:6088559

  11. Effects of Aggregate Gradation on Drying Micro-Surfacing added by Waste Rubber Powders

    NASA Astrophysics Data System (ADS)

    Ye, Yali; Guo, Jinke; Hou, Fengjian

    2017-06-01

    In order to research the effects of aggregate gradation on micro-surfacing, the control variable method was used, the effects of different aggregate gradation on drying micro-surfacing added by waste rubber powders were studied, through a series of laboratory testing, indexes such as mixing time, cohesion torque, wet track abrasion value, load wheel value were studied. The results showed that intermediate gradation with 10% and 11% of the bitumen-aggregate ratio had the optimal performance. The mixing time and cohesion torque could all meet specification requirements; its anti-wear value and the adhering sand amount were smaller than conventional. So the micro-surfacing layer should form the internal compact, but also the formation of rough surface.

  12. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  13. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau

    PubMed Central

    Pavlova, Anna; Cheng, Chi-Yuan; Kinnebrew, Maia; Lew, John; Dahlquist, Frederick W.; Han, Songi

    2016-01-01

    Protein aggregation plays a critical role in the pathogenesis of neurodegenerative diseases, and the mechanism of its progression is poorly understood. Here, we examine the structural and dynamic characteristics of transiently evolving protein aggregates under ambient conditions by directly probing protein surface water diffusivity, local protein segment dynamics, and interprotein packing as a function of aggregation time, along the third repeat domain and C terminus of Δtau187 spanning residues 255–441 of the longest isoform of human tau. These measurements were achieved with a set of highly sensitive magnetic resonance tools that rely on site-specific electron spin labeling of Δtau187. Within minutes of initiated aggregation, the majority of Δtau187 that is initially homogeneously hydrated undergoes structural transformations to form partially structured aggregation intermediates. This is reflected in the dispersion of surface water dynamics that is distinct around the third repeat domain, found to be embedded in an intertau interface, from that of the solvent-exposed C terminus. Over the course of hours and in a rate-limiting process, a majority of these aggregation intermediates proceed to convert into stable β-sheet structured species and maintain their stacking order without exchanging their subunits. The population of β-sheet structured species is >5% within 5 min of aggregation and gradually grows to 50–70% within the early stages of fibril formation, while they mostly anneal block-wisely to form elongated fibrils. Our findings suggest that the formation of dynamic aggregation intermediates constitutes a major event occurring in the earliest stages of tau aggregation that precedes, and likely facilitates, fibril formation and growth. PMID:26712030

  14. An Amyloidogenic Sequence at the N-Terminus of the Androgen Receptor Impacts Polyglutamine Aggregation

    PubMed Central

    Oppong, Emmanuel; Stier, Gunter; Gaal, Miriam; Seeger, Rebecca; Stoeck, Melanie; Delsuc, Marc-André; Cato, Andrew C. B.; Kieffer, Bruno

    2017-01-01

    The human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property. AR-NTD also contains a conserved KELCKAVSVSM sequence motif that displays an intrinsic property to form amyloid fibrils under mild oxidative conditions. As peptide sequences with intrinsic oligomerization properties are reported to have an impact on the aggregation of polyQ tracts, we determined the effect of the KELCKAVSVSM on the polyQ stretch in the context of the AR-NTD using atomic force microscopy (AFM). Here, we present evidence for a crosstalk between the amyloidogenic properties of the KELCKAVSVSM motif and the polyQ stretch at the AR-NTD. PMID:28629183

  15. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation [corrected and republished article originally printed in J Cell Biol 1988 May;106(5):1723-34

    PubMed Central

    1988-01-01

    Using digitally analyzed fluorescence videomicroscopy, we have examined the behavior of acetylcholine receptors and concanavalin A binding sites in response to externally applied electric fields. The distributions of these molecules on cultured Xenopus myoballs were used to test a simple model which assumes that electrophoresis and diffusion are the only important processes involved. The model describes the distribution of concanavalin A sites quite well over a fourfold range of electric field strengths; the results suggest an average diffusion constant of approximately 2.3 X 10(-9) cm2/s. At higher electric field strengths, the asymmetry seen is substantially less than that predicted by the model. Acetylcholine receptors subjected to electric fields show distributions substantially different from those predicted on the basis of simple electrophoresis and diffusion, and evidence a marked tendency to aggregate. Our results suggest that this aggregation is due to lateral migration of surface acetylcholine receptors, and is dependent on surface interactions, rather than the rearrangement of microfilaments or microtubules. The data are consistent with a diffusion-trap mechanism of receptor aggregation, and suggest that the event triggering receptor localization is a local increase in the concentration of acetylcholine receptors, or the electrophoretic concentration of some other molecular species. These observations suggest that, whatever mechanism(s) trigger initial clustering events in vivo, the accumulation of acetylcholine receptors can be substantially enhanced by passive, diffusion-mediated aggregation. PMID:3170634

  16. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  17. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    SciTech Connect

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.; Lokitz, Bradley S; Doktycz, Mitchel John; Retterer, Scott T

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates captured was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  18. Inhibition of glutamate receptors reduces the homocysteine-induced whole blood platelet aggregation but does not affect superoxide anion generation or platelet membrane fluidization.

    PubMed

    Karolczak, Kamil; Pieniazek, Anna; Watala, Cezary

    2017-01-01

    Homocysteine (Hcy) is an excitotoxic amino acid. It is potentially possible to prevent Hcy-induced toxicity, including haemostatic impairments, by antagonizing glutaminergic receptors. Using impedance aggregometry with arachidonate and collagen as platelet agonists, we tested whether the blockade of platelet NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors with their inhibitors: MK-801 (dizocilpine hydrogen maleate, [5R,10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), CNQX (7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile) and UBP-302 (2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin 1(2H)-yl]methyl}benzoic acid) may hamper Hcy-dependent platelet aggregation. All the tested compounds significantly inhibited Hcy-augmented aggregation of blood platelets stimulated either with arachidonate or collagen. Hcy stimulated the generation of superoxide anion in whole blood samples in a concentration-dependent manner; however, this process appeared as independent on ionotropic glutamate receptors, as well as on NADPH oxidase and protein kinase C, and was not apparently associated with the extent of either arachidonate- or collagen-dependent platelet aggregation. Moreover, Hcy acted as a significant fluidizer of surface (more hydrophilic) and inner (more hydrophobic) regions of platelet membrane lipid bilayer, when used at the concentration range from 10 to 50 µmol/l. However, this effect was independent on the Hcy action through glutamate ionotropic receptors, since there was no effects of MK-801, CNQX or UBP-302 on Hcy-mediated membrane fluidization. In conclusion, Hcy-induced changes in whole blood platelet aggregation are mediated through the ionotopic excitotoxic receptors, although the detailed mechanisms underlying such interactions remain to be elucidated.

  19. The study of pervious concrete mix proportion by the method of specific surface area of aggregate

    NASA Astrophysics Data System (ADS)

    Xiao, Liguang; Jiang, Dawei

    2017-09-01

    The purpose of this paper is to solve the shortcoming of the mix proportion of pervious concrete. So we have done the research on the measurement of the specific surface area of aggregate, and the research on the volume change of cement after hydration, and the research on the best water-binder ratio and thickness of gelled material package. The experimental results show that the equivalent method is more accurate for measuring the specific surface area of aggregate. It can better reflect the specific surface area of aggregate. Moreover, the calculation method of the mix proportion of the cementing material can improve the utilization ratio of material and the quality of pervious concrete.

  20. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    NASA Astrophysics Data System (ADS)

    Arjmand Sajjadi, S.; Mahmoodabadi, M.

    2014-12-01

    Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface sealing. To address this issue, 60 experiments were carried out in a 35 cm x 30 cm x 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax 2 mm) and 4.75 mm (Dmax 4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h-1) on several slopes (0.5, 2.5, 5, 10, and 20%) each at three replications. The result showed that the most fraction percentages in soils Dmax 2 mm and Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  1. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    NASA Astrophysics Data System (ADS)

    Arjmand Sajjadi, S.; Mahmoodabadi, M.

    2015-03-01

    Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface seal. To address this issue, 60 experiments were carried out in a 35 × 30 × 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax2 mm) and 4.75 mm (Dmax4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h-1) on several slopes (0.5, 2.5, 5, 10 and 20%) each at three replicates. The result showed that for all slope gradients and rain intensities, the most fraction percentages in soils Dmax2 and Dmax4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. However, under steady state conditions, no significant relationship was found between slope and IR. The findings of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  2. Multiprotein Interactions during Surface Adsorption: a Molecular Dynamics Study of Lysozyme Aggregation at a Charged Solid Surface

    PubMed Central

    2011-01-01

    Multiprotein adsorption of hen egg white lysozyme at a model charged ionic surface is studied using fully atomistic molecular dynamics simulations. Simulations with two, three, and five proteins, in various orientations with respect the surface, are performed over a 100 ns time scale. Mutated proteins with point mutations at the major (Arg128 and Arg125) and minor (Arg68) surface adsorption sites are also studied. The 100 ns time scale used is sufficient to observe protein translations, rotations, adsorption, and aggregation. Two competing processes of particular interest are observed, namely surface adsorption and protein–protein aggregation. At low protein concentration, the proteins first adsorb in isolation and can then reorientate on the surface to aggregate. At high concentration, the proteins aggregate in the solution and then adsorb in nonspecific ways. This work demonstrates the role of protein concentration in adsorption, indicates the residues involved in both types of interaction (protein–protein and protein–surface), and gives an insight into processes to be considered in the development of new functionalized material systems. PMID:21671567

  3. Multiprotein interactions during surface adsorption: a molecular dynamics study of lysozyme aggregation at a charged solid surface.

    PubMed

    Kubiak-Ossowska, Karina; Mulheran, Paul A

    2011-07-21

    Multiprotein adsorption of hen egg white lysozyme at a model charged ionic surface is studied using fully atomistic molecular dynamics simulations. Simulations with two, three, and five proteins, in various orientations with respect the surface, are performed over a 100 ns time scale. Mutated proteins with point mutations at the major (Arg128 and Arg125) and minor (Arg68) surface adsorption sites are also studied. The 100 ns time scale used is sufficient to observe protein translations, rotations, adsorption, and aggregation. Two competing processes of particular interest are observed, namely surface adsorption and protein-protein aggregation. At low protein concentration, the proteins first adsorb in isolation and can then reorientate on the surface to aggregate. At high concentration, the proteins aggregate in the solution and then adsorb in nonspecific ways. This work demonstrates the role of protein concentration in adsorption, indicates the residues involved in both types of interaction (protein-protein and protein-surface), and gives an insight into processes to be considered in the development of new functionalized material systems.

  4. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  5. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  6. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor.

    PubMed

    Dinic, Jelena; Riehl, Astrid; Adler, Jeremy; Parmryd, Ingela

    2015-05-08

    Two related models for T cell signalling initiation suggest either that T cell receptor (TCR) engagement leads to its recruitment to ordered membrane domains, often referred to as lipid rafts, where signalling molecules are enriched or that ordered TCR-containing membrane nanodomains coalesce upon TCR engagement. That ordered domains form upon TCR engagement, as they do upon lipid raft marker patching, has not been considered. The target of this study was to differentiate between those three options. Plasma membrane order was followed in live T cells at 37 °C using laurdan to report on lipid packing. Patching of the TCR that elicits a signalling response resulted in aggregation, not formation, of ordered plasma membrane domains in both Jurkat and primary T cells. The TCR colocalised with actin filaments at the plasma membrane in unstimulated Jurkat T cells, consistent with it being localised to ordered membrane domains. The colocalisation was most prominent in cells in G1 phase when the cells are ready to commit to proliferation. At other cell cycle phases the TCR was mainly found at perinuclear membranes. Our study suggests that the TCR resides in ordered plasma membrane domains that are linked to actin filaments and aggregate upon TCR engagement.

  7. Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation

    PubMed Central

    Fabre, Jean-Etienne; Nguyen, MyTrang; Athirakul, Krairek; Coggins, Kenneth; McNeish, John D.; Austin, Sandra; Parise, Leslie K.; FitzGerald, Garret A.; Coffman, Thomas M.; Koller, Beverly H.

    2001-01-01

    The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1–EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses. PMID:11238561

  8. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    SciTech Connect

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing; Li, Yaling; Tao, Jinhui; Jin, Biao; Tang, Ruikang

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurements of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.

  9. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Sztainbuch, Isaac W.

    2006-09-01

    We have identified empirically a relationship between the surface morphology of small individual aggregates (<100 Au nanoparticles) and surface-enhanced Raman scattering (SERS) enhancement. We have found that multilayer aggregates generated greater SERS enhancement than aggregates limited to two-dimensional (2D) or one-dimensional structures, independent of the number of particles. SERS intensity was measured using the 730cm-1 vibrational mode of the adsorbed adenine molecule on 75nm Au particles, at an excitation wavelength of 632.8nm. To gain insight into these relationships and its mechanism, we developed a qualitative model that considers the collections of interacting Au nanoparticles of an individual aggregate as a continuous single entity that retains its salient features. We found the dimensions of the modeled surface features to be comparable with those found in rough metal surfaces, known to sustain surface plasmon resonance and generate strong SERS enhancement. Among the aggregates that we have characterized, a three 75nm nanoparticle system was the smallest to generate strong SERS enhancement. However, we also identified single individual Au nanoparticles as SERS active at the same wavelength, but with a diameter twice in size. For example, we observed a symmetric SERS-active particle of 180nm in diameter. Such individual nanoparticles generated SERS enhancement on the same order of magnitude as the small monolayer Au aggregates, an intensity value significantly stronger than predicted in recent theoretical studies. We also found that an aspect of our model that relates the dimensions of its features to SERS enhancement is also applicable to single individual Au particles. We conclude that the size of the nanoparticle itself, or the size of a protrusion of an irregularly shaped single Au particle, will contribute to SERS enhancement provided that its dimensions satisfy the conditions for plasmon resonance. In addition, by considering the ratio of the

  10. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  11. Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia.

    PubMed

    Grimm, L H; Kelly, S; Völkerding, I I; Krull, R; Hempel, D C

    2005-12-30

    Productivity of fungal cultures is closely linked with their morphologic development. Morphogenesis of coagulating filamentous fungi, like Aspergillus niger, starts with aggregation of conidia, also denominated as spores. Several parameters are presumed to control this event, but little is known about their mode of action. Rational process optimization requires models that mirror the underlying reaction mechanisms. An approach in this regard is suggested and supported by experimental data. Aggregation kinetics was examined for the first 15 h of cultivation under different cultivation conditions. Mechanical stress was considered as well as pH-dependent surface interaction. Deliberations were based on a two-step aggregation mechanism. The first aggregation step is only affected by the pH-value, not by the fluid dynamic conditions in the bioreactor. The second aggregation step, in contrast, depends on the pH-value as well as on agitation and aeration induced power input. For the given experimental set-up, agitation had much more influence than aeration. In addition, hyphal growth rate was determined to be the driving force for the second aggregation step.

  12. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  13. Deposition, diffusion, and aggregation of atoms on surfaces: A model for nanostructure growth

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo; Barabási, Albert-László; Larralde, Hernán; Havlin, Shlomo; Stanley, H. E.

    1994-11-01

    We propose a model that describes the diffusion-controlled aggregation exhibited by particles as they are deposited on a surface. The model, which incorporates deposition, particle and cluster diffusion, and aggregation, is inspired by recent thin-film-deposition experiments. We find that as randomly deposited particles diffuse and aggregate they configure themselves into a wide variety of fractal structures characterized by a length scale L1. We introduce an exponent γ that tunes the way the diffusion coefficient changes with cluster size: if the values of γ are very large, only single particles can move, if they are smaller, all clusters can move. The introduction of cluster diffusion dramatically affects the dynamics of film growth. We compare our results with those of several recent experiments on two-dimensional nanostructures formed by diffusion-controlled aggregation on surfaces, and we propose several experimental tests of the model. We also investigate the spanning properties of this model and find another characteristic length scale L2 (L2>>L1) above which the system behaves as a bond percolation network of the fractal structures each of length scale L1. Below L2, the system shows similarities with diffusion-limited aggregation. We find that L1 scales as the ratio of the diffusion constant over the particle flux to the power 1/4, whereas L2 scales with another exponent close to 0.9.

  14. Aggregation of Lipid Rafts Accompanies Signaling via the T Cell Antigen Receptor

    PubMed Central

    Janes, Peter W.; Ley, Steven C.; Magee, Anthony I.

    1999-01-01

    The role of lipid rafts in T cell antigen receptor (TCR) signaling was investigated using fluorescence microscopy. Lipid rafts labeled with cholera toxin B subunit (CT-B) and cross-linked into patches displayed characteristics of rafts isolated biochemically, including detergent resistance and colocalization with raft-associated proteins. LCK, LAT, and the TCR all colocalized with lipid patches, although TCR association was sensitive to nonionic detergent. Aggregation of the TCR by anti-CD3 mAb cross-linking also caused coaggregation of raft-associated proteins. However, the protein tyrosine phosphatase CD45 did not colocalize to either CT-B or CD3 patches. Cross-linking of either CD3 or CT-B strongly induced tyrosine phosphorylation and recruitment of a ZAP-70(SH2)2–green fluorescent protein (GFP) fusion protein to the lipid patches. Also, CT-B patching induced signaling events analagous to TCR stimulation, with the same dependence on expression of key TCR signaling molecules. Targeting of LCK to rafts was necessary for these events, as a nonraft- associated transmembrane LCK chimera, which did not colocalize with TCR patches, could not reconstitute CT-B–induced signaling. Thus, our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of LCK, LAT, and the TCR whilst excluding CD45, thereby triggering protein tyrosine phosphorylation. PMID:10525547

  15. Surfaces modulate beta-amyloid peptide aggregation associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yates, Elizabeth Anne

    A hallmark of Alzheimer's disease, a late onset neurodegenerative disease, is the presence of neuritic amyloid plaques deposited within the brain composed of beta-amyloid (Abeta) peptide aggregates. Abeta can aggregate into a variety of polymorphic aggregate structures under different chemical environments, specifically affected by the presence of differing surfaces. There are several point mutations clustered around the central hydrophobic core of Abeta (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy to typical Alzheimer's disease pathology with both plaques and tangles. To determine how these different point mutations, which modify both peptide charge and hydrophobic character, altered Abeta aggregation and morphology under free solution conditions, at an anionic surface/liquid interface and in the presence of supported lipid bilayers, atomic force microscopy was used. Additionally, the non-native conformation of Abeta leads to the formation of nanoscale, toxic aggregates which have been shown to strongly interact with supported lipid bilayers, which may represent a key step in potential toxic mechanisms. Understanding how specific regions of Abeta regulate its aggregation in the absence and presence of surfaces can provide insight into the fundamental interaction of Abeta with cellular surfaces. Specific fragments of Abeta (Abeta1-11, Abeta 1-28, Abeta10-26, Abeta12-24, Abeta 16-22, Abeta22-35, and Abeta1-40), represent a variety of chemically unique regions along Abeta, i.e., the extracellular domain, the central hydrophobic core, and transmembrane domain. Using various scanning probe microscopic techniques, the interaction of these Abeta sequences with lipid membranes was shown to alter aggregate morphology and induce mechanical changes of lipid bilayers compared to aggregates formed under free solution

  16. Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction

    PubMed Central

    1989-01-01

    In the mouse, considerable evidence indicates that initial sperm binding to the zona pellucida (ZP) is mediated by ZP3. In addition, this same glycoprotein is also responsible for inducing the acrosome reaction (AR). Whereas the O-linked oligosaccharides of ZP3 appear to mediate sperm-ZP binding, the portion of ZP3 bearing AR activity has not been defined. To try to understand the bifunctional role of ZP3 (binding and AR inducing activities), we have examined the hypothesis that ZP3 aggregates sperm receptor molecules. By analogy with findings in a variety of other extracellular signal transducing systems, including receptors for growth factors and insulin, this aggregation event could initiate the cascade resulting in the AR. To test this hypothesis, we have generated monospecific polyclonal antibodies against ZP2 and against ZP3, and examined the effects of these probes on capacitated sperm incubated in the absence or presence of various ZP protein preparations. For some experiments, we have used proteolytic fragments of ZP3, a preparation known to retain specific binding, but not AR-inducing, activity. We show here that capacitated mouse sperm, incubated with ZP glycopeptides, displayed ARs when incubated subsequently with anti-ZP3 IgG; ARs did not occur when parallel sperm samples were incubated with anti-ZP2 IgG or with anti-ZP3 Fab fragments. When capacitated sperm were treated successively, with (a) ZP3 glycopeptides, (b) anti-ZP3 Fab fragments, and (c) goat anti-rabbit IgG, ARs occurred in the majority of sperm. An alternative approach to examine this hypothesis used ZP proteins obtained from tubal eggs treated previously with bioactive phorbol diester (12-O-tetradecanoyl phorbol-13-acetate [TPA]). This preparation arrests capacitated sperm in an intermediate state of the AR. We demonstrate here that these sperm can be induced to undergo a complete AR by subsequent treatment with anti-ZP3 IgG. Together, these findings are consistent with the hypothesis

  17. Reduced expression of platelet surface glycoprotein receptor IIb/IIIa at hyperthermic temperatures.

    PubMed

    Pasha, R; Benavides, M; Kottke-Marchant, K; Harasaki, H

    1995-09-01

    Hyperthermic temperatures exist from the heat dissipation of the implantable energy source of an artificial heart. This procedure as well as therapies for cancer and thermal injuries pose a new medical problem. Among many reported effects of heat on biologic systems, platelet functions such as maximal aggregation and adhesion are known to be reduced. Using flow cytometry, we have studied platelet dysfunction at elevated temperatures and have gained a mechanistic comprehension of the loss of platelet function. Platelet rich plasma was incubated at differing temperatures for 1 hour. Immediately after, the platelets were stained using mAb against glycoprotein IIb/IIIa (GPIIb-IIIa) (CD41a) and other platelet surface glycoproteins (GP) involved in aggregation and adhesion. Relative fluorescence intensity was measured using single-labeled, laser flow cytometry to determine changes in GP surface expression. In addition, scanning electron microscopy was used to evaluate morphologic changes. Hyperthermic temperatures between 40 and 44 degrees C significantly lowered the mAb cell surface binding in vitro of GP that participate in aggregation and adhesion. The most dramatic temperature-dependent loss of mAb binding was demonstrated by anti-GPIIb-IIIa, the mAb against the fibrinogen receptor. mAb binding to this receptor at 44 degrees C was decreased to 6.2% of a base-line fluorescence intensity of 654 (arbitrary units). The ADP-induced aggregation of platelets incubated at the same temperature also decreased to 2.1% of maximum aggregation. Other mAb, such as those against the von Willebrand factor receptor (GPIb) (CD42b), the thrombospondin receptor (GPIV) (CD36), and GPIIIa (CD61), also showed statistically significant reduction of mAb binding but to a lesser degree. Finally, scanning electron microscopy as well as side-scatter density plots from flow cytometry revealed that platelets became more spherical after incubation at 44 degrees C. The significant reduction in m

  18. Membrane Remodeling by Surface-Bound Protein Aggregates: Insights from Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    2015-01-01

    The mechanism of curvature generation in membranes has been studied for decades due to its important role in many cellular functions. However, it is not clear if, or how, aggregates of lipid-anchored proteins might affect the geometry and elastic property of membranes. As an initial step toward addressing this issue, we performed structural, geometrical, and stress field analyses of coarse-grained molecular dynamics trajectories of a domain-forming bilayer in which an aggregate of lipidated proteins was asymmetrically bound. The results suggest a general mechanism whereby asymmetric incorporation of lipid-modified protein aggregates curve multidomain membranes primarily by expanding the surface area of the monolayer in which the lipid anchor is inserted. PMID:24803997

  19. Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments.

    PubMed

    Hua, Zulin; Tang, Zhiqiang; Bai, Xue; Zhang, Jianan; Yu, Lu; Cheng, Haomiao

    2015-10-01

    A series of experiments were performed to simulate the environmental behavior and fate of graphene oxide nanoparticles (GONPs) involved in the surface environment relating to divalent cations, natural organic matter (NOM), and hydraulics. The electrokinetic properties and hydrodynamic diameters of GONPs was systematically determined to characterize GONPs stability and the results indicated Ca(2+) (Mg(2+)) significantly destabilized GONPs with high aggregate strength factors (SF) and fractal dimension (FD), whereas NOM decreased aggregate SF with lower FD and improved GONPs stability primarily because of increasing steric repulsion and electrostatic repulsion. Furthermore, the GONPs resuspension from the sand bed into overlying water with shear flow confirmed that the release would be restricted by Ca(2+) (Mg(2+)), however, enhanced by NOM. The interaction energy based on Derjaguin-Landau-Verwey-Overbeek theory verifies the aggregation and resuspension well. Overall, these experiments provide an innovative look and more details to study the behavior and fate of GONPs.

  20. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    NASA Astrophysics Data System (ADS)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  1. Water aggregation and dissociation on the ZnO(101[combining macron]0) surface.

    PubMed

    Kenmoe, Stephane; Biedermann, P Ulrich

    2017-01-04

    A comprehensive search for stable structures in the low coverage regime (0-1 ML) and at 2 ML and 3 ML using DFT revealed several new aggregation states of water on the non-polar ZnO(101[combining macron]0) surface. Ladder-like structures consisting of half-dissociated dimers, arranged side-by-side along the polar axis, constitute the most stable aggregate at low coverages (≤1 ML) with a binding energy exceeding that of the monolayer. At coverages beyond the monolayer - a regime that has hardly been studied previously - a novel type of structure with a continuous honeycomb-like 2D network of hydrogen bonds was discovered, where each surface oxygen atom is coordinated by additional H-bonding water molecules. This flat double-monolayer has a relatively high adsorption energy, every zinc and oxygen atom is 4-fold coordinated and every hydrogen atom is engaged in a hydrogen bond. Hence this honeycomb double monolayer offers no H-bond donor or acceptor sites for further growth of the water film. At 3 ML coverage, the interface restructures forming a contact layer of half-dissociated water dimers and a liquid-like overlayer of water attached by hydrogen bonds. The structures and their adsorption energies are analysed to understand the driving forces for aggregation and dissociation of water on the surface. We apply a decomposition scheme based on a Born-Haber cycle, discussing difficulties that may occur in applying such an analysis to the adsorption of dissociated molecules and point out alternatives to circumvent the bias against severely stretched bonds. Water aggregation on the ZnO surface is favoured by direct water-water interactions including H-bonds and dipole-dipole interactions and surface- or adsorption-mediated interactions including enhanced water-surface interactions and reduced relaxations of the water molecules and surface. While dissociation of isolated adsorbed molecules is unfavourable, partial or even full dissociation is preferred for aggregates

  2. The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering

    PubMed Central

    1987-01-01

    Platelet aggregation requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins (GP) IIb and IIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad areas of surface membranes in unstimulated, as well as thrombin-activated and ADP-activated human platelets. We found that the immunogold-labeled GPIIb-IIIa was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. On thrombin-stimulated platelets, approximately 65% of the GPIIb-IIIa molecules were in clusters within the plane of the membrane. Fibrinogen, which had been released from the alpha-granules of these cells, bound to GPIIb-IIIa on the cell surface and was similarly clustered. To determine whether the receptors clustered before ligand binding, or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the release of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa-binding domains of fibrinogen, namely the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets. PMID:3584243

  3. Glucocorticoid modulation of androgen receptor nuclear aggregation and cellular toxicity is associated with distinct forms of soluble expanded polyglutamine protein.

    PubMed

    Welch, W J; Diamond, M I

    2001-12-15

    Spinobulbar muscular atrophy is a progressive motor neuron disease caused by abnormal polyglutamine tract expansion in the androgen receptor (AR) gene, and is part of a family of central nervous system (CNS) neurodegenerative diseases, including Huntington's disease (HD). Each pathologic protein is widely expressed, but the cause of neuronal degeneration within the CNS remains unknown. Many reports now link abnormal polyglutamine protein aggregation to pathogenesis. A previous study reported that activation of the wild-type glucocorticoid receptor (wtGR) suppressed the aggregation of expanded polyglutamine proteins derived from AR and huntingtin, whereas a mutant receptor containing an internal deletion, GRDelta108-317, increased polyglutamine protein aggregation, in this case primarily within the nucleus. In this study, we use these two forms of GR to study expanded polyglutamine AR protein in different cell contexts. Using cell biology and biochemical approaches, we find that wtGR promotes soluble forms of the protein and prevents nuclear aggregation in NIH3T3 cells and cultured neurons. In contrast, GRDelta108-317 decreases polyglutamine protein solubility, and causes formation of nuclear aggregates in non-neuronal cells. Nuclear aggregates recruit hsp72 more rapidly than cytoplasmic aggregates, and are associated with decreased cell viability. Limited proteolysis and chemical cross-linking suggest unique soluble forms of the expanded AR protein underlie these distinct biological activities. These observations provide an experimental framework to understand why expanded polyglutamine proteins may be toxic only to certain populations of cells, and suggest that unique protein associations or conformations of expanded polyglutamine proteins may determine subsequent cellular effects such as nuclear localization and cellular toxicity.

  4. Spatial organization of dual-species bacterial aggregates on leaf surfaces.

    PubMed

    Monier, J-M; Lindow, S E

    2005-09-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% +/- 8.2%) than that in monospecific aggregates of these two strains (1.6% +/- 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial

  5. Receptor-mediated toxicity of human amylin fragment aggregated by short- and long-term incubations with copper ions.

    PubMed

    Caruso, Giuseppe; Distefano, Donatella A; Parlascino, Paolo; Fresta, Claudia G; Lazzarino, Giuseppe; Lunte, Susan M; Nicoletti, Vincenzo G

    2017-01-01

    Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 β-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.

  6. CBR-Beta Design Procedure for Aggregate-Surfaced Airfield Pavements

    DTIC Science & Technology

    2014-03-01

    ER D C/ G SL T R- 14 -6 CBR -Beta Design Procedure for Aggregate- Surfaced Airfield Pavements G eo te ch ni ca l a nd S tr uc tu re s...visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC/GSL TR-14-6 March 2014 CBR -Beta Design Procedure for...surfaces. The original flexible pavement design procedure of paved surfaces, which is based on the California Bearing Ratio ( CBR ) and the α-factor

  7. Effects of TRA-418, a novel TP-receptor antagonist, and IP-receptor agonist, on human platelet activation and aggregation.

    PubMed

    Miyamoto, Mitsuko; Yamada, Naohiro; Ikezawa, Shiho; Ohno, Michihiro; Otake, Atsushi; Umemura, Kazuo; Matsushita, Teruo

    2003-11-01

    [4-[2-(1,1-Diphenylethylsulfanyl)-ethyl]-3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxy]-acetic acid N-Methyl-d-glucamine salt (TRA-418) has both thromboxane A2 (TP)-receptor antagonist and prostacyclin (IP)-receptor agonist properties. The present study examined the advantageous effects of TRA-418 based on the dual activities, over an agent having either activity alone and also the difference in the effects of TRA-418 and a glycoprotein alphaIIb/beta3 integrin (GPIIb/IIIa) inhibitor. TRA-418 inhibited platelet GPIIb/IIIa activation as well as P-selectin expression induced by adenosine 5'-diphosphate, thrombin receptor agonist peptide 1-6 (Ser-Phe-Leu-Leu-Arg-Asn-NH2), and U-46619 in the presence of epinephrine (U-46619+ epinephrine). TRA-418 also inhibited platelet aggregation induced by those platelet-stimulants in Ca2+ chelating anticoagulant, citrate and in nonchelating anticoagulant, d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone (PPACK). The TP-receptor antagonist SQ-29548 inhibited only U-46619+epinephrine-induced GPIIb/IIIa activation, P-selectin expression, and platelet aggregation. The IP-receptor agonist beraprost sodium inhibited platelet activation. Beraprost also inhibited platelet aggregation induced by platelet stimulants we tested in citrate and in PPACK. The GPIIb/IIIa inhibitor abciximab blocked GPIIb/IIIa activation and platelet aggregation. However, abciximab showed slight inhibitory effects on P-selectin expression. TRA-418 is more advantageous as an antiplatelet agent than TP-receptor antagonists or IP-receptor agonists separately used. TRA-418 showed a different inhibitory profile from abciximab in the effects on P-selectin expression.

  8. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    SciTech Connect

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-07-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and (3H)PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of (3H)PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation).

  9. An Interdomain Interaction of the Androgen Receptor Is Required for Its Aggregation and Toxicity in Spinal and Bulbar Muscular Atrophy*

    PubMed Central

    Orr, Christopher R.; Montie, Heather L.; Liu, Yuhong; Bolzoni, Elena; Jenkins, Shannon C.; Wilson, Elizabeth M.; Joseph, James D.; McDonnell, Donald P.; Merry, Diane E.

    2010-01-01

    Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function. PMID:20826791

  10. Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation

    NASA Astrophysics Data System (ADS)

    Becker, Tobias; Stevens, Bjorn; Hohenegger, Cathy

    2017-06-01

    Radiative-convective equilibrium simulations with the general circulation model ECHAM6 are used to explore to what extent the dependence of large-scale convective self-aggregation on sea-surface temperature (SST) is driven by the convective parameterization. Within the convective parameterization, we concentrate on the entrainment parameter and show that large-scale convective self-aggregation is independent of SST when the entrainment rate for deep convection is set to zero or when the convective parameterization is removed from the model. In the former case, convection always aggregates very weakly, whereas in the latter case, convection always aggregates very strongly. With a nontrivial representation of convective entrainment, large-scale convective self-aggregation depends nonmonotonically on SST. For SSTs below 295 K, convection is more aggregated the smaller the SST because large-scale moisture convergence is relatively small, constraining convective activity to regions with high wind-induced surface moisture fluxes. For SSTs above 295 K, convection is more aggregated the higher the SST because entrainment is most efficient in decreasing updraft buoyancy at high SSTs, amplifying the moisture-convection feedback. When halving the entrainment rate, convection is less efficient in reducing updraft buoyancy, and convection is less aggregated, in particular at high SSTs. Despite most early work on self-aggregation highlighted the role of nonconvective processes, we conclude that convective self-aggregation and the global climate state are sensitive to the convective parameterization.

