Optical properties of micromachined polysilicon reflective surfaces with etching holes
NASA Astrophysics Data System (ADS)
Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.
1998-08-01
MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.
NASA Technical Reports Server (NTRS)
Yon, S. A.; Pieters, C. M.
1988-01-01
The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
Spectral reflectance and photometric properties of selected rocks
Watson, Robert D.
1971-01-01
Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.
2016-01-01
We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703
NASA Astrophysics Data System (ADS)
Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.
1997-02-01
Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.
NASA Technical Reports Server (NTRS)
Birkebak, R. C.
1974-01-01
The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.
Deriving Polarization Properties of Desert-Reflected Solar Spectra with PARASOL Data
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Baize, Rosemary R.; Lukashin, Constantine
2015-01-01
Reflected solar radiation from desert is strongly polarized by sand particles. To date, there is no reliable desert surface reflection model to calculate desert reflection matrix. In this study, the PARASOL data are used to retrieve physical properties of desert. These physical properties are then used in the ADRTM to calculate polarization of desert-reflected light for the whole solar spectra.
Visible-to-SWIR wavelength variation of skylight polarization
NASA Astrophysics Data System (ADS)
Dahl, Laura M.; Shaw, Joseph A.
2015-09-01
Knowledge of the polarization state of natural skylight is important to growing applications using polarimetric sensing. We previously published measurements and simulations illustrating the complex interaction between atmospheric and surface properties in determining the spectrum of skylight polarization from the visible to near-infrared (1 μm).1 Those results showed that skylight polarization can trend upward or downward, or even have unusual spectral discontinuities that arise because of sharp features in the underlying surface reflectance. The specific spectrum observed in a given case depended strongly on atmospheric and surface properties that varied with wavelength. In the previous study, the model was fed with actual measurements of highly variable aerosol and surface properties from locations around the world. Results, however, were limited to wavelengths below 1 μm from a lack in available satellite surface reflectance data at longer wavelengths. We now report measurement-driven simulations of skylight polarization from 350 nm to 2500 nm in the short-wave infrared (SWIR) using hand-held spectrometer measurements of spectral surface reflectance. The SWIR degree of linear polarization was found to be highly dependent on the aerosol size distribution and on the resulting relationship between the aerosol and Rayleigh optical depths. Unique polarization features in the modeled results were attributed to the surface reflectance and the skylight DoLP generally decreased as surface reflectance increased.
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1985-01-01
Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.
NASA Astrophysics Data System (ADS)
Laasanen, Mikko S.; Saarakkala, Simo; Töyräs, Juha; Rieppo, Jarno; Jurvelin, Jukka S.
2005-07-01
Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.
NASA Astrophysics Data System (ADS)
Peltier, Abigail; Sapkota, Gopal; Potter, Matthew; Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.; Poutous, Menelaos K.
2017-02-01
Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure's statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold "islands" on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged "rods" that act as the anti-reflective layer. We present data relating the physical characteristics of the gold "island" statistical populations, and the resulting rARSS "rod" population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.
Optical property measurement from layered biological media
NASA Astrophysics Data System (ADS)
Muller, Matthew R.
1998-12-01
Near infrared (NIR) photon reflectance spectroscopy is applied to measurement of blood concentration and its oxygen saturation within biological tissue. The measurement relies upon the changes in photon absorption of hemoglobin in the tissue as changes occur in the hemoglobin concentration and oxygen content. In the present study, NIR light is introduced at the skin surface and the optical properties (absorption and scattering) within the underlying tissue are determined from the resulting surface reflectance. Typically the tissue is modeled as a homogeneous mixture of bloodless tissue and blood, and the model incorporates the physical relationship between the surface reflectance and the optical properties of the tissue. The skin and underlying tissue, although heterogeneous, have a characteristic layered structure. These layers can be differentiated optically. The modeling and the inverse problem of measuring the optical properties in each of the tissue layers from the surface reflectance have been the subject of much attention by a number of investigators. Nonetheless, quantification of the relationship between surface reflectance and the optical properties of layered tissue has not been well understood nor well described. In the forward problem, tissue optical properties yield surface reflectance profiles (SRPs). Surface reflectance profiles, or SRPs, from diffusive media consisting of two layers are calculated using numerical solutions to the Boltzmann equation. Experimental SRPs are also measured in vitro from a test medium and in vivo from the calf of human subjects. This study provides a new approach to solving the inverse problem of determining optical properties from SRPs. To solve the inverse problem, an effective diffusion constant (Ke) is determined for the layered media. The Ke is the diffusion constant of an equivalent homogeneous medium which best fits the SRP of the layered medium. The departure from Ke of the SRP for a layered media is captured concisely, and Ke becomes a tool in describing the layered optical properties. This approach is applied clinically to measure changes in the blood concentration and oxygenation measured in vivo from normals and patients with peripheral vascular disease. A significant finding from the modeling was to identify the functional relationship of Ke to the top and lower layer diffusion constants, and the top layer thickness. When applied to in vitro measurements from media containing homogeneous layers with known optical properties, this functional relationship predicted Ke within the 95% confidence interval of the measured Ke. For the in vivo measurements, changes in K e with exercise are consistent with expected exercise physiology. With the incorporation of the known optical absorbance of hemoglobin in the presence of oxygen, the SRPs provide a means to measure the oxygen saturation of a deep tissue layer from the surface light reflectance.
NASA Astrophysics Data System (ADS)
Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh
2016-11-01
Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.
NASA Technical Reports Server (NTRS)
Siriwardane, R.; Wightman, J. P.
1980-01-01
The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.
Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei
2017-01-01
Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160
Dark, Infrared Reflective, and Superhydrophobic Coatings by Waterborne Resins.