  11. A novel pathway for amyloids self-assembly in aggregates at nanomolar concentration mediated by the interaction with surfaces

    PubMed Central

    Banerjee, Siddhartha; Hashemi, Mohtadin; Lv, Zhengjian; Maity, Sibaprasad; Rochet, Jean-Christophe; Lyubchenko, Yuri L.

    2017-01-01

    A limitation of the amyloid hypothesis in explaining the development of neurodegenerative diseases is that the level of amyloidogenic polypeptide in vivo is below the critical concentration required to form the aggregates observed in post-mortem brains. We discovered a novel, on-surface aggregation pathway of amyloidogenic polypeptide that eliminates this long-standing controversy. We applied atomic force microscope (AFM) to demonstrate directly that on-surface aggregation takes place at a concentration at which no aggregation in solution is observed. The experiments were performed with the full-size Aβ protein (Aβ42), a decapeptide Aβ(14-23) and α-synuclein; all three systems demonstrate a dramatic preference of the on-surface aggregation pathway compared to the aggregation in the bulk solution. Time-lapse AFM imaging, in solution, show that over time, oligomers increase in size and number and release in solution, suggesting that assembled aggregates can serve as nuclei for aggregation in bulk solution. Computational modeling performed with the all-atom MD simulations for Aβ(14-23) peptide shows that surface interactions induce conformational transitions of the monomer, which facilitate interactions with another monomer that undergoes conformational changes stabilizing the dimer assembly. Our findings suggest that interactions of amyloidogenic polypeptides with cellular surfaces play a major role in determining disease onset. PMID:28358113

  12. Surface exciton polaritons supported by a J-aggregate-dye/air interface at room temperature.

    PubMed

    Takatori, Kentaro; Okamoto, Takayuki; Ishibashi, Koji; Micheletto, Ruggero

    2017-10-01

    Surface exciton polaritons (SEPs) are very important for the realization of novel sensors and next-generation optical devices. Here we propose for the first time, to the best of our knowledge, a Kretschmann-Raether device that is able to induce SEPs propagating along the interface between a J-aggregate cyanine dye and air at room temperature. This configuration has the advantages of being straightforward to realize and easy to study because the Kretschmann-Raether approach is the most simple and fundamental from the theoretical point of view. Here a J-aggregate cyanine dye produces strong binding energy due to Frenkel excitons, and this enables the observation of SEPs easily at room temperature. One of the advantages of the use of the J-aggregate cyanine dye is the simple device preparation. This is because the J-aggregate cyanine dye can be easily deposited on any arbitrary substrates with a spincoating or dip-coating technique from its aqueous solution in ambient condition. We observed SEPs at room temperature, and the deepest resonant peak was obtained for a 94 nm thick 5,6-dichloro-2-[[5,6-dichloro-1-ethyl-3-(4-sulfobutyl)-benzimidazol-2-ylidene]-propenyl]-1-ethyl-3-(4-sulfobutyl)-benzimidazolium hydroxide film at 532 nm wavelength. Our results may pave the way for the realization of novel SEP biosensors in a simple and straightforward way at room temperature.

  13. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  14. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction

    PubMed Central

    Fisch, Adam S.; Yerges-Armstrong, Laura M.; Backman, Joshua D.; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A.; Parihar, Ankita; Pavlovich, Mary A.; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Herzog, William; Harman, Christopher R.; Wren, Jonathan D.; Lewis, Joshua P.

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  15. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction.

    PubMed

    Fisch, Adam S; Yerges-Armstrong, Laura M; Backman, Joshua D; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A; Parihar, Ankita; Pavlovich, Mary A; Mitchell, Braxton D; O'Connell, Jeffrey R; Herzog, William; Harman, Christopher R; Wren, Jonathan D; Lewis, Joshua P

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease.

  16. Pyocyanin Facilitates Extracellular DNA Binding to Pseudomonas aeruginosa Influencing Cell Surface Properties and Aggregation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  17. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions.

  18. Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer.

    PubMed Central

    Kubitscheck, U; Schweitzer-Stenner, R; Arndt-Jovin, D J; Jovin, T M; Pecht, I

    1993-01-01

    The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components. PMID:8431535

  19. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    SciTech Connect

    Fasolato, C.; Domenici, F.; Brasili, F.; Mazzi, E.; Postorino, P.; Mura, F.; Sennato, S.; De Angelis, L.; Bordi, F.

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we report on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM measurements

  20. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Fasolato, C.; Domenici, F.; Brasili, F.; Mura, F.; Sennato, S.; De Angelis, L.; Mazzi, E.; Bordi, F.; Postorino, P.

    2015-06-01

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we report on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 109) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM measurements confirmed

  1. Agonist concentration-dependent differential responsivity of a human platelet purinergic receptor: pharmacological and kinetic studies of aggregation, deaggregation and shape change responses mediated by the purinergic P2Y1 receptor in vitro.

    PubMed

    Maayani, Saul; Schwarz, Todd E; Patel, Nayana D; Craddock-Royal, Barbara D; Tagliente, Thomas M

    2003-01-01

    Platelet shape change (SC), aggregation and deaggregation responses are integral components of hemostasis that are elicited and modulated in vivo by the simultaneous activation of several membrane receptors. Selective activation of the purinergic P2Y1 receptor in vivo elicits a sustained SC and a small, transient aggregation response that is reversed rapidly by a robust deaggregation response (Platelets 2003; 14: 89). Using a kinetics-based turbidimetric approach to study the modulation of these concurrent components of human platelet responses, we demonstrate that these P2Y1 receptor-related responses and a number of their kinetic and steady-state characteristics are differentially elicited and modulated. P2Y1 receptor agonist concentrations that elicited aggregation (pEC50 for ADP, 2-MeSADP; 5.88, 6.69) were 10-fold greater than those that elicited SC (7.33, 7.67). The magnitude of the aggregation response was agonist concentration-dependent, saturable and was associated with an agonist concentration-dependent deceleration of the deaggregation response. Gi-coupled receptor (alpha 2A-adrenoceptor, EP3 and P2Y12 receptors) agonists also enhanced aggregation through deceleration of the deaggregation response, and an inhibitor of PI3K activity (wortmannin) inhibited aggregation through acceleration of the deaggregation response. Neither treatment affected the extent or the kinetics of the SC response. The aggregation but not the SC response was rapidly desensitized by P2Y1 receptor activation by ADP. The affinity of the presence of a single P2Y1 receptor subtype. The differential characteristics and modulation of the SC and aggregation responses by a single receptor support the idea that different signaling pathways activated at different occupancy states of the same receptor underlie the two responses. P2Y1 receptor-mediated platelet aggregation and SC responses provide a convenient model for studying the phenomenon of agonist-directed signaling by differential

  2. Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y12 receptor-mediated platelet aggregation

    PubMed Central

    Högberg, Carl; Gidlöf, Olof; Deflorian, Francesca; Jacobson, Kenneth A.; Abdelrahman, Aliaa; Miüller, Christa E.; Olde, Björn; Erlinge, David

    2012-01-01

    Summary Farnesyl pyrophosphate (FPP) is an intermediate in cholesterol biosynthesis, and it has also been reported to activate platelet LPA (lysophosphatidic acid) receptors. The aim of this study was to investigate the role of extracellular FPP in platelet aggregation. Human platelets were studied with light transmission aggregometry, flow cytometry and [35S]GTPγS binding assays. As shown previously, FPP could potentiate LPA-stimulated shape change. Surprisingly, FPP also acted as a selective insurmountable antagonist to ADP-induced platelet aggregation. FPP inhibited ADP-induced expression of P-selectin and the activated glycoprotein (Gp)llb/llla receptor. FPP blocked ADP-induced inhibition of cAMP accumulation and [35S]GTPγS binding in platelets. In Chinese hamster ovary cells expressing the P2Y12 receptor, FPP caused a right-ward shift of the [35S]GTPγS binding curve. In Sf9 insect cells expressing the human P2Y12 receptor, FPP showed a concentration-dependent, although incomplete inhibition of [3H]PSB-0413 binding. Docking of FPP in a P2Y12 receptor model revealed molecular similarities with ADP and a good fit into the binding pocket for ADP. In conclusion, FPP is an insurmountable antagonist of ADP-induced platelet aggregation mediated by the P2Y12 receptor. It could be an endogenous antithrombotic factor modulating the strong platelet aggregatory effects of ADP in a manner similar to the use of clopidogrel, prasugrel or ticagrelor in the treatment of ischaemic heart disease. PMID:22628078

  3. Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y₁₂ receptor-mediated platelet aggregation.

    PubMed

    Högberg, Carl; Gidlöf, Olof; Deflorian, Francesca; Jacobson, Kenneth A; Abdelrahman, Aliaa; Müller, Christa E; Olde, Björn; Erlinge, David

    2012-07-01

    Farnesyl pyrophosphate (FPP) is an intermediate in cholesterol biosynthesis, and it has also been reported to activate platelet LPA (lysophosphatidic acid) receptors. The aim of this study was to investigate the role of extracellular FPP in platelet aggregation. Human platelets were studied with light transmission aggregometry, flow cytometry and [³⁵S]GTPγS binding assays. As shown previously, FPP could potentiate LPA-stimulated shape change. Surprisingly, FPP also acted as a selective insurmountable antagonist to ADP-induced platelet aggregation. FPP inhibited ADP-induced expression of P-selectin and the activated glycoprotein (Gp)IIb/IIIa receptor. FPP blocked ADP-induced inhibition of cAMP accumulation and [³⁵S]GTPγS binding in platelets. In Chinese hamster ovary cells expressing the P2Y₁₂ receptor, FPP caused a rightward shift of the [³⁵S]GTPγS binding curve. In Sf9 insect cells expressing the human P2Y₁₂ receptor, FPP showed a concentration-dependent, although incomplete inhibition of [³H]PSB-0413 binding. Docking of FPP in a P2Y₁₂ receptor model revealed molecular similarities with ADP and a good fit into the binding pocket for ADP. In conclusion, FPP is an insurmountable antagonist of ADP-induced platelet aggregation mediated by the P2Y₁₂ receptor. It could be an endogenous antithrombotic factor modulating the strong platelet aggregatory effects of ADP in a manner similar to the use of clopidogrel, prasugrel or ticagrelor in the treatment of ischaemic heart disease.

  4. A pancake-shaped nano-aggregate for focusing surface plasmons

    NASA Astrophysics Data System (ADS)

    Ying Huang, Shao; Cho Chew, Weng; Liu, Yang G.; Wu, Bae-Ian; Choi, H. W.

    2012-02-01

    We proposed a pancake-shaped nano-aggregate that highly focuses surface plasmons. The structure is a superposition of bowtie-shaped dimers, where surface plasmons are excited, resonated with the structure, and coupled. Surface integral equation method (Poggio-Miller-Chang-Harrington-Wu-Tsai method) is used to predict the performance of the proposed structure. It is a method which can accurately calculate the near-fields of nanoparticles. Based on the numerical prediction, the proposed structure shows an electric field (E-field) enhancement of more than 400 times, which is equivalent to a Raman enhancement factor of more than 2.5e10 times. It is promising for single molecule detections using surface-enhanced Raman scattering. The physics of the proposed structure are revealed. It is useful to design nanostructures for high E-field enhancement.

  5. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  6. Challenges in imaging cell surface receptor clusters

    NASA Astrophysics Data System (ADS)

    Medda, Rebecca; Giske, Arnold; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Super-resolution microscopy offers unique tools for visualizing and resolving cellular structures at the molecular level. STED microscopy is a purely optical method where neither complex sample preparation nor mathematical post-processing is required. Here we present the use of STED microscopy for imaging receptor cluster composition. We use two-color STED to further determine the distribution of two different receptor subunits of the family of receptor serine/threonine kinases in the presence or absence of their ligands. The implications of receptor clustering on the downstream signaling are discussed, and future challenges are also presented.

  7. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics.

    PubMed

    Ojha, Richa; Govindaraju, Rao S

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings-with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  8. Predictive response surface model for heat-induced rheological changes and aggregation of whey protein concentrate.

    PubMed

    Alvarez, Pedro A; Emond, Charles; Gomaa, Ahmed; Remondetto, Gabriel E; Subirade, Muriel

    2015-02-01

    Whey proteins are now far more than a by-product of cheese processing. In the last 2 decades, food manufacturers have developed them as ingredients, with the dairy industry remaining as a major user. For many applications, whey proteins are modified (denatured) to alter their structure and functional properties. The objective of this research was to study the influence of 85 to 100 °C, with protein concentration of 8% to 12%, and treatment times of 5 to 30 min, while measuring rheological properties (storage modulus, loss modulus, and complex viscosity) and aggregation (intermolecular beta-sheet formation) in dispersions of whey protein concentrate (WPC). A Box-Behnken Response Surface Methodology modeled the heat denaturation of liquid sweet WPC at 3 variables and 3 levels. The model revealed a very significant fit for viscoelastic properties, and a lesser fit for protein aggregation, at temperatures not previously studied. An exponential increase of rheological parameters was governed by protein concentration and temperature, while a modest linear relationship of aggregation was governed by temperature. Models such as these can serve as valuable guides to the ingredient and dairy industries to develop target products, as whey is a major ingredient in many functional foods.

  9. Design and Properties of Thin Surfacing Hot Mix Asphalt Containing Crumb Rubber as Partial Aggregate Replacement

    NASA Astrophysics Data System (ADS)

    Setyawan, Ary; Febrianto, Nugroho; Sarwono, Djoko

    2017-07-01

    Road damage caused as a result of the traffic load and environment. One method to improve the road condition is from an overlay. But the new layer on the top of the pavement structure is thick enough and elevate the surface of the pavement, so it will cause some impact on the user safety and engineering. The use of a thin layer of hot mix asphalt is an alternative to anticipate the thickness problem. Crumb rubber is a waste material that has a flexible nature, these materials are used as an aggregate replacement in the hot mix asphalt thin layer. The research was conducted to find the optimum bitumen content and optimum crumb rubber content on asphalt mixtures by the Marshall procedure. Finally, it was concluded that the addition of crumb rubber in a thin layer of hot mix asphalt indicates the better the interlocking between aggregates so that gave the better Marshall stability, the higher the flow rate, the lower the marshall quotient, reduce the void ratio. The results show that the addition of crumb rubber content as an aggregate replacement leads to the use of less optimum bitumen content.

  10. Altering protein surface charge with chemical modification modulates protein-gold nanoparticle aggregation

    NASA Astrophysics Data System (ADS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-02-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein-AuNP assembly or influence the formation of the protein "corona," modification of the protein surface as a mechanism to modulate protein-AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein-AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein-NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein-AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle-protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle-protein corona compositions.

  11. Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the intraped space

    NASA Astrophysics Data System (ADS)

    Fokin, A. D.; Torshin, S. P.; Bebneva, Yu. M.; Gadzhiagaeva, R. A.; Zolotareva, Yu. I.; Umer, M. I.

    2014-12-01

    Soil aggregates with different localization of radionuclides—(a) only on the aggregate surface, (b) only in the intraped space, and (c) uniformly distributed throughout the aggregate volume—have been obtained under laboratory conditions, which has allowed separately assessing the roles of different aggregate parts in the uptake of radionuclides by plant roots and the reaggregation rate of the soil material. The uptake rate of the radionuclides localized on the surface of soil aggregates, especially 137Cs, by plants manifold exceeds their uptake observed at the localization of pollutants throughout the aggregate volume or only in their intraped material. The input rate of radionuclides into plants decreases with time. For 137Cs, this decrease is due to the strengthening of the sorption fixation of the radionuclide (about 15%) and the reaggregation of the soil material (85%). Under natural conditions, at a depth of 10 cm in the dark gray forest soil of a forest belt, aggregates 7-10 mm in size are subjected to 40-75% destruction and reaggregation on the average within a year, which corresponds, with consideration for the statistical dispersion of the initial data, to the aggregate lifetime of 1.5 to 3 years.

  12. Aqueous Aggregation Behavior of Engineered Superparamagnetic Iron Oxide Nanoparticles: Effects of Oxidative Surface Aging.

    PubMed

    Li, Wenlu; Lee, Seung Soo; Mittelman, Anjuliee M; Liu, Di; Wu, Jiewei; Hinton, Carl H; Abriola, Linda M; Pennell, Kurt D; Fortner, John D

    2016-12-06

    For successful aqueous-based applications, it is necessary to fundamentally understand and control nanoparticle dispersivity and stability over a range of dynamic conditions, including variable ionic strengths/types, redox chemistries, and surface ligand reactivity/degradation states (i.e., surface aging). Here, we quantitatively describe the behavior of artificially aged, oleic acid (OA) bilayer coated iron oxide nanoparticles (IONPs) under different scenarios. Hydrogen peroxide (H2O2), used here as a model oxidant under both dark and light ultraviolet (UVA) conditions, was employed to "age" materials, to varying degrees, without increasing ionic strength. Short-term stability experiments indicate that OA-IONPs, while stable in the dark, are effectively destabilized when exposed to UVA/H2O2/•OH based oxidation processes. Compared to bicarbonate, phosphate (1.0 mM) has a net stabilizing effect on OA-IONPs under oxidative conditions, which can be attributed to (surface-based) functional adsorption. Corresponding aggregation kinetics in the presence of monovalent (Na(+)) and divalent cations (Ca(2+)) show that attachment efficiencies (α) are strongly dependent on the cation concentrations/types and degree of surface aging. Taken together, our findings directly highlight the need to understand the critical role of particle surface transformation(s), via oxidative aging, among other routes, with regard to the ultimate stability and environmental fate of surface functionalized engineered nanoparticles.

  13. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces

    NASA Astrophysics Data System (ADS)

    Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline

    2016-11-01

    α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.

  14. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces

    PubMed Central

    Brown, James W. P.; Buell, Alexander K.; Michaels, Thomas C. T.; Meisl, Georg; Carozza, Jacqueline; Flagmeier, Patrick; Vendruscolo, Michele; Knowles, Tuomas P. J.; Dobson, Christopher M.; Galvagnion, Céline

    2016-01-01

    α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson’s disease through the processes involved in the formation of amyloid fibrils. α and β-synuclein are homologous proteins found at comparable levels in presynaptic terminals but β-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and β-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that β-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that β-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates. PMID:27808107

  15. Adsorption of neon and tetrafluoromethane on carbon nanohorn aggregates: differences in specific surface area values

    NASA Astrophysics Data System (ADS)

    Krungleviciute, Vaiva; Yudasaka, Masako; Iijima, Sumio; Migone, Aldo

    2008-03-01

    We have measured adsorption isotherms for two different adsorbates, neon and tetrafluoromethane, on dahlia-like carbon nanohorn aggregates. The experiments were performed at similar relative temperatures for both gases. The measurements were conducted to explore the effect of adsorbate diameter on the behavior of the resulting adsorbed systems. We measured the effective specific surface area value of the nanohorn sample using both gases, and we found that this quantity was about 22% smaller when we determined this quantity using tetrafluoromethane, the larger molecule. Isosteric heat and binding energy values were also determined from our measurements. We will compare our experimental results with those from a computer simulation study performed by Prof. M. Calbi. The simulations help us understand the source of the observed differences in the measured specific surface values, as well as the coverage dependence of the isosteric heat of adsorption for both gases.

  16. [Cell surface RNA--a possible molecular receptor of adaptogens].

    PubMed

    Malenkov, A G; Kolotygina, I M

    1984-01-01

    When RNA of the cell surface is destroyed with RNAase, the effect of adaptogenes is removed. Such effect is produced by introduction of actinomycin D 30 minutes before intake of adaptogene. Destruction of surface RNA stimulates protein synthesis. Comparison of these facts permits a hypothesis to be advanced saying that surface RNA is a receptor of adaptogenes obtained from plants of Aralia family.

  17. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  18. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  19. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes.

    PubMed

    Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B

    2017-03-31

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  20. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    PubMed Central

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-01-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966

  1. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-03-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.

  2. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  3. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)

    NASA Astrophysics Data System (ADS)

    Kalhori, Ebrahim Mohammadi; Yetilmezsoy, Kaan; Uygur, Nihan; Zarrabi, Mansur; Shmeis, Reham M. Abu

    2013-12-01

    Lightweight Expanded Clay Aggregate (LECA) modified with an aqueous solution of magnesium chloride MgCl2 and hydrogen peroxide H2O2 was used to remove Cr(VI) from aqueous solutions. The adsorption properties of the used adsorbents were investigated through batch studies, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Fluorescence Spectroscopy (XRF), and Fourier Transform Infrared (FTIR) spectroscopy. The effect created by magnesium chloride on the modification of the LECA surface was greater than that of hydrogen peroxide solution and showed a substantial increase in the specific surface area which has a value of 76.12 m2/g for magnesium chloride modified LECA while the values of 53.72 m2/g, and 11.53 m2/g were found for hydrogen peroxide modified LECA and natural LECA, respectively. The extent of surface modification with enhanced porosity in modified LECA was apparent from the recorded SEM patterns. XRD and FTIR studies of themodified LECA surface did not show any structural distortion. The adsorption kinetics was found to follow the modified Freundlich kinetic model and the equilibrium data fitted the Sips and Dubinin-Radushkevich equations better than other models. Maximum sorption capacities were found to be 198.39, 218.29 and 236.24 mg/g for natural LECA, surface modified LECA with H2O2 and surface modified LECA with MgCl2, respectively. Adsorbents were found to have only a weak effect on conductivity and turbidity of aqueous solutions. Spent natural and surface modified LECA with MgCl2 was best regenerated with HCl solution, while LECA surface modified with H2O2 was best regenerated with HNO3 concentrated solution. Thermal method showed a lower regeneration percentage for all spent adsorbents.

  4. Self-assembled surfactants on patterned surfaces: confinement and cooperative effects on aggregate morphology.

    PubMed

    Suttipong, Manaswee; Grady, Brian P; Striolo, Alberto

    2014-08-21

    The adsorption and self-assembly of surfactants are ubiquitous processes in several technological applications, including the manufacture of nano-structured materials using bottom-up strategies. Although much is known about the adsorption of surfactants on homogeneous flat surfaces from experiments, theory, and simulations, limited information is available, in quantifiable terms, regarding the adsorption of surfactants on surfaces with chemical and/or morphological heterogeneity. In an effort to fill this knowledge gap, we report here results obtained using equilibrium dissipative particle dynamics (DPD) simulations for the adsorption of model surfactants onto patterned flat surfaces (i.e., flat surfaces with chemical heterogeneity). The patterns consist of one or two stripes of variable width on which the surfactants could adsorb. The adsorbing stripes are surrounded by a surface that effectively repels the surfactants. This repelling surface, perhaps not realistic, allows us to quantify the effect of lateral confinement on the morphology of surfactant aggregates. When the stripe width is large (effectively providing a homogeneous flat surface), the surfactants yield a flat monolayer. Our simulations suggest that the flat monolayers become hemi-cylinders, hemi-spheres, and individual surfactants as the stripe width decreases, a consequence of lateral confinement. In some cases our simulations show evidence of cooperative effects when two adsorbing stripes are present on the surface. If the distance between the stripes and the widths of the stripes are both less than about one surfactant length, hemi-cylindrical shells and irregular structures are observed because of cooperativity; otherwise the results match those found for a single isolated stripe. Our predictions could be useful for the design of new nano-structured materials and coatings, for applications ranging from nano-fluidic devices to nano-reactors.

  5. Comparison of aggregating agents for the surface-enhanced Raman analysis of benzodiazepines.

    PubMed

    Doctor, Erika L; McCord, Bruce

    2013-10-21

    Benzodiazepines are among the most prescribed compounds and are commonly present in many toxicological screens. They are also of concern forensically in cases of drug facilitated sexual assault. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. This paper demonstrates the applicability of surface enhanced Raman spectroscopy as a method for the analysis and detection of benzodiazepines. The procedure involves mixing urine extracts with gold nanoparticles and appropriate aggregating agents for trace detection of these compounds and their metabolites. In this paper we will discuss the optimization of various parameters of this technique as well as its application to screening urine samples. Eleven different benzodiazepines and metabolites were examined, including 1,2-triazolo-benzodiazepines and 1,4-benzodiazpines. Experiments were performed using four different chloride salts, MgCl2, CaCl2, KCl, and NaCl, as aggregating agents for the colloidal gold nanoparticles. Overall it was found that each aggregating agent produced different levels of signal enhancement for each drug. MgCl2 provided the lowest limit of detection at 2.5 ng mL(-1), and linearity over a wide range of concentrations for a variety of drugs chosen. It was also determined that the optimum MgCl2 concentration was 1.67 M. This method has shown the applicability of SERS for the detection of trace quantities of benzodiazepines in aqueous solutions as well as the optimization of the technique over a wide range of compounds. This technique can be utilized in the detection of trace benzodiazepines in toxicological samples following extraction of the analyte.

  6. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  7. Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures.

    PubMed

    Jochum, Tobias; Ritz, Manuela E; Schuster, Christoph; Funderburk, Sarah F; Jehle, Katja; Schmitz, Katja; Brinkmann, Falko; Hirtz, Michael; Moss, David; Cato, Andrew C B

    2012-06-01

    Hormone-dependent aggregation of the androgen receptor (AR) with a polyglutamine (polyQ) stretch amplification (>38) is considered to be the causative agent of the neurodegenerative disorder spinal and bulbar muscular atrophy (SBMA), consistent with related neurodegenerative diseases involving polyQ-extended proteins. In spite of the widespread acceptance of this common causal hypothesis, little attention has been paid to its apparent incompatibility with the observation of AR aggregation in healthy individuals with no polyQ stretch amplification. Here we used atomic force microscopy (AFM) to characterize sub-micrometer scale aggregates of the wild-type (22 glutamines) and the SBMA form (65 glutamines), as well as a polyQ deletion mutant (1 glutamine) and a variant with a normal length polyQ stretch but with a serine to alanine double mutation elsewhere in the protein. We used a baculovirus-insect cell expression system to produce full-length proteins for these structural analyses. We related the AFM findings to cytotoxicity as measured by expression of the receptors in Drosophila motoneurons or in neuronal cells in culture. We found that the pathogenic AR mutants formed oligomeric fibrils up to 300-600nm in length. These were clearly different from annular oligomers 120-180nm in diameter formed by the nonpathogenic receptors. We could also show that melatonin, which is known to ameliorate the pathological phenotype in the fly model, caused polyQ-extended AR to form annular oligomers. Further comparative investigation of these reproducibly distinct toxic and non-toxic oligomers could advance our understanding of the molecular basis of the polyQ pathologies.

  8. Chemokine Detection Using Receptors Immobilized on an SPR Sensor Surface.

    PubMed

    Rodríguez-Frade, José Miguel; Martínez-Muñoz, Laura; Villares, Ricardo; Cascio, Graciela; Lucas, Pilar; Gomariz, Rosa P; Mellado, Mario

    2016-01-01

    Chemokines and their receptors take part in many physiological and pathological processes, and their dysregulated expression is linked to chronic inflammatory and autoimmune diseases, immunodeficiencies, and cancer. The chemokine receptors, members of the G protein-coupled receptor family, are integral membrane proteins, with seven-transmembrane domains that bind the chemokines and transmit signals through GTP-binding proteins. Many assays used to study the structure, conformation, or activation mechanism of these receptors are based on ligand-binding measurement, as are techniques to detect new agonists and antagonists that modulate chemokine function. Such methods require labeling of the chemokine and/or its receptor, which can alter their binding characteristics. Surface plasmon resonance (SPR) is a powerful technique for analysis of the interaction between immobilized receptors and ligands in solution, in real time, and without labeling. SPR measurements nonetheless require expression and purification steps that can alter the conformation, stability, and function of the chemokine and/or the chemokine receptor. In this review, we focus on distinct methods to immobilize chemokine receptors on the surface of an optical biosensor. We expose the advantages and disadvantages of different protocols used and describe in detail the method to retain viral particles as receptor carriers that can be used for SPR determinations. © 2016 Elsevier Inc. All rights reserved.

  9. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem

    NASA Astrophysics Data System (ADS)

    Stevens, Heike; Simon, Meinhard; Brinkhoff, Thorsten

    2009-04-01

    Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic-anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18 × 101 and 1.1 × 106 cells per milliliter and those of the sediment surface and the transition zone between 0.8 × 101 and 5.1 × 107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3-32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.

  10. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    PubMed Central

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  11. Desensitization of pigment granule aggregation in Xenopus leavis melanophores: melatonin degradation rather than receptor down-regulation is responsible.

    PubMed

    Teh, Muy-Teck; Sugden, David

    2002-05-01

    Xenopus laevis melanophores express a high density (B(max) 1224 fmol/mg protein) of high-affinity (K(d) 37 pm) cell membrane melatonin receptors. Treatment of melanophores with melatonin resulted in a loss of membrane melatonin receptors reaching a maximum (approximately 60%) by 6 h. In addition to receptor loss, a decline in the potency of melatonin to produce pigment aggregation was observed on prolonged treatment. However, the loss of potency (3.8-fold in 24 h and 162-fold in 96 h) was much slower than loss of receptors, and was completely prevented by inclusion of eserine (100 microm), an inhibitor of melatonin deacetylation in the culture medium. Incubation of melanophores with [(3)H]-melatonin showed that eserine prevented metabolism of melatonin to 5-methoxytryptamine. These results indicate that although receptor density does decline on prolonged treatment, this is not responsible for the diminishing melatonin potency, which is entirely due to degradation of melatonin by deacetylation and subsequent deamination in melanophores.

  12. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.

    PubMed

    Rabolli, Virginie; Thomassen, Leen C J; Uwambayinema, Francine; Martens, Johan A; Lison, Dominique

    2011-10-10

    The aggregation state of NP has been a significant source of difficulty for assessing their toxic activity and great efforts have been done to reduce aggregation of and/or to disperse NP in experimental systems. The exact impact of aggregation on toxicity has, however, not been adequately assessed. Here we compared in vitro the cytotoxic activity of stable monodisperse and aggregated silicon-based nanoparticles (SNP) without introducing a dispersing agent that may affect NP properties. SNP aggregates (180 nm) were produced by controlled electrostatic aggregation through addition of KCl to a Ludox SM sol (25 nm) followed by stabilization and extensive dialysis. The size of the preparations was characterized by TEM and DLS; specific surface area and porosity were derived from N(2) sorption measurements. Macrophage (J774) and fibroblast (3T3) cell lines were exposed to monodisperse or aggregate-enriched suspensions of SNP in DMEM in absence of serum. The cytotoxic activity of the different preparations was assessed by the WST1 assay after 24h of exposure. Parameters that determined the cytotoxic activity were traced by comparing the doses of the different preparations that induced half a maximal reduction in WST1 activity (ED(50)) in both cell lines. We found that ED(50) (6-9 μg/ml and 15-22 μg/ml, in J774 and 3T3, respectively) were hardly affected upon aggregation, which was consistent with the fact that the specific surface area of the SNP, a significant determinant of their cytotoxic activity, was unaffected upon aggregation (283-331 m(2)/g). Thus studying small aggregated NP could be as relevant as studying disperse primary NP, when aggregates keep the characteristics of NP, i.e. a high specific surface area and a nanosize dimension. This conclusion does, however, not necessarily hold true for other toxicity endpoints for which the determinants may be different and possibly modified by the aggregation process. Copyright © 2011 Elsevier Ireland Ltd. All rights

  13. Fast and reversible trapping of surface glycine receptors by gephyrin.

    PubMed

    Meier, J; Vannier, C; Sergé, A; Triller, A; Choquet, D

    2001-03-01

    Variations in receptor number at a given synapse are known to contribute to synaptic plasticity, but methods used to establish this idea usually do not allow for the determination of the dynamics of these phenomena. We used single-particle tracking to follow in real time, on the cell surface, movements of the glycine receptor (GlyR) with or without the GlyR stabilizing protein gephyrin. GlyR alternated within seconds between diffusive and confined states. In the absence of gephyrin, GlyR were mostly freely diffusing. Gephyrin induced long confinement periods spatially associated with submembranous clusters of gephyrin. However, even when most receptors were stabilized, they still frequently made transitions through the diffusive state. These data show that receptor number in a cluster results from a dynamic equilibrium between the pools of stabilized and freely mobile receptors. Modification of this equilibrium could be involved in regulation of the number of receptors at synapses.

  14. Vav Family Proteins Couple to Diverse Cell Surface Receptors

    PubMed Central

    Moores, Sheri L.; Selfors, Laura M.; Fredericks, Jessica; Breit, Timo; Fujikawa, Keiko; Alt, Frederick W.; Brugge, Joan S.; Swat, Wojciech

    2000-01-01

    Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFκB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways. PMID:10938113

  15. Formyl-Peptide Receptor 2/3/Lipoxin A4 Receptor Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation: Impact for Therapy in Cardiovascular Disease.

    PubMed

    Vital, Shantel A; Becker, Felix; Holloway, Paul M; Russell, Janice; Perretti, Mauro; Granger, D Neil; Gavins, Felicity N E

    2016-05-31

    Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. Because anti-inflammatory therapies limit thrombosis and antithrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of 2 proresolving endogenous mediators, annexin A1 N-terminal derived peptide (AnxA1Ac2-26) and aspirin-triggered lipoxin A4 (15-epi-lipoxin A4), on the cerebral microcirculation after ischemia/reperfusion injury. Furthermore, we tested whether the lipoxin A4 receptor formyl-peptide receptor 2/3 (Fpr2/3; ortholog to human FPR2/lipoxin A4 receptor) evoked neuroprotective functions after cerebral ischemia/reperfusion injury. Using intravital microscopy, we found that cerebral ischemia/reperfusion injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate formation within cerebral microvessels. Moreover, aspirin-triggered lipoxin A4 activation of neutrophil Fpr2/3 regulated neutrophil-platelet aggregate formation in the brain and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2-26 administration. Blocking Fpr2/lipoxin A4 receptor with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, which displayed an exacerbated disease severity, evidenced by increased infarct area, blood-brain barrier dysfunction, increased neurological score, and elevated levels of cytokines. Furthermore, aspirin treatment significantly reduced cerebral leukocyte recruitment and increased endogenous levels of aspirin-triggered lipoxin A4, effects again mediated by Fpr2/3. Fpr2/lipoxin A4 receptor is a therapeutic target for initiating endogenous proresolving, anti-inflammatory pathways after cerebral ischemia/reperfusion injury. © 2016 American Heart Association, Inc.