Zhang, Jing; Lin, Weiqiang; Zhu, Chenxi; Lv, Jian; Zhang, Weicheng; Feng, Jie
2018-05-15
Recently, infrared reflective pigments possessing deep colors have attracted much attention. However, in polluted air, the coatings consisting of such pigments are easily contaminated which abates infrared reflectivity. In this work, black and infrared reflective pigments, fluorine silicon sol and a small number of SiO 2 nanoparticles were introduced into waterborne epoxy resin emulsion and then coated on an aluminum plate. After drying, black coatings with infrared reflective and superhydrophobic (SH) properties were obtained. The average near-infrared (NIR) reflectivity of the coating over wavelength range of 780-2600 nm can reach 68%, which is much larger than that of carbon black coatings and even approaches that of white nano SiO 2 coatings. Under the irradiation of a 275-W infrared lamp (with height 40 cm), the surface temperature of the coating is 63 °C, which is much lower than that of the carbon black coating (90 °C) and only 7 °C higher than that of the white nano SiO 2 coating. Furthermore, the NIR reflective coating exhibited a typical SH property due to its low surface energy and high surface roughness, which may allow for self-cleaning performance in a practical environment, maintaining the coating's NIR reflective property.
Mars hemispherical albedo map: absolute value and interannual variability inferred from OMEGA data.
NASA Astrophysics Data System (ADS)
Vincendon, M.; Audouard, J.; Langevin, Y.; Poulet, F.; Bellucci, G.; Bibring, J.-P.; Gondet, B.
2012-04-01
The surface reflectance integrated over all directions and solar wavelengths ("hemispherical albedo") controls the radiative budget at the surface of Mars, and hence its climate. Reference albedo maps are usually derived from nadir observation of surface reflectance through clear atmospheric conditions. However, the atmosphere of Mars is permanently loaded with a significant amount of aerosols (typical visible optical depths of 0.5 under clear atmospheric conditions), which impacts the evaluation of "aerosol free" surface reflectances from remote sensing data. Moreover, the Martian surface is usually assumed to be Lambertian, both for simplicity and due to the lack of robust constraints about its bidirectional properties. We used OMEGA visible and near-IR measurements, with an appropriate UV extrapolation, to calculate as a function of space and time the hemispherical surface albedo of Mars. The contribution of aerosols is removed using a radiative transfer model and recent aerosols properties. Uncertainties associated with this procedure are calculated. The aerosols correction increases the bright/dark surfaces contrast. Typical, mean bidirectional reflectance properties of the martian surface are estimated using MER surface measurements and CRISM remote "EPF" observations. From these constraints, we have derived a typical relationship that makes it possible to convert single nadir measurements of the reflectance into hemispherical albedo. Accounting for the BRDF of the martian surface typically modify by ± 15% the derived albedo, depending on solar zenith angles. We will present our methods and preliminary results regarding seasonal and interannual variations of the surface albedo of Mars during years 2004-2011.
Modeling the microstructure of surface by applying BRDF function
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-06-01
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
ERIC Educational Resources Information Center
Gillette, Brandon; Hamilton, Cheri
2011-01-01
When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…
Simulation of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Richsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.
2004-01-01
A software package generates simulated hyperspectral imagery for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport, as well as reflections from surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, "ground truth" is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces, as well as the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for, and a supplement to, field validation data.
Disparity, motion, and color information improve gloss constancy performance.
Wendt, Gunnar; Faul, Franz; Ekroll, Vebjørn; Mausfeld, Rainer
2010-09-01
S. Nishida and M. Shinya (1998) found that observers have only a limited ability to recover surface-reflectance properties under changes in surface shape. Our aim in the present study was to investigate how the degree of surface-reflectance constancy depends on the availability of information that may help to infer the reflectance and shape properties of surfaces. To this end, we manipulated the availability of (i) motion-induced information (static vs. dynamic presentation), (ii) disparity information (with the levels "monocular," "surface disparity," and "surface + highlight disparity"), and (iii) color information (grayscale stimuli vs. hue differences between diffuse and specular reflections). The task of the subjects was to match the perceived lightness and glossiness between two surfaces with different spatial frequency and amplitude by manipulating the diffuse component and the exponent of the Phong lighting model in one of the surfaces. Our results indicate that all three types of information improve the constancy of glossiness matches--both in isolation and in combination. The lightness matching data only revealed an influence of motion and color information. Our results indicate, somewhat counterintuitively, that motion information has a detrimental effect on lightness constancy.
Thermal characteristics of the lunar surface layer.
NASA Technical Reports Server (NTRS)
Cremers, C. J.; Birkebak, R. C.; White, J. E.
1972-01-01
The thermophysical properties of the fines from the Apollo 12 landing site have been determined as a function of their relevant parameters. These properties include the thermal conductivity, thermal diffusivity, directional reflectance and emittance. The density used was the same as that observed from the returned core-tube samples and so should be close to the true density of the surface layer at the Apollo 12 site. The measured properties are used to calculate the diurnal temperature variation of the moon's surface as well as for several depths below the surface. The maximum surface of 389 K is obtained at lunar noon while the minimum temperature of 86.1 K is obtained at sunrise. It is shown that the most significant effects on temperature, as compared with previous calculations, are caused by using the directional reflectance which controls the amount of solar energy absorption during the day in place of a constant hemispherical reflectance. The results are compared with previous analyses and remote measurements.
NASA Technical Reports Server (NTRS)
Mccord, T. B.; Adams, J. B.
1977-01-01
Recent evidence suggests that the way that the surfaces of the solar system objects reflect solar radiation is controlled by the composition and mineralogy of the surface materials. The way sunlight is reflected from the surface as a function of wavelength, i.e., the spectral reflectance, is the most important property. Laboratory efforts to use ground-based optical telescope measurements to determine the composition of the surfaces of the solar system objects are reviewed.
NASA Astrophysics Data System (ADS)
Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.
2000-06-01
The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.
NASA Technical Reports Server (NTRS)
Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim
2014-01-01
Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0.41tAERONET + 0.16 to tMI [new algorithm] = 0.70tAERONET + 0.01.
NASA Astrophysics Data System (ADS)
Han, Kuk-Il; Kim, Do-Hwi; Choi, Jun-Hyuk; Kim, Tae-Kuk; Shin, Jong-Jin
2016-09-01
Infrared signals are widely used to discriminate objects against the background. Prediction of infrared signal from an object surface is essential in evaluating the detectability of the object. Appropriate and easy method of procurement of the radiative properties such as the surface emissivity, bidirectional reflectivity is important in estimating infrared signals. Direct measurement can be a good choice but a costly and time consuming way of obtaining the radiative properties for surfaces coated with many different newly developed paints. Especially measurement of the bidirectional reflectivity usually expressed by the bidirectional reflectance distribution function (BRDF) is the most costly job. In this paper we are presenting an inverse estimation method of the radiative properties by using the directional radiances from the surface of concern. The inverse estimation method used in this study is the statistical repulsive particle swarm optimization (RPSO) algorithm which uses the randomly picked directional radiance data emitted and reflected from the surface. In this paper, we test the proposed inverse method by considering the radiation from a steel plate surface coated with different paints at a clear sunny day condition. For convenience, the directional radiance data from the steel plate within a spectral band of concern are obtained from the simulation using the commercial software, RadthermIR, instead of the field measurement. A widely used BRDF model called as the Sandford-Robertson(S-R) model is considered and the RPSO process is then used to find the best fitted model parameters for the S-R model. The results obtained from this study show an excellent agreement with the reference property data used for the simulation for directional radiances. The proposed process can be a useful way of obtaining the radiative properties from field measured directional radiance data for surfaces coated with or without various kinds of paints of unknown radiative properties.
3D shape measurement of automotive glass by using a fringe reflection technique
NASA Astrophysics Data System (ADS)
Skydan, O. A.; Lalor, M. J.; Burton, D. R.
2007-01-01
In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.
Huang, Yi-Fan; Chattopadhyay, Surojit; Jen, Yi-Jun; Peng, Cheng-Yu; Liu, Tze-An; Hsu, Yu-Kuei; Pan, Ci-Ling; Lo, Hung-Chun; Hsu, Chih-Hsun; Chang, Yuan-Huei; Lee, Chih-Shan; Chen, Kuei-Hsien; Chen, Li-Chyong
2007-12-01
Nature routinely produces nanostructured surfaces with useful properties, such as the self-cleaning lotus leaf, the colour of the butterfly wing, the photoreceptor in brittlestar and the anti-reflection observed in the moth eye. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.
Utility of Thermal Infrared Satellite Data For Urban Landscapes
NASA Astrophysics Data System (ADS)
Xian, G.; Crane, M.; Granneman, B.
2006-12-01
Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.
NASA Technical Reports Server (NTRS)
Heslin, T.; Heaney, J.; Harper, M.
1974-01-01
The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied.
2015-01-01
1 Introduction The Pegasus White Ice Runway at McMurdo Station, Antarctica , has expe- rienced significant melting during the past two austral...Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial- Ice Runway Surface Co ld R eg io ns R es ea rc h...ERDC/CRREL TN-15-1 January 2015 Pegasus Airfield Repair and Protection Laboratory Trials of White Ice Paint to Improve the Energy Reflectance
Techniques for estimating Space Station aerodynamic characteristics
NASA Technical Reports Server (NTRS)
Thomas, Richard E.
1993-01-01
A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.
The Improved Dual-view Field Goniometer System FIGOS
Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I.
2008-01-01
In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed. PMID:27873805
The Improved Dual-view Field Goniometer System FIGOS.
Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I
2008-08-28
In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed.
Lunar and Planetary Science XXXV: Mars: Surface Coatings, Mineralogy, and Surface Properties
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Surface Coatings, Mineralogy, and Surface Properties" contained the following reports:High-Silica Rock Coatings: TES Surface-Type 2 and Chemical Weathering on Mars; Old Desert Varnish-like Coatings and Young Breccias at the Mars Pathfinder Landing Site; Analyses of IR-Stealthy and Coated Surface Materials: A Comparison of LIBS and Reflectance Spectra and Their Application to Mars Surface Exploration; Contrasting Interpretations of TES Spectra of the 2003 Rover:Opportunity-Landing Site: Hematite Coatings and Gray Hematite; A New Hematite Formation Mechanism for Mars; Geomorphic and Diagenetic Analogs to Hematite Regions on Mars: Examples from Jurassic Sandstones of Southern Utah, USA; The Geologic Record of Early Mars: A Layered, Cratered, and "Valley-"ed: Volume; A Simple Approach to Estimating Surface Emissivity with THEMIS; A Large Scale Topographic Correction for THEMIS Data; Thermophysical Properties of Meridiani Planum, Mars; Thermophysical and Spectral Properties of Gusev, the MER-Spirit Landing Site on Mars; Determining Water Content of Geologic Materials Using Reflectance Spectroscopy; and Global Mapping of Martian Bound Water at 6.1 Microns Based on TES Data: Seasonal Hydration.
NASA Astrophysics Data System (ADS)
Hayton, D. J.; Jenkins, T. E.
2004-02-01
The effects of back-surface reflection from transparent substrates on ellipsometric measurements are discussed and it is shown that their effects can be minimized by placing the substrate on a commercially available product, Blu-tack. The ellipsometric properties of Blu-tack in the range 250 850 nm are presented and the frustration of the back-surface reflection is discussed in terms of index matching between substrate and Blu-tack.
Wound diagnostics with microwaves.
Schertlen, Ralph; Pivit, Florian; Wiesbeck, Werner
2002-01-01
The reflection of electromagnetic waves on material surfaces is very depending on the electric and magnetic properties of these materials, on their structure and on the surface texture. Therefore the different layers and dielectric properties of healthy and unsound body tissue also show different reflection behavior towards incidentating electromagnetic waves. By analyzing the reflected signals of incident electromagnetic waves, it is possible to get information about the inner structure of the reflecting body tissue. This effect could then be used for a contactless analysis of body tissue e.g. to gain crucial medical information about healing processes. In this paper the results of several full wave simulations of various tissue structures are presented and the significance and usability of this method is shown.