  16. Quasi-one-dimensional cyano-phenylene aggregates: Uniform molecule alignment contrasts varying electrostatic surface potential

    NASA Astrophysics Data System (ADS)

    Balzer, Frank; Resel, Roland; Lützen, Arne; Schiek, Manuela

    2017-04-01

    The epitaxial growth of the mono-functionalized para-quaterphenylene molecule CNHP4 on muscovite mica is investigated. The vacuum deposited molecules aggregate into nanofibers of varying morphology. Due to muscovite's cm symmetry, almost mutually parallel fibers grow. Polarized light microscopy together with X-ray diffraction resolves the projected orientation of the molecules on the substrate surface and within the fibers. Several different contact planes with the substrate are detected. For all of them, the molecules orient with their long molecule axis approximately perpendicular to the grooved muscovite direction, so that the alignment of the molecules on the substrate is uniform. Kelvin probe force microscopy finds vastly different electrostatic properties of different fiber types and facets.

  17. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  19. Antiplatelet aggregation and platelet activating factor (PAF) receptor antagonistic activities of the essential oils of five Goniothalamus species.

    PubMed

    Moharam, Bushra Abdulkarim; Jantan, Ibrahim; Ahmad, Fasihuddin bin; Jalil, Juriyati

    2010-07-29

    Nine essential oils, hydrodistilled from different parts of five Goniothalamus species (G. velutinus Airy-Shaw, G. woodii Merr., G. clemensii Ban, G. tapis Miq. and G. tapisoides Mat Salleh) were evaluated for their ability to inhibit platelet aggregation in human whole blood using an electrical impedance method and their inhibitory effects on platelet activating factor (PAF) receptor binding with rabbit platelets using 3H-PAF as a ligand. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The bark oil of G. velutinus was the most effective sample as it inhibited both arachidonic acid (AA) and ADP-induced platelet aggregation with IC(50) values of 93.6 and 87.7 microg/mL, respectively. Among the studied oils, the bark oils of G. clemensii, G. woodii, G. velutinus and the root oil of G. tapis showed significant inhibitory effects on PAF receptor binding, with IC(50 )values ranging from 3.5 to 10.5 microg/mL. The strong PAF antagonistic activity of the active oils is related to their high contents of sesquiterpenes and sesquiterpenoids, and the individual components in the oils could possibly produce a synergistic effect in the overall antiplatelet activity of the oils.

  20. Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction

    PubMed Central

    Cheusova, Tatiana; Khan, Muhammad Amir; Schubert, Steffen Wolfgang; Gavin, Anne-Claude; Buchou, Thierry; Jacob, Germaine; Sticht, Heinrich; Allende, Jorge; Boldyreff, Brigitte; Brenner, Hans Rudolf; Hashemolhosseini, Said

    2006-01-01

    The release of Agrin by motoneurons activates the muscle-specific receptor tyrosine kinase (MuSK) as the main organizer of subsynaptic specializations at the neuromuscular junction. MuSK downstream signaling is largely undefined. Here we show that protein kinase CK2 interacts and colocalizes with MuSK at post-synaptic specializations. We observed CK2-mediated phosphorylation of serine residues within the kinase insert (KI) of MuSK. Inhibition or knockdown of CK2, or exchange of phosphorylatable serines by alanines within the KI of MuSK, impaired acetylcholine receptor (AChR) clustering, whereas their substitution by residues that imitate constitutive phosphorylation led to aggregation of AChRs even in the presence of CK2 inhibitors. Impairment of AChR cluster formation after replacement of MuSK KI with KIs of other receptor tyrosine kinases correlates with potential CK2-dependent serine phosphorylation within KIs. MuSK activity was unchanged but AChR stability decreased in the presence of CK2 inhibitors. Muscle-specific CK2β knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function. This is the first description of a regulatory cross-talk between MuSK and CK2 and of a role for the KI of the receptor tyrosine kinase MuSK for the development of subsynaptic specializations. PMID:16818610

  1. Erythrocyte Aggregation due to Surface Nanobubble Interactions During the Onset of Thermal Burn Injury

    NASA Astrophysics Data System (ADS)

    Seidner, Harrison S.

    Red Blood Cell (RBC) aggregation is an important hemorheological phenomenon especially in microcirculation. In healthy individuals, RBCs are known to aggregate and gravitate toward the faster flow in the center of vessels to increase their throughput for more efficient oxygen delivery. Their aggregation is known to occur during a variety of environmental, pathological, and physiological conditions and is reversible when aggregates are subject to the relatively high shear forces in the circulation. The likelihood that aggregates will monodisperse in flow is dependent on the conditions during which they form. In situations where such aggregates are not sheared to monodispersion their presence can impact the perfusion of microvascular networks. More specifically, aggregates subject to the low shear rates in the zone of stasis near regions of thermal burn injury are capable of occluding vessels in the microcirculation and inhibiting the delivery of oxygen and nutrients to tissue downstream. The basic mechanism leading to erythrocyte aggregation at the onset of thermal injury is unknown. This dissertation investigates parameters involved in erythrocyte aggregation, methods of measuring and testing erythrocyte aggregation, and incorporates modeling based on first principles ultimately to propose a mechanism of this phenomenon.

  2. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots

    PubMed Central

    Borys, Nicholas J.; Shafran, Eyal; Lupton, John M.

    2013-01-01

    The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single optical hot spots of supercontinuum generation to track the transformation of these plasmon modes as the mesoscopic structure is tuned from a film of discrete nanoparticles to a semicontinuous layer of aggregated particles. We demonstrate how hot spot formation from diffractively-coupled nanoparticles with broad spectral resonances transitions to that from spatially delocalized surface plasmon excitations, exhibiting multiple excitation resonances as narrow as 13 meV. Photon-localization microscopy reveals that the delocalized plasmons are capable of focusing multiple narrow radiation bands over a broadband range to the same spatial region within 6 nm, underscoring the existence of novel plasmonic nanoresonators embedded in highly disordered systems. PMID:23807624

  3. Electrochemically active nanocrystalline SnO{sub 2} films: Surface modification with thiazine and oxazine dye aggregates

    SciTech Connect

    Liu, D.; Kamat, P.V.

    1995-03-01

    Thin films of SnO{sub 2}, nanocrystallites have been surface-modified with thionine, methylene blue, and oxazine 170 by adsorption from the corresponding dye solutions. The strong electrostatic interaction between the cationic dye and the negatively charged semiconductor nanocrystallites results in close packing of the dye on the semiconductor surface. These closely packed H-aggregates of the adsorbed dye are active both electrochemically and photoelectrochemically. Electron transfer from semiconductor nanocrystallites into the adsorbed dye aggregates leads to bleaching of the colored film. The extent of dye bleaching which is readily controlled by the applied potential, has been probed by spectroelectrochemical measurements. The photocurrent action spectra of these dye-modified SnO{sub 2} films indicate charge injection from excited dye aggregate into the semiconductor nanocrystallites with an incident photon-to-photocurrent efficiency of < 1 %.

  4. Folate Receptor-targeted Aggregation-enhanced Near-IR Emitting Silica Nanoprobe for One-photon in vivo and Two-photon ex vivo Fluorescence Bioimaging

    PubMed Central

    Wang, Xuhua; Morales, Alma R.; Urakami, Takeo; Zhang, Lifu; Bondar, Mykhailo V.; Komatsu, Masanobu; Belfield, Kevin D.

    2011-01-01

    A two-photon absorbing (2PA) and aggregation-enhanced near infrared (NIR) emitting pyran derivative, encapsulated in and stabilized by silica nanoparticles (SiNPs), is reported as a nanoprobe for two-photon fluorescence microscopy (2PFM) bioimaging that overcomes fluorescence quenching associated with high chromophore loading. The new SiNP probe exhibited aggregate-enhanced emission producing nearly twice as strong signal as the unaggregated dye, a three-fold increase in two-photon absorption relative to the DFP in solution, and approx. four-fold increase in photostability. The surface of the nanoparticles was functionalized with a folic acid (FA) derivative for folate-mediated delivery of the nanoprobe for 2PFM bioimaging. Surface modification of SiNPs with the FA derivative was supported by zeta potential variation and 1H NMR spectral characterization of the SiNPs as a function of surface modification. In vitro studies using HeLa cells expressing folate receptor (FR) indicated specific cellular uptake of the functionalized nanoparticles. The nanoprobe was demonstrated for FRtargeted one-photon in vivo imaging of HeLa tumor xenograft in mice upon intravenous injection of the probe. The FR-targeting nanoprobe not only exhibited highly selective tumor targeting but also readily extravasated from tumor vessels, penetrated into the tumor parenchyma, and was internalized by the tumor cells. Two-photon fluorescence microscopy bioimaging provided three-dimensional (3D) cellular-level resolution imaging up to 350 µm deep in the HeLa tumor. PMID:21688841

  5. Validation of a P2Y12-receptor specific whole blood platelet aggregation assay.

    PubMed

    Amann, Michael; Ferenc, Miroslaw; Valina, Christian M; Bömicke, Timo; Stratz, Christian; Leggewie, Stefan; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-11-01

    Testing of P2Y12-receptor antagonist effects can support clinical decision-making. However, most platelet function assays use only ADP as agonist which is not P2Y12-receptor specific. For this reason P2Y12-receptor specific assays have been developed by adding prostaglandin E1 (PGE1) to reduce ADP-induced platelet activation via the P2Y1-receptor. The present study sought to evaluate a P2Y12-receptor specific assay for determination of pharmacodynamic and clinical outcomes. This study enrolled 400 patients undergoing coronary stenting after loading with clopidogrel or prasugrel. ADP-induced platelet reactivity was assessed by whole blood aggregometry at multiple time points with a standard ADP assay (ADPtest) and a P2Y12-receptor specific assay (ADPtest HS, both run on Multiplate Analyzer, Roche Diagnostics). Patients were clinically followed for 1 month and all events adjudicated by an independent committee. In total, 2084 pairs of test results of ADPtest and ADPtest HS were available showing a strong correlation between results of both assays (r = 0.96, p < 0.001). These findings prevailed in multiple prespecified subgroups (e.g., age; body mass index; diabetes). Calculated cutoffs for ADPtest HS and the established cutoffs of ADPtest showed a substantial agreement for prediction of ischemic and hemorrhagic events with a Cohen's κ of 0.66 and 0.66, respectively. The P2Y12-receptor specific ADPtest HS assay appears similarly predictive for pharmacodynamic and clinical outcomes as compared to the established ADPtest assay indicating its applicability for clinical use. Further evaluation in large cohorts is needed to determine if P2Y12-receptor specific testing offers any advantage for prediction of clinical outcome.

  6. Synthesis and in vitro evaluation of defined HPMA folate conjugates: influence of aggregation on folate receptor (FR) mediated cellular uptake.

    PubMed

    Barz, Matthias; Canal, Fabiana; Koynov, Kaloian; Zentel, R; Vicent, María J

    2010-09-13

    In this article we report the synthesis and in vitro evaluation of well-defined, folate functionalized and fluorescently labeled polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA). The polymers were prepared applying the RAFT polymerization method as well as the reactive ester approach. The molecular weights of the polymers synthesized were around 15 and 30 kDa. The total content of conjugated folate varied from 0, 5, and 10 mol %. The cellular uptake of these polymers was investigated in the folate receptor (FR)-positive human nasopharyngeal epidermal carcinoma (KB-3-1) and FR-negative human lung epithelial carcinoma (A549) cancer cell lines. In FR-positive cells, the cellular uptake of polymers depended strongly on the folate content. The conjugates with the highest folate content led to the highest level of cell-associated fluorescence. Regarding influence of molecular weight, nonsignificant differences were observed when total cell uptake was analyzed. The cellular uptake is related to the aggregate formation of the polymer conjugates, which were studied by fluorescence correlation spectroscopy (FCS). For the conjugates, we found aggregates with a diameter ranging from 11-18 nm. Much to our surprise, we found aggregates of the same size for the 30 kDa polymer bearing 5 mol % folate and for the 15 and 30 kDa conjugates with a folate content of 10 mol %. Consequently, a different conformation in solution for the different conjugates was expected. By live cell confocal fluorescence microscopy the receptor-mediated endocytosis process was observed, as colocalization with lysosomal markers was achieved. In addition, cellular uptake was not observed in FR-negative cells (A549) and can be dramatically reduced by blocking the FR with free folic acid. Our findings clearly underline the need for a minimum amount of accessible folate units to target the FR that triggers specific cellular uptake. Furthermore, it has been demonstrated that

  7. Inhibitors for Androgen Receptor Activation Surfaces

    DTIC Science & Technology

    2007-09-01

    new class of chemical therapeutics for treatment of prostate cancer. 15. SUBJECT TERMS X-ray crystallography, high throughput screening, medicinal... treatments because anti-androgen resis- tance usually develops. We conducted functional and x-ray screens to identify compounds that bind the AR surface and...possibility that such compounds could be used for prostate cancer treatment . It is unlikely that natural T3 or Triac concentrations approach levels required

  8. Migration-driven aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface direct differentiation toward a cardiomyogenic fate commitment.

    PubMed

    Ogawa, Yuuki; Kim, Mee-Hae; Kino-Oka, Masahiro

    2016-11-01

    Dynamic behaviors of cell aggregates on a dendrimer surface were investigated to drive the directed differentiation of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic lineage. Cell aggregates on the polyamidoamine dendrimer surface with fifth-generation (G5) of dendron structure showed dynamic changes in morphology associated with repetitive stretching and contracting during migration. Spatial-temporal observations revealed cellular movement in single aggregates by their morphological change through stretching and contracting on the G5 surface, suggesting that the dynamic behavior of aggregate causes mixing of cells. However, aggregates without cell-substrate adhesions on the low-binding culture surface sustained their spherical morphology without cellular movement within a single aggregate. Furthermore, β-catenin was observed at nuclei in aggregates on the G5 surface, and expression of the cardiomyocyte marker cardiac Troponin T (cTnT) was detected. However, β-catenin localized to the nuclei only in the outer region of the aggregate on the low-binding culture surface, and cTnT expression was restricted at the exterior surface of the aggregates. These observations indicate that cell mixing within aggregates on the G5 surface induced the directed differentiation of hMSCs toward a cardiomyogenic lineage by nuclear translocation of β-catenin through dissociation of cell-cell adhesions. These results suggest that migration-driven aggregate behaviors on the dendrimer surface caused repeated morphological changes of aggregate through stretching and contracting, leading to the directed differentiation of hMSCs toward a cardiomyogenic fate commitment.

  9. Cell Surface Protein Detection to Assess Receptor Internalization

    PubMed Central

    Czarnecka, Magdalena; Kitlinska, Joanna

    2017-01-01

    The migration of membrane receptors upon exposure to different stimulants/inhibitors is of great importance. Among others, the internalization of membrane receptors affects their accessibility to ligands and cell responsiveness to environmental cues. Experimentally, receptor internalization can be used as a measure of their activation. In our studies, we employed this approach to explore cross-talk between a seven transmembrane domain receptor for neuropeptide Y (NPY), Y5R, and a tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), TrkB. To this end, we measured the internalization of Y5R upon stimulation with the TrkB ligand, BDNF. Upon treatment with BDNF, the cells were exposed to a membrane impermeable, biotinylation reagent that selectively labels surface proteins. Subsequently, the biotinylated membrane proteins were affinity-purified on columns with avidin resins and analyzed by Western blot. Differences in the fraction of receptors present on the cell surface of control and ligand-treated cells served as a measure of their internalization and response to particular stimuli.

  10. Effect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun

    Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations. My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These

  11. The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2012-12-01

    Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.

  12. Wetting and evaporative aggregation of nanofluid droplets on CVD-synthesized hydrophobic graphene surfaces.

    PubMed

    Park, Jae S; Kihm, Kenneth D; Kim, Honggoo; Lim, Gyumin; Cheon, Sosan; Lee, Joon S

    2014-07-22

    The wetting and evaporative aggregation of alumina nanofluids (Al2O3) are examined for CVD-synthesized graphene-coated (GC) surfaces that are known as strongly hydrophobic (θcontact ≈ 90°). Our findings are compared to those associated with a hydrophilic cover glass (CG) substrate (θcontact ≈ 45°). The nanofluidic self-assemblies on the GC substrate are elaborately characterized in terms of the droplet wetting/crack formation, the particle migration time over the evaporative time (CR), the Derjaguin-Landau-Verwey-Overbeek forces (FDLVO), and the relative thermal conductivity (KR). The GC substrate forms relatively thicker and larger cracks and requires a longer evaporation time. Both the GC and CG substrates share approximately the same time constant CR, which suggests the formation of coffee-ring patterns for both substrates. The GC shows negative FDLVO, which implies a repulsive force between the nanoparticles and the substrate, and the CG shows a positive FDLVO of attraction. Furthermore, a more than 3 order of magnitude larger thermal conductivity of GC compared to that of CG drives significantly different particle/fluid motions near the drop edge areas between the two substrates.

  13. First Principles Calculations on the Diffusion of Cu, Ag and Au Atoms or Aggregates on the Bulk and Surface of Titania

    DTIC Science & Technology

    2011-04-01

    AFRL-AFOSR-UK-TR-2011-0002 First Principles Calculations on the Diffusion of Cu, Ag and Au Atoms or Aggregates on the Bulk and...SUBTITLE First Principles Calculations on the Diffusion of Cu, Ag and Au Atoms or Aggregates on the Bulk and Surface of Titania 5a. CONTRACT...093072 Final report First principles calculations on the diffusion of Cu, Ag and Au atoms or aggregates on the bulk and surface of titania List

  14. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles

    SciTech Connect

    Illes, E.; Tombacz, E.

    2006-03-01

    The pH-dependent adsorption of humic acid (HA) on magnetite and its effect on the surface charging and the aggregation of oxide particles were investigated. HA was extracted from brown coal. Synthetic magnetite was prepared by alkaline hydrolysis of iron(II) and iron(III) salts. The pH-dependent particle charge and aggregation, and coagulation kinetics at pH around to 4 were measured by laser Doppler electrophoresis and dynamic light scattering. The charge of pure magnetite reverses from positive to negative at pH around 8, which may consider as isoelectric point (IEP). Near this pH, large aggregates form, while stable sols exist further from it. In the presence of increasing HA loading, the IEP shifts to lower pH, then at higher loading, magnetite becomes negatively charged even at low pHs, which indicate the neutralization and gradual recharging positive charges on surface. In acidic region, the trace HA amounts are adsorbed on magnetite surface as oppositely charged patches, systems become highly unstable due to heterocoagulation. Above the adsorption saturation, however, the nanoparticles are stabilized in a way of combined steric and electrostatic effects. The HA coated magnetite particles form stable colloidal dispersion, particle aggregation does not occur in a wide range of pH and salt tolerance is enhanced.

  15. SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA.

    PubMed

    Montie, Heather L; Pestell, Richard G; Merry, Diane E

    2011-11-30

    Posttranslational protein modifications can play a major role in disease pathogenesis; phosphorylation, sumoylation, and acetylation modulate the toxicity of a variety of proteotoxic proteins. The androgen receptor (AR) is substantially modified, in response to hormone binding, by phosphorylation, sumoylation, and acetylation; these modifications might thus contribute to DHT-dependent polyglutamine (polyQ)-expanded AR proteotoxicity in spinal and bulbar muscular atrophy (SBMA). SIRT1, a nuclear protein and deacetylase of the AR, is neuroprotective in many neurodegenerative disease models. Our studies reveal that SIRT1 also offers protection against polyQ-expanded AR by deacetylating the AR at lysines 630/632/633. This finding suggested that nuclear AR acetylation plays a role in the aberrant metabolism and toxicity of polyQ-expanded AR. Subsequent studies revealed that the polyQ-expanded AR is hyperacetylated and that pharmacologic reduction of acetylation reduces mutant AR aggregation. Moreover, genetic mutation to inhibit polyQ-expanded AR acetylation of lysines 630/632/633 substantially decreased its aggregation and completely abrogated its toxicity in cell lines and motor neurons. Our studies also reveal one means by which the AR acetylation state likely modifies polyQ-expanded AR metabolism and toxicity, through its effect on DHT-dependent AR stabilization. Overall, our findings reveal a neuroprotective function of SIRT1 that operates through its deacetylation of polyQ-expanded AR and highlight the potential of both SIRT1 and AR acetylation as powerful therapeutic targets in SBMA.

  16. Comparison of a new P2Y12 receptor specific platelet aggregation test with other laboratory methods in stroke patients on clopidogrel monotherapy.

    PubMed

    Bagoly, Zsuzsa; Sarkady, Ferenc; Magyar, Tünde; Kappelmayer, János; Pongrácz, Endre; Csiba, László; Muszbek, László

    2013-01-01

    Clinical studies suggest that 10-50% of patients are resistant to clopidogrel therapy. ADP induced platelet aggregation, a widely used test to monitor clopidogrel therapy, is affected by aspirin and is not specific for the P2Y12 receptor inhibited by clopidogrel. To develop a P2Y12-specific platelet aggregation test and to compare it with other methods used for monitoring clopidogrel therapy. Study population included 111 patients with the history of ischemic stroke being on clopidogrel monotherapy and 140 controls. The effect of clopidogrel was tested by a newly developed ADP(PGE1) aggregation test in which prostaglandin E1 treated platelets are used. Results of conventional ADP induced platelet aggregation, VerifyNow P2Y12 assay and ADP(PGE1) aggregation were compared to those obtained by flow cytometric analysis of vasodilator stimulated phosphoprotein (VASP) phosphorylation. Reference intervals for all assays were determined according to the guidelines of Clinical Laboratory Standards Institute. The P2Y12-specificity of ADP(PGE1) test was proven by comparing it with ADP aggregation in the presence of P2Y1 antagonist, adenosine 3', 5'-diphosphate. The method was not influenced by aspirin treatment. Approximately 50% of patients were clopidogrel resistant by conventional ADP aggregation and VerifyNow tests. The ADP(PGE1) method and the VASP phosphorylation assay identified 25.9% and 11.7% of patients as non-responders, respectively. ADP(PGE1) aggregation showed good correlation with VASP phosphorylation and had high diagnostic efficiency. The new ADP(PGE1) method is a reliable test for monitoring P2Y12 receptor inhibition by platelet aggregation. As a subset of patients are non-responders, monitoring clopidogrel therapy by adequate methods is essential.

  17. Ceramides modulate cell-surface acetylcholine receptor levels.

    PubMed

    Gallegos, C E; Pediconi, M F; Barrantes, F J

    2008-04-01

    The effects of ceramides (Cer) on the trafficking of the nicotinic acetylcholine receptor (AChR) to the plasma membrane were studied in CHO-K1/A5 cells, a clonal cell line that heterologously expresses the adult murine form of the receptor. When cells were incubated with short- (C6-Cer) or long- (brain-Cer) chain Cer at low concentrations, an increase in the number of cell-surface AChRs was observed concomitant with a decrease in intracellular receptor levels. The alteration in AChR distribution by low Cer treatment does not appear to be a general mechanism since the surface expression of the green fluorescent protein derivative of the vesicular stomatitis virus protein (VSVG-GFP) was not affected. High Cer concentrations caused the opposite effects, decreasing the number of cell-surface AChRs, which exhibited higher affinity for [125I]-alpha-bungarotoxin, and increasing the intracellular pool, which colocalized with trans-Golgi/TGN specific markers. The generation of endogenous Cer by sphingomyelinase treatment also decreased cell-surface AChR levels. These effects do not involve protein kinase C zeta or protein phosphatase 2A activation. Taken together, the results indicate that Cer modulate trafficking of AChRs to and stability at the cell surface.

  18. Enhancement of G Protein-Coupled Receptor Surface Expression

    PubMed Central

    Dunham, Jill H.; Hall, Randy A.

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate physiological responses to a diverse array of stimuli and are the molecular targets for numerous therapeutic drugs. GPCRs primarily signal from the plasma membrane, but when expressed in heterologous cells many GPCRs exhibit poor trafficking to the cell surface. Multiple approaches have been taken to enhance GPCR surface expression in heterologous cells, including addition/deletion of receptor sequences, co-expression with interacting proteins, and treatment with pharmacological chaperones. In addition to allowing for enhanced surface expression of certain GPCRs in heterologous cells, these approaches have also shed light on the control of GPCR trafficking in vivo and in some cases have led to new therapeutic approaches for treating human diseases that result from defects in GPCR trafficking. PMID:19679364

  19. Neuropilin Functions as an Essential Cell Surface Receptor*

    PubMed Central

    Guo, Hou-Fu; Vander Kooi, Craig W.

    2015-01-01

    The Neuropilins (Nrps) are a family of essential cell surface receptors involved in multiple fundamental cellular signaling cascades. Nrp family members have key functions in VEGF-dependent angiogenesis and semaphorin-dependent axon guidance, controlling signaling and cross-talk between these fundamental physiological processes. More recently, Nrp function has been found in diverse signaling and adhesive functions, emphasizing their role as pleiotropic co-receptors. Pathological Nrp function has been shown to be important in aberrant activation of both canonical and alternative pathways. Here we review key recent insights into Nrp function in human health and disease. PMID:26451046

  20. Superradiance of J-Aggregated 2,2'-Cyanine Absorbed onto a Vesicle Surface

    NASA Technical Reports Server (NTRS)

    Akins, Daniel L.; Ozcelik, Serdar

    1995-01-01

    Phospholipid vesicles are used as substrates to form adsorbed aggregates of 2,2'-cyanine, also referred to as pseudoisocyanine (PIC). In this paper, we report photophysical parameters of two putative adsorbed aggregates species (cis- and trans-aggregates, relating to their makeup from mono-cis and all-transstereoisomers, respectively). Phase modulation picosecond fluorescence decay measurements reveal that superradiance and energy transfer are dominant features controlling photophysical processes. Superradiance, coherence size, energy transfer and exciton-phonon coupling are discussed for the two types of aggregates; as regards photophysical parameters, the fluorescence lifetimes, fluorescence quantum yields, and nonradiative rate constants are determined. It is suggested that structure plays the crucial role in excited state dynamics.

  1. Superradiance of J-Aggregated 2,2'-Cyanine Absorbed onto a Vesicle Surface

    NASA Technical Reports Server (NTRS)

    Akins, Daniel L.; Ozcelik, Serdar

    1995-01-01

    Phospholipid vesicles are used as substrates to form adsorbed aggregates of 2,2'-cyanine, also referred to as pseudoisocyanine (PIC). In this paper, we report photophysical parameters of two putative adsorbed aggregates species (cis- and trans-aggregates, relating to their makeup from mono-cis and all-transstereoisomers, respectively). Phase modulation picosecond fluorescence decay measurements reveal that superradiance and energy transfer are dominant features controlling photophysical processes. Superradiance, coherence size, energy transfer and exciton-phonon coupling are discussed for the two types of aggregates; as regards photophysical parameters, the fluorescence lifetimes, fluorescence quantum yields, and nonradiative rate constants are determined. It is suggested that structure plays the crucial role in excited state dynamics.

  2. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.

    PubMed

    Piwat, S; Sophatha, B; Teanpaisan, R

    2015-07-01

    There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus

  3. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces.

    PubMed

    Lanzerstorfer, Peter; Yoneyama, Yosuke; Hakuno, Fumihiko; Müller, Ulrike; Höglinger, Otmar; Takahashi, Shin-Ichiro; Weghuber, Julian

    2015-03-01

    Insulin receptor substrates (IRS) are phosphorylated by activated insulin/insulin-like growth factor I receptor tyrosine kinases, with this comprising an initial key event for downstream signaling and bioactivities. Despite the structural similarities, increasing evidence shows that IRS family proteins have nonredundant functions. Although the specificity of insulin/insulin-like growth factor signaling and biological responses partly reflects which IRS proteins are dominantly phosphorylated by the receptors, the precise properties of the respective IRS interaction with the receptors remain elusive. In the present study, we utilized a technique that combines micropatterned surfaces and total internal reflection fluorescence microscopy for the quantitative analysis of the interaction between IRS proteins and insulin/insulin-like growth factor in living cells. Our experimental set-up enabled the measurement of equilibrium associations and interaction dynamics of these molecules with high specificity. We revealed that several domains of IRS including pleckstrin homology and phosphotyrosine binding domains critically determine the turnover rate of the receptors. Furthermore, we found significant differences among IRS proteins in the strength and kinetic stability of the interaction with the receptors, suggesting that these interaction properties could account for the diverse functions of IRS. In addition, our analyses using fluorescent recovery after photobleaching revealed that kinases such as c-Jun N-terminal kinase and IκB kinase β, which phosphorylate serine/threonine residues of IRS and contribute to insulin resistance, altered the interaction kinetics of IRS with insulin receptor. Collectively, our experimental set-up is a valuable system for quantitifying the physiological interaction of IRS with the receptors in insulin/insulin-like growth factor signaling. © 2015 FEBS.

  4. Deletion of vitamin D receptor leads to premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates formation

    SciTech Connect

    Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping; Sun, Jun; Rahman, Irfan

    2011-03-04

    Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.

  5. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which ldl-cholesteryl ester hydrolysis exceeds ldl protein degradation.

    PubMed

    Buton, X; Mamdouh, Z; Ghosh, R; Du, H; Kuriakose, G; Beatini, N; Grabowski, G A; Maxfield, F R; Tabas, I

    1999-11-05

    A critical event in atherogenesis is the interaction of arterial wall macrophages with subendothelial lipoproteins. Although most studies have investigated this interaction by incubating cultured macrophages with monomeric lipoproteins dissolved in media, arterial wall macrophages encounter lipoproteins that are mostly bound to subendothelial extracellular matrix, and these lipoproteins are often aggregated or fused. Herein, we utilize a specialized cell-culture system to study the initial interaction of macrophages with aggregated low density lipoprotein (LDL) bound to extracellular matrix. The aggregated LDL remains extracellular for a relatively prolonged period of time and becomes lodged in invaginations in the surface of the macrophages. As expected, the degradation of the protein moiety of the LDL was very slow. Remarkably, however, hydrolysis of the cholesteryl ester (CE) moiety of the LDL was 3-7-fold higher than that of the protein moiety, in stark contrast to the situation with receptor-mediated endocytosis of acetyl-LDL. Similar results were obtained using another experimental system in which the degradation of aggregated LDL protein was delayed by LDL methylation rather than by retention on matrix. Additional experiments indicated the following properties of this interaction: (a) LDL-CE hydrolysis is catalyzed by lysosomal acid lipase; (b) neither scavenger receptors nor the LDL receptor appear necessary for the excess LDL-CE hydrolysis; and (c) LDL-CE hydrolysis in this system is resistant to cellular potassium depletion, which further distinguishes this process from receptor-mediated endocytosis. In summary, experimental systems specifically designed to mimic the in vivo interaction of arterial wall macrophages with subendothelial lipoproteins have demonstrated an initial period of prolonged cell-surface contact in which CE hydrolysis exceeds protein degradation.

  6. Progress in detecting cell-surface protein receptors: the erythropoietin receptor example.

    PubMed

    Elliott, Steve; Sinclair, Angus; Collins, Helen; Rice, Linda; Jelkmann, Wolfgang

    2014-02-01

    Testing for the presence of specific cell-surface receptors (such as EGFR or HER2) on tumor cells is an integral part of cancer care in terms of treatment decisions and prognosis. Understanding the strengths and limitations of these tests is important because inaccurate results may occur if procedures designed to prevent false-negative or false-positive outcomes are not employed. This review discusses tests commonly used to identify and characterize cell-surface receptors, such as the erythropoietin receptor (EpoR). First, a summary is provided on the biology of the Epo/EpoR system, describing how EpoR is expressed on erythrocytic progenitors and precursors in the bone marrow where it mediates red blood cell production in response to Epo. Second, studies are described that investigated whether erythropoiesis-stimulating agents could stimulate tumor progression in cancer patients and whether EpoR is expressed and functional on tumor cells or on endothelial cells. The methods used in these studies included immunohistochemistry, Northern blotting, Western blotting, and binding assays. This review summarizes the strengths and limitations of these methods. Critically analyzing data from tests for cell-surface receptors such as EpoR requires understanding the techniques utilized and demonstrating that results are consistent with current knowledge about receptor biology.

  7. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  8. Impaired surface expression of PAF receptors on human neutrophils is dependent upon cell activation.