Information content in reflected signals during GPS Radio Occultation observations
NASA Astrophysics Data System (ADS)
Aparicio, Josep M.; Cardellach, Estel; Rodríguez, Hilda
2018-04-01
The possibility of extracting useful information about the state of the lower troposphere from the surface reflections that are often detected during GPS radio occultations (GPSRO) is explored. The clarity of the reflection is quantified, and can be related to properties of the surface and the low troposphere. The reflected signal is often clear enough to show good phase coherence, and can be tracked and processed as an extension of direct non-reflected GPSRO atmospheric profiles. A profile of bending angle vs. impact parameter can be obtained for these reflected signals, characterized by impact parameters that are below the apparent horizon, and that is a continuation at low altitude of the standard non-reflected bending angle profile. If there were no reflection, these would correspond to tangent altitudes below the local surface, and in particular below the local mean sea level. A forward operator is presented, for the evaluation of the bending angle of reflected GPSRO signals, given atmospheric properties as described by a numerical weather prediction system. The operator is an extension, at lower impact parameters, of standard bending angle operators, and reproduces both the direct and reflected sections of the measured profile. It can be applied to the assimilation of the reflected section of the profile as supplementary data to the direct section. Although the principle is also applicable over land, this paper is focused on ocean cases, where the topographic height of the reflecting surface, the sea level, is better known a priori.
NASA Technical Reports Server (NTRS)
Ceamanos, Xavier; Doute, S.; Fernando, J.; Pinet, P.; Lyapustin, A.
2013-01-01
This article addresses the correction for aerosol effects in near-simultaneous multiangle observations acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. In the targeted mode, CRISM senses the surface of Mars using 11 viewing angles, which allow it to provide unique information on the scattering properties of surface materials. In order to retrieve these data, however, appropriate strategies must be used to compensate the signal sensed by CRISM for aerosol contribution. This correction is particularly challenging as the photometric curve of these suspended particles is often correlated with the also anisotropic photometric curve of materials at the surface. This article puts forward an innovative radiative transfer based method named Multi-angle Approach for Retrieval of Surface Reflectance from CRISM Observations (MARS-ReCO). The proposed method retrieves photometric curves of surface materials in reflectance units after removing aerosol contribution. MARS-ReCO represents a substantial improvement regarding previous techniques as it takes into consideration the anisotropy of the surface, thus providing more realistic surface products. Furthermore, MARS-ReCO is fast and provides error bars on the retrieved surface reflectance. The validity and accuracy of MARS-ReCO is explored in a sensitivity analysis based on realistic synthetic data. According to experiments, MARS-ReCO provides accurate results (up to 10 reflectance error) under favorable acquisition conditions. In the companion article, photometric properties of Martian materials are retrieved using MARS-ReCO and validated using in situ measurements acquired during the Mars Exploration Rovers mission.
IR Reflectance Properties Of Weakly And Strongly Absorbing Surface Films
NASA Astrophysics Data System (ADS)
Yen, Yu-Sze; Wong, James S.
1989-12-01
In an external reflection measurement, the optical properties of a surface film can give rise to a variety of spectral behavior on metallic and nonmetallic substrates. The diversity of behavior can be explained by the presence of transverse optical (TO) and longitudinal optical (LO) bands of the film in the infrared region. The excitation modes associated with these bands are directional with respect to the plane of the surface. Spectral interpretation is facilitated by understanding the roles of the TO and LO bands in reflectance spectra, the substrate selection rules for the appearance of these bands, and the relationship between the TO and LO frequencies. We will show that weakly absorbing films have a simpler optical behavior than strongly absorbing films.
Simulated BRDF based on measured surface topography of metal
NASA Astrophysics Data System (ADS)
Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang
2017-06-01
The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.
Using IKONOS Imagery to Estimate Surface Soil Property Variability in Two Alabama Physiographies
NASA Technical Reports Server (NTRS)
Sullivan, Dana; Shaw, Joey; Rickman, Doug
2005-01-01
Knowledge of surface soil properties is used to assess past erosion and predict erodibility, determine nutrient requirements, and assess surface texture for soil survey applications. This study was designed to evaluate high resolution IKONOS multispectral data as a soil- mapping tool. Imagery was acquired over conventionally tilled fields in the Coastal Plain and Tennessee Valley physiographic regions of Alabama. Acquisitions were designed to assess the impact of surface crusting, roughness and tillage on our ability to depict soil property variability. Soils consisted mostly of fine-loamy, kaolinitic, thermic Plinthic Kandiudults at the Coastal Plain site and fine, kaolinitic, thermic Rhodic Paleudults at the Tennessee Valley site. Soils were sampled in 0.20 ha grids to a depth of 15 cm and analyzed for % sand (0.05 - 2 mm), silt (0.002 -0.05 mm), clay (less than 0.002 mm), citrate dithionite extractable iron (Fe(sub d)) and soil organic carbon (SOC). Four methods of evaluating variability in soil attributes were evaluated: 1) kriging of soil attributes, 2) co-kriging with soil attributes and reflectance data, 3) multivariate regression based on the relationship between reflectance and soil properties, and 4) fuzzy c-means clustering of reflectance data. Results indicate that co-kriging with remotely sensed data improved field scale estimates of surface SOC and clay content compared to kriging and regression methods. Fuzzy c-means worked best using RS data acquired over freshly tilled fields, reducing soil property variability within soil zones compared to field scale soil property variability.
Nelson, R.M.; Brown, R.H.; Hapke, B.W.; Smythe, W.D.; Kamp, L.; Boryta, M.D.; Leader, F.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe
2006-01-01
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 ??m ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of ??=0.1 is considered these numbers increase to 0.089-0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14-65?? compared to the same high brightness class for the hemisphere encompassing 122-156?? longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units. We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out. Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out. We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out. The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Bassani, Cristiana
2016-04-01
This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.
Tunable natural nano-arrays: controlling surface properties and light reflectance
NASA Astrophysics Data System (ADS)
Watson, Jolanta A.; Myhra, Sverre; Watson, Gregory S.
2006-01-01
The general principles of optical design based on the theories of reflection, refraction and diffraction have been rigorously developed and optimized over the last three centuries. Of increasing importance has been the ability to predict and devise new optical technologies designed for specific functions. A key design feature of many of today's optical materials is the control of reflection and light transmittance through the medium. A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. An alternative surface modification to the multi layered stack coating (gradient index coating) is to produce a surface with structures having a period and height shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. Bernhard and Miller some forty years ago were the first to observe such structures found on the surface of insects. These were found in the form of hexagonally close packed nanometre sized protrusions on the corneal surface of certain moths. In this study we report on similar structures which we have found on certain species of cicada wings demonstrating that the reflective/transmission properties of these natural nano-structures can be tuned by controlled removal of the structure height using Atomic Force Microscopy (AFM).
NASA Technical Reports Server (NTRS)
Mcfadden, Lucy-Ann
1991-01-01
The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.
Low-reflectance laser-induced surface nanostructures created with a picosecond laser
NASA Astrophysics Data System (ADS)
Sarbada, Shashank; Huang, Zhifeng; Shin, Yung C.; Ruan, Xiulin
2016-04-01
Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400-860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.
NASA Astrophysics Data System (ADS)
Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.
2017-12-01
This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.
Grain rims on ilmenite in the lunar regolith: Comparison to vapor deposits on regolith silicates
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Mckay, D. S.; Keller, L. P.
1994-01-01
In efforts to understand regolith evolution on airless bodies, increasing attention is now being payed to those processes and events that alter or 'weather' the surfaces of regolith grains. This attention has developed partly out of the ongoing need to optimize models of planetary reflectance spectra and the growing recognition that diverse types of grain coatings and surface alterations occur which can strongly influence mineral reflectance properties. In addition to their implications for optical properties, surface features on regolith grains have provided useful clues to the basic thermal, chemical, and radiation history of regoliths.
Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters
2012-09-30
hyperspectral reflectances (HyperSAS) were utilized for the development of a novel approach which takes into account polarization characteristics of skylight ...the development of a new approach for sky glint correction which takes into account polarization characteristics of the skylight reflected from the...considering polarization behavior of skylight reflection at the sea surface. (c) Relative difference expressed in percent between the sea surface
Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy
NASA Astrophysics Data System (ADS)
Marangos, Orestes; Misra, Anil
2018-02-01
Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.
High gain durable anti-reflective coating with oblate voids
Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev
2016-06-28
Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.
Reflection spectra and magnetochemistry of iron oxides and natural surfaces
NASA Technical Reports Server (NTRS)
Wasilewski, P.
1978-01-01
The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.
An Undergraduate Experiment to Measure the Reflectances of a Dielectric Surface
ERIC Educational Resources Information Center
Driver, H. S. T.
1978-01-01
Describes an experiment for the measurement of the reflectances of dielectric surface. The experiment is analyzed in terms of the Stokes parameters and the Mueller calculus, and Malus law is derived. The experiment also provides an introduction to the properties of real linear polarizers. (Author/GA)
Radiative Properties of Smoke and Aerosol Over Land Surfaces
NASA Technical Reports Server (NTRS)
King, Michael D.
2000-01-01
This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.
NASA Astrophysics Data System (ADS)
Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.
2018-05-01
Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
NASA Astrophysics Data System (ADS)
Luffarelli, Marta; Govaerts, Yves; Goossens, Cedric
2017-04-01
A new versatile algorithm for the joint retrieval of surface reflectance and aerosol properties has been developed and tested at Rayference. This algorithm, named Combined Inversion of Surface and Aerosols (CISAR), includes a fast physically-based Radiative Transfer Model (RTM) accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. This RTM explicitly solves the radiative transfer equation during the inversion process, without relying on pre-calculated integrals stored in LUT, allowing for a continuous variation of the state variables in the solution space. The inversion is based on a Optimal Estimation (OE) approach, which seeks for the best balance between the information coming from the observation and the a priori information. The a priori information is any additional knowledge on the observed system and it can concern the magnitude of the state variable or constraints on temporal and spectral variability. Both observations and priori information are provided with the corresponding uncertainty. For each processed spectral band, CISAR delivers the surface Bidirectional Reflectance Factor (BRF) and aerosol optical thickness, discriminating the effects of small and large particles. It also provides the associated uncertainty covariance matrix for every processed pixels. In the framework of the ESA aerosol_cci project, CISAR is applied on TOA BRF acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. SEVIRI observations are accumulated during several days to document the surface anisotropy and minimize the impact of clouds. While surface radiative properties are supposed constant during this accumulation period, aerosol properties are derived on an hourly basis. The information content of each MSG/SEVIRI band will be provided based on the analysis of the posterior uncertainty covariance matrix. The analysis will demonstrate in particular the capability of CISAR to decouple the fraction of TOA BRF signal coming from the surface from the one originating from the aerosols. The results of the algorithm are compared with independent data sets of AOD and surface reflectance. Comparison with ground observations from the AERONET network shows a good agreement between these data. The surface reflectance evaluation is performed comparing white-sky albedo retrieved by CISAR with the MODIS surface product. This evaluation shows a very good consistency. The retrieved aerosol optical depth is consistent also in term of spatial distribution, being comparable in terms of geographical location and intensity.
Polarization Signals of Common Spacecraft Materials
NASA Technical Reports Server (NTRS)
Gravseth, Ian; Culp, Robert D.; King, Nicole
1996-01-01
This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.
[Modeling polarimetric BRDF of leaves surfaces].
Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min
2010-12-01
The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-12-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.
Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi
2016-01-01
Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746
Near zero reflection by nanostructured anti-reflection coating design for Si substrates
NASA Astrophysics Data System (ADS)
Al-Fandi, Mohamed; Makableh, Yahia F.; Khasawneh, Mohammad; Rabady, Rabi
2018-05-01
The nanostructure design of near zero reflection coating for Si substrates by using ZnO Nanoneedles (ZnONN) is performed and optimized for the visible spectral range. The design investigates the ZnONN tip to body ratio effect on the anti-reflection coating properties. Different tip to body ratios are used on Si substrates. Around zero reflection is achieved by the Nanoneedles structure design presented in this work, leading to minimal reflection losses from the Si surface. The current design evolves a solution to optical losses and surface contamination effects associated with Si solar cells.
Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y
2015-11-20
Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.
Physically based reflectance model utilizing polarization measurement.