    PubMed

    Zhou, W; Javors, M A; Olson, M S

    1994-02-01

    The capacity of human neutrophils to bind PAF was rapidly diminished upon cell stimulation with both physiological agonists (N-formylmethionylleucylphenylalanine (FMLP), leukotriene B4 (LTB4)) and pharmacologic agonists (phorbol 12-myristate 13-acetate (PMA), A23187). As a consequence, PAF responses in neutrophils were blunted, as monitored by an inhibition of intracellular Ca2+ mobilization. Downregulation of the PAF receptor in neutrophils by diverse agonists was temperature-sensitive and required intact cells. Scatchard analysis of binding data revealed that PAF binding sites were lost without an appreciable change in the affinity of the ligand for the receptor. The binding of the PAF receptor antagonist WEB2086 to neutrophils decreased in parallel with PAF binding. PMA-induced PAF receptor downregulation was staurosporine-sensitive while PAF receptor downregulation by A23187, FMLP, or LTB4 was staurosporine-resistant. Both neutrophil aggregation (a form of intercellular adhesion) and PAF receptor downregulation occurred only at high concentrations of agonists while other signaling processes such as the increase in [Ca2+]i, PKC activation, and PAF synthesis were stimulated at low concentrations of agonists. Furthermore, agonist-induced PAF receptor downregulation was observed only under conditions in which the activated neutrophils were stirred (or shaken) and were allowed to aggregate. Additionally, chelation of extracellular Ca2+ with EGTA minimized cell aggregation and also inhibited PAF receptor downregulation. While the nature of the biochemical signal or the physical changes in the plasma membrane associated with aggregation or that follow aggregation remain to be elucidated it is clear that full expression of cell activation (i.e., neutrophil aggregation) is required for PAF receptor downregulation.

  9. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells

    PubMed Central

    El-Sayed, Farid G.; Camden, Jean M.; Woods, Lucas T.; Khalafalla, Mahmoud G.; Petris, Michael J.; Erb, Laurie

    2014-01-01

    Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R−/− mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42. PMID:24760984

  10. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells.

    PubMed

    El-Sayed, Farid G; Camden, Jean M; Woods, Lucas T; Khalafalla, Mahmoud G; Petris, Michael J; Erb, Laurie; Weisman, Gary A

    2014-07-01

    Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42. Copyright © 2014 the American Physiological Society.

  11. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel

  12. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    PubMed

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. N-linked glycosylation of platelet P2Y12 ADP receptor is essential for signal transduction but not for ligand binding or cell surface expression.

    PubMed

    Zhong, Xiaotian; Kriz, Ron; Seehra, Jasbir; Kumar, Ravindra

    2004-03-26

    P(2)Y(12) receptor is a G(i)-coupled adenosine diphosphate (ADP) receptor with a critical role in platelet aggregation. It contains two potential N-linked glycosylation sites at its extra cellular amino-terminus, which may modulate its activity. Studies of both tunicamycin treatment and site-directed mutagenesis have revealed a dispensable role of the N-linked glycosylation in the receptor's surface expression and ligand binding activity. However, the non-glycosylated P(2)Y(12) receptor is defective in the P(2)Y(12)-mediated inhibition of the adenylyl cyclase activity. Thus the study uncovers an unexpected vital role of N-linked glycans in receptor's signal transducing step but not in surface expression or ligand binding.

  14. Aggregation and Disaggregation Techniques Applied on Remotely Sensed Data to Obtain Optimum Resolution for Surface Energy Fluxes Estimation

    NASA Astrophysics Data System (ADS)

    Agam, N.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2006-05-01

    Continuous monitoring of surface energy fluxes provides an important tool for precision agriculture management. It is, therefore, desirable to obtain these fluxes at agricultural field size (length scale ~ 10-100 m). To date, land surface temperature (LST), a fundamental input required for flux computations, is usually available at a nominal resolution of 1 km, which disables field-scale monitoring. Disaggregating LST data into field-scale sub-pixels was found to be possible, with deterioration in temperature accuracy as sub-pixel size is reduced. In contrast to LST, land use and fractional vegetation cover (LU and FC, additional key inputs) are available at high spatial resolution (e.g., 30 m). Aggregation of LU and FC to meet the lower resolution LST data introduces errors when aggregating to larger pixel sizes. The objective of this research is to find the optimum resolution that will minimize the errors due to aggregation of LU/FC and disaggregation of LST data, to provide continuous estimates of field scale surface energy fluxes. Data were used from the 2002 Soil Moisture-Atmosphere Coupling Experiment (SMACEX02) conducted over the upper Midwest corn and soybean production region of Iowa. Three dates during the period of rapid crops growth (June 23, July 1, and July 8) for which Landsat TM images are available were analyzed. The original pixels were aggregated to form 960 m pixels (to mimic thermal data currently available from MODIS) and were then disaggregated following the procedure suggested by Kustas et al. (2003)* to form 60, 120, and 240 m sub-pixels. LU and FC were obtained at 30 m resolution and then aggregated to 60, 120, 240, and 960 m. The Two-Source-Model was run at each of the resolutions using the pertinent inputs. The model output at 60 m resolution, using the original LST data was considered the base line, to which all other outputs were compared. For comparing the flux results at the lower resolutions, the 60 m flux output was aggregated. The

  15. Surface modification of ZnO nanorods with Hamilton receptors.

    PubMed

    Zeininger, Lukas; Klaumünzer, Martin; Peukert, Wolfgang; Hirsch, Andreas

    2015-04-13

    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles.

  16. The 11S Proteasomal Activator REGγ Impacts Polyglutamine-Expanded Androgen Receptor Aggregation and Motor Neuron Viability through Distinct Mechanisms

    PubMed Central

    Yersak, Jill M.; Montie, Heather L.; Chevalier-Larsen, Erica S.; Liu, Yuhong; Huang, Lan; Rechsteiner, Martin; Merry, Diane E.

    2017-01-01

    Spinal and bulbar muscular atrophy (SBMA) is caused by expression of a polyglutamine (polyQ)-expanded androgen receptor (AR). The inefficient nuclear proteasomal degradation of the mutant AR results in the formation of nuclear inclusions containing amino-terminal fragments of the mutant AR. PA28γ (also referred to as REGγ) is a nuclear 11S-proteasomal activator with limited proteasome activation capabilities compared to its cytoplasmic 11S (PA28α, PA28β) counterparts. To clarify the role of REGγ in polyQ-expanded AR metabolism, we carried out genetic and biochemical studies in cell models of SBMA. Overexpression of REGγ in a PC12 cell model of SBMA increased polyQ-expanded AR aggregation and contributed to polyQ-expanded AR toxicity in the presence of dihydrotestosterone (DHT). These effects of REGγ were independent of its association with the proteasome and may be due, in part, to the decreased binding of polyQ-expanded AR by the E3 ubiquitin-ligase MDM2. Unlike its effects in PC12 cells, REGγ overexpression rescued transgenic SBMA motor neurons from DHT-induced toxicity in a proteasome binding-dependent manner, suggesting that the degradation of a specific 11S proteasome substrate or substrates promotes motor neuron viability. One potential substrate that we found to play a role in mutant AR toxicity is the splicing factor SC35. These studies reveal that, depending on the cellular context, two biological roles for REGγ impact cell viability in the face of polyQ-expanded AR; a proteasome binding-independent mechanism directly promotes mutant AR aggregation while a proteasome binding-dependent mechanism promotes cell viability. The balance between these functions likely determines REGγ effects on polyQ-expanded AR-expressing cells. PMID:28596723

  17. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    PubMed

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  18. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation.

    PubMed

    Lou, Zhichao; Wang, Bin; Guo, Cunlan; Wang, Kun; Zhang, Haiqian; Xu, Bingqian

    2015-11-01

    By in situ time-lapse AFM, we investigated early-stage aggregates of PrP formed at low concentration (100 ng/mL) on mica and Au(111) surfaces in acetate buffer (pH 4.5). Remarkably different PrP assemblies were observed. Oligomeric structures of PrP aggregates were observed on mica surface, which was in sharp contrast to the multi-layer PrP aggregates yielding parallel linear patterns observed Au(111) surface. Combining molecular dynamics and docking simulations, PrP monomers, dimers and trimers were revealed as the basic units of the observed aggregates. Besides, the mechanisms of the observed PrP aggregations and the corresponding molecular-substrate and intermolecular interactions were suggested. These interactions involved gold-sulfur interaction, electrostatic interaction, hydrophobic interaction, and hydrogen binding interaction. In contrast, the PrP aggregates observed in pH 7.2 PBS buffer demonstrated similar large ball-like structures on both mica and Au(111) surfaces. The results indicate that the pH of a solution and the surface of the system can have strong effects on supramolecular assemblies of prion proteins. This study provides in-depth understanding on the structural and mechanistic nature of PrP aggregation, and can be used to study the aggregation mechanisms of other proteins with similar misfolding properties.

  19. Effects of the glycoprotein IIb/IIIa receptor antagonist c7E3 Fab and anticoagulants on platelet aggregation and thrombin potential under high coagulant challenge in vitro.

    PubMed

    Koestenberger, M; Gallistl, S; Cvirn, G; Roschitz, B; Muntean, W

    2000-07-01

    The present study was performed to investigate the combined effects of the platelet glycoprotein IIb/IIIa receptor antagonist c7E3 Fab (abciximab) and the anticoagulants unfractionated heparin (UH), low molecular weight heparin (LMWH), and recombinant hirudin (rH) on platelet aggregation and thrombin generation under high coagulant challenge by extrinsic activation of platelet-rich plasma. Platelet aggregation and thrombin generation were assessed simultaneously in the presence of different concentrations of abciximab and anticoagulants. Increasing concentrations of abciximab resulted in a dose-dependent anti-aggregating effect with a maximum at 20 microg/ml. Doses of 5, 10, and 20 microg/ml abciximab prolonged the lag phase until the onset of platelet aggregation, but this effect was independent of the dosage used. Abciximab had no influence on the thrombin potential under our high coagulant challenge. UH, LMWH, and rH showed a dose-dependent prolongation of the lag phase until the onset of platelet aggregation and decreased the thrombin potential. Addition of anticoagulants did not contribute to further inhibition of platelet aggregation in the presence of abciximab, but the combination of abciximab and anticoagulants exhibited an additive effect on prolongation of the lag phase until the onset of platelet aggregation. Addition of abciximab to anticoagulants did not result in further decrease of the thrombin potential. Our study demonstrates the respective specific effects of abciximab and anticoagulants on platelet aggregation and thrombin potential under high coagulant challenge, and also an additive effect of abciximab and the anticoagulants UH, LMWH, and rH on the lag phase until the onset of platelet aggregation.

  20. Chaperone activities of bovine and camel beta-caseins: Importance of their surface hydrophobicity in protection against alcohol dehydrogenase aggregation.

    PubMed

    Barzegar, Abolfazl; Yousefi, Reza; Sharifzadeh, Ahmad; Dalgalarrondo, Michèle; Chobert, Jean-Marc; Ganjali, Mohammad Reza; Norouzi, Parviz; Ehsani, Mohammad Reza; Niasari-Naslaji, Amir; Saboury, Ali Akbar; Haertlé, Thomas; Moosavi-Movahedi, Ali Akbar

    2008-05-01

    Beta-casein (beta-CN) showing properties of intrinsically unstructured proteins (IUP) displays many similarities with molecular chaperones and shows anti-aggregation activity in vitro. Chaperone activities of bovine and camel beta-CN were studied using alcohol dehydrogenase (ADH) as a substrate. To obtain an adequate relevant information about the chaperone capacities of studied caseins, three different physical parameters including chaperone constant (k(c), microM(-1)), thermal aggregation constant (k(T), degrees C(-1)) and aggregation rate constant (k(t), min(-1)) were measured. Bovine beta-CN displays greater chaperone activity than camel beta-CN. Fluorescence studies of 8-anilino-1-naphthalenesulfonic acid (ANS) binding demonstrated that bovine beta-CN is doted with larger effective hydrophobic surfaces at all studied temperatures than camel beta-CN. Greater relative hydrophobicity of bovine beta-CN than camel beta-CN may be a factor responsible for stronger interactions of bovine beta-CN with the aggregation-prone pre denatured molecular species of the substrate ADH, which resulted in greater chaperone activity of bovine beta-CN.

  1. A model of neutralization of Chlamydia trachomatis based on antibody and host cell aggregation on the elementary body surface.

    PubMed

    Wilson, D P; McElwain, D L S

    2004-02-07

    Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralizing of pathogens by means of antibodies attaching to the pathogen's binding sites. Antibodies bind to and block ligand sites on the pathogen which prevents these sites from attaching to target cell receptors and so cell entry is inhibited. Many studies investigate the role of humoral immunity for protection against chlamydial challenge and they have shown that neutralization of the chlamydial body requires a large number of attached antibodies. Steric hindrance greatly influences the number of available sites that may be bound, reducing relative occupancy well below 100%. We model steric effects of antibody Fab fragment attachment indicating that they must be taken into consideration to accurately model valency, the number of available binding sites. We derive a partial differential equation for the number of antibody Fabs and host cell receptors that are aggregated to extracellular chlamydial elementary bodies. We consider steric effects in describing the size distribution of aggregates. Our theory is in good agreement with Monte Carlo simulations of binding. We use our theoretical prediction for the valency in a model for the in-host population dynamics of a chlamydial infection and we fit our model to experimental data.

  2. Optical Stark Effects in J -Aggregate-Metal Hybrid Nanostructures Exhibiting a Strong Exciton-Surface-Plasmon-Polariton Interaction

    NASA Astrophysics Data System (ADS)

    Vasa, P.; Wang, W.; Pomraenke, R.; Maiuri, M.; Manzoni, C.; Cerullo, G.; Lienau, C.

    2015-01-01

    We report on the observation of optical Stark effects in J -aggregate-metal hybrid nanostructures exhibiting strong exciton-surface-plasmon-polariton coupling. For redshifted nonresonant excitation, pump-probe spectra show short-lived dispersive line shapes of the exciton-surface-plasmon-polariton coupled modes caused by a pump-induced Stark shift of the polariton resonances. For larger coupling strengths, the sign of the Stark shift is reversed by a transient reduction in normal mode splitting. Our studies demonstrate an approach to coherently control and largely enhance optical Stark effects in strongly coupled hybrid systems. This may be useful for applications in ultrafast all-optical switching.

  3. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated.

  4. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis.

  5. Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates.

    PubMed

    Anumol, E A; Viswanath, B; Ganesan, P G; Shi, Yunfeng; Ramanath, Ganpati; Ravishankar, N

    2010-08-01

    We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.

  6. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    SciTech Connect

    Erdem, Savas Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  7. Effect of amino acids on aggregation behaviors of sodium deoxycholate at air/water surface: surface tension and oscillating bubble studies.

    PubMed

    He, Fang; Xu, Guiying; Pang, Jinyu; Ao, Mingqi; Han, Tingting; Gong, Houjian

    2011-01-18

    The aggregation behaviors of sodium deoxycholate (NaDC) at the air/water surface were investigated via surface tension and oscillating bubble measurements in the absence and presence of three alkaline amino acids, namely, L-Lysine (L-Lys), L-Arginine (L-Arg), and L-Histidine (L-His). The results of surface tension measurements show that NaDC has a lower ability to reduce the surface tension of water, because NaDC molecules orient at the surface in an oblique direction and tend to aggregate together, which is approved by molecular dynamics (MD) simulation. L-Lys is the most efficient of the three amino acids in reducing the critical aggregation concentration (cac) of NaDC in aqueous solution. The influence of amino acids on the dilational rheological properties of NaDC was studied using the drop shape analysis method in the frequency range from 0.02 to 0.5 Hz. The results reveal that the absolute modulus passes through a maximum value with increasing NaDC concentration. The addition of amino acids increases the absolute modulus of NaDC, and the maximum value is observed at much lower concentration. From the perspective of structures of amino acids, the performance of L-Arg is similar to that of L-His, and both of them bring out a smaller effect on the absolute modulus than that of L-Lys. From the above results, it may be presumed that electrostatic and hydrophobic effects are important impetus during the interaction between amino acids and NaDC at the air/water surface. Hydrogen bonding is so ubiquitous in the system that the difference of hydrogen bonding between NaDC and amino acid is ignored.

  8. Synthesis of huaicarbon A/B and their activating effects on platelet glycoprotein VI receptor to mediate collagen-induced platelet aggregation

    PubMed Central

    Yu, Hongli; Chen, Yeqing; Wu, Hao; Wang, Kuilong; Liu, Liping; Zhang, Xingde

    2017-01-01

    Quercetin and rhamnose were efficiently converted into huaicarbon A/B by heating at 250°C for 10-15 min or at 200°C for 25-30 min. With the optimum molar ratio of quercetin/rhamnose (1:3), huaicarbon A and B yields reached 25% and 16% respectively after heating at 250°C, with 55% quercetin conversion. Huaicarbon A/B both promoted washed platelet aggregation dose-dependently, which was antagonized by an inhibitor of glycoprotein VI (GPVI) receptor. Similarly, they both promoted collagen-induced platelet aggregation in platelet-rich plasma in dose-dependent manners. According to the S type dose-response model, EC50 values of huaicarbon A and huaicarbon B were calculated as 33.48 μM and 48.73 μM respectively. They induced intracellular Ca2+ accumulation that was specifically blocked by GPVI antagonist. Huaicarbon A/B enhanced intracellular Ca2+ accumulation and facilitated collagen-induced platelet aggregation, which were blocked by GPVI antagonist. They were conducive to collagen-induced platelet aggregation by activating platelet GPVI receptor. PMID:28337278

  9. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  10. Inhibition of acetylcholinesterase, beta-amyloid aggregation, and NMDA receptors in Alzheimer's disease: a promising direction for the multi-target-directed ligands gold rush.

    PubMed

    Rosini, Michela; Simoni, Elena; Bartolini, Manuela; Cavalli, Andrea; Ceccarini, Luisa; Pascu, Nicoleta; McClymont, David W; Tarozzi, Andrea; Bolognesi, Maria L; Minarini, Anna; Tumiatti, Vincenzo; Andrisano, Vincenza; Mellor, Ian R; Melchiorre, Carlo

    2008-08-14

    Alzheimer's disease (AD) is a multifactorial syndrome with several target proteins contributing to its etiology. To confront AD, an innovative strategy is to design single chemical entities able to simultaneously modulate more than one target. Here, we present compounds that inhibit acetylcholinesterase and NMDA receptor activity. Furthermore, these compounds inhibit AChE-induced Abeta aggregation and display antioxidant properties, emerging as lead candidates for treating AD.

  11. The effect of a prostaglandin DP-receptor partial agonist (192C86) on platelet aggregation and the cardiovascular system in healthy volunteers.

    PubMed

    Gray, S J; Giles, H; Posner, J

    1992-10-01

    1. PGD2 (DP)-receptors mediate inhibition of platelet aggregation and vasodilatation. If receptor reserve were greater on platelets it might be possible to separate these effects. To determine whether such a difference in receptor reserve exists, we have examined the effects of a highly selective DP-receptor partial agonist 192C86 on platelet aggregation and the cardiovascular system in healthy volunteers. 2. Using an open, dose-escalating study design, four male volunteers received constant rate intravenous infusions of 192C86 for up to 60 min. Ex vivo platelet aggregation to ADP and collagen in platelet-rich plasma (PRP) and whole blood (WB) was studied at baseline, after 15, 30 and 60 min of each infusion and at 180 min post-infusion. Heart rate (HR), systolic and diastolic (DBP) blood pressure were measured at frequent intervals. Adverse experiences were monitored by checklist. Facial flushing was assessed by the volunteer using a visual analogue scale, by an observer using a numerical scale and by full-face colour photographs. Blood was taken for assay of plasma 192C86 concentrations by radio-immunoassay (r.i.a.). 3. 192C86 (0.007-0.058 micrograms kg-1 min-1) inhibited platelet aggregation to ADP and collagen both in PRP and WB in a dose-dependent manner. However, this was always accompanied by a decrease in DBP, increase in HR and facial flushing. Plasma concentrations of 192C86 were at or below the limits of sensitivity of the r.i.a. (0.5 ng ml-1). 4. The highest infusion rate was stopped after 20 min due to symptomatic hypotension on standing.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The effect of a prostaglandin DP-receptor partial agonist (192C86) on platelet aggregation and the cardiovascular system in healthy volunteers.

    PubMed Central

    Gray, S J; Giles, H; Posner, J

    1992-01-01

    1. PGD2 (DP)-receptors mediate inhibition of platelet aggregation and vasodilatation. If receptor reserve were greater on platelets it might be possible to separate these effects. To determine whether such a difference in receptor reserve exists, we have examined the effects of a highly selective DP-receptor partial agonist 192C86 on platelet aggregation and the cardiovascular system in healthy volunteers. 2. Using an open, dose-escalating study design, four male volunteers received constant rate intravenous infusions of 192C86 for up to 60 min. Ex vivo platelet aggregation to ADP and collagen in platelet-rich plasma (PRP) and whole blood (WB) was studied at baseline, after 15, 30 and 60 min of each infusion and at 180 min post-infusion. Heart rate (HR), systolic and diastolic (DBP) blood pressure were measured at frequent intervals. Adverse experiences were monitored by checklist. Facial flushing was assessed by the volunteer using a visual analogue scale, by an observer using a numerical scale and by full-face colour photographs. Blood was taken for assay of plasma 192C86 concentrations by radio-immunoassay (r.i.a.). 3. 192C86 (0.007-0.058 micrograms kg-1 min-1) inhibited platelet aggregation to ADP and collagen both in PRP and WB in a dose-dependent manner. However, this was always accompanied by a decrease in DBP, increase in HR and facial flushing. Plasma concentrations of 192C86 were at or below the limits of sensitivity of the r.i.a. (0.5 ng ml-1). 4. The highest infusion rate was stopped after 20 min due to symptomatic hypotension on standing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1457268

  13. Design of heat shock-resistant surfaces to prevent protein aggregation: Enhanced chaperone activity of immobilized α-Crystallin.

    PubMed

    Ray, Namrata; Roy, Sarita; Singha, Santiswarup; Chandra, Bappaditya; Dasgupta, Anjan Kr; Sarkar, Amitabha

    2014-05-21

    α-Crystallin is a multimeric protein belonging to the family of small heat shock proteins, which function as molecular chaperones by resisting heat and oxidative stress induced aggregation of other proteins. We immobilized α-Crystallin on a self-assembled monolayer on glass surface and studied its activity in terms of the prevention of aggregation of aldolase. We discovered that playing with grafted protein density led to interesting variations in the chaperone activity of immobilized α-Crystallin. This result is in accordance with the hypothesis that dynamicity of subunits plays a vital role in the functioning of α-Crystallin and might be able to throw light on the structure-activity relationship. We showed that the chaperone activity of a certain number of immobilized α-Crystallins was superior compared to a solution containing an equivalent number of the protein and 10 times the number of the protein at temperatures >60 °C. The α-Crystallin grafted surfaces retained activity on reuse. This could also lead to the design of potent heat-shock resistant surfaces that can find wide applications in storage and shipping of protein based biopharmaceuticals.

  14. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  15. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    PubMed Central

    2013-01-01

    Abstract We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled. PACS 78.67.Bf; 61.46.Df; 87.64.Ee PMID:23890222

  16. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies

    PubMed Central

    Seefeldt, Matthew B.; Kim, Yong-Sung; Tolley, Kevin P.; Seely, Jim; Carpenter, John F.; Randolph, Theodore W.

    2005-01-01

    Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (ΔG∓aggregation) was found to be 37 ± 3 kJ/mol, whereas the activation volume (ΔV∓aggregation) was −120 ± 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, ΔGdenaturation, was 20 ± 5 kJ/mol, whereas the partial specific volume change for denaturation, ΔVdenaturation, was −110 ± 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, ΔG∓nuc, was 42 ± 4 kJ/mol, and the activation volume for nucleation, ΔV∓nuc,was −175 ± 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 ± 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 ± 0.7 ± 10−12 cm2/dyn, suggests that a significant component of the ΔVdenaturation is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins. PMID:16081653

  17. CD44 is the principal cell surface receptor for hyaluronate.

    PubMed

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  18. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface

    NASA Astrophysics Data System (ADS)

    Gerszten, Robert E.; Chen, Ji; Ishli, Maki; Ishil, Kenji; Wang, Ling; Nanevicz, Tania; Turck, Christoph W.; Vu, Thien-Khai H.; Coughlin, Shaun R.

    1994-04-01

    G-PROTEIN-COUPLED receptors for catecholamines and some other small ligands are activated when agonists bind to the transmem-brane region of the receptor1. The docking interactions through which peptide agonists activate their receptors are less well characterized2-7. The thrombin receptor is a specialized peptide receptor. It is activated by binding its tethered ligand domain, which is unmasked upon receptor cleavage by thrombin8,9. Human and Xenopus thrombin receptor homologues are each selectively activated by the agonist peptide representing their respective tethered ligand domains. Here we identify receptor domains that confer this agonist specificity by replacing the Xenopus receptor's amino-terminal exodomain and three extracellular loops with the corresponding human structures. This switches receptor specificity from Xenopus to human. The specificity of these thrombin receptors for their respective peptide agonists is thus determined by their extracellular surfaces. Our results indicate that agonist interaction with extracellular domains is important for thrombin receptor activation.

  19. Dynamics between J-aggregates and surface plasmon polaritons in strong coupling regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Toma, Andrea; Wang, Haiyu; Sun, Hong-Bo; Proietti Zaccaria, Remo

    2016-09-01

    Strong coupling regime is reached when SPPs and matter exchange energy coherently and reversibly before losses take place, resulting in the formation of new hybrid exciton-plasmon states formed by lower and upper energy bands [1,2]. In this field most of the works focus on steady-state observations, indeed experiments on the dynamics of such hybrid systems are relatively scarce and their intrinsic photophysics is still far from being understood. Here, in order to improve our understanding of the dynamics of hybrid exciton-plasmon states, we have studied through ultrafast pump-probe approach, a hybrid system composed by gold hole arrays and J-aggregate molecules while modifying the lattice constant of the metallic array. Under upper hybrid band resonant excitation, transient absorption spectra provide the evidence that exciton-plasmon hybrid states are formed. Meanwhile, kinetics analysis led to the discovery of a remarkably long-lived upper band, at least one order of magnitude at 1/e than bare J-aggregate molecules. This result was explained with the identification, in the transient absorption spectra, of a trap state combined with the negligible relaxation effect from vibrational modes. The intrinsic long lifetime of hybrid states is of crucial importance both from a fundamental and applicative point of view, having implications in the use of exciton-plasmon states for technological purposes. The understanding of the dynamics on strong coupling systems can provide indeed a promising route towards novel ultrafast plasmonic devices with coherent functionalities.

  20. Breast cancer surface receptors predict risk for developing brain metastasis and subsequent prognosis

    PubMed Central

    Grewal, Jai; Kesari, Santosh

    2008-01-01

    Determining the status of breast cancer surface receptors (estrogen receptor, progesterone receptor, HER2/neu) has become routine in the care of patients with this disease and has proven to be helpful in guiding treatment. For this reason, breast cancer has become a model for molecularly guided therapy in solid tumors. Emerging data support that these receptors are associated with risk for developing brain metastases. Additionally, once brain metastases have occurred these receptors may also correlate with prognosis. PMID:18373884

  1. Human NK cells: From surface receptors to clinical applications.

    PubMed

    Moretta, Lorenzo; Pietra, Gabriella; Vacca, Paola; Pende, Daniela; Moretta, Francesca; Bertaina, Alice; Mingari, Maria Cristina; Locatelli, Franco; Moretta, Alessandro

    2016-10-01

    Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β(+) T cells and of CD19(+) B cells, allow the infusion, together with CD34(+) HSC, of mature KIR(+) NK cells and of TCR γ/δ(+) T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR(+) NK

  2. Remote spectral identification of surface aggregates by thermal imaging techniques - Progress report

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.; Clerke, William H.; Burns, Gregory S.

    1991-01-01

    The NASA Thermal Infrared Multispectral Scanner (TIMS) has been successfully used for the remote identification of a variety of soil and aggregate deposits in vegetated areas of two states. Over three million cubic meters of gravel deposits were identified from the imagery during a two year period. Verification was accomplished by ground reconnaissance using drilling machinery and by ground instrumentation. The method has been used to differentiate between fine and coarse grained soils, and gravel deposits. The deposits were found to have been naturally sorted according to grain size by depositional processes, providing each deposit with distinct spectral qualities. It was found that the masking effects of relatively dense vegetation were largely overcome by using imagery acquired at higher altitudes above terrain than 9000 meters, due to loss of resolution of the finer detail. The mechanics of image resolution are discussed, a method of data analysis used is described, and sample spectral signatures are illustrated.

  3. Procoagulant platelets form an α-granule protein-covered "cap" on their surface that promotes their attachment to aggregates.

    PubMed

    Abaeva, Anastasia A; Canault, Matthias; Kotova, Yana N; Obydennyy, Sergey I; Yakimenko, Alena O; Podoplelova, Nadezhda A; Kolyadko, Vladimir N; Chambost, Herve; Mazurov, Aleksei V; Ataullakhanov, Fazoil I; Nurden, Alan T; Alessi, Marie-Christine; Panteleev, Mikhail A

    2013-10-11

    Strongly activated "coated" platelets are characterized by increased phosphatidylserine (PS) surface expression, α-granule protein retention, and lack of active integrin αIIbβ3. To study how they are incorporated into thrombi despite a lack of free activated integrin, we investigated the structure, function, and formation of the α-granule protein "coat." Confocal microscopy revealed that fibrin(ogen) and thrombospondin colocalized as "cap," a single patch on the PS-positive platelet surface. In aggregates, the cap was located at the point of attachment of the PS-positive platelets. Without fibrin(ogen) retention, their ability to be incorporated in aggregates was drastically reduced. The surface fibrin(ogen) was strongly decreased in the presence of a fibrin polymerization inhibitor GPRP and also in platelets from a patient with dysfibrinogenemia and a fibrinogen polymerization defect. In contrast, a fibrinogen-clotting protease ancistron increased the amount of fibrin(ogen) and thrombospondin on the surface of the PS-positive platelets stimulated with collagen-related peptide. Transglutaminases are also involved in fibrin(ogen) retention. However, platelets from patients with factor XIII deficiency had normal retention, and a pan-transglutaminase inhibitor T101 had only a modest inhibitory effect. Fibrin(ogen) retention was normal in Bernard-Soulier syndrome and kindlin-3 deficiency, but not in Glanzmann thrombasthenia lacking the platelet pool of fibrinogen and αIIbβ3. These data show that the fibrin(ogen)-covered cap, predominantly formed as a result of fibrin polymerization, is a critical mechanism that allows coated (or rather "capped") platelets to become incorporated into thrombi despite their lack of active integrins.

  4. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    PubMed

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  5. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

    PubMed Central

    Noh, Hanaul; Diaz, Alfredo J

    2017-01-01

    Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247

  6. Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

    DOE PAGES

    Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.

    2017-03-08

    Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less

  7. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.

  8. Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Associates with Huntingtin Protein and Promotes Its Atypical Ubiquitination to Enhance Aggregate Formation*

    PubMed Central

    Zucchelli, Silvia; Marcuzzi, Federica; Codrich, Marta; Agostoni, Elena; Vilotti, Sandra; Biagioli, Marta; Pinto, Milena; Carnemolla, Alisia; Santoro, Claudio; Gustincich, Stefano; Persichetti, Francesca

    2011-01-01

    Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys6, Lys27, and Lys29 linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys6, Lys27, and Lys29 ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis. PMID:21454471

  9. Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation.

    PubMed

    Zucchelli, Silvia; Marcuzzi, Federica; Codrich, Marta; Agostoni, Elena; Vilotti, Sandra; Biagioli, Marta; Pinto, Milena; Carnemolla, Alisia; Santoro, Claudio; Gustincich, Stefano; Persichetti, Francesca

    2011-07-15

    Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys(6), Lys(27), and Lys(29) linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys(6), Lys(27), and Lys(29) ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis.

  10. Real-time protein aggregation monitoring based on a simultaneous light scattering investigation and a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Neier, Reinhard; Herzig, Hans Peter

    2015-08-01

    We present a study of the dynamics of protein aggregation using a Bloch surface wave (BSW) label-free sensing scheme. In a previous work, we demonstrated the ability to detect the early dynamic events of fibrillogenesis of amyloid betapeptides (Aβ), linked to Alzheimer's Disease. Here, we demonstrate the efficacy of the BSW sensor by describing a simultaneous light scattering measurement, with the purpose of real-time monitoring the size change of the Aβ aggregates, throughout fibrillization.

  11. Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions

    SciTech Connect

    Shoelson, S.E.; Zixian Lu; Parlautan, L.; Lynch, C.S.; Weiss, M.A. )

    1992-02-18

    Mutagenesis of the dimer- and hexamer-forming surfaces of insulin yields analogues with reduced tendencies to aggregate and dramatically altered pharmacokinetic properties. The authors recently showed that one such analogue, HisB1- {yields} Asp, ProB28 {yields} Lys, LysB29 {yields} Pro human insulin (DKP-insulin), has enhanced affinity for the insulin receptor and is useful for studying the structure of the insulin monomer under physiologic solvent conditions. DKP-insulin retains native secondary and tertiary structure in solution and may therefore provide an appropriate baseline for further studies of related analogues containing additional substitutions within the receptor-binding surface of insulin. To test this, they prepared a family of DKP analogues having potency-altering substitutions at the B24 and B25 positions using a streamlined approach to enzymatic semisynthesis which negates the need for amino-group protection. For comparison, similar analogues of native human insulin were prepared by standard semisynthetic methods. The DKP analogues show a reduced tendency to self-associate, as indicated by {sup 1}H-NMR resonance line widths. Such 'template independence' reflects an absence of functional interactions between the B24 and B25 sites and additional substitutions in DKP-insulin and demonstrates that mutations in discrete surfaces of insulin have independent effects on protein structure and function. In particular, the respective receptor-recognition (PheB24, PheB25), hexamer-forming (HisB10), and dimer-forming (ProB28, LysB29) surfaces of insulin may be regarding as independent targets for protein design. DKP-insulin provides an appropriate biophysical model for defining structure-function relationships in a monomeric template.

  12. TNFα protects cardiac mitochondria independently of its cell surface receptors.

    PubMed

    Lacerda, Lydia; McCarthy, Joy; Mungly, Shazia F K; Lynn, Edward G; Sack, Michael N; Opie, Lionel H; Lecour, Sandrine

    2010-11-01

    Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2(-/-)). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-L: -cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O₂/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2(-/-) mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia-reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2(-/-) mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia-reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated

  13. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter

    NASA Astrophysics Data System (ADS)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane

    2013-04-01

    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  14. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  15. Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO).