Nakano, Takayuki; Tamagawa, Yasuhisa
2005-05-20
A surface bidirectional reflectance distribution function (BRDF) depends on both the optical properties of the material and the microstructure of the surface and appears as combination of these factors. We propose a method for modeling the BRDF based on a separate optical-property (refractive-index) estimation by polarization measurement. Because the BRDF and the refractive index for precisely the same place can be determined, errors cased by individual difference or spatial dependence can be eliminated. Our BRDF model treats the surface as an aggregation of microfacets, and the diffractive effect is negligible because of randomness. An example model of a painted aluminum plate is presented.
Reflectance analysis of porosity gradient in nanostructured silicon layers
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.
Software for Simulation of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Richtsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.
2002-01-01
A package of software generates simulated hyperspectral images for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport as well as surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, 'ground truth' is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces and the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for and a supplement to field validation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afrin, Samia; Dagdelen, John; Ma, Zhiwen
Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
Integrated three-dimensional shape and reflection properties measurement system.
Krzesłowski, Jakub; Sitnik, Robert; Maczkowski, Grzegorz
2011-02-01
Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface's reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object's intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.
Tribological properties of sputtered MoS sub 2 films in relation to film morphology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1980-01-01
Thin sputter deposited MoS2 films in the 2000 to 6000 A thickness range have shown excellent lubricating properties, when sputtering parameters and substrate conditions are properly selected and precisely controlled. The lubricating properties of sputtered MoS2 films are strongly influenced by their crystalline-amorphous structure, morphology and composition. The coefficient of friction can range from 0.04 which is effective lubrication to 0.4 which reflects an absence of lubricating properties. Visual screening and slight wiping of the as-sputtered MoS2 film can identify the integrity of the film. An acceptable film displays a black-sooty surface appearance whereas an unacceptable film has a highly reflective, gray surface and the film is hard and brittle.
Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.
1994-01-01
Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.
NASA Technical Reports Server (NTRS)
Lee, R. B., III
1972-01-01
Experimental investigations of the percent polarization of sunlight reflected from the surfaces of each of the Echo 2 Satellite and PAGEOS (Passive Geodetic Earth Orbiting Satellite) were performed to determine the stability of their surfaces in the space environment. The Echo 2 surface material was amorphous phosphate chemically bonded to a rolled aluminum substrate while the PAGEOS 1 surface material is vapor deposited aluminum on a poly (ethylene terephthalate) film. The stability of the satellites' surfaces was analyzed by comparing the light polarizing properties of the satellites, to those of test surfaces representative of the satellites' surfaces. The properties of flat test surfaces were measured experimentally in the laboratory, and the effects of surface strain, surface geometry, and vacuum upon these properties were examined. The laboratory analyses revealed that the polarization properties of the Echo 2 surface were significantly affected by surface geometry and vacuum, and that the properties of the PAGEOS 1 surface were not significantly altered by any of the above mechanisms.
Spectral scattering characteristics of space target in near-UV to visible bands.
Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun
2014-04-07
In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.
NASA Astrophysics Data System (ADS)
Tóth, A.; Veres, M.; Kereszturi, K.; Mohai, M.; Bertóti, I.; Szépvölgyi, J.
2011-10-01
The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and ID/ IG ratio and between chroma and ID/ IG ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp 2 carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the ID/ IG ratio and inverse correlations between surface energy and ID/ IG ratio and between dispersive component of surface energy and ID/ IG ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp 2 carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the π → π* shake-up satellite of the C 1s peak.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
Spatial and temporal variability of soil temperature, moisture and surface soil properties
NASA Technical Reports Server (NTRS)
Hajek, B. F.; Dane, J. H.
1993-01-01
The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.
1993-04-01
Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
Characteristic variations in reflectance of surface soils
NASA Technical Reports Server (NTRS)
Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)
1982-01-01
Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.
Simulation of an oil film at the sea surface and its radiometric properties in the SWIR
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Van Eijk, Alexander M. J.
2017-10-01
The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.
Motion of glossy objects does not promote separation of lighting and surface colour
2017-01-01
The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frame-by-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all conditions. PMID:29291113
Effects of surface preparation on quality of aluminum alloy weldments
NASA Technical Reports Server (NTRS)
Kizer, D.; Saperstein, Z.
1968-01-01
Study of surface preparations and surface contamination effects on the welding of 2014 aluminum involves several methods of surface analysis to identify surface properties conducive to weld defects. These methods are radioactive evaporation, spectral reflectance mass spectroscopy, gas chromatography and spark emission spectroscopy.
Modeling Magnetite Reflectance Spectra Using Hapke Theory and Existing Optical Constants
NASA Technical Reports Server (NTRS)
Roush, T. L.; Blewett, D. T.; Cahill, J. T. S.
2016-01-01
Magnetite is an accessory mineral found in terrestrial environments, some meteorites, and the lunar surface. The reflectance of magnetite powers is relatively low [1], and this property makes it an analog for other dark Fe- or Ti-bearing components, particularly ilmenite on the lunar surface. The real and imaginary indices of refraction (optical constants) for magnetite are available in the literature [2-3], and online [4]. Here we use these values to calculate the reflectance of particulates and compare these model spectra to reflectance measurements of magnetite available on-line [5].
Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D
2016-05-01
We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.
Costanzo, E S; Wittgenstein, K M; Benson, K
2001-12-01
This exploratory study extended past studies of children's ability to reference the mirror as a tool in locating the source of reflected images to preschoolers' ability to use the affordances of a transparency. Thirty-six children (3.5 to 5 years old) were shown nonreflected lights and lights reflected on a partially transparent, glassy surface. Children did not spontaneously locate the source of the reflected image. However, they were able to verbally discriminate reflected from nonreflected images following training. These findings indicate that, although preschoolers may not spontaneously use transparencies as a perceptual tool, the ability to distinguish visual differences of reflected from nonreflected images on transparencies is likely within preschool children's developmental capacity.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
NASA Astrophysics Data System (ADS)
Kusaka, Takashi; Miyazaki, Go
2014-10-01
When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.
Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.
2013-01-01
The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.
Suomalainen, Juha; Hakala, Teemu; Peltoniemi, Jouni; Puttonen, Eetu
2009-01-01
The design, operation, and properties of the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) are presented. FIGIFIGO is a portable instrument for the measurement of surface Bidirectional Reflectance Factor (BRF) for samples with diameters of 10 – 50 cm. A set of polarising optics enable the measurement of linearly polarised BRF over the full solar spectrum (350 – 2,500 nm). FIGIFIGO is designed mainly for field operation using sunlight, but operation in a laboratory environment is also possible. The acquired BRF have an accuracy of 1 – 5% depending on wavelength, sample properties, and measurement conditions. The angles are registered at accuracies better than 2°. During 2004 – 2008, FIGIFIGO has been used in the measurement of over 150 samples, all around northern Europe. The samples concentrate mostly on boreal forest understorey, snow, urban surfaces, and reflectance calibration surfaces. PMID:22412342
The Optical Properties of Particles Deposited on a Surface
1994-09-01
AD-A286 258 i -G •- o ) * .1111I1 IV -IC,, The optical properties of particles deposited on a surface. Final Technical Report by F. Borghese September...approximation. 4. List of publications. F. Borghese, P. Denti, R. Saija, E. Fucile and 0. I . Sindoni, "Optical properties of particles on or near a...perfectily reflecting surface," Accepted for publication in J. Opt. Soc. Am. A 5. Partecipants to the research. F. Borghese, P. Denti, R. Saija and 0. I
GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties
NASA Technical Reports Server (NTRS)
Kavak, Adnan; Xu, Guanghan; Vogel, W. J.
1996-01-01
In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, global positioning system (GPS) receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.
GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties
NASA Technical Reports Server (NTRS)
Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.
1996-01-01
In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.
Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant
Aron, Serge
2016-01-01
The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body. PMID:27073923
Polarized reflectance and transmittance properties of windblown sea surfaces.
Mobley, Curtis D
2015-05-20
Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.
NASA Astrophysics Data System (ADS)
Levy, Robert Carroll
Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative forcing (contribution from anthropogenic aerosols only). Over the U.S. mid-Atlantic region, validated retrievals of tau (an integrated column property) can help to estimate surface PM2.5 concentration, a monitored criteria air quality property. The 3-dimensional aerosol loading in the region is characterized using aircraft measurements and the Community Multi-scale Air Quality Model (CMAQ) model, leading to some convergence of observed quantities and modeled processes.
Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product
NASA Technical Reports Server (NTRS)
Vermote, Eric; Justice, Chris; Claverie, Martin; Franch, Belen
2016-01-01
The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density.
Schwenger, Frédéric; Repasi, Endre
2017-02-20
The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and is presented for two different wind speeds.
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys
Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,
2007-01-01
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.
Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts
NASA Technical Reports Server (NTRS)
Bowker, David E.; Davis, Richard E.
1987-01-01
Desert surfaces are probably one of the most stable of the Earth's natural targets for remote sensing. The bidirectional reflectance properties of the Saudi Arabian desert was investigated during the Summer Monsoon Experiment (Summer Monex). A comparison of high-altitude with near-surface measurements of the White Sands desert showed significant differences. These discrepancies have been attributed to forward scattering of the dust-laden atmosphere prevalent during Summer Monex. This paper is concerned in general with modeling the effects of atmospheric aerosols and surface shadowing on the remote sensing of bidirectional reflectance factors of desert targets, and in particular with comparing the results of these models with flight results. Although it is possible to approximate the latter, it is felt that a surface reflectance model with a smaller specular component would have permitted using a more realistic set of atmospheric conditions in the simulations.
A unified account of gloss and lightness perception in terms of gamut relativity.
Vladusich, Tony
2013-08-01
A recently introduced computational theory of visual surface representation, termed gamut relativity, overturns the classical assumption that brightness, lightness, and transparency constitute perceptual dimensions corresponding to the physical dimensions of luminance, diffuse reflectance, and transmittance, respectively. Here I extend the theory to show how surface gloss and lightness can be understood in a unified manner in terms of the vector computation of "layered representations" of surface and illumination properties, rather than as perceptual dimensions corresponding to diffuse and specular reflectance, respectively. The theory simulates the effects of image histogram skewness on surface gloss/lightness and lightness constancy as a function of specular highlight intensity. More generally, gamut relativity clarifies, unifies, and generalizes a wide body of previous theoretical and experimental work aimed at understanding how the visual system parses the retinal image into layered representations of surface and illumination properties.
The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Hayne, P. O.; Paige, D. A.
2017-12-01
The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.
Review of the CIE system of colorimetry and its use in dentistry.
Westland, Stephen
2003-01-01
When we observe the light reflected from surfaces in a scene or look directly at light emitted by light sources, we experience the sensation of color. Color is just one attribute of a complex and not fully understood set of properties that define the appearance of our surroundings. To measure or specify the color of an object, we need to take into account the nature of the light under which the object is viewed, the spectral reflectance properties of the surface, and the properties of the human color vision system. In this article the CIE system of colorimetry is briefly reviewed and its limitations are described. The consequences of these limitations for color measurement in dentistry are discussed.
Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane
NASA Astrophysics Data System (ADS)
Takase, Kouichi; Shimizu, Tomohiro; Sugawa, Kosuke; Aono, Takashige; Shirai, Yuma; Nishida, Tomohiko; Shingubara, Shoso
2016-06-01
Nanowires embedded in nanopores are potentially tough against surface scraping and agglomeration. In this study, we have fabricated Au and Ni nanowires embedded into anodic porous alumina (APA) and investigated their reflectance to study the effects of surface plasmon absorption properties and conversion from solar energy to thermal energy. Au nanowires embedded into APA show typical gold surface plasmon absorption at approximately 530 nm. On the other hand, Ni nanowires show quite a low reflectance under 600 nm. In the temperature elevation test, both Au and Ni nanowire samples present the same capability to warm up water. It means that Ni nanowires embedded into APA have almost the same photothermal activity as Au nanowires.
Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2012-01-01
This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2011-03-01
Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.
Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle.