    PubMed

    Iwaszko-Simonik, Alicja; Niedzwiedz, Artur; Graczyk, Stanislaw; Slowikowska, Malwina; Pliszczak-Krol, Aleksandra

    2015-03-15

    Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system.

  16. Topographical localization of the receptors for luteinizing hormone- releasing hormone on the surface of dissociated pituitary cells

    PubMed Central

    1977-01-01

    A derivative of the hypothalamic peptide luteinizing hormone-releasing hormone (LHRH) has been coupled to ferritin and the conjugate purified by gel chromatography. In its ability to stimulate the secretion of luteinizing hormone from pituitary cells in vitro, the conjugate has the same potency and specificity as the native peptide. When dissociated pituitary cells maintained in short-term culture are lightly fixed with formaldehyde and then incubated with the conjugate, examination in the electron microscope shows an even distribution of ferritin particles over the free cell surface of the gonadotrophin cells. This binding appears to be specific for the LHRH receptor since it is prevented by a 10-fold excess of native peptide. In addition to the gonadotrophin cells, some somatotrophin and thyrotrophin cells bind conjugate on their free surfaces under similar conditions. If living cells are incubated with the conjugate for 15 min, the bound conjugate becomes aggregated and then concentrated in one localized area of the cell surface. In this area, which lies immediately above the juxtanuclear Golgi complex, the plasma membrane is frequently invaginated in a manner which suggests that the bound, aggregated conjugate is internalized by endocytosis. PMID:233747

  17. Quantifying aggregation of IgE-FcepsilonRI by multivalent antigen.

    PubMed Central

    Hlavacek, W S; Perelson, A S; Sulzer, B; Bold, J; Paar, J; Gorman, W; Posner, R G

    1999-01-01

    Aggregation of cell surface receptors by multivalent ligand can trigger a variety of cellular responses. A well-studied receptor that responds to aggregation is the high affinity receptor for IgE (FcepsilonRI), which is responsible for initiating allergic reactions. To quantify antigen-induced aggregation of IgE-FcepsilonRI complexes, we have developed a method based on multiparameter flow cytometry to monitor both occupancy of surface IgE combining sites and association of antigen with the cell surface. The number of bound IgE combining sites in excess of the number of bound antigens, the number of bridges between receptors, provides a quantitative measure of IgE-FcepsilonRI aggregation. We demonstrate our method by using it to study the equilibrium binding of a haptenated fluorescent protein, 2,4-dinitrophenol-coupled B-phycoerythrin (DNP25-PE), to fluorescein isothiocyanate-labeled anti-DNP IgE on the surface of rat basophilic leukemia cells. The results, which we analyze with the aid of a mathematical model, indicate how IgE-FcepsilonRI aggregation depends on the total concentrations of DNP25-PE and surface IgE. As expected, we find that maximal aggregation occurs at an optimal antigen concentration. We also find that aggregation varies qualitatively with the total concentration of surface IgE as predicted by an earlier theoretical analysis. PMID:10233059

  18. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  19. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium.

    PubMed

    Ahuja, S K; Ferreira, G M; Moreira, A R

    2004-03-20

    Here we report the successful implementation of the Plackett-Burman multifactorial design to screen the limiting components for growth and subsequent use of the response surface methodology (RSM) to design a medium that supported exponential growth of the aggregated morphology of the shipworm bacterium, Teredinobacter turnirae. The results obtained with the help of Plackett-Burman design indicated limitations of three components in the growth medium, MnCl2.4H2O, Na2CO3, and K2HPO4. The concentrations of these three components were further optimized using RSM. By increasing the concentrations of the above-mentioned components by 4-fold, 12-fold, and 12-fold, respectively, it became possible to achieve exponential growth of the culture.

  20. Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1.

    PubMed Central

    Brady, L J; Piacentini, D A; Crowley, P J; Oyston, P C; Bleiweis, A S

    1992-01-01

    The ability to adhere to salivary agglutinin-coated hydroxyapatite beads and to aggregate in the presence of fluid-phase salivary agglutinin was tested by using 25 isolates of mutants streptococci representing eight serotypes. Both adherence and aggregation activity correlated with expression of the Mr-185,000 cell surface antigen P1 on Streptococcus mutans serotype c, e, and f strains. In addition, it was shown that the P1 molecule itself served as the adhesin of S. mutans serotype c, since adherence was significantly inhibited by the presence of recombinant-specified Mr-150,000 P1. The ability of S. sobrinus strains to adhere or aggregate did not correlate with expression of the P1 cross-reactive antigen SpaA. There was also evidence for interaction with salivary agglutinin, as manifested by aggregation but not adherence of S. rattus serotype b, which does not express a P1 cross-reactive antigen. To understand the interaction of P1 with salivary agglutinin at the molecular level, a panel of 11 anti-P1 monoclonal antibodies was tested for inhibitory activity in adherence and aggregation inhibition assays. Overlapping, but not identical, subsets of monoclonal antibodies were found to inhibit adherence and aggregation, indicating that the interactions of P1 with salivary agglutinin which mediate these two phenomena are different. The localization of functional domains of P1 which may mediate the aggregation and adherence reactions is discussed. PMID:1541515

  1. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    PubMed Central

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-01-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537

  2. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    NASA Astrophysics Data System (ADS)

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-03-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

  3. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly.

    PubMed

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-03-07

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a "protocell," was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral's isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

  4. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    PubMed

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  5. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy.

    PubMed

    Iafisco, Michele; Delgado-Lopez, Josè Manuel; Varoni, Elena Maria; Tampieri, Anna; Rimondini, Lia; Gomez-Morales, Jaime; Prat, Maria

    2013-11-25

    Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the examined aspects (binding, internalization, cytotoxicity), possibly because of a better mAb orientation on the nanoparticle surface. These multifunctional nanoparticles could thus be useful instruments for targeted local or systemic drug delivery, allowing a reduction in the therapeutic dose of the drug and thus adverse side effects. Moreover, this work opens new perspectives in the use of nanocrystalline apatites as a new platform for theranostic

  6. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    SciTech Connect

    Buranda, T. |; Jones, G.M.; Nolan, J.P.; Keij, J.; Lopez, G.P.; Sklar, L.A. |

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  7. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  8. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization.

    PubMed

    Whitaker, Gina M; Lynn, Francis C; McIntosh, Christopher H S; Accili, Eric A

    2012-01-01

    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.

  9. Effect of initial temperature on water aggregation at a cold surface.

    PubMed

    Kier, Lemont B; Cheng, Chao-Kun

    2013-01-01

    Cellular automata models of water at two initial temperatures were created. Each model was exposed to a freezing surface. The formation of fully bonded water cells, f(4), was observed over time, beginning with a model of initially warm water and with initially cool water. The warm water formed more f(4) cells earlier than the initially cool water. A high percentage of f(4) cells is interpreted as the formation of ice. This is a model of the Mpemba effect. A description of the initial states for these two temperatures is offered in explanation of this effect. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Early-Stage Aggregation of Islet Amyloid Polypeptide on Membrane Surfaces Probed by Label-Free Chiral Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhuguang; Fu, Li; Yan, Elsa

    2013-03-01

    The aggregation of human islet amyloid polypeptide (hIAPP) into fibrils is associated with type II diabetes. It can be catalyzed by interactions with membranes. Recent studies have shown that cytotoxicity arises from the intermediates of aggregation instead of mature fibrils. However, the pathogenic mechanism is still unknown and it remains challenging to probe structures of the intermediates on membrane surfaces due to a lack of biophysical methods that are sensitive to both protein secondary structures and interfaces. Here, we used label-free chiral sum frequency generation spectroscopy (cSFG) to probe the intermediates. Recently, we have discovered cSFG provides highly specific peptide vibrational signatures that can distinguish protein secondary structures at interfaces. Using cSFG, we observed in situ and in real time the aggregation of hIAPP from disordered structures to α-helices and then β-sheets on membrane surfaces. We also obtained the orientation of the β-sheet aggregates inserted into the membranes. We further studied the S20G mutant, which is linked to the early onset of type II diabetes among Asian populations. We compared the mutant with the wild-type hIAPP to evaluate the effect of S20G in the early-stage aggregation on membrane surfaces.

  11. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    PubMed

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  12. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface.

    PubMed

    Cypher, Luke R; Bielecki, Timothy Alan; Huang, Lu; An, Wei; Iseka, Fany; Tom, Eric; Storck, Matthew D; Hoppe, Adam D; Band, Vimla; Band, Hamid

    2016-09-01

    Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface.

  13. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface.

    PubMed

    Parzel, Cheryl A; Pepper, Matthew E; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2009-06-01

    Tissue-engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understanding of the progression of transformed epithelial cells into tumours and the ultimate metastases of tumour cells. The modified inkjet printer may be a useful tool for creating three-dimensional (3D) in vitro models, because it offers an inexpensive and high-throughput solution to microfabrication, and because the printer can be easily manipulated to produce varying tissue attributes. We hypothesized, however, that when ink is replaced with a biologically based fluid (i.e. a 'bio-ink'), specifically a serum-free cell culture medium, printer nozzle failure can result from salt scale build-up as fluid evaporates on the printhead surface. In this study, ethylene diamine tetra-acetic acid (EDTA) was used as a culture medium additive to prevent salt scaling and cell aggregation during the bioprinting process. The results showed that EDTA, at a concentration typically found in commercially available trypsin solutions (0.53 mM), prevented nozzle failure when a serum-free culture medium was printed from a nozzle at 1000 drops/s. Furthermore, increasing concentrations of EDTA appeared to mildly decrease aggregation of 4T07 cells. Cell viability studies were performed to demonstrate that addition of EDTA did not result in significant cell death. In conclusion, it is recommended that EDTA be incorporated into bio-ink solutions containing salts that could lead to nozzle failure.

  14. Inelastic electron scattering in aggregates of transition metal atoms on metal surfaces

    NASA Astrophysics Data System (ADS)

    Goldberg, E. C.; Flores, F.

    2017-09-01

    Inelastic spin excitations, as observed with a scanning tunneling microscope for Co/Co and Fe/Fe dimers on a Cu2N/Cu(100) surface, have been analyzed theoretically in this paper. In our approach, we use an extended ionic Hamiltonian for the magnetic atom that takes into account first, the role played by the first Hund rule in the atomic states, and second, the cotunneling processes associated with the atomic excitations and the tunneling conductance. This Hamiltonian is solved using the equation of motion method that yields the appropriate Green's functions allowing us to calculate the differential conductance, the inelastic atomic excitations, and possible Kondo resonances. We also analyze an ideal dimer with spin ½ in each atom and discuss the differences and similarities this model has with the Co-Co case.

  15. Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups.

    PubMed

    Lu, Ting; Lan, Yuru; Liu, Chenjiang; Huang, Jianbin; Wang, Yilin

    2012-07-01

    Cationic gemini surfactant homologues alkanediyl-α,ω-bis(dodecyldiethylammonium bromide), [C(12)H(25)(CH(3)CH(2))(2)N(CH(2))(S)N(CH(2)CH(3))(2)C(12)H(25)]Br(2) (where S=2, 4, 6, 8, 10, 12, 16, 20), referred to as C(12)C(S)C(12)(Et) were synthesized systematically. This paper focused on various properties of the above gemini surfactants in order to give a full understanding of this series of surfactants. The following points are covered: (1) surface properties, which include (i) effect of the spacer carbon number on the general properties and (ii) the effect of added NaBr on the general surface properties; (2) aggregation behavior in bulk solution, including (i) morphologies of above gemini surfactants classed as having short spacers, middle-length spacers and long spacers and (ii) superior vesicle stability against high NaBr concentration for the long spacer gemini surfactants; (3) thermodynamic properties during micellization and the effect of spacer carbon number on them; and (4) perspectives for the further use and application of these compounds.

  16. Adsorption and chemical stability of a cationic aggregating ester - propantheline bromide - on silica surfaces in aqueous dispersions.

    PubMed

    Daniels, R; Rupprecht, H

    1985-07-01

    The adsorption behavior of cationic aggregating substances such as antimicrobial quats or phenothiazine derivatives on silica surfaces in aqueous media has been extensively investigated. However, the chemical stability of adsorbates in such systems was unknown. Propantheline bromide (PPBr) was selected as a model to investigate the stability of hydrolyzable substances in silica-containing aqueous dispersions or in adsorbates on silica carriers used for solid drugs. The quaternary ester PPBr showed an appreciable adsorption on the silica surface, the extent of which was increased by raising the pH of the aqueous phase or by the addition of neutral salts such as NaNO3. In parallel to the adsorption process, hydrolysis of PPBr occurs in these aqueous silica dispersions to yield xanthene carbonic acid and a quaternary alcohol component. Adsorption and hydrolysis were found to be mutually influencing reactions. Because of the adsorption of PPBr, the rate of ester decomposition was enhanced in these silica dispersions when compared to aqueous solutions of PPBr at the same pH. Simultaneously, an increase in PPBr adsorption is observed, as well as adsorption of the decomposition product xanthene carbonic acid. This result can be attributed to ion-pair adsorption of the latter with PPBr. The rate constants of PPBr decomposition were found to depend directly on the silica content of the dispersion, although at higher concentrations a decreased catalytic effect was observed. These phenomena are discussed on the basis of the adsorbate structure and exchange processes.

  17. Phenylarsine oxide-induced increase in alveolar macrophage surface receptors: evidence for fusion of internal receptor pools with the cell surface

    PubMed Central

    1985-01-01

    Rabbit alveolar macrophages which were treated at 0 degrees C with phenylarsine oxide and then incubated at 37 degrees C for 10 min exhibited a two- to threefold increase in surface receptor activity for macroglobulin.protease complexes, diferric transferrin, and mannose- terminal glycoproteins. Analysis of the concentration-dependence of ligand binding indicated that changes in ligand-binding activity were due to changes in receptor number rather than alterations in ligand- receptor affinity. Surface receptor number could also be increased by treatment of cells with three other sulfhydryl reagents, N- ethylmaleimide, p-chloromercurobenzoate, and iodoacetic acid. The increase in receptor activity was maximal after 10 min and decreased over the next hour. This decrease in cell-associated receptor activity was due to the release of large membrane vesicles which demonstrated a uniform buoyant density by isopycnic sucrose gradient centrifugation. Treatment of cells with phenylarsine oxide did not decrease the cellular content of lactate dehydrogenase or beta-galactosidase, indicating that cell integrity was maintained and lysosomal enzyme release did not occur. Our studies indicate that phenylarsine oxide treatment in the presence of extracellular Ca2+ results in the fusion of receptor-containing vesicles with the cell surface. PMID:2409094

  18. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals.

    PubMed

    Sil, Payel; Hayes, Craig P; Reaves, Barbara J; Breen, Patrick; Quinn, Shannon; Sokolove, Jeremy; Rada, Balázs

    2017-01-01

    Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.

  19. Priming by chemokines restricts lateral mobility of the adhesion receptor LFA-1 and restores adhesion to ICAM-1 nano-aggregates on human mature dendritic cells.

    PubMed

    Borgman, Kyra J E; van Zanten, Thomas S; Manzo, Carlo; Cabezón, Raquel; Cambi, Alessandra; Benítez-Ribas, Daniel; Garcia-Parajo, Maria F

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.

  20. Inhibitory Effect of Carotenoids on the Degranulation of Mast Cells via Suppression of Antigen-induced Aggregation of High Affinity IgE Receptors*

    PubMed Central

    Sakai, Shota; Sugawara, Tatsuya; Matsubara, Kiminori; Hirata, Takashi

    2009-01-01

    Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and β-carotene significantly inhibited the antigen-induced release of β-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (FcϵRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited FcϵRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of FcϵRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of FcϵRI to lipid rafts, which are known as platforms of the aggregation of FcϵRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of FcϵRI to lipid rafts. This is the first report that focused on the aggregation of FcϵRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts. PMID:19700409

  1. Human Platelets Recognize a Novel Surface Protein, PadA, on Streptococcus gordonii through a Unique Interaction Involving Fibrinogen Receptor GPIIbIIIa▿ †

    PubMed Central

    Petersen, Helen J.; Keane, Ciara; Jenkinson, Howard F.; Vickerman, M. Margaret; Jesionowski, Amy; Waterhouse, Janet C.; Cox, Dermot; Kerrigan, Steven W.

    2010-01-01

    The concept of an infectious agent playing a role in cardiovascular disease is slowly gaining attention. Among several pathogens identified, the oral bacterium Streptococcus gordonii has been implicated as a plausible agent. Platelet adhesion and subsequent aggregation are critical events in the pathogenesis and dissemination of the infective process. Here we describe the identification and characterization of a novel cell wall-anchored surface protein, PadA (397 kDa), of S. gordonii DL1 that binds to the platelet fibrinogen receptor GPIIbIIIa. Wild-type S. gordonii cells induced platelet aggregation and supported platelet adhesion in a GPIIbIIIa-dependent manner. Deletion of the padA gene had no effect on platelet aggregation by S. gordonii but significantly reduced (>75%) platelet adhesion to S. gordonii. Purified N-terminal PadA recombinant polypeptide adhered to platelets. The padA mutant was unaffected in production of other platelet-interactive surface proteins (Hsa, SspA, and SspB), and levels of adherence of the mutant to fetuin or platelet receptor GPIb were unaffected. Wild-type S. gordonii, but not the padA mutant, bound to Chinese hamster ovary cells stably transfected with GPIIbIIIa, and this interaction was ablated by addition of GPIIbIIIa inhibitor Abciximab. These results highlight the growing complexity of interactions between S. gordonii and platelets and demonstrate a new mechanism by which the bacterium could contribute to unwanted thrombosis. PMID:19884334

  2. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  3. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    USGS Publications Warehouse

    Bridges, N.T.; Banks, M.E.; Beyer, R.A.; Chuang, F.C.; Noe Dobrea, E.Z.; Herkenhoff, K. E.; Keszthelyi, L.P.; Fishbaugh, K.E.; McEwen, A.S.; Michaels, T.I.; Thomson, B.J.; Wray, J.J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation. ?? 2009 Elsevier Inc.

  4. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  5. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  6. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  7. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  8. Generalized paired-agent kinetic model for in vivo quantification of cancer cell-surface receptors under receptor saturation conditions

    NASA Astrophysics Data System (ADS)

    Sadeghipour, N.; Davis, S. C.; Tichauer, K. M.

    2017-01-01

    New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only ‘trace’ levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean  ±  sd): GSRTM 0  ±  1 and SRTM 50  ±  1) and match the SRTM accuracy in non-saturated conditions (% error (mean  ±  sd): GSRTM 5  ±  5 and SRTM 0  ±  5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general ‘rule-of-thumb’ algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological

  9. Generalized paired-agent kinetic model for in vivo quantification of cancer cell-surface receptors under receptor saturation conditions.

    PubMed

    Sadeghipour, N; Davis, S C; Tichauer, K M

    2017-01-21

    New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only 'trace' levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean  ±  sd): GSRTM 0  ±  1 and SRTM 50  ±  1) and match the SRTM accuracy in non-saturated conditions (% error (mean  ±  sd): GSRTM 5  ±  5 and SRTM 0  ±  5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general 'rule-of-thumb' algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information

  10. Novel multifunctional dopamine D2/D3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties.

    PubMed

    Luo, Dan; Sharma, Horrick; Yedlapudi, Deepthi; Antonio, Tamara; Reith, Maarten E A; Dutta, Aloke K

    2016-11-01

    Our ongoing drug development endeavor to design compounds for symptomatic and neuroprotective treatment of Parkinson's disease (PD) led us to carry out a structure activity relationship study based on dopamine agonists pramipexole and 5-OHDPAT. Our goal was to incorporate structural elements in these agonists in a way to preserve their agonist activity while producing inhibitory activity against aggregation of α-synuclein protein. In our design we appended various catechol and related phenol derivatives to the parent agonists via different linker lengths. Structural optimization led to development of several potent agonists among which (-)-8a, (-)-14 and (-)-20 exhibited potent neuroprotective properties in a cellular PD model involving neurotoxin 6-OHDA. The lead compounds (-)-8a and (-)-14 were able to modulate aggregation of α-synuclein protein efficiently. Finally, in an in vivo PD animal model, compound (-)-8a exhibited efficacious anti-parkinsonian effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization

    PubMed Central

    Kuver, Aarti; Smith, Sheryl S.

    2015-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM – 100 μM, IC50=~1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM) + THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ~60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  12. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  13. TARP γ-8 glycosylation regulates the surface expression of AMPA receptors.

    PubMed

    Zheng, Chan-Ying; Chang, Kai; Suh, Young Ho; Roche, Katherine W

    2015-02-01

    TARP [transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein] γ-8 is an auxiliary subunit of AMPA receptors that is widely distributed in the hippocampus. It has been shown that TARP γ-8 promotes surface expression of AMPA receptors; however, how TARP γ-8 regulates the expression of AMPA receptors remains unclear. In the present study, we examined the effect of TARP glycosylation on AMPA receptor trafficking. We first showed that TARP γ-8 is an N-glycosylated protein, which contains two glycosylation sites, Asn53 and Asn56, and compared this with the glycosylation of TARP γ-2 and the AMPA receptor auxiliary protein CNIH-2 (cornichon homologue 2). We next examine the effect of TARP glycosylation on TARP trafficking and also on AMPA receptor surface expression. We find that TARP γ-8 glycosylation is critical for surface expression of both TARP γ-8 and GluA1 in heterologous cells and neurons. Specifically, knockdown of TARP γ-8 causes a decrease in both total and surface AMPA receptors. We find that the expression of unglycosylated TARP γ-8 in cultured neurons is unable to restore GluA1 expression fully. Furthermore, when the maturation of TARP γ-8 is impaired, a large pool of immature GluA1 is retained intracellularly. Taken together, our data reveal an important role for the maturation of TARP γ-8 in the trafficking and function of the AMPA receptor complex.

  14. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates.

    PubMed Central

    Ehrenfeld, E E; Kessler, R E; Clewell, D B

    1986-01-01

    The conjugative transfer of the Streptococcus faecalis plasmid pAD1 is characterized by a 10,000-fold increase in frequency following sex pheromone (cAD1) induction. Before the increase in plasmid transfer, donor cells synthesize a proteinaceous adhesin that facilitates the formation of mating aggregates. Four novel surface proteins appearing after exposure of pAD1-containing cells to sex pheromone have been identified. Thirty minutes after induction, a 130-kilodalton (kDa) protein was detectable by Western blotting. A 74-kDa protein, the major species present, and a pair of bands at 153 and 157 kDa were evident 45 min after induction. Induced cells containing another conjugative S. faecalis plasmid, pPD1, gave rise to three high-molecular-weight proteins of the same size (130, 153, and 157 kDa) as those synthesized by pAD1-containing cells. These proteins cross-reacted with antisera raised against induced cells containing pAD1. However, the major protein species produced by pPD1-containing cells had a molecular weight of 78,000 and did not cross-react significantly with the corresponding band of the pAD1 system. Pheromone-induced transfer of the two plasmids, when both were present in the same cell, was independent; induction was limited to the pheromone-specified plasmid. The possibility that lipoteichoic acid might act as a receptor (binding substance) for the induced adhesin protein was also explored. Free lipoteichoic acid (isolated from S. faecalis) inhibited clumping of induced cells, apparently by acting as a competitive inhibitor of the cellular binding substance. Images PMID:3093466

  15. Scanning electron micrograph and surface hardness of mineral trioxide aggregate in the presence of alkaline pH.

    PubMed

    Saghiri, Mohammad Ali; Lotfi, Mehrdad; Saghiri, Ali Mohammad; Vosoughhosseini, Sepideh; Aeinehchi, Mohammad; Ranjkesh, Bahram

    2009-05-01

    The aim of this study was to evaluate morphologic microstructure and surface hardness of white mineral trioxide aggregate (WMTA) after exposure to a range of alkaline environments during hydration. WMTA was mixed and packed into 60 glass tubes. Four groups, each containing 15 tubes, were exposed to pH values of 7.4, 8.4, 9.4, and 10.4, respectively, for 3 days. In 12 tubes in each group, Vickers surface hardness was measured after exposure to alkaline environments. Data were subjected to one-way analysis of variance and a post hoc Tukey test. Three specimens in each group were prepared to be evaluated under a scanning electron microscope using scattered electron (SE) and backscattered electron (BSE) detectors. The mean surface hardness values +/- standard deviation after exposure to pH values of 7.4, 8.4, 9.4, and 10.4 were 58.28 +/- 8.21, 68.84 +/- 7.19, 67.32 +/- 7.22, and 59.22 +/- 9.14, respectively. The difference between these values was statistically significant (p = 0.000). There were statistically significant differences between pH values of 8.4 and 9.4 and pH values of 7.4 and 10.4 (p > 0.05). The SE detector revealed needle-shaped crystals at pH values of 7.4 and 8.4 and an amorphous microstructure at pH values of 9.4 and 10.4 on WMTA surface. The BSE detector showed more unhydrated structure and pores at pH values of 7.4 and 10.4 compared with pH values of 8.4 and 9.4. Surface hardness can be influenced by different alkaline pH values. The BSE detector can reveal more microstructure details of WMTA in conjunction with the SE detector. More porosity and unhydrated structure are observed in WMTA exposed to pH values of 7.4 and 10.4.

  16. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.

    PubMed

    Fenster, C P; Whitworth, T L; Sheffield, E B; Quick, M W; Lester, R A

    1999-06-15

    It is hypothesized that desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) induced by chronic exposure to nicotine initiates upregulation of nAChR number. To test this hypothesis directly, oocytes expressing alpha4beta2 receptors were chronically incubated (24-48 hr) in nicotine, and the resulting changes in specific [3H]nicotine binding to surface receptors on intact oocytes were compared with functional receptor desensitization. Four lines of evidence strongly support the hypothesis. (1) The half-maximal nicotine concentration necessary to produce desensitization (9.7 nM) was the same as that needed to induce upregulation (9.9 nM). (2) The concentration of [3H]nicotine for half-maximal binding to surface nAChRs on intact oocytes was also similar (11.1 nM), as predicted from cyclical desensitization models. (3) Functional desensitization of alpha3beta4 receptors required 10-fold higher nicotine concentrations, and this was mirrored by a 10-fold shift in concentrations necessary for upregulation. (4) Mutant alpha4beta2 receptors that do not recover fully from desensitization, but not wild-type channels, were upregulated after acute (1 hr) applications of nicotine. Interestingly, the nicotine concentration required for half-maximal binding of alpha4beta2 receptors in total cell membrane homogenates was 20-fold lower than that measured for surface nAChRs in intact oocytes. These data suggest that cell homogenate binding assays may not accurately reflect the in vivo desensitization affinity of surface nAChRs and may account for some of the previously reported differences in the efficacy of nicotine for inducing nAChR desensitization and upregulation.

  17. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    PubMed

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  18. Influence of trehalose on the interaction of curcumin with surface active ionic liquid micelle and its vesicular aggregate composed of a non-ionic surfactant sorbitan stearate

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Dutta, Rupam; Sarkar, Nilmoni

    2016-11-01

    The present investigation unravels the effect of trehalose on 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl), a cationic surface active ionic liquid (SAIL) micelle and SAIL ([C16mim]Cl)-nonionic surfactant (Sorbitan Stearate, Span 60) based vesicles. The influence of trehalose on size and morphology of the aggregates has been investigated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) measurements. Besides, we have studied the dynamic properties of curcumin inside these aggregates using fluorescence spectroscopic based techniques. The results revealed that trehalose molecules play crucial role in modulation of the photophysical properties of curcumin in these organized assemblies.

  19. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity.

    PubMed

    Hu, Xiangang; Zhou, Ming; Zhou, Qixing

    2015-03-17

    The environmental behaviors and risks associated with graphene have attracted considerable attention. However, the fundamental effects of ambient water and visible-light irradiation on the properties and toxicity of graphene remain unknown. This work revealed that hydration and irradiation result in the transformation of large-sheet graphene to long-ribbon graphene. The thickness of the treated graphene decreased, and oxides were formed through the generation of singlet oxygen. In addition, hydration and irradiation resulted in greater disorder in the graphene structure and in the expansion of the d-spacing of the structure due to the introduction of water molecules and modifications of the functional groups. Oxidative modifications with two-stage (fast and low) kinetics enhanced the number of negative surface charges on the graphene and enhanced graphene aggregation. The above property alterations reduced the nanotoxicity of graphene to algal cells by reducing the generation of reactive oxygen species, diminishing protein carbonylation and decreasing tail DNA. A comparative study using graphene oxide suggested that oxidative modifications could play an important role in inhibiting toxicological activity. This study provides a preliminary approach for understanding the environmental behaviors of graphene and avoids overestimating the risks of graphene in the natural environment.

  20. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons.

    PubMed

    Liu, Cuicui; Zhang, Xiaoli; Li, Limei; Cui, Jingcheng; Shi, Yu-e; Wang, Le; Zhan, Jinhua

    2015-07-07

    Solid phase microextraction (SPME), a solvent free technique for sample preparation, has been successfully coupled with GC, GC-MS, and HPLC for environmental analysis. In this work, a method combining solid phase microextraction with surface enhanced Raman spectroscopy (SERS) is developed for detection of polycyclic aromatic hydrocarbons (PAHs). Silver nanoparticle aggregates were deposited on the Ag-Cu fibers via layer-by-layer deposition, which were modified with propanethiol (PTH). The SERS-active SPME fiber was immersed in water directly to extract PAHs and then detected using a portable Raman spectrometer. The pronounced valence vibration of the C-C bond at 1030 cm(-1) was chosen as an internal standard peak for the constant concentration of PTH. The RSD values of the stability and the uniformity of the SERS-active SPME fiber are 2.97% and 5.66%, respectively. A log-log plot of the normalized SERS intensity versus fluoranthene concentration showed a linear relationship (R(2) = 0.95). The detection limit was 7.56 × 10(-10) M and the recovery rate of water samples was in the range of 95% to 115%. The method can also be applied to detection of PAH mixtures, and each component of the mixtures can be distinguished by Raman characteristic peaks. The SERS-active SPME fiber could be further confirmed by GC-MS.

  1. Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector.

    PubMed

    Bramanti, Emilia; Ferrari, Carlo; Angeli, Valeria; Onor, Massimo; Synovec, Robert E

    2011-10-15

    A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d.=0.25 mm, L=75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary. SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm(-1), respectively. The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA). The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.

  2. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4.

    PubMed

    Nagy, Attila; Xu, Yunfeng; Bauchan, Gary R; Shelton, Daniel R; Nou, Xiangwu

    2016-07-16

    The Shiga toxigenic Escherichia coli O104:H4 isolated during the 2011 European outbreak expresses Shiga toxin 2a and possess virulence genes associated with the enteroaggregative E. coli (EAEC) pathotype. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga-toxin adsorption, but it is not clear whether the AAF/I fimbriae are involved in the colonization and biofilm formation on food and environmental matrices such as the surface of fresh produce. We deleted the gene encoding for the AAF/I fimbriae main subunit (AggA) from an outbreak associated E. coli O104:H4 strain, and evaluated the role of AAF/I fimbriae in the adherence and colonization of E. coli O104:H4 to spinach and abiotic surfaces. The deletion of aggA did not affect the adherence of E. coli O104:H4 to these surfaces. However, it severely diminished the colonization and biofilm formation of E. coli O104:H4 on these surfaces. Strong aggregation and biofilm formation on spinach and abiotic surfaces were observed with the wild type strain but not the isogenic aggA deletion mutant, suggesting that AAF/I fimbriae play a crucial role in persistence of O104:H4 cells outside of the intestines of host species, such as on the surface of fresh produce.

  3. Cell surface receptors for signal transduction and ligand transport - a design principles study

    SciTech Connect

    Shankaran, Harish; Resat, Haluk; Wiley, H. S.

    2007-06-01

    Although many different receptors undergo endocytosis, the system-level design principles that govern the evolution of receptor dynamics are far from fully understood. We have constructed a generalized mathematical model to understand how receptor internalization dynamics encodes receptor function and regulation. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptors can be categorized a being: i) avidity-controlled where the response control depends primarily on the extracelluar ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled and epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to anhance the accuracy of signaling receptors rather than serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulations.

  4. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton.

    PubMed

    Hunt, R C; Dewey, A; Davis, A A

    1989-04-01

    Retinal pigment epithelial cells, derived from human donor eyes, have been grown in culture as monolayers on membrane filters or plastic surfaces and shown to possess transferrin receptors with a monomeric molecular mass of 93,000. These receptors internalize 125I-labelled transferrin and recycle it to the surrounding medium in a similar manner to other cell types. Scatchard analyses show that there are about 100,000 high-affinity receptors on the surface of each cell and most of these receptors are associated with the cytoskeleton. In total cell extracts, there are additional low-affinity binding sites that do not appear to be strongly associated with the cytoskeleton. The apparent interaction of transferrin receptors with the cytoskeleton was confirmed in two ways: first, using 200 kV electron microscopy for stereo analyses, skeleton-associated transferrin receptors were detected by a monoclonal anti-receptor antibody and a colloidal gold-conjugated second antibody after Triton X-100 extraction of pigment epithelial cells grown directly on laminin-coated gold grids; and, second, when cell surface receptors were labelled with radioiodinated transferrin and then incubated for various periods of time, the labelled transferrin was observed to move from a Triton X-100-insoluble fraction (a putative cytoskeletal compartment) to a Triton-soluble compartment that was not associated with the cytoskeleton. Using either horseradish peroxidase or colloidal gold-labelled transferrin, it has been shown that basolateral and apical surface-located receptors participate in receptor-mediated endocytosis via clathrin-coated pits, endosomes and tubular structures. Initially, transferrin internalized from the apical surface is observed in small endosomes that often appear to be embedded in an apical layer of microfilaments. From these peripheral regions of the cells, the labelled receptors move to larger endosomes and multivesicular bodies deeper in the cytoplasm. These structures

  5. The role of dendritic spine morphology in the compartmentalization and delivery of surface receptors.

    PubMed

    Simon, Cory M; Hepburn, Iain; Chen, Weiliang; De Schutter, Erik

    2014-06-01

    Since AMPA receptors are major molecular players in both short- and long-term plasticity, it is important to identify the time-scales of and factors affecting the lateral diffusion of AMPARs on the dendrite surface. Using a mathematical model, we study how the dendritic spine morphology affects two processes: (1) compartmentalization of the surface receptors in a single spine to retain local chemistry and (2) the delivery of receptors to the post-synaptic density (PSD) of spines via lateral diffusion following insertion onto the dendrite shaft. Computing the mean first passage time (MFPT) of surface receptors on a sample of real spine morphologies revealed that a constricted neck and bulbous head serve to compartmentalize receptors, consistent with previous works. The residence time of a Brownian diffusing receptor on the membrane of a single spine was computed to be ∼ 5 s. We found that the location of the PSD corresponds to the location at which the maximum MFPT occurs, the position that maximizes the residence time of a diffusing receptor. Meanwhile, the same geometric features of the spine that compartmentalize receptors inhibit the recruitment of AMPARs via lateral diffusion from dendrite insertion sites. Spines with narrow necks will trap a smaller fraction of diffusing receptors in the their PSD when considering competition for receptors between the spines, suggesting that ideal geometrical features involve a tradeoff depending on the intent of compartmentalizing the current receptor pool or recruiting new AMPARs in the PSD. The ultimate distribution of receptors among the spine PSDs by lateral diffusion from the dendrite shaft is an interplay between the insertion location and the shape and locations of both the spines and their PSDs. The time-scale for delivery of receptors to the PSD of spines via lateral diffusion was computed to be ∼ 60 s.

  6. Platelet-adenovirus vs. inert particles interaction: effect on aggregation and the role of platelet membrane receptors.

    PubMed

    Gupalo, Elena; Kuk, Cynthia; Qadura, Mohammad; Buriachkovskaia, Liudmila; Othman, Maha

    2013-01-01

    Platelets are involved in host defense via clearance of bacteria from the circulation, interaction with virus particles, and uptake of various size particulates. There is a growing interest in micro- and nanoparticles for drug delivery and there is evidence that the properties of these particles critically influence their interaction and uptake by various tissues and cells including platelets. Virus mediated gene therapy applications are still challenged by the resultant thrombocytopenia and the mechanism(s) of platelet-foreign particles interaction remains unclear. We studied the specifics of platelet interaction with an active biological agent (adenovirus) and inert latex microspheres (MS) and investigated the role of platelet proteins in this interaction. We show that activated and not resting platelets internalize MS, without influencing platelet aggregation. In contrast, adenovirus induces and potentiates ADP-induced platelet aggregation and results in rapid expression of P-selectin. Platelets then internalize adenovirus and viral particles appear inside the open canalicular system. Inhibition of platelet αIIbβ3, GPIbα, and P-selectin decreases both platelet aggregation and internalization of MS. Inhibition of αIIbβ3 and αVβ3 does not abolish adenovirus platelet internalization and adenovirus-induced platelet activation is maintained. Our study demonstrates that platelets react differentially with foreign particles and that αIIbβ3 is a key player in platelet engulfing of foreign particles but not in mediating adenovirus internalization. Other platelet candidate molecules remain to be investigated as potential targets for management of adenovirus-induced thrombocytopenia.

  7. Separation and reformation of cell surface dopamine receptor oligomers visualized in cells.

    PubMed

    O'Dowd, Brian F; Ji, Xiaodong; Alijaniaram, Mohammad; Nguyen, Tuan; George, Susan R

    2011-05-11

    We previously showed that dopamine receptors existed as homo- and heterooligomers, in cells and in brain tissue. We developed a method designed to study the formation and regulation of G protein coupled receptor (GPCR) oligomers in cells, using a GPCR into which a nuclear localization sequence (NLS) had been inserted. Unlike wildtype GPCRs, in the presence of agonist/antagonist ligands the GPCR-NLS is retained at the cell surface, and following ligand removal, the GPCR-NLS translocated from the cell surface. The D(1) dopamine receptor expressed with either D(2)-NLS or D(1-)NLS receptors translocated to the nucleus, indicating hetero- or homo-oligomerization with the NLS-containing receptor. Using these tools, we now demonstrate that D(1)-D(2) dopamine heterooligomers can be disrupted and the component receptors separated by dopamine and selective agonists that occupied one or both binding pockets. Subsequent agonist removal allowed the reformation of the heterooligomer. D(1) receptor homooligomers could also be disrupted by agonist, but at higher concentrations than that required for the disruption of the D(1)-D(2) heteromer. Dopamine D(1) or D(2) receptor antagonists had no effect on the integrity of the homo- or heterooligomer. We have also determined that the D(1)-D(2) heterooligomer contains D(1) homooligomers. These studies indicate that the populations of dopamine receptor oligomers at the cell surface are subject to conformational changes following agonist occupancy and are likely dynamically regulated following agonist activation.

  8. Unbonded Aggregate Surface Roads

    DTIC Science & Technology

    2006-12-01

    CBR Truck........................................................................................85 Table 45. Dynamic Cone Penetrometer Data Prior to...thick and had a CBR of approximately 2 percent. Table 4 Summary of Results for Dynamic Cone Penetrometer Tests Test Site Test Location CBR of...percent, respectively. The dynamic cone penetrometer (DCP) measurements, converted to CBR values, are shown in Table 23. This layer did

  9. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  10. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    NASA Astrophysics Data System (ADS)

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-06-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  11. Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway.

    PubMed

    Hirasawa, Yasushi; Sakai, Takayuki; Ito, Masanori; Yoshimura, Hiromitsu; Feng, Yibin; Nagamatsu, Tadashi

    2011-12-15

    Hyperglycemia and hyperlipidemia are considered critical to the development of diabetic nephropathy. The aim of this study is to clarify the effect of cholesterol on advanced-glycation-end-products and the mechanisms behind the advanced-glycation-end-product-cholesterol-aggregated bovine serum albumin (BSA)-induced proliferation of mesangial cells. Mesangial cells were treated with advanced-glycation-end-product-cholesterol-aggregated-BSA, and RNA and protein were isolated. Cholesterol caused a 1.5-fold increase in fluorescent intensity and 2-fold increase in advanced-glycation-end-products in vitro. Pyridoxamine, aminoguanidine, and N-acetyl-l-cycteine suppressed the production of advanced-glycation-end-product-cholesterol-aggregated-BSA. Advanced-glycation-end-product-cholesterol-BSA was analyzed by matrix-assisted-laser-desorption/ionization-time of flight mass spectrometry, and peaks were found to shift toward a higher mass. Advanced-glycation-end-product-cholesterol-aggregated-BSA induced overexpression of the mRNA of transforming growth factor-beta1, collagen type 1, collagen type 4 and receptor for advanced-glycation-end-products, and the proliferation of mesangial cells. The injection of advanced-glycation-end-product-cholesterol-aggregated-BSA caused glomerular changes and albuminuria in non-diabetic mice. A transforming-growth-factor-beta receptor 1 kinase inhibitor or Mitogen-activated-Protein-Kinase/Extracellular-Signal-regulated-Kinase kinase (ERK) inhibitor (U-0126) suppressed the proliferation of mesangial cells induced by advanced-glycation-end-product-cholesterol-aggregated-BSA dose-dependently. U-0126 inhibited the phosphorylation of ERK1/2 in advanced-glycation-end-product-cholesterol-aggregated-BSA treated mesangial cells. These findings suggested that cholesterol promotes the formation of advanced-glycation-end-products-protein and that advanced-glycation-end-product-cholesterol-aggregated protein stimulates mesangial cells to proliferate via

  12. DEVELOPMENT AND EVALUATION OF AN AGGREGATE SURFACE SAMPLING METHOD FOR USE IN ASSESSING DERMAL EXPOSURES OF YOUNG CHILDREN

    EPA Science Inventory

    In the macroactivity approach, dermal exposure is estimated using empirically-derived transfer coefficients to aggregate the mass transfer associated with a series of contacts with a contaminated medium. The macroactivity approach affords the possibility of developing screenin...

  13. DEVELOPMENT AND EVALUATION OF AN AGGREGATE SURFACE SAMPLING METHOD FOR USE IN ASSESSING DERMAL EXPOSURES OF YOUNG CHILDREN

    EPA Science Inventory

    In the macroactivity approach, dermal exposure is estimated using empirically-derived transfer coefficients to aggregate the mass transfer associated with a series of contacts with a contaminated medium. The macroactivity approach affords the possibility of developing screenin...

  14. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking

    PubMed Central

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  15. Improvement of surface and subsurface prediction by integrating collocated multiple parametric information through probability aggregation and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Paudyal, P.; Park, E.

    2012-12-01

    In the present study, collocated soft information from more than one sources are integrated with the available limited conditioning hard information to improve the predictions of surface and subsurface heterogeneity. For this, we modified the previously developed multidimensional generalized coupled Markov chain (GCMC) model (Park 2010) by employing joint probability distribution of soft information and Bayesian approach to integrate hard and soft information. A local posterior probability for each categorical variable is delineated by combining a prior of GCMC conditional probabilities of categorical variables based on adjacent hard information with generic likelihoods from probability distribution functions (PDFs) of different set of soft information on given categories. The collocated soft information from one source may be dependent on that from another source. So, in this study, it is assumed that the likelihoods of given categories from different soft data sources are not independent. We applied the concept of likelihood ratio to aggregate the respective likelihoods of given categories, and then it is integrated with the conditional probabilities based only on hard information through Bayesian inference to get the local posterior probability distribution. To test the developed model, information from two soft data sets is integrated; however, the model can be applied to for more than two sources too. Each soft data set comprises the synthetic petrophysical properties shown by given categories that are stochastically generated from the hypothetical PDFs assigned to respective category. The model is then applied to the northern part of Jeju Island, Korea to test its improved predictability compared to predictions conditioning only on hard data, and also to the predictions conditioning on addition of one soft data. The results obtained from quantitative measures indicate that the predictions made by the present model are far improved compared to the previous

  16. Formation of assemblies on cell membranes by secreted proteins: molecular studies of free λ light chain aggregates found on the surface of myeloma cells.

    PubMed

    Hutchinson, Andrew T; Malik, Ansha; Berkahn, Mark B; Agostino, Mark; To, Joyce; Tacchi, Jessica L; Djordjevic, Steven P; Turnbull, Lynne; Whitchurch, Cynthia B; Edmundson, Allen B; Jones, Darren R; Raison, Robert L; Ramsland, Paul A

    2013-09-15

    We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen.

  17. Functions of Cell Surface-Anchored Antigen I/II Family and Hsa Polypeptides in Interactions of Streptococcus gordonii with Host Receptors

    PubMed Central

    Jakubovics, Nicholas S.; Kerrigan, Steven W.; Nobbs, Angela H.; Strömberg, Nicklas; van Dolleweerd, Craig J.; Cox, Dermot M.; Kelly, Charles G.; Jenkinson, Howard F.

    2005-01-01

    Streptococcus gordonii colonizes multiple sites within the human oral cavity. This colonization depends upon the initial interactions of streptococcal adhesins with host receptors. The adhesins that bind salivary agglutinin glycoprotein (gp340) and human cell surface receptors include the antigen I/II (AgI/II) family polypeptides SspA and SspB and a sialic acid-binding surface protein designated Hsa or GspB. In this study we determined the relative functions of the AgI/II polypeptides and Hsa in interactions of S. gordonii DL1 (Challis) with host receptors. For an isogenic mutant with the sspA and sspB genes deleted the levels of adhesion to surface-immobilized gp340 were reduced 40%, while deletion of the hsa gene alone resulted in >80% inhibition of bacterial cell adhesion to gp340. Adhesion of S. gordonii DL1 cells to gp340 was sialidase sensitive, verifying that Hsa has a major role in mediating sialic acid-specific adhesion to gp340. Conversely, aggregation of S. gordonii cells by fluid-phase gp340 was not affected by deletion of hsa but was eliminated by deletion of the sspA and sspB genes. Deletion of the AgI/II polypeptide genes had no measurable effect on hsa mRNA levels or Hsa surface protein expression, and deletion of hsa did not affect AgI/II polypeptide expression. Further analysis of mutant phenotypes showed that the Hsa and AgI/II proteins mediated adhesion of S. gordonii DL1 to human HEp-2 epithelial cells. Hsa was also a principal streptococcal cell surface component promoting adhesion of human platelets to immobilized streptococci, but Hsa and AgI/II polypeptides acted in concert in mediating streptococcal cell-platelet aggregation. The results suggest that Hsa directs primary adhesion events for S. gordonii DL1 (Challis) with immobilized gp340, epithelial cells, and platelets. AgI/II polypeptides direct gp340-mediated aggregation, facilitate multimodal interactions necessary for platelet aggregation, and modulate S. gordonii-host engagements

  18. Heterodimerization and Surface Localization of G Protein Coupled Receptors

    PubMed Central

    Minneman, Kenneth P.

    2007-01-01

    G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers. Until recently, this relatively linear cascade has been the standard paradigm for signaling by these molecules. However, it is now clear that this model is not adequate to explain many aspects of GPCR function. We now know that many, if not most, GPCRs form homo- and/or hetero-oligomeric complexes and interact directly with intracellular proteins in addition to G proteins. It now appears that many GPCRs may not function independently, but might more accurately be described as subunits of large multi-protein signaling complexes. These observations raise many important new questions; some of which include: 1) How many functionally and pharmacologically distinct receptor subtypes exist in vivo? 2) Which GPCRs physically associate, and in what stochiometries? 3) What are the roles of individual subunits in binding ligand and activating responses? 4) Are the pharmacological or signaling properties of GPCR heterodimers different from monomers? Since these receptors are the targets for a large number of clinically useful compounds, such information is likely to be of direct therapeutic importance, both in understanding how existing drugs work, but also in discovering novel compounds to treat disease. PMID:17011524

  19. Surface-Bound Biomembranes Incorporating Receptors: Electrochemical and Structural Characterization.

    DTIC Science & Technology

    1991-06-06

    receptnr; (Darszon, 1983; Levitzki , 1985). Here it is used to form planar structures that are potentially more stable and reproducible than the...4, 90-96. Levitzki , A.(1985). Reconstitution of membrane receptor systems. Biochim. Biophys. Acta, 822, 127-153. 16 Heuser, J.E. & Salpeter, S.R

  20. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells.

    PubMed

    Al-Attafi, Kadhim; Nattestad, Andrew; Yamauchi, Yusuke; Dou, Shi Xue; Kim, Jung Ho

    2017-09-04

    Hierarchically structured aggregates, consisting of TiO2 nanoparticles were produced via one-step solvothermal syntheses with a mixed solvent system containing both acetic acid and ethanol. Two of the resulting structures, one ~700 nm and the other ~300 nm in diameter, were found to be comprised of 8.5 nm and 10.5 nm anatase crystals, and possess specific surface areas of 138 and 106 m(2) g(-1) respectively. These particles were incorporated into Dye-sensitized Solar Cells (DSCs) as high surface area scattering layers, along with a layer of a transparent material. Solar-to-electric conversion efficiencies (PCE) of 9.1% and 8.2% were recorded using these aggregated particles as compared to those of commonly used large particles scattering layer 7.4%.

  1. Screening Ingredients from Herbs against Pregnane X Receptor in the Study of Inductive Herb-Drug Interactions: Combining Pharmacophore and Docking-Based Rank Aggregation

    PubMed Central

    Cui, Zhijie; Kang, Hong; Tang, Kailin; Liu, Qi; Cao, Zhiwei; Zhu, Ruixin

    2015-01-01

    The issue of herb-drug interactions has been widely reported. Herbal ingredients can activate nuclear receptors and further induce the gene expression alteration of drug-metabolizing enzyme and/or transporter. Therefore, the herb-drug interaction will happen when the herbs and drugs are coadministered. This kind of interaction is called inductive herb-drug interactions. Pregnane X Receptor (PXR) and drug-metabolizing target genes are involved in most of inductive herb-drug interactions. To predict this kind of herb-drug interaction, the protocol could be simplified to only screen agonists of PXR from herbs because the relations of drugs with their metabolizing enzymes are well studied. Here, a combinational in silico strategy of pharmacophore modelling and docking-based rank aggregation (DRA) was employed to identify PXR's agonists. Firstly, 305 ingredients were screened out from 820 ingredients as candidate agonists of PXR with our pharmacophore model. Secondly, DRA was used to rerank the result of pharmacophore filtering. To validate our prediction, a curated herb-drug interaction database was built, which recorded 380 herb-drug interactions. Finally, among the top 10 herb ingredients from the ranking list, 6 ingredients were reported to involve in herb-drug interactions. The accuracy of our method is higher than other traditional methods. The strategy could be extended to studies on other inductive herb-drug interactions. PMID:26339628

  2. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    PubMed Central

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  3. Evidence for leptin receptor isoforms heteromerization at the cell surface.

    PubMed

    Bacart, Johan; Leloire, Audrey; Levoye, Angélique; Froguel, Philippe; Jockers, Ralf; Couturier, Cyril

    2010-06-03

    Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin's effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good

  5. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; de Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-01

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting.

  6. Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction

    PubMed Central

    Zhang, Wenjing; Cai, Yin; Qian, Rui; Zhao, Bo; Zhu, Peizhi

    2016-01-01

    In this work, ball-like Ag nanorod aggregates have been synthesized via a simple seed-mediated method. These Ag mesostructures were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Adding a certain amount of polyvinyl pyrrolidone (PVP) can prolong its coagulation time. These Ag nanorod aggregates exhibit effective SERS effect, evaluated by Rhodamine 6G (R6G) and doxorubicin (DOX) as probe molecules. The limit of detection (LOD) for R6G and DOX are as low as 5 × 10−9 M and 5 × 10−6 M, respectively. Moreover, these Ag nanorod aggregates were found to be potential catalysts for the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4.

  7. NMDA receptors on the surface of cancer cells: Target for chemotherapy?

    PubMed Central

    Deutsch, Stephen I.; Tang, Amy H.; Burket, Jessica A.; Benson, Andrew D.

    2017-01-01

    The mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a therapeutic target for many types of cancers. NMDA receptors regulate mTOR signalling activity; their inappropriate expression on several human cancer cell lines represents a potential therapeutic avenue to control dysregulated growth, division and invasiveness. Targeting these receptors with selective ligands (e.g., glycineB site ligands) may be a less toxic and more tolerable approach than administering compounds acting at the mTORC1 complex itself, such as rapamycin and its derivatives. Thus, testing glycineB site ligands in relevant in vitro and in vivo paradigms with established human cancer cells that express NMDA receptors on their surface could provide proofs of concept/principle that would encourage exploration of these and other “non-toxic” strategies. Interestingly, in some cancer models that express NMDA receptors on their surface, NMDA receptor antagonists, such as MK-801 (dizocilpine), were shown to possess anti-proliferative and anti-invasive effects, which conflict with hypotheses about promoting NMDA receptor activation as a cancer chemotherapeutic strategy. Whether NMDA receptor activation or antagonism is associated with anti-proliferative and anti-invasive effects may reflect differences between cancer cell lines in terms of the proteins associated with the NMDA receptors on their cell surfaces, which, in turn, could lead to different “downstream” effects on cascades of intracellular phosphorylations. Irrespective of whether activation or antagonism is associated with anti-proliferative and anti-invasive effects for specific types of cancer, data are emerging that support exploration of targeting NMDA receptors expressed on the surface of cancer cells as a therapeutic strategy. PMID:24751001

  8. Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation

    PubMed Central

    Petrini, Enrica Maria; Lu, Jiuyi; Cognet, Laurent; Lounis, Brahim; Ehlers, Michael D.; Choquet, Daniel

    2010-01-01

    SUMMARY At excitatory glutamatergic synapses, postsynaptic endocytic zones (EZs), which are adjacent to the postsynaptic density (PSD), mediate clathrin-dependent endocytosis of surface AMPA Receptors (AMPAR) as a first step to receptor recycling or degradation. However, it remains unknown if receptor recycling influences AMPARs lateral diffusion, and if EZs are important for the expression of synaptic potentiation. Here we demonstrate that the presence of both EZs and AMPAR recycling maintain a large pool of mobile AMPARs at synapses. In addition, we find that synaptic potentiation is accompanied by an accumulation and immobilization of AMPARs at synapses resulting from both their exocytosis and stabilization at the PSD. Displacement of EZs from the postsynaptic region impairs the expression of synaptic potentiation by blocking AMPAR recycling. Thus receptor recycling is crucial for maintaining a mobile population of surface AMPARs which can be delivered to synapses for increases in synaptic strength. PMID:19607795

  9. Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures

    PubMed Central

    Lam, Alan Tin-Lun; Li, Jian; Chen, Allen Kuan-Liang; Reuveny, Shaul

    2014-01-01

    The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. PMID:24641164

  10. Toll-like Receptors at the Ocular Surface

    PubMed Central

    Pearlman, Eric; Johnson, Angela; Adhikary, Gautam; Sun, Yan; Chinnery, Holly R.; Fox, Todd; Kester, Mark; Mcmenamin, Paul G.

    2012-01-01

    The Toll-like receptor (TLR) family of pathogen recognition molecules has an important role in recognizing microbial pathogens and microbial breakdown products. Activation of TLRs in the corneal epithelium induces CXC chemokine production and recruitment of neutrophils to the corneal stroma. Although essential for pathogen killing, neutrophils can cause extensive tissue damage, leading to visual impairment and blindness. In this review, we examine the role of TLRs in microbial keratitis and in noninfectious corneal inflammation, most commonly associated with contact lens wear. We present recent findings on TLR signaling pathways in the cornea, including MyD88- and TRIF-dependent responses and discuss the role of resident macrophages and dendritic cells. Finally, we examine the potential for targeting the TLR pathway as a potential therapeutic intervention for microbial keratitis and contact lens-associated corneal inflammation. PMID:18781257

  11. Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.

    PubMed

    Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R

    2005-05-01

    Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.

  12. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays

    NASA Astrophysics Data System (ADS)

    Patil, Samadhan B.; Vögtli, Manuel; Webb, Benjamin; Mazza, Giuseppe; Pinzani, Massimo; Soh, Yeong-Ah; McKendry, Rachel A.; Ndieyira, Joseph W.

    2015-10-01

    Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface. Using equilibrium theory, we quantitatively describe the mechanical responses of vancomycin, human immunodeficiency virus type 1 antigens and coagulation factor VIII captured on the cantilever in the presence of competing stresses from the top and bottom cantilever surfaces. We show that the area per receptor molecule on the cantilever surface influences ligand-receptor binding and plays an important role on stress. Our results offer a new way to sense biomolecules and will aid in the creation of ultrasensitive biosensors.

  13. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.

    PubMed

    Thiruppathi, Eagappanath; Larson, Mark K; Mani, Gopinath

    2015-01-01

    CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy.

  14. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors

    SciTech Connect

    Perron, Amelie; Sharif, Nadder; Gendron, Louis; Lavallee, Mariette; Stroh, Thomas; Mazella, Jean; Beaudet, Alain . E-mail: abeaudet@frsq.gouv.qc.ca

    2006-05-12

    In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.

  15. Surface charge potentiates conduction through the cardiac ryanodine receptor channel

    PubMed Central

    1994-01-01

    Single channel currents through cardiac sarcoplasmic reticulum (SR) Ca2+ release channels were measured in very low levels of current carrier (e.g., 1 mM Ba2+). The hypothesis that surface charge contributes to these anomalously large single channel currents was tested by changing ionic strength and surface charge density. Channel identity and sidedness was pharmacologically determined. At low ionic strength (20 mM Cs+), Cs+ conduction in the lumen-->myoplasm (L-->M) direction was significantly greater than in the reverse direction (301.7 +/- 92.5 vs 59.8 +/- 38 pS, P < 0.001; mean +/- SD, t test). The Cs+ concentration at which conduction reached half saturation was asymmetric (32 vs 222 mM) and voltage independent. At high ionic strength (400 mM Cs+), conduction in both direction saturated at 550 +/- 32 pS. Further, neutralization of carboxyl groups on the lumenal side of the channel significantly reduced conduction (333.0 +/- 22.5 vs 216.2 +/- 24.4 pS, P < 0.002). These results indicate that negative surface charge exists near the lumenal mouth of the channel but outside the electric field of the membrane. In vivo, this surface charge may potentiate conduction by increasing the local Ca2+ concentration and thus act as a preselection filter for this poorly selective channel. PMID:8035165

  16. Interaction with Dopamine D2 Receptor Enhances Expression of Transient Receptor Potential Channel 1 at the Cell Surface

    PubMed Central

    Hannan, Meredith A.; Kabbani, Nadine; Paspalas, Constantinos D.; Levenson, Robert

    2008-01-01

    Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further validated by GST-pulldown assays and coimmunoprecipitation from mammalian brain. Ultrastructural analysis of TRPC1 and D2R expression indicates colocalization of the two proteins within the cell body and dendrites of cortical neurons. In cultured cells, expression of D2Rs was found to increase expression of TRPC1 at the cell surface by 50%. These findings shed new light on the constituents of the D2R signalplex, and support the involvement of D2Rs in cellular calcium signaling pathways via a novel link to TRPC channels. PMID:18261457

  17. A Pilot Study on the Effect of Angiotensin Receptor Blockers on Platelet Aggregation in Hypertensive Patients- A Prospective Observational Study

    PubMed Central

    Sanji, Narendranath; Kamath, Pallavi Mahadeva; Devendrappa, Srinivas Lokikere; Hanumanthareddy, Shashikala Gowdara; Maniyar, Imran; Rudrappa, Suresh Surappla

    2016-01-01

    Introduction Thrombosis is an invariable component contributing to cardiovascular events in patients with hypertension. One of the risk factors of cardiovascular disease is increased platelet activity. One among the widely used antihypertensive agents are Angiotensin II type 1 Receptor Blockers (ARBs). Even though there are many studies involving antihypertensive agents, their antithrombotic properties remain elusive and not fully characterized. Aim To evaluate the anti-aggregatory effect of ARBs on platelets in-vivo. Materials and Methods A total of 60 subjects were included in this observational pilot study conducted in the medicine out patient department of JJM Hospital, Davanagere, Karnataka, India. Among them, 30 patients with essential hypertension attending Medicine OPD of a tertiary care hospital, who were on ARB for at least one month, were enrolled into study group. The control group consisted of 30 normotensive subjects who were not on any drug affecting platelet function. The Bleeding Time (BT) was evaluated for both the groups using Duke method of BT estimation. Data was analysed using SPSS software version 20. The test group was compared with control group using student’s unpaired t-test. Results The mean BT of study group was 2.488 minutes ± 0.0361 Standard Error of Mean (SEM) and that of control group was 1.998 minutes ± 0.0362 SEM. The result was statistically significant (p<0.001). The average duration of treatment was 2.933 years. Conclusion ARB have antiplatelet activity. Increase in BT in ARB group when compared with that of control group is a reflection of antiplatelet activity. PMID:28050394

  18. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  19. Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2.

    PubMed

    Locatelli-Hoops, Silvia C; Gorshkova, Inna; Gawrisch, Klaus; Yeliseev, Alexei A

    2013-10-01

    Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.

  20. Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71

    PubMed Central

    Du, Ning; Cong, Haolong; Tian, Hongchao; Zhang, Hua; Zhang, Wenliang; Song, Lei

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections. PMID:24623428

  1. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  2. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells

    PubMed Central

    Dissmore, Tixieanna; Seye, Cheikh I.; Medeiros, Denis M.; Weisman, Gary A.; Bardford, Barry; Mamedova, Laman

    2016-01-01

    Background and aims The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. Methods Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R−/− mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). Results P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R−/− VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R−/− VSMCs versus cells transfected with the mutant P2Y2R. Conclusions Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A. PMID:27522265

  3. The P2Y2 receptor mediates uptake of matrix-retained and aggregated low density lipoprotein in primary vascular smooth muscle cells.

    PubMed

    Dissmore, Tixieanna; Seye, Cheikh I; Medeiros, Denis M; Weisman, Gary A; Bardford, Barry; Mamedova, Laman

    2016-09-01

    The internalization of aggregated low-density lipoproteins (agLDL) mediated by low-density lipoprotein receptor related protein (LRP1) may involve the actin cytoskeleton in ways that differ from the endocytosis of soluble LDL by the LDL receptor (LDLR). This study aims to define novel mechanisms of agLDL uptake through modulation of the actin cytoskeleton, to identify molecular targets involved in foam cell formation in vascular smooth muscle cells (VSMCs). The critical observation that formed the basis for these studies is that under pathophysiological conditions, nucleotide release from blood-derived and vascular cells activates SMC P2Y2 receptors (P2Y2Rs) leading to rearrangement of the actin cytoskeleton and cell motility. Therefore, we tested the hypothesis that P2Y2R activation mediates agLDL uptake by VSMCs. Primary VSMCs were isolated from aortas of wild type (WT) C57BL/6 and.P2Y2R-/- mice to investigate whether P2Y2R activation modulates LRP1 expression. Cells were transiently transfected with cDNA encoding a hemagglutinin-tagged (HA-tagged) WT P2Y2R, or a mutant P2Y2R that unlike the WT P2Y2R does not bind the cytoskeletal actin-binding protein filamin-A (FLN-A). P2Y2R activation significantly increased agLDL uptake, and LRP1 mRNA expression decreased in P2Y2R-/- VSMCs versus WT. SMCs, expressing P2Y2R defective in FLN-A binding, exhibit 3-fold lower LDLR expression levels than SMCs expressing WT P2Y2R, while cells transfected with WT P2Y2R show greater agLDL uptake in both WT and P2Y2R-/- VSMCs versus cells transfected with the mutant P2Y2R. Together, these results show that both LRP1 and LDLR expression and agLDL uptake are regulated by P2Y2R in VSMCs, and that agLDL uptake due to P2Y2R activation is dependent upon cytoskeletal reorganization mediated by P2Y2R binding to FLN-A. Published by Elsevier Ireland Ltd.

  4. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    PubMed

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  5. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    SciTech Connect

    Nakamura, M.; Ogawa, H.; Tsunematsu, T. )

    1990-10-15

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with {sup 125}I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24{degrees}C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind {sup 125}I-MNSF. {sup 125}I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF.

  6. Imaging of kiss-and-run exocytosis of surface receptors in neuronal cultures

    PubMed Central

    Roman-Vendrell, Cristina; Chevalier, Michael; Acevedo-Canabal, Agnes M.; Delgado-Peraza, Francheska; Flores-Otero, Jacqueline; Yudowski, Guillermo A.

    2014-01-01

    Transmembrane proteins are continuously shuttled from the endosomal compartment to the neuronal plasma membrane by highly regulated and complex trafficking steps. These events are involved in many homeostatic and physiological processes such as neuronal growth, signaling, learning and memory among others. We have previously shown that endosomal exocytosis of the B2 adrenergic receptor (B2AR) and the GluR1-containing AMPA receptor to the neuronal plasma membrane is mediated by two different types of vesicular fusion. A rapid type of exocytosis in which receptors are delivered to the plasma membrane in a single kinetic step, and a persistent mode in which receptors remain clustered at the insertion site for a variable period of time before delivery to the cell surface. Here, by comparing the exocytosis of multiple receptors in dissociated hippocampal and striatal cultures, we show that persistent events are a general mechanism of vesicular delivery. Persistent events were only observed after 10 days in vitro, and their frequency increased with use of the calcium ionophore A23187 and with depolarization induced by KCl. Finally, we determined that vesicles producing persistent events remain at the plasma membrane, closing and reopening their fusion pore for a consecutive release of cargo in a mechanism reminiscent of synaptic kiss-and-run. These results indicate that the delivery of transmembrane receptors to the cell surface can be dynamically regulated by kiss-and-run exocytosis. PMID:25404895

  7. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    PubMed

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  8. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    PubMed

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  9. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro.

    PubMed Central

    Ockenhouse, C F; Magowan, C; Chulay, J D

    1989-01-01

    The CD36 leukocyte differentiation antigen, recognized by MAbs OKM5 and OKM8 and found on human monocytes and endothelial cells, has been implicated as a sequestration receptor for erythrocytes infected with the human malaria parasite Plasmodium falciparum (IRBC). CD36 is also expressed on platelets and appears to be identical to platelet glycoprotein IV. We investigated receptor activation of monocytes and platelets by anti-CD36 MAbs and by IRBC. Incubation of human monocytes with anti-CD36 MAbs or IRBC resulted in stimulation of the respiratory burst as measured by reduction of nitroblue tetrazolium and generation of chemiluminescence. Incubation of human platelets with anti-CD36 MAbs resulted in platelet activation as measured by aggregation or ATP secretion. Activation of monocytes and platelets required appropriate intracellular transmembrane signaling and was inhibited by calcium antagonists or by specific inhibitors of protein kinase C or guanine nucleotide binding proteins. Soluble CD36 inhibited binding of IRBC to both monocytes and platelets, suggesting that these interactions are mediated by the CD36 receptor. Using a cytochemical electron microscopic technique, the presence of reactive oxygen intermediates was identified at the interface between human monocytes and IRBC. These data provide support for the hypothesis that reactive oxygen intermediates produced by monocytes when IRBC ligands interact with cell surface receptors may play a role in the pathophysiology of falciparum malaria. Images PMID:2474569

  10. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  11. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata.

    PubMed

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-08-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation.