Åkerlind, Christina; Arwin, Hans; Hallberg, Tomas; Landin, Jan; Gustafsson, Johan; Kariis, Hans; Järrendahl, Kenneth
2015-07-01
Optical properties of natural photonic structures can inspire material developments in diversified areas, such as the spectral design of surfaces for camouflage. Here, reflectance, scattering, and polarization properties of the cuticle of the scarab beetle Cyphochilus insulanus are studied with spectral directional hemispherical reflectance, bidirectional reflection distribution function (BRDF) measurements, and Mueller-matrix spectroscopic ellipsometry (MMSE). At normal incidence, a reflectance (0.6-0.75) is found in the spectral range of 400-1600 nm and a weaker reflectance <0.2 in the UV range as well as for wavelengths >1600 nm. A whiteness of W=42 is observed for mainly the elytra of the beetle. Chitin is a major constituent of the insect cuticle which is verified by the close similarity of the measured IR spectrum to that of α-chitin. The BRDF signal shows close-to-Lambertian properties of the beetle for visible light at small angles of incidence. From the MMSE measurement it is found that the beetles appear as dielectric reflectors reflecting linearly polarized light at oblique incidence with low gloss and a low degree of polarization. The measured beetle properties are properties that can be beneficial in a camouflage material.
Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.
NASA Astrophysics Data System (ADS)
Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.
2016-12-01
The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i.e. sensor, calibration, aerosol properties, atmospheric conditions… This latter work provides a lot of information, such as the aerosol optical thickness obviously drives the uncertainties of the retrieval, the absorption and the volume concentration of the fine aerosol mode have an important impact as well…
NASA Astrophysics Data System (ADS)
Xu, Feng; van Harten, Gerard; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Bruegge, Carol J.; Dubovik, Oleg
2017-07-01
The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) has been flying aboard the NASA ER-2 high-altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data in bands centered at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 11 km and is typically observed from nine viewing angles between ±66° off nadir. For a simultaneous retrieval of aerosol properties and surface reflection using AirMSPI, an efficient and flexible retrieval algorithm has been developed. It imposes multiple types of physical constraints on spectral and spatial variations of aerosol properties as well as spectral and temporal variations of surface reflection. Retrieval uncertainty is formulated by accounting for both instrumental errors and physical constraints. A hybrid Markov-chain/adding-doubling radiative transfer (RT) model is developed to combine the computational strengths of these two methods in modeling polarized RT in vertically inhomogeneous and homogeneous media, respectively. Our retrieval approach is tested using 27 AirMSPI data sets with low to moderately high aerosol loadings, acquired during four NASA field campaigns plus one AirMSPI preengineering test flight. The retrieval results including aerosol optical depth, single-scattering albedo, aerosol size and refractive index are compared with Aerosol Robotic Network reference data. We identify the best angular combinations for 2, 3, 5, and 7 angle observations from the retrieval quality assessment of various angular combinations. We also explore the benefits of polarimetric and multiangular measurements and target revisits in constraining aerosol property and surface reflection retrieval.
Spectral evidence for a carbonaceous chondrite surface composition on Deimos
NASA Technical Reports Server (NTRS)
Pang, K. D.; Rhoads, J. W.; Lane, A. L.; Ajello, J. M.
1980-01-01
The surface compositions of Phobos and Deimos as determined by their UV-visible reflectance are compared in order to evaluate the hypothesis that the different surface morphologies of the two satellites are due to different mechanical properties. The UV-visible reflectance spectrum of Deimos is compiled from Mariner 9 UV spectrometry and Canopus star tracker photometry and ground-based colorimetry and polarimetry; the geometric albedo of Deimos is determined from Mariner 9 Canopus star tracker data. The reflectance spectra of Deimos and Phobos are found to be similar in a first approximation, exhibiting low, flat reflectivities in the visible and dropping off sharply in the UV, compatible with a probable carbonaceous chondrite nature for Deimos as well as Phobos and suggesting that their different surface morphologies are most likely due to different orbital histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar; Kane, S. R.; Khooha, Ajay
2015-05-15
A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less
Effect of Mg doping on the Structure and Reflectivity of Alumina surfaces
NASA Astrophysics Data System (ADS)
Pennycook, Timothy; Idrobo, Juan C.; Varga, Kalman; Pantelides, Sokrates T.
2008-03-01
Mg is used in the fabrication of Al alloys to increase the strength of the material. In typical applications, a layer of alumina is present on the surface. The high diffusivity and chemical reactivity of Mg means that Mg can migrate from the bulk alloy to the alumina film and the surface, where it can affect the structural and optical properties of the material. The doping of Al alloys with Mg is known to cause ``darkening'' and affect the coloration of the material. We will report results of first principles density functional theory calculations that explore the segregation modes of Mg in the near-surface region of alumina and the corresponding effect on optical properties, i.e., reflectivity. This work is supported in part by NSF grant DMR-0513048 and ALCOA Inc.
Spectral reflectance of surface soils - A statistical analysis
NASA Technical Reports Server (NTRS)
Crouse, K. R.; Henninger, D. L.; Thompson, D. R.
1983-01-01
The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.
Thin film heater for removable volatile protecting coatings.
Karim, Abid
2013-01-01
Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.
Effects of high-temperature gas dealkalization on surface mechanical properties of float glass
NASA Astrophysics Data System (ADS)
Senturk, Ufuk
The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The contact damage behavior of the treated surfaces is shown to differ from those of untreated surfaces, for SOsb2-treated float glass, where the crack initiation characteristics indicate crack formation from the surface and the indenter tip, different than the expected anomalous deformation. This behavior resembles that of a silica glass deformation on the surface, which is in agreement with the other foundations in this study.
Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Qiu, J.; Liu, L. H.
2015-07-01
Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.
Normal incidence reflective-mode etalons with novel spectral properties
NASA Astrophysics Data System (ADS)
Te Kolste, Robert D.
2003-11-01
Etalons having one surface which is highly reflective have been used for a variety of applications. By varying the coating type and carefully controlling the thicknesses of the coatings on the lower reflectance side, one can obtain interesting and useful properties. One example is a low finesse but highly efficient element having a reflectance which is very sinusoidal with respect to wavelength. By adding additional layers, functions which are asymmetric about the reflectance peak with respect to wavelength can be obtained, including behavior which approximates a sawtooth reflectance as a function of wavelength. Such devices are easily fabricated at the wafer