  12. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    PubMed Central

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  13. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  14. Surface Expression of NMDA Receptor Changes during Memory Consolidation in the Crab "Neohelice granulata"

    ERIC Educational Resources Information Center

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab "Neohelice granulata". Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of…

  15. Surface Expression of NMDA Receptor Changes during Memory Consolidation in the Crab "Neohelice granulata"

    ERIC Educational Resources Information Center

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab "Neohelice granulata". Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of…

  16. Reciprocal and activity-dependent regulation of surface AMPA and NMDA receptors in cultured neurons

    PubMed Central

    Li, Guo Hua; Jackson, Michael F; Orser, Beverley A; MacDonald, John F

    2010-01-01

    Activation of NMDA receptors (NMDARs) can modulate excitatory synaptic transmission in the central nervous system by dynamically altering the number of synaptic AMPA receptors (AMPARs). The surface expression of NMDARs themselves is also subject to modulation in an activity-dependent manner. In addition to NMDAR-induced changes in AMPAR expression, AMPARs have also been found to regulate their own surface expression, independently of NMDARs. However, whether or not AMPARs and NMDARs might reciprocally regulate their surface expression has not previously been systematically explored. We utilized surface biotinylation assays and stimulation protocols intended to selectively stimulate various glutamate receptor subpopulations (e.g. AMPARs vs NMDARs; synaptic vs extrasynaptic). We reveal that activation of synaptic NMDARs increases the surface expression of both NMDAR and AMPAR subunits, while activation of extrasynaptic NMDAR produces the opposite effect. Surprisingly, we find that selective activation of AMPARs reduces the surface expression of not only AMPARs but also of NMDARs. These results suggest that both AMPARs and NMDARs at synaptic sites are subject to modulation by multiple signalling pathways in an activity-dependent way. PMID:21383896

  17. Mapping surface structures of the human insulin receptor with monoclonal antibodies: localization of main immunogenic regions to the receptor kinase domain.

    PubMed

    Morgan, D O; Roth, R A

    1986-03-25

    A panel of 37 monoclonal antibodies to the human insulin receptor has been used to characterize the receptor's major antigenic regions and their relationship to receptor functions. Three antibodies recognized extracellular surface structures, including the insulin binding site and a region not associated with insulin binding. The remaining 34 monoclonal antibodies were directed against the cytoplasmic domain of the receptor beta subunit. Competitive binding studies demonstrated that four antigenic regions (beta 1, beta 2, beta 3, and beta 4) are found on this domain. Sixteen of the antibodies were found to be directed against beta 1, nine against beta 2, seven against beta 3, and two against beta 4. Antibodies to all four regions inhibited the receptor-associated protein kinase activity to some extent, although antibodies directed against the beta 2 region completely inhibited the kinase activity of the receptor both in the autophosphorylation reaction and in the phosphorylation of an exogenous substrate, histone. Antibodies to the beta 2 region also did not recognize autophosphorylated receptor. In addition, antibodies to this same region recognized the receptor for insulin-like growth factor I (IGF-I) as well as the insulin receptor. In contrast, antibodies to other cytoplasmic regions did not recognize the IGF-I receptor as well as the insulin receptor. These results indicate that the major immunogenic regions of the insulin receptor are located on the cytoplasmic domain of the receptor beta subunit and are associated with the tyrosine-specific kinase activity of the receptor. In addition, these results suggest that a portion of the insulin receptor is highly homologous to that of the IGF-I receptor.

  18. Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation.

    PubMed

    Sum, Chi Shing; Tikhonova, Irina G; Costanzi, Stefano; Gershengorn, Marvin C

    2009-02-06

    Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.

  19. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection

    PubMed Central

    O’Hara, Samantha D.

    2016-01-01

    ABSTRACT Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. PMID:27803182

  20. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells

    PubMed Central

    Ricard-Blum, Sylvie; Vallet, Sylvain D.

    2016-01-01

    The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents. PMID:26869928

  1. Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface

    NASA Astrophysics Data System (ADS)

    Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong

    2017-05-01

    Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.

  2. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors

    PubMed Central

    Yahiro, Kinnosuke; Hirayama, Toshiya; Moss, Joel; Noda, Masatoshi

    2016-01-01

    Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage. PMID:27187473

  3. Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor

    PubMed Central

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443

  4. Detection of CXCR4 receptors on cell surface using a fluorescent metal nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.; Lakowicz, Joseph R.

    2011-01-01

    Fluorescence cell imaging can be used for disease diagnosis and cellular signal transduction. Using a metal nanoshell as molecular imaging agent, we develop a cellular model system to detect CXCR4 chemokine receptor on T-lymphatic cell surface. These metal nanoshells are observed to express enhanced emission intensity and shortened lifetimes due to the near-field interactions. They are covalently bound with anti-CXCR4 monoclonal antibodies for immunoreactions with the target sites of the CXCR4 receptors on the CEM-SS cells. The fluorescence intensity and lifetime cell images are recorded with a time-resolved confocal microscopy. As expected, the emission signals from the metal nanoshells are clearly isolated from the cellular autofluorescence due to strong intensities and distinctive lifetimes. The number of emission spots on the single cell image is estimated by direct count to the emission signals. Analyzing a pool of cell images, a maximal count number is obtained in a range of 200+/-50. Because there is an average of ~6000 binding sites on the cell surface, we estimate that one emission spot from the metal nanoshell may represent ~30 CXCR5 receptors. In addition, the CXCR4 receptors are estimated to distribute on ~70% area of the cell surface.

  5. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    SciTech Connect

    Kuwasako, Kenji; Sekiguchi, Toshio; Nagata, Sayaka; Jiang, Danfeng; Hayashi, Hidetaka; Murakami, Manabu; Hattori, Yuichi; Kitamura, Kazuo; Kato, Johji

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  6. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    NASA Astrophysics Data System (ADS)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  7. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  8. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  9. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    SciTech Connect

    Stabley, Daniel; Retterer, Scott T; Marshal, Stephen; Salaita, Khalid

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  10. A SUB-PIXEL COEFFICIENT MODEL TO FORM AGGREGATE IMPERVIOUUS SURFACE ESTIMATES FROM NATIONAL LAND COVER DATA

    EPA Science Inventory

    Using GIS to produce impervious surface coefficients from National Land Cover Data

    National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...

  11. A SUB-PIXEL COEFFICIENT MODEL TO FORM AGGREGATE IMPERVIOUUS SURFACE ESTIMATES FROM NATIONAL LAND COVER DATA

    EPA Science Inventory

    Using GIS to produce impervious surface coefficients from National Land Cover Data

    National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...

  12. Insulin-induced surface redistribution regulates internalization of the insulin receptor and requires its autophosphorylation

    SciTech Connect

    Carpentier, J.L.; Paccaud, J.P.; Orci, L. ); Gorden, P. ); Rutter, W.J. )

    1992-01-01

    The role of insulin-induced receptor autophosphorylation in its internalization was analyzed by comparing {sup 125}I-labeled insulin ({sup 125}I-insulin) internalization in Chinese hamster ovary (CHO) cell lines transfected with normal (CHO.T) or mutated insulin receptors. In four cell lines with a defect of insulin-induced autophosphorylation, {sup 125}I-insulin internalization was impaired. By contrast, in CHO.T cells and in two other CHO cell lines with amino acid deletions or insertions that do not perturb autophosphorylation, {sup 125}I-insulin internalization was not affected. A morphological analysis showed that the inhibition is linked to the ligand-specific surface redistribution in which the insulin-receptor complexes leave microvilli and concentrate on nonvillous segments of the membrane where endocytosis occurs.

  13. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  14. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors.

    PubMed

    Penn, A C; Zhang, C L; Georges, F; Royer, L; Breillat, C; Hosy, E; Petersen, J D; Humeau, Y; Choquet, D

    2017-09-21

    Long-term potentiation (LTP) of excitatory synaptic transmission has long been considered a cellular correlate for learning and memory. Early LTP (less than 1 h) had initially been explained either by presynaptic increases in glutamate release or by direct modification of postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function. Compelling models have more recently proposed that synaptic potentiation can occur by the recruitment of additional postsynaptic AMPA receptors (AMPARs), sourced either from an intracellular reserve pool by exocytosis or from nearby extra-synaptic receptors pre-existing on the neuronal surface. However, the exact mechanism through which synapses can rapidly recruit new AMPARs during early LTP remains unknown. In particular, direct evidence for a pivotal role of AMPAR surface diffusion as a trafficking mechanism in synaptic plasticity is still lacking. Here, using AMPAR immobilization approaches, we show that interfering with AMPAR surface diffusion markedly impairs synaptic potentiation of Schaffer collaterals and commissural inputs to the CA1 area of the mouse hippocampus in cultured slices, acute slices and in vivo. Our data also identify distinct contributions of various AMPAR trafficking routes to the temporal profile of synaptic potentiation. In addition, AMPAR immobilization in vivo in the dorsal hippocampus inhibited fear conditioning, indicating that AMPAR diffusion is important for the early phase of contextual learning. Therefore, our results provide a direct demonstration that the recruitment of new receptors to synapses by surface diffusion is a critical mechanism for the expression of LTP and hippocampal learning. Since AMPAR surface diffusion is dictated by weak Brownian forces that are readily perturbed by protein-protein interactions, we anticipate that this fundamental trafficking mechanism will be a key target for modulating synaptic potentiation and learning.

  15. Ex-vivo tissue classification of cell surface receptor concentrations using kinetic modeling

    NASA Astrophysics Data System (ADS)

    Sinha, Lagnojita; Wang, Yu; Yang, Cynthia; Khan, Altaz; Liu, Jonathan T.; Tichauer, Kenneth M.

    2015-03-01

    One of the major challenges in the complete resection of cancer is the difficulty of distinctly classifying tumor and healthy tissue. This paper investigates the capability of competing kinetic modeling approaches for identifying different tissue types based on differential cell-surface receptor expressions. These approaches require fresh resected tissues to be stained with a mixture of two probes: one targeted to a cancer specific cell-surface receptor, and another left "untargeted" to account for nonspecific retention of the targeted agent, with subsequent repeated rinsing and imaging of the probe concentrations. Analysis of the results were carried out in simulations and in animal experiments for the cancer target, epidermal growth factor receptor (EGFR), a cell surface receptor overexpressed by many cancers. In the animal experiments, subcutaneous xenografts of human glioma (U251; moderate EGFR) and human epidermoid (A431; high EGFR) tumors, grown in six athymic mice, were excised and stained with an EGFR targeted surface-enhanced Raman scattering nanoparticle (SERS NP) and untargeted SERS NP pair. The salient finding in this study was that significant non-specific retention was observed for the EGFR targeted probe [anti-EGFR antibody labeled with a surface-enhanced Raman scattering (SERS) nanoparticle], but could be corrected for by the equivalent non-specific retention of the untargeted probe (isotype control antibody labeled with a different SERS nanoparticle). Once this non-specific binding was accounted for, the kinetic model was able to predict the expected differences in EGFR concentration among different tissue types: healthy, U251, and A431 in accordance with an ex vivo flow cytometry analysis, successfully classifying different tissue types.

  16. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form

    PubMed Central

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  17. Ric-3 chaperone-mediated stable cell-surface expression of the neuronal α7 nicotinic acetylcholine receptor in mammalian cells

    PubMed Central

    Vallés, Ana Sofía; Roccamo, Ana M; Barrantes, Francisco J

    2009-01-01

    Aim: Studies of the α7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of α7-type AChRs1. The current work aims at obtaining and characterizing a cell line with high functional expression of the human α7 AChR. Methods: Ric-3 cDNA was incorporated into SHE-P1-hα7 cells expressing the α7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [125I]α-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent α-bungarotoxin, anti-α7 antibody, and GFP-α7 were performed on the new clone. Results: The human α7-type AChR was stably expressed in a new cell line, which we coined SHE-P1-hα7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [125I]αBTX saturable binding with an apparent KD of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-P1-hα7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-α7 antibodies. In contrast, chaperone-less SHE-P1-hα7 cells expressed only intracellular α7 AChRs and failed to produce detectable single-channel currents. Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal α7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells. PMID:19498422

  18. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  19. NMDA receptor surface mobility depends on NR2A-2B subunits

    PubMed Central

    Groc, Laurent; Heine, Martin; Cousins, Sarah L.; Stephenson, F. Anne; Lounis, Brahim; Cognet, Laurent; Choquet, Daniel

    2006-01-01

    The NR2 subunit composition of NMDA receptors (NMDARs) varies during development, and this change is important in NMDAR-dependent signaling. In particular, synaptic NMDAR switch from containing mostly NR2B subunit to a mixture of NR2B and NR2A subunits. The pathways by which neurons differentially traffic NR2A- and NR2B-containing NMDARs are poorly understood. Using single-particle and -molecule approaches and specific antibodies directed against NR2A and NR2B extracellular epitopes, we investigated the surface mobility of native NR2A and NR2B subunits at the surface of cultured neurons. The surface mobility of NMDARs depends on the NR2 subunit subtype, with NR2A-containing NMDARs being more stable than NR2B-containing ones, and NR2A subunit overexpression stabilizes surface NR2B-containing NMDARs. The developmental change in the synaptic surface content of NR2A and NR2B subunits was correlated with a developmental change in the time spent by the subunits within synapses. This suggests that the switch in synaptic NMDAR subtypes depends on the regulation of the receptor surface trafficking. PMID:17124177

  20. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Kern, R. G.

    2003-07-01

    The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated martian conditions.

  1. Structure-activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling.

    PubMed

    Schmidt, Thomas J; Gurrath, Marion; Ozoe, Yoshihisa

    2004-08-01

    The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals.

  2. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis.

    PubMed

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-07-22

    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach.

  3. Proinsulin lacking the A7-B7 disulfide bond, Ins2Akita, tends to aggregate due to the exposed hydrophobic surface.

    PubMed

    Yoshinaga, Takeo; Nakatome, Keisuke; Nozaki, Jun-ichi; Naitoh, Motoko; Hoseki, Jun; Kubota, Hiroshi; Nagata, Kazuhiro; Koizumi, Akio

    2005-11-01

    A single mutation (C96Y) in the Ins2 gene, which disrupts the A7-B7 disulfide bond, causes the diabetic phenotype in Akita mice. We biochemically analyzed the conformation of wild-type and Akita mutant recombinant proinsulins. Gel filtration chromatography and dynamic light scattering revealed that the apparent size of the mutant proinsulin molecules was significantly larger than that of wild-type proinsulin, even in the absence of intermolecular disulfide bonds. Titration with a hydrophobic probe, 1-anilinonaphthalene-8-sulfonate, demonstrated that the mutant proinsulin was more hydrophobic than the wild type. In addition, circular dichroism studies revealed that the conformation of the mutant proinsulin was less stable than the wild type, which is consistent with the observation that hydrophobic residues are exposed on the surface of the proinsulin molecules. Studies with antiserum against the C-peptide of proinsulin indicated that the mutant proinsulin had an immunoreactivity that was at least one-tenth weaker than wild-type proinsulin, suggesting that the C-peptide of mutant proinsulin is buried inside the aggregate of the proinsulin molecule. These findings indicate that increased hydrophobicity of mutant proinsulin facilitates aggregate formation, providing a clue to the dominant negative effect in the Akita mouse.

  4. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Comparison of shear bond strength of resin-modified glass ionomer to conditioned and unconditioned mineral trioxide aggregate surface: An in vitro study

    PubMed Central

    Gulati, Shikha; Shenoy, Vanitha Umesh; Margasahayam, Sumanthini Venkatasubramanyam

    2014-01-01

    Introduction: The aim of this study was to compare the shear bond strength of resin modified glass ionomer cement to conditioned and unconditioned mineral trioxide aggregate surface. Materials and Method: White Mineral Trioxide Aggregate (WMTA) and Resin Modified Glass Ionomer Cement (RMGIC) were used for the study. 60 WMTA specimens were prepared and stored in an incubator at 37° C and 100% humidity for 72 hrs. The specimens were then divided into two groups- half of the specimens were conditioned and remaining half were left unconditioned, subsequent to which RMGIC was placed over MTA. The specimens were then stored in an incubator for 24 hrs at 37° C and 100% humidity. The shear bond strength value of RMGIC to conditioned and unconditioned WMTA was measured and compared using unpaired 't  ’ test. Results: The mean shear bond strength of value of RMGIC to conditioned and unconditioned WMTA was 6.59 MPa and 7.587 MPa respectively. Statistical analysis using unpaired t-test revealed that the difference between values of two groups was not statistically significant (P > 0.05). Conclusions: During clinical procedures like pulp capping and furcal repair, if RMGIC is placed as a base over MTA, then conditioning should be done to increase the bond strength between RMGIC and dentin and any inadvertent contact of conditioner with MTA will not significantly affect the shear bond strength value of RMGIC to MTA. PMID:25298644

  6. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor.

    PubMed

    Streltsov, V A; Varghese, J N; Carmichael, J A; Irving, R A; Hudson, P J; Nuttall, S D

    2004-08-24

    The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-A structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the "bottom" of the molecule, apparently discontinuous from the antigen-binding paratope and similar to that observed in cell adhesion molecules. Thus, we suggest that IgNARs originated as cell-surface adhesion molecules coopted to the immune repertoire and represent an evolutionary lineage independent of variable heavy chain/variable light chain type antibodies. Additionally, both 12Y-1 and 12Y-2 form unique crystallographic dimers, predominantly mediated by main-chain framework interactions, which represent a possible model for primordial cell-based interactions. Unusually, the 12Y-2 complementarity-determining region 3 also adopts an extended beta-hairpin structure, suggesting a distinct selective advantage in accessing cryptic antigenic epitopes.

  7. A Hydrophobic Gold Surface Triggers Misfolding and Aggregation of the Amyloidogenic Josephin Domain in Monomeric Form, While Leaving the Oligomers Unaffected

    PubMed Central

    Apicella, Alessandra; Soncini, Monica; Deriu, Marco Agostino; Natalello, Antonino; Bonanomi, Marcella; Dellasega, David; Tortora, Paolo; Regonesi, Maria Elena; Casari, Carlo Spartaco

    2013-01-01

    Protein misfolding and aggregation in intracellular and extracellular spaces is regarded as a main marker of the presence of degenerative disorders such as amyloidoses. To elucidate the mechanisms of protein misfolding, the interaction of proteins with inorganic surfaces is of particular relevance, since surfaces displaying different wettability properties may represent model systems of the cell membrane. Here, we unveil the role of surface hydrophobicity/hydrophilicity in the misfolding of the Josephin domain (JD), a globular-shaped domain of ataxin-3, the protein responsible for the spinocerebellar ataxia type 3. By means of a combined experimental and theoretical approach based on atomic force microscopy, Fourier transform infrared spectroscopy and molecular dynamics simulations, we reveal changes in JD morphology and secondary structure elicited by the interaction with the hydrophobic gold substrate, but not by the hydrophilic mica. Our results demonstrate that the interaction with the gold surface triggers misfolding of the JD when it is in native-like configuration, while no structural modification is observed after the protein has undergone oligomerization. This raises the possibility that biological membranes would be unable to affect amyloid oligomeric structures and toxicity. PMID:23527026

  8. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor.

    PubMed

    Kim, Sungwon; Cox, Chasity M; Jenkins, Mark C; Fetterer, Ray H; Miska, Katarzyna B; Dalloul, Rami A

    2014-12-01

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74.

  9. Peripheral-type benzodiazepine receptor (PBR) aggregation and absence of steroidogenic acute regulatory protein (StAR)/PBR association in the mitochondrial membrane as determined by bioluminescence resonance energy transfer (BRET).

    PubMed

    Bogan, Randy L; Davis, Tracy L; Niswender, Gordon D

    2007-04-01

    The steroidogenic acute regulatory protein (StAR) is responsible for acute control of cholesterol transport across the mitochondrial membrane, however the mechanism of StAR-associated cholesterol transport is unknown and may involve the peripheral-type benzodiazepine receptor (PBR)/endozepine system. Several molecules of PBR may associate to form a channel through which cholesterol passes to the inner mitochondrial membrane, and endozepine is the natural ligand for PBR. Bioluminescence resonance energy transfer (BRET) was used to test StAR/PBR/endozepine interactions, PBR aggregation, and the effect of second messengers on interactions. There was no evidence of StAR/PBR, StAR/endozepine, or PBR/endozepine interactions. The StAR and PBR fusion proteins were trafficking to the mitochondria as expected, but the endozepine fusion protein was not localized to the mitochondria indicating that it was not biologically active. Data were obtained indicating that PBR forms aggregates in the mitochondrial membrane. Energy transfer between PBR fusion proteins was dose and time dependent, but there was no effect induced by PK11195 ligand binding or pharmacologic activation of PKA or PKC second messenger pathways. It appears that PBR aggregates in the mitochondrial membrane, however there was no evidence that PBR aggregation is regulated in the acute control of steroidogenesis, or that PBR and StAR interact.

  10. Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation.

    PubMed

    Castaneda, Julie T; Harui, Airi; Roth, Michael D

    2017-09-01

    Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20(+) B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD(+)/CD38(Dim)). While naïve mature and quiescent memory B cells (IgD(-)/CD38(-)) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD(-)/CD38(+)) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.

  11. The influence of erythrocyte aggregation on induced platelet aggregation.

    PubMed

    Ott, C; Lardi, E; Schulzki, T; Reinhart, W H

    2010-01-01

    Red blood cells (RBCs) affect platelet aggregation in flowing blood (primary hemostasis). We tested the hypothesis that RBC aggregation could influence platelet aggregation. RBC aggregation was altered in vitro by: (i) changing plasma aggregatory properties with 3.7 g% dextran 40 (D40), 3.0 g% dextran 70 (D70) or 1.55 g% dextran 500 (D500); (ii) changing RBC aggregatory properties by incubating RBCs in 50 mU/ml neuraminidase for 60 min (reduction of the surface sialic acid content, thus reducing electrostatic repulsion) and subsequent RBC resuspension in platelet rich plasma (PRP) containing 1 g% dextran 70. RBC aggregation was assessed with the sedimentation rate (ESR). Platelet aggregation was measured: (i) in flowing whole blood with a platelet function analyzer PFA-100(R), which simulates in vivo conditions with RBCs flowing in the center and platelets along the wall, where they adhere to collagen and aggregate; and (ii) in a Chrono-log 700 Aggregometer, which measures changes of impedance by platelet aggregation in whole blood or changes in light transmission in PRP. We found that RBC aggregation increased with increasing molecular weight of dextran (ESR: 4 +/- 3 mm/h, 34 +/- 14 mm/h and 89 +/- 23 mm/hfor D40, D70 and D500, respectively, p < 0.0001) and with neuraminidase-treated RBCs (76 +/- 27 mm/h vs 27 +/- 8 mm/h, respectively, p < 0.0001). Platelet aggregation measured in whole blood under flow conditions (PFA-100) and without flow (Chronolog Aggregometer) was not affected by RBC aggregation. Our data suggest that RBC aggregation does not affect platelet aggregation in vitro and plays no role in primary hemostasis.

  12. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  13. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    SciTech Connect

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K.

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  14. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    SciTech Connect

    Wofsy, C.; Goldstein, B. Los Alamos National Lab., NM )

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of the separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.

  15. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  16. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  17. Proton-promoted dissolution of α-FeOOH nanorods and microrods: size dependence, anion effects (carbonate and phosphate), aggregation and surface adsorption.

    PubMed

    Rubasinghege, Gayan; Kyei, Patrick K; Scherer, Michelle M; Grassian, Vicki H

    2012-11-01

    Iron-containing oxide nanoparticles are of great interest from a number of technological perspectives and they are also present in the natural environment. Although recent evidence suggests that particle size plays an important role in the dissolution of metal oxides, a detailed fundamental understanding of the influence of particle size is just beginning to emerge. In the current study, we investigate whether nanoscale size-effects are observed for the dissolution of iron oxyhydroxide under different conditions. The dissolution of two particle sizes of goethite, α-FeOOH in the nanoscale and microscale size regimes (herein referred to as nanorods and microrods), in aqueous suspensions at pH 2 is investigated. It is shown here that in the presence of nitrate, nanorods shows greater dissolution on both a per mass and per surface area basis relative to microrods, in agreement with earlier studies. In the presence of carbonate and phosphate, however, dissolution of α-FeOOH nanorods at pH 2 is significantly inhibited, despite the fact that these anions result in a three- to fivefold enhancement of the dissolution of microrods relative to the nitrate anion. Light scattering techniques and electron microscopy show that nanorod suspensions are less stable compared to microrod suspensions resulting in nanorod aggregation under conditions where microrods stay more dispersed. Furthermore, spectroscopic studies using ATR-FTIR spectroscopy show distinct differences in phosphate and carbonate adsorption on nanorods compared to microrods. These results demonstrate that aggregation and the details of surface adsorption are important in the dissolution behavior of nanoscale materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Quantification of epidermal growth factor receptor expression level and binding kinetics on cell surfaces by surface plasmon resonance imaging.

    PubMed

    Zhang, Fenni; Wang, Shaopeng; Yin, Linliang; Yang, Yunze; Guan, Yan; Wang, Wei; Xu, Han; Tao, Nongjian

    2015-10-06

    Epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is a membrane bound protein that has been associated with a variety of solid tumors and the control of cell survival, proliferation, and metabolism. Quantification of the EGFR expression level in cell membranes and the interaction kinetics with drugs are thus important for cancer diagnosis and treatment. Here we report mapping of the distribution and interaction kinetics of EGFR in their native environment with the surface plasmon resonance imaging (SPRi) technique. The monoclonal anti-EGFR antibody was used as a model drug in this study. The binding of the antibody to EGFR overexpressed A431 cells was monitored in real time, which was found to follow the first-order kinetics with an association rate constant (ka) and dissociation rate constant (kd) of (2.7 ± 0.6) × 10(5) M(-1) s(-1) and (1.4 ± 0.5) × 10(-4) s(-1), respectively. The dissociation constant (KD) was determined to be 0.53 ± 0.26 nM with up to seven-fold variation among different individual A431 cells. In addition, the averaged A431 cell surface EGFR density was found to be 636/μm(2) with an estimation of 5 × 10(5) EGFR per cell. Additional measurement also revealed that different EGFR positive cell lines (A431, HeLa, and A549) show receptor density dependent anti-EGFR binding kinetics. The results demonstrate that SPRi is a valuable tool for direct quantification of membrane protein expression level and ligand binding kinetics at single cell resolution. Our findings show that the local environment affects the drug-receptor interactions, and in situ measurement of membrane protein binding kinetics is important.

  19. Hodgkin's lymphoma: the role of cell surface receptors in regulation of tumor cell fate.

    PubMed

    Yurchenko, M; Sidorenko, S P

    2010-12-01

    , it triggered activation of JNK signaling cascade. The review presents the current views on the role of cell surface receptors in maintenance of HL microenvironment favorable for HRS cells survival.

  20. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  1. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  2. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  3. Effect of bleaching agents having a neutral pH on the surface of mineral trioxide aggregate using electron microscopy and energy dispersive X-ray microanalysis

    PubMed Central

    Kazia, Nooh; Suvarna, Nithin; Shetty, Harish Kumar; Kumar, Pradeep

    2016-01-01

    Aim: To investigate the effect of bleaching agents having a neutral pH on the surface of mineral trioxide aggregate (MTA) used as a coronal seal material for nonvital bleaching, beneath the bleaching agent, with the help of energy dispersive X-ray microanalysis and scanning electron microscopy (SEM). Materials and Methods: Six samples of plastic tubes filled with white MTA (Angelus white) were kept in 100% humidity for 21 days. Each sample was divided into 2 and made into 12 samples. These were then divided into three groups. Group A was exposed to Opalescence Boost 40% hydrogen peroxide (HP) (Ultradent). Group B to Opalescence 10% carbamide peroxide (Ultradent) and Group C (control group) not exposed to any bleaching agent. After recommended period of exposure to bleaching agents according to manufacturers’ instructions, the samples were observed under SEM with an energy dispersive X-ray microanalysis system (JSM-6380 LA). Results: There were no relevant changes in color and no statistically significant surface structure changes of the MTA in both the experimental groups. Conclusion: The present findings suggest that even high concentration HP containing bleaching agents with neutral pH can be used on the surface of MTA without causing structural changes. The superior sealing ability of MTA and the high alkalinity would prevent cervical resorption postbleaching. PMID:27656061

  4. Enhancement of Cell Surface Expression and Receptor Functions of Membrane Progestin Receptor α (mPRα) by Progesterone Receptor Membrane Component 1 (PGRMC1): Evidence for a Role of PGRMC1 as an Adaptor Protein for Steroid Receptors

    PubMed Central

    Pang, Yefei; Dong, Jing

    2014-01-01

    A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [3H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02–0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors. PMID:24424068

  5. Effects of clopidogrel and aspirin combination versus aspirin alone on platelet aggregation and major receptor expression in patients with heart failure: the Plavix Use for Treatment Of Congestive Heart Failure (PLUTO-CHF) trial.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Jerome, Scott D; Lowry, David R; Morgan, Athol W; Sane, David C; Tanguay, Jean-François; Steinhubl, Steven R; O'connor, Christopher M

    2003-10-01

    Persistent platelet activation may contribute to thrombotic events in patients with congestive heart failure (CHF). Chronic use of mild platelet inhibitors could therefore represent an independent avenue to improve morbidity, mortality, and quality of life in this expanding population. Although clopidogrel is widely used in patients with acute coronary syndromes and ischemic stroke, the ability of this novel ADP-receptor antagonist to inhibit platelet function in patients with CHF is unknown. We assessed antiplatelet properties of clopidogrel with aspirin (C+A) versus aspirin alone (A) in patients with CHF with heightened platelet activity. Patients with left ventricular ejection fraction <40%, or CHF symptoms in the setting of preserved systolic function and New York Heart Association class II-IV were screened. Patients were considered to have platelet activation when 4 of the following 5 parameters were met: ADP-induced platelet aggregation >60%; collagen-induced aggregation >70%; whole blood aggregation >18 ohms; expression of GP IIb/IIIa >220 log MFI; and P-selectin cell positivity >8%. All patients were treated with 325 mg of acetylsalycilic acid (ASA) for at least 1 month. Patients receiving an antithrombotic agent other than ASA were excluded. Patients meeting clinical and laboratory criteria were randomly assigned to C+A (n=25), A (n=25) groups, or represent screen failures (n=38). Platelet studies (conventional and whole blood aggregometry, shear-induced activation, expression of 10 major receptors and formation of platelet-leukocyte microparticles) were performed at baseline and after 30 days of therapy. There were no deaths, hospitalizations, or serious adverse events. There were no changes in platelet parameters in the A group. In contrast, therapy with C+A resulted in a significant inhibition of platelet activity assessed by ADP-induced (P =.00001), and epinephrine-induced (P =.0016) aggregation, closure time (P =.04), expression of PECAM-1 (P =.009

  6. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  7. Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water

    SciTech Connect

    Maeyama, K.; Hohman, R.J.; Metzger, H.; Beaven, M.A.

    1986-02-25

    RBL-2H3 cells (a tumor analog of rat mast cells) have plasma-membrane receptors that bind immunoglobulin E, which when aggregated, initiate degranulation. As in other systems, secretion is preceeded by enhanced hydrolysis of inositol phospholipids and by a rise in intracellular Ca2+. Unlike the responses of many other cells, however, both of these earlier events require extracellular Ca2+. The relationship of these events to each other and to the subsequent secretory process is thus unclear. By exposing cells to covalent oligomers of IgE one can demonstrate substantial increases in secretion of histamine by increasing the concentration and size of the oligomers or by using heavy water (D2O) in the medium. We have used such maneuvers to examine the quantitative relationships between aggregation of the receptors and the breakdown of inositol phospholipids, the increase in cytosolic Ca2+ and secretion. Our principal findings were: all treatments that increased secretion, correspondingly increased the changes that precede degranulation. These early events correlated with the degree of aggregation of the receptors even when the stimulatory conditions resulted in maximal secretion. Although the results were insufficient to prove that the hydrolysis of inositol phospholipids is required for the rise in cytosolic Ca2+, the studies with D2O and other observations supported this view. Since a plasma-membrane ion channel for Ca2+ has been implicated in the IgE-mediated rise in cytosolic Ca2+ in RBL 2H3 cells, this in turn suggests a heretofore undescribed role for hydrolysis of inositol phospholipids.

  8. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    SciTech Connect

    Mascalchi, Patrice; Lamort, Anne Sophie; Salome, Laurence; Dumas, Fabrice

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer We studied the diffusion of single CD4 receptors on living lymphocytes. Black-Right-Pointing-Pointer This study reveals that CD4 receptors have either a random or confined diffusion. Black-Right-Pointing-Pointer The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. Black-Right-Pointing-Pointer The dynamics of confined CD4 receptors was unchanged by a temperature raise. Black-Right-Pointing-Pointer Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 Degree-Sign C and 37 Degree-Sign C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  9. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    NASA Astrophysics Data System (ADS)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  10. GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper

    PubMed Central

    Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano

    2016-01-01

    Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241

  11. Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes

    PubMed Central

    1994-01-01

    Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire. PMID:7964454

  12. Chemosensory Receptor Specificity and Regulation

    PubMed Central

    Dalton, Ryan P.; Lomvardas, Stavros

    2016-01-01

    The senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors. PMID:25938729

  13. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1

    DOE PAGES

    Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; ...

    2014-10-06

    We previously reported that lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP2 and PIP3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. Finally, we propose that thismore » new surface acts as a PIP3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less

  14. Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface

    PubMed Central

    Tang, HaoRan; Leung, Leo; Saturno, Grazia; Viros, Amaya; Smith, Duncan; Di Leva, Gianpiero; Morrison, Eamonn; Niculescu-Duvaz, Dan; Lopes, Filipa; Johnson, Louise; Dhomen, Nathalie; Springer, Caroline; Marais, Richard

    2017-01-01

    Lysyl oxidase (LOX) remodels the tumour microenvironment by cross-linking the extracellular matrix. LOX overexpression is associated with poor cancer outcomes. Here, we find that LOX regulates the epidermal growth factor receptor (EGFR) to drive tumour progression. We show that LOX regulates EGFR by suppressing TGFβ1 signalling through the secreted protease HTRA1. This increases the expression of Matrilin2 (MATN2), an EGF-like domain-containing protein that traps EGFR at the cell surface to facilitate its activation by EGF. We describe a pharmacological inhibitor of LOX, CCT365623, which disrupts EGFR cell surface retention and delays the growth of primary and metastatic tumour cells in vivo. Thus, we show that LOX regulates EGFR cell surface retention to drive tumour progression, and we validate the therapeutic potential of inhibiting this pathway with the small molecule inhibitor CCT365623. PMID:28416796

  15. Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface.

    PubMed

    Tang, HaoRan; Leung, Leo; Saturno, Grazia; Viros, Amaya; Smith, Duncan; Di Leva, Gianpiero; Morrison, Eamonn; Niculescu-Duvaz, Dan; Lopes, Filipa; Johnson, Louise; Dhomen, Nathalie; Springer, Caroline; Marais, Richard

    2017-04-18

    Lysyl oxidase (LOX) remodels the tumour microenvironment by cross-linking the extracellular matrix. LOX overexpression is associated with poor cancer outcomes. Here, we find that LOX regulates the epidermal growth factor receptor (EGFR) to drive tumour progression. We show that LOX regulates EGFR by suppressing TGFβ1 signalling through the secreted protease HTRA1. This increases the expression of Matrilin2 (MATN2), an EGF-like domain-containing protein that traps EGFR at the cell surface to facilitate its activation by EGF. We describe a pharmacological inhibitor of LOX, CCT365623, which disrupts EGFR cell surface retention and delays the growth of primary and metastatic tumour cells in vivo. Thus, we show that LOX regulates EGFR cell surface retention to drive tumour progression, and we validate the therapeutic potential of inhibiting this pathway with the small molecule inhibitor CCT365623.

  16. Locally available aggregate and sediment production

    Treesearch

    Randy B. Foltz; Mark Truebe

    2003-01-01

    Selection of suitable locally available materials to build strong and durable roads with aggregate surfaces is desired to minimize road construction and maintenance costs and to minimize the detrimental effects of sedimentation. Eighteen aggregates were selected from local sources in Idaho, Oregon, South Dakota, and Washington State. Aggregate was placed in shallow...

  17. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  18. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.

    PubMed

    El-Fiqi, Ahmed; Buitrago, Jennifer O; Yang, Sung Hee; Kim, Hae-Won

    2017-09-15

    Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO2-15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m(2)/g and pore volume of 0.153cm(3)/g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic

  19. A PTEN-regulated checkpoint regulates surface delivery of delta opioid receptors.

    PubMed

    Shiwarski, Daniel J; Tipton, Alycia; Giraldo, Melissa D; Schmidt, Brigitte F; Gold, Michael S; Pradhan, Amynah A; Puthenveedu, Manojkumar A

    2017-03-06

    The delta opioid receptor (δR) is a promising alternate target for pain management, because δR agonists show decreased abuse potential compared to current opioid analgesics that target the mu opioid receptor. A critical limitation in developing δR as an analgesic target, however, is that δR agonists show relatively low efficacy in vivo, requiring the use of high doses that often cause adverse effects such as convulsions. Here we tested whether intracellular retention of δR in sensory neurons contributes to this low δR agonist efficacy in vivo by limiting surface δR expression. Using direct visualization of δR trafficking and localization, we define a phosphatase and tensin homolog (PTEN)-regulated checkpoint that retains δR in the Golgi and decreases surface delivery in rat and mice sensory neurons. PTEN inhibition releases δR from this checkpoint and stimulates delivery of exogenous and endogenous δR to the neuronal surface both in vitro and in vivo PTEN inhibition in vivo increases the percentage of TG neurons expressing δR on the surface, and allows efficient δR-mediated antihyperalgesia in mice. Together, we define a critical role for PTEN in regulating the surface delivery and bioavailability of the δR, explain the low efficacy of δR agonists in vivo, and provide evidence that active δR relocation is a viable strategy to increase δR antinociception.SIGNIFICANCE STATEMENTOpioid analgesics like morphine, which target the mu opioid receptor (μR), have been the mainstay of pain management, but their use is highly limited by adverse effects and their variable efficacy in chronic pain. Identifying alternate analgesic targets is therefore of great significance. While the delta opioid receptor (δR) is an attractive option, a critical limiting factor in developing δR as a target has been the low efficacy of δR agonists. Why δR agonists show low efficacy is still under debate. This study provides mechanistic and functional data that intracellular

  20. Distinct Glucocorticoid Receptor Transcriptional Regulatory Surfaces Mediate the Cytotoxic and Cytostatic Effects of Glucocorticoids

    PubMed Central

    Rogatsky, Inez; Hittelman, Adam B.; Pearce, David; Garabedian, Michael J.

    1999-01-01

    Glucocorticoids act through the glucocorticoid receptor (GR), which can function as a transcriptional activator or repressor, to elicit cytostatic and cytotoxic effects in a variety of cells. The molecular mechanisms regulating these events and the target genes affected by the activated receptor remain largely undefined. Using cultured human osteosarcoma cells as a model for the GR antiproliferative effect, we demonstrate that in U20S cells, GR activation leads to irreversible growth inhibition, apoptosis, and repression of Bcl2. This cytotoxic effect is mediated by GR’s transcriptional repression function, since transactivation-deficient mutants and ligands still bring about apoptosis and Bcl2 down-regulation. In contrast, the antiproliferative effect of GR in SAOS2 cells is reversible, does not result in apoptosis or repression of Bcl2, and is a function of the receptor’s ability to stimulate transcription. Thus, the cytotoxic versus cytostatic outcome of glucocorticoid treatment is cell context dependent. Interestingly, the cytostatic effect of glucocorticoids in SAOS2 cells involves multiple GR activation surfaces. GR mutants and ligands that disrupt individual transcriptional activation functions (activation function 1 [AF-1] and AF-2) or receptor dimerization fail to fully inhibit cellular proliferation and, remarkably, discriminate between the targets of GR’s cytostatic action, the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Induction of p21Cip1 is agonist dependent and requires AF-2 but not AF-1 or GR dimerization. In contrast, induction of p27Kip1 is agonist independent, does not require AF-2 or AF-1, but depends on GR dimerization. Our findings indicate that multiple GR transcriptional regulatory mechanisms that employ distinct receptor surfaces are used to evoke either the cytostatic or cytotoxic response to glucocorticoids. PMID:10373553

  1. Abnormally increased surface expression of AMPA receptors in the cerebellum, cortex and striatum of Cln3(-/-) mice.

    PubMed

    Kovács, Attila D; Hof, Caitlin; Pearce, David A

    2015-10-21

    Mutations in the CLN3 gene cause a fatal neurodegenerative disorder, juvenile CLN3 disease. Exploring the cause of the motor coordination deficit in the Cln3(-/-) mouse model of the disease we have previously found that attenuation of AMPA receptor activity in 1-month-old Cln3(-/-) mice significantly improves their motor coordination [20]. To elucidate the mechanism of the abnormally increased AMPA receptor function in Cln3(-/-) mice, we examined the surface expression of AMPA receptors using surface cross-linking in brain slices from 1-month-old wild type (WT) and Cln3(-/-) mice. In surface cross-linked brain samples, Western blotting for AMPA receptor subunits revealed significantly increased surface levels of GluA1 and GluA2 in the cerebellum, and of GluA2 in the cortex and striatum of Cln3(-/-) mice as compared to WT mice. Expression levels of the GluA4 subunit were similar in the cerebellum of WT and Cln3(-/-) mice. While intracellular GluA1 levels in the WT and Cln3(-/-) cerebellum or cortex were similar, the intracellular expression of GluA1 in the Cln3(-/-) striatum was decreased to 56% of the WT level. Our results show a prominent increase in AMPA receptor surface expression in the brain of Cln3(-/-) mice and suggest that CLN3 is involved in the regulation of AMPA receptor surface expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    SciTech Connect

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  3. Domain deletion in the extracellular portion of the EGF-receptor reduces ligand binding and impairs cell surface expression.

    PubMed Central

    Lax, I; Bellot, F; Honegger, A M; Schmidt, A; Ullrich, A; Givol, D; Schlessinger, J

    1990-01-01

    Cultured NIH-3T3 cells were transfected with cDNA constructs encoding human epidermal growth factor-receptor (EGF-R)* and two deletion mutants in the extracellular portion of the receptor molecule. One mutant is devoid of 124 amino-terminal amino acids, and the other lacks 76 residues. Mutant receptors were not delivered to the cell surface unless the transfected cells contained also endogenous EGF-Rs, suggesting that receptor interaction complements the mutation and allows surface display of mutant receptors. Immunoprecipitation experiments revealed an association between mutant and endogenous EGF-Rs when both proteins were expressed in the same cell. Hence, receptor-oligomers may exist in the plane of the membrane even in the absence of ligand binding, and oligomerization may play a role in normal trafficking of EGF-Rs to the cell surface. Mutant receptors retained partial ligand binding activity as 125I-labeled EGF was covalently cross-linked to both mutant receptors, and EGF stimulated, albeit weakly, their protein tyrosine kinase activity. Both mutant EGF-Rs bind EGF with a 10-fold lower affinity than that of the solubilized wild type EGF-R. These results provide further evidence that the region flanked by the two cysteine-rich domains plays a crucial role in defining ligand-binding specificity of EGF-R. Images PMID:2100196

  4. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host.

    PubMed

    Candela, Marco; Biagi, Elena; Centanni, Manuela; Turroni, Silvia; Vici, Manuela; Musiani, Francesco; Vitali, Beatrice; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2009-10-01

    The interaction with the host plasminogen/plasmin system represents a novel component in the molecular cross-talk between bifidobacteria and human host. Here, we demonstrated that the plasminogen-binding bifidobacterial species B. longum, B. bifidum, B. breve and B. lactis share the key glycolytic enzyme enolase as a surface receptor for human plasminogen. Enolase was visualized on the cell surface of the model strain B. lactis BI07. The His-tagged recombinant protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. By site-directed mutagenesis we demonstrated that the interaction between the B. lactis BI07 enolase and human plasminogen involves an internal plasminogen-binding site homologous to that of pneumococcal enolase. According to our data, the positively charged residues Lys-251 and Lys-255, as well as the negatively charged Glu-252, of the B. lactis BI07 enolase are crucial for plasminogen binding. Acting as a human plasminogen receptor, the bifidobacterial surface enolase is suggested to play an important role in the interaction process with the host.

  5. The signal peptide of the IgE receptor alpha-chain prevents surface expression of an immunoreceptor tyrosine-based activation motif-free receptor pool.

    PubMed

    Platzer, Barbara; Fiebiger, Edda

    2010-05-14

    The high affinity receptor for IgE, Fc epsilon receptor I (FcepsilonRI), is an activating immune receptor and key regulator of allergy. Antigen-mediated cross-linking of IgE-loaded FcepsilonRI alpha-chains induces cell activation via immunoreceptor tyrosine-based activation motifs in associated signaling subunits, such as FcepsilonRI gamma-chains. Here we show that the human FcepsilonRI alpha-chain can efficiently reach the cell surface by itself as an IgE-binding receptor in the absence of associated signaling subunits when the endogenous signal peptide is swapped for that of murine major histocompatibility complex class-I H2-K(b). This single-chain isoform of FcepsilonRI exited the endoplasmic reticulum (ER), trafficked to the Golgi and, subsequently, trafficked to the cell surface. Mutational analysis showed that the signal peptide regulates surface expression in concert with other described ER retention signals of FcepsilonRI-alpha. Once the FcepsilonRI alpha-chain reached the cell surface by itself, it formed a ligand-binding receptor that stabilized upon IgE contact. Independently of the FcepsilonRI gamma-chain, this single-chain FcepsilonRI was internalized after receptor cross-linking and trafficked into a LAMP-1-positive lysosomal compartment like multimeric FcepsilonRI. These data suggest that the single-chain isoform is capable of shuttling IgE-antigen complexes into antigen loading compartments, which plays an important physiologic role in the initiation of immune responses toward allergens. We propose that, in addition to cytosolic and transmembrane ER retention signals, the FcepsilonRI alpha-chain signal peptide contains a negative regulatory signal that prevents expression of an immunoreceptor tyrosine-based activation motif-free IgE receptor pool, which would fail to induce cell activation.

  6. Leydig cell hypoplasia: absent luteinizing hormone receptor cell surface expression caused by a novel homozygous mutation in the extracellular domain.

    PubMed

    Richter-Unruh, A; Verhoef-Post, M; Malak, S; Homoki, J; Hauffa, B P; Themmen, A P N

    2004-10-01

    Leydig cell hypoplasia is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals. We have studied a family with a 46,XY girl due to a new homozygous mutation (V144F) in the extracellular ligand-binding domain. HEK 293 cells transfected with the mutant LH receptor exhibited a marked impairment of human chorionic gonadotropin binding. Using Western blotting of the expressed V144F mutant LH receptor protein showed the absence of the glycosylated cell surface form. Treatment of the mutant LH receptor with N-glycosidase F or endoglycosidase-H demonstrated that the mutant receptor is retained in the endoplasmic reticulum. Expression and study of enhanced green fluorescent protein-tagged receptors confirmed that the mutant LHR-V144F receptors do not migrate to the cell surface, and the fluorescence remains intracellular and colocalizes with an endoplasmic reticulum marker, ER-tracker Blue-white DPX. Comparison of the theoretical molecular models of the extracellular domain of the wild-type and the mutant receptor suggests that the mutation LHR-V144F, located in the outer circumference in a alpha-helix of the leucine-rich repeat 4, may induce a conformational strain on the molecule. F144 of the mutant LH receptor has overlapping interactions with F119, which V144 in the wild-type receptor has not.

  7. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors

    PubMed Central

    Gratacòs-Batlle, Esther; Yefimenko, Natalia; Cascos-García, Helena; Soto, David

    2015-01-01

    AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology. PMID:25698923

  8. A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence

    PubMed Central

    1987-01-01

    To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen- Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly- Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat- denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex. PMID:3469204

  9. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes.

    PubMed

    Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David

    2014-02-19

    A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.

  10. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry.

    PubMed

    Kjellin, U R Mikael; Reimer, Johan; Hansson, Per

    2003-06-15

    Several physicochemical properties have been determined for N-dodecyllactobionamide (LABA), maltose 6'-O-dodecanoate (C12-maltose ester), and tetra(ethylene oxide) dodecyl amide (TEDAd). The increase in the flexibility of the sugar headgroup, enabling more possible molecular conformations, reduces the minimum area/molecule at the liquid-vapor interface obtained at the critical micelle concentration (cmc). The obtained cmc's were 0.35 mM (LABA), 0.3 mM (C12-maltose ester), and 0.5 mM (TEDAd). The monomer diffusion coefficient decreased with the molecular weight and increasing headgroup flexibility of the sugar headgroup, and values were in the range from 3.1 x 10(-10) to 3.6 x 10(-10) m2/s. The micelle diffusion coefficients (0.46 x 10(-10) to 0.68 x 10(-10) m2/s) indicated that the TEDAd micelles deviated most from spherical shape. The micelle aggregation numbers determined by time-resolved fluorescence quenching (TRFQ) were estimated to be 120+/-10 (LABA), 90+/-10 (C12-maltose ester), and 130+/-10 (TEDAd). The dynamic surface tension measurements show that the adsorption of TEDAd onto the liquid-vapor interface at short surface lifetimes is diffusion-limited, whereas an adsorption barrier is present for the sugar surfactants. The analysis of the dynamic surface tension data above the cmc shows that the rate of demicellization is faster for TEDAd than for the two sugar-based surfactants.

  11. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration

    NASA Astrophysics Data System (ADS)

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-01

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra.

  12. CELL MEMBRANE MEDIATED (-)-EPICATECHIN EFFECTS ON UPSTREAM ENDOTHELIAL CELL SIGNALING: EVIDENCE FOR A SURFACE RECEPTOR

    PubMed Central

    Moreno-Ulloa, Aldo; Romero-Perez, Diego; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2014-01-01

    The consumption of cacao-derived products, particularly in the form of dark chocolate is known to provide beneficial cardiovascular effects in normal individuals and in those with vascular dysfunction (reduced nitric oxide [NO] bioavailability and/or synthesis). Upstream mechanisms by which flavonoids exert these effects are poorly understood and may involve the participation of cell membrane receptors. We previously demonstrated that the flavanol (-)-epicatechin (EPI) stimulates NO production via Ca+2-independent eNOS activation/phosphorylation. We wished to investigate the plausible participation of a cell surface receptor using a novel cell-membrane impermeable EPI-Dextran conjugate (EPI-Dx). Under Ca2+-free conditions, human coronary artery endothelial cells (HCAEC) were treated for 10 min with EPI or EPI-Dx at equimolar concentrations (100 nM). Results demonstrate that both EPI and EPI-Dx induced the phosphorylation/activation of PI3K, PDK-1, AKT and eNOS. Interestingly, EPI-Dx effects were significantly higher in magnitude than those of EPI alone. The capacity of EPI-Dx to stimulate cell responses supports the existence of an EPI cell membrane receptor mediating eNOS activation. PMID:24794111

  13. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans

    PubMed Central

    1992-01-01

    The role of cell surface heparan sulfate in herpes simplex virus (HSV) infection was investigated using CHO cell mutants defective in various aspects of glycosaminoglycan synthesis. Binding of radiolabeled virus to the cells and infection were assessed in mutant and wild-type cells. Virus bound efficiently to wild-type cells and initiated an abortive infection in which immediate-early or alpha viral genes were expressed, despite limited production of late viral proteins and progeny virus. Binding of virus to heparan sulfate-deficient mutant cells was severely impaired and mutant cells were resistant to HSV infection. Intermediate levels of binding and infection were observed for a CHO cell mutant that produced undersulfated heparan sulfate. These results show that heparan sulfate moieties of cell surface proteoglycans serve as receptors for HSV. PMID:1310996

  14. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus.

    PubMed

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A; Zeltina, Antra; Beaty, Shannon M; Bowden, Thomas A

    2015-04-28

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.

  15. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus

    PubMed Central

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A.; Zeltina, Antra; Beaty, Shannon M.; Bowden, Thomas A.

    2015-01-01

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus−receptor interaction crystallographically. Compared with extant HNV-G–ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus–host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure–function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations. PMID:25825759

  16. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  17. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D.

    PubMed

    Kuznetsov, Igor R; Evans, Evan A

    2013-04-01

    We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

  18. Modeling study of surface ozone source-receptor relationships in East Asia

    NASA Astrophysics Data System (ADS)

    Li, J.

    2016-12-01

    Ozone source-receptor relationships over East Asia have been quantitatively investigated using a chemical transport model including an on-line tracer-tagged procedure, with a particular focus on the source regions of different daily ozone mixing ratios.Comparison with observations showed that the model reproduced surface ozone and tropospheric nitrogen dioxide column densities.Long-range transport from outside East Asia contributed the greatest fraction to annual surface ozone over remote regions, the Korean peninsula, and Japan, reaching 50%-80% of total ozone.Self-contributions accounted for 5%-20% ozonein the Korean peninsula and Japan, whereas the contribution of trans-boundary transport from photochemical production in China was less than 5%-10%. At extra-high ozone levels, self-contributions reached 50%-60% in the Korean peninsula.Ozone source-receptor relationships showed high seasonal variability over East Asia.Significant transport was also found between sub-regions in China, which presents a great challenge to policy-makers because most current control strategies are confined to specific regions.

  19. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    PubMed

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs.

  20. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4

    USDA-ARS?s Scientific Manuscript database

    The Shiga toxigenic Escherichia coli O104:H4 bares the characteristics of both enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga...

  1. Synthesis of an endothelial cell mimicking surface containing thrombomodulin and endothelial protein C receptor

    NASA Astrophysics Data System (ADS)

    Kador, Karl Erich

    Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts using materials whose compliance mimics that of the native artery. Several techniques and surface modification have been designed to limit thrombosis on the surface of synthetic materials. One which has shown the greatest promise is the immobilization of Thrombomodulin (TM), a protein found on the endothelial cell membrane lining native blood vessels involved in the activation of the anticoagulant Protein C (PC). While TM immobilization has been shown to arrest thrombin formation and limit fibrous formations in in-vitro and in-vivo experiments, it has shown to be transport limiting under arterial flow. On the endothelial cell surface, TM is co-localized with Endothelial Protein C Receptor (EPCR), which increases PC transport onto the cell surface and increases PC activation via TM between 20-100 fold. This dissertation will describe the chemical modification of medical grade polyurethane (PU), whose compliance has been shown to match that of native arteries. This modification will enable the immobilization of two proteins on an enzymatically relevant scale estimated at less than 10 nm. This dissertation will further describe the immobilization of the proteins TM and EPCR, and analyze the ability of a surface co-immobilized with these proteins to activate the anticoagulant PC. Finally, it will compare the ability of this co-immobilized surface to delay

  2. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  3. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa.

    PubMed

    Voegel, Tanja M; Doddapaneni, Harshavardhan; Cheng, Davis W; Lin, Hong; Stenger, Drake C; Kirkpatrick, Bruce C; Roper, M Caroline

    2013-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins.

  4. Large Putative PEST-like Sequence Motif at the Carboxyl Tail of Human Calcium Receptor Directs Lysosomal Degradation and Regulates Cell Surface Receptor Level*

    PubMed Central

    Zhuang, Xiaolei; Northup, John K.; Ray, Kausik

    2012-01-01

    A deletion between amino acid residues Ser895 and Val1075 in the carboxyl terminus of the human calcium receptor (hCaR), which causes autosomal dominant hypocalcemia, showed enhanced signaling activity and increased cell surface expression in HEK293 cells (Lienhardt, A., Garabédian, M. G., Bai, M., Sinding, C., Zhang, Z., Lagarde, J. P., Boulesteix, J., Rigaud, M., Brown, E. M., and Kottler, M. L. (2000) J. Clin. Endocrinol. Metab. 85, 1695–1702). To identify the underlying mechanism(s) for these increases, we investigated the effects of carboxyl tail truncation and deletion in hCaR mutants using a combination of biochemical and cell imaging approaches to define motifs that participate in regulating cell surface numbers of this G protein-coupled receptor. Our data indicate a rapid constitutive receptor internalization of the cell surface hCaR, accumulating in early (Rab7 positive) and late endosomal (LAMP1 positive) sorting compartments, before targeting to lysosomes for degradation. Recycling of hCaR back to the cell surface was also evident. Truncation and deletion mapping defined a 51-amino acid sequence between residues 920 and 970 that is required for targeting to lysosomes and degradation but not for internalization or recycling of the receptor. No singular sequence motif was identified, instead the required sequence elements seem to distribute throughout this entire interval. This interval includes a high proportion of acidic and hydroxylated amino acid residues, suggesting a similarity to PEST-like degradation motif (PESTfind score of +10) and several glutamine repeats. The results define a novel large PEST-like sequence that participates in the sorting of internalized hCaR routed to the lysosomal/degradation pathway that regulates cell surface receptor numbers. PMID:22158862

  5. A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments

    PubMed Central

    Boudreau, Amy C.; Milovanovic, Mike; Conrad, Kelly L.; Nelson, Christopher; Ferrario, Carrie R.; Wolf, Marina E.

    2012-01-01

    Trafficking of neurotransmitter receptors between intracellular and cell surface compartments is important for regulating neurotransmission. We developed a method for determining if an in vivo treatment has altered receptor distribution in a particular region of rodent brain. After the treatment, brain slices are rapidly prepared from the region of interest. Then cell surface-expressed receptors are covalently crosslinked to nearby proteins using the membrane-impermeable, bifunctional crosslinker bis(sulfosuccinimidyl)suberate (BS3). This increases the apparent molecular weight of surface receptors, while intracellular receptors are not modified. Thus, surface and intracellular receptor pools can be separated and quantified using SDS-PAGE and immunoblotting. This method is particularly useful for analyzing AMPA receptor subunits, offering advantages in accuracy, efficiency and cost compared to biotinylation. A disadvantage is that some antibodies no longer recognize their target protein after crosslinking. We have used this method to quantify changes in receptor distribution after acute and chronic exposure to psychomotor stimulants. PMID:22470150

  6. Fc receptors on human neutrophils: electron microscopic study of natural surface distribution.

    PubMed Central

    An, T

    1980-01-01

    The membrane receptor for the Fc portions of IgG (FcR) was examined on the cell surface of human neutrophils using electron microscopic markers of soluble immune complexes composed of ferritin (Fer) and rabbit 7S anti-Fer prepared in forty-fold and 120-fold antigen excess than needed at equivalence. By using negative staining coupled with electron microscopy, most of the immune complexes in forty-fold antigen excess were seen to be composed of one anti-Fer antibody and one or two Fer particles, suggesting that most of the indicator molecules are 'monovalent ligands' in terms of Fc pieces available per single immune complex molecule. FcR on neutrophils labelled with both indicators at 0 degrees in the presence of sodium azide were clustered as discontinuous patches of varying length over the cell surface. The pre-incubation of neutrophils at 37 degrees for 30 min prior to labelling did not alter the grouped distribution of FcR. No diffuse Fer labelling was observed. The clustering of FcR remained the same even after cross-linking the soluble complexes with F(ab')2 anti-Fer into multivalent ligands at 0 degrees. We favour the clustering of FcR as the natural surface representation on human neutrophils rather than an initial redistribution induced by the ligands. The findings are discussed with relation to the natural distribution of other surface antigens. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7419239

  7. The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo.

    PubMed

    Morató, Xavier; Luján, Rafael; López-Cano, Marc; Gandía, Jorge; Stagljar, Igor; Watanabe, Masahiko; Cunha, Rodrigo A; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2017-08-25

    G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson's disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37-/- mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.

  8. Surface topology of the Escherichia coli K-12 ferric enterobactin receptor.

    PubMed Central

    Murphy, C K; Kalve, V I; Klebba, P E

    1990-01-01

    Monoclonal antibodies (MAb) were raised to the Escherichia coli K-12 ferric enterobactin receptor, FepA, and used to identify regions of the polypeptide that are involved in interaction with its ligands ferric enterobactin and colicins B and D. A total of 11 distinct FepA epitopes were identified. The locations of these epitopes within the primary sequence of FepA were mapped by screening MAb against a library of FepA::PhoA fusion proteins, a FepA deletion mutant, and proteolytically modified FepA. These experiments localized the 11 epitopes to seven different regions within the FepA polypeptide, including residues 2 to 24, 27 to 37, 100 to 178, 204 to 227, 258 to 290, 290 to 339, and 382 to 400 of the mature protein. Cell surface-exposed epitopes of FepA were identified and discriminated by cytofluorimetry and by the ability of MAb that recognize them to block the interaction of FepA with its ligands. Seven surface epitopes were defined, including one each in regions 27 to 37, 204 to 227, and 258 to 290 and two each in regions 290 to 339 and 382 to 400. One of these, within region 290 to 339, was recognized by MAb in bacteria containing intact (rfa+) lipopolysaccharide (LPS); all other surface epitopes were susceptible to MAb binding only in a strain containing a truncated (rfaD) LPS core, suggesting that they are physically shielded by E. coli K-12 LPS core sugars. Antibody binding to FepA surface epitopes within region 290 to 339 or 382 to 400 inhibited killing by colicin B or D and the uptake of ferric enterobactin. In addition to the FepA-specific MAb, antibodies that recognized other outer membrane components, including Cir, OmpA, TonA, and LPS, were identified. Immunochemical and biochemical characterization of the surface structures of FepA and analysis of its hydrophobicity and amphilicity were used to generate a model of the ferric enterobactin receptor's transmembrane strands, surface peptides, and ligand-binding domains. Images PMID:2139651

  9. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway

    PubMed Central

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-01-01

    ABSTRACT Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport – the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. PMID:26446259

  10. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway.

    PubMed

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-11-15

    Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport--the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. © 2015. Published by The Company of Biologists Ltd.

  11. Altered cell surface expression of human MC1R variant receptor alleles associated with red hair and skin cancer risk.

    PubMed

    Beaumont, Kimberley A; Newton, Richard A; Smit, Darren J; Leonard, J Helen; Stow, Jennifer L; Sturm, Richard A

    2005-08-01

    The human melanocortin-1 receptor gene (MC1R) encodes a G-protein coupled receptor that is primarily expressed on melanocytes, where it plays a key role in pigmentation regulation. Variant alleles are associated with red hair colour and fair skin, known as the RHC phenotype, as well as skin cancer risk. The R151C, R160W and D294H alleles, designated 'R', are strongly associated with the RHC phenotype and have been proposed to result in loss of function receptors due to impaired G-protein coupling. We recently provided evidence that the R151C and R160W variants can efficiently couple to G-proteins in response to alpha-melanocyte stimulating hormone. The possibility that altered cellular localization of the R151C and R160W variant receptors could underlie their association with RHC was therefore considered. Using immunofluorescence and ligand binding studies, we found that melanocytic cells exogenously or endogenously expressing MC1R show strong surface localization of the wild-type and D294H alleles but markedly reduced cell surface expression of the R151C and R160W receptors. In additional exogenous expression studies, the R variant D84E and the rare I155T variant, also demonstrated a significant reduction in plasma membrane receptor numbers. The V60L, V92M and R163Q weakly associated RHC alleles, designated 'r', were expressed with normal or intermediate cell surface receptor levels. These results indicate that reduced receptor coupling activity may not be the only contributing factor to the genetic association between the MC1R variants and the RHC phenotype, with MC1R polymorphisms now linked to a change in receptor localization.

  12. Fast assembly of cyanine dyes into aggregates onto [6,6]-phenyl C61-butyric acid methyl ester surfaces from organic solvents.

    PubMed

    Heier, Jakob; Steiger, Rolf; Nüesch, Frank; Hany, Roland

    2010-03-16

    Supramolecular agglomerates of organic colorants based on noncovalent interactions are promising candidates for the development of sensors, optoelectronics, lighting, or photovoltaics. However, their fast and defect-free fabrication on large scales using low-cost technologies has proven elusive so far. Here, we introduce a so far unreported mechanism to induce molecular order in cyanine dyes within minutes from organic solvents by self-assembly. Spin coating blends of a cyanine dye and a soluble fullerene derivative ([6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)) from apolar, aprotic solvents leads to phase-separated structures on the micrometer scale. With this superordinated phase structure, adjustment of dye aggregation is possible, leading to novel optical properties of the film emerging from dye self-assembly on the nanometer scale. In the primary process, semiporous PCBM domains act as nucleation sites for H-aggregates. H-aggregates can then be reconstructed into J-aggregates by dissolving PCBM from the film. Unexpectedly, the method even works for sterically hindered cyanine dyes that are known for their reduced tendency to aggregate. Additionally, selective removal of H-aggregates leaves a template of PCBM nanocrystals, onto which cyanine dye monomers readsorb from solution, forming H-aggregates of similar quality.

  13. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  14. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors.

    PubMed

    Cameron, Jamie; Holla, Øystein L; Ranheim, Trine; Kulseth, Mari Ann; Berge, Knut Erik; Leren, Trond P

    2006-05-01

    The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is involved in the post-transcriptional regulation of the low-density lipoprotein (LDL) receptors (LDLR). Mutations in the PCSK9 gene have been associated with both hypocholesterolemia and hypercholesterolemia through 'loss-of-function' and 'gain-of-function' mechanisms, respectively. We have studied the effect of the four loss-of-function mutations R46L, G106R, N157K and R237W and the two gain-of-function mutations S127R and D374Y on the autocatalytic activity of PCSK9, as well as on the amount of the cell surface LDLR and internalization of LDL in transiently transfected HepG2 cells. The two groups of mutations did not differ with respect to autocatalytic activity of PCSK9, but they did differ with respect to the amount of cell surface LDLR and internalization of LDL. The four loss-of-function mutations had a 16% increased level of cell surface LDLR and a 35% increased level of internalization of LDL as compared with WT-PCSK9. The two gain-of-function mutations had a 23% decreased level of cell surface LDLR and a 38% decreased level of internalization of LDL as compared with WT-PCSK9. Our studies have also shown that transfer of media from transiently transfected HepG2 cells to untransfected HepG2 cells, reduces the amount of cell surface LDLR and internalization of LDL in the untransfected cells within 20 min of media transfer. Thus, PCSK9 or a factor acted upon by PCSK9, is secreted from the transfected cells and degrades LDLR both in transfected and untransfected cells.

  15. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  16. Erbin interacts with TARP γ-2 for surface expression of AMPA receptors in cortical interneurons.

    PubMed

    Tao, Yanmei; Chen, Yong-Jun; Shen, Chengyong; Luo, Zhengyi; Bates, C Ryan; Lee, Daehoon; Marchetto, Sylvie; Gao, Tian-Ming; Borg, Jean-Paul; Xiong, Wen-Cheng; Mei, Lin

    2013-03-01

    Inhibitory neurons control the firing of glutamatergic neurons and synchronize brain activity. However, little is known about mechanisms of excitatory synapse formation in inhibitory neurons. Here we demonstrate that Erbin is specifically expressed in cortical inhibitory neurons. It localizes at excitatory synapses and regulates AMPA receptor (AMPAR) surface expression. Erbin mutation reduced mEPSCs and AMPAR currents specifically in parvalbumin (PV)-positive interneurons but not in pyramidal neurons. We found that the AMPAR auxiliary protein TARP γ-2 was specifically expressed in cortical interneurons. Erbin interacts with TARP γ-2 and is crucial for its stability. Deletion of the γ-2-interacting domain in Erbin attenuated surface AMPAR and excitatory transmission in PV-positive interneurons. Furthermore, we observed behavioral deficits in Erbin-null mice and in mice expressing an Erbin truncation mutant that is unable to interact with TARP γ-2. These observations demonstrate a crucial function for Erbin in AMPAR surface expression in cortical PV-positive interneurons and may contribute to a better understanding of psychiatric disorders.

  17. Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum.

    PubMed

    Leah, Paul M; Heath, Emily M L; Balleine, Bernard W; Christie, Macdonald J

    2016-03-01

    The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in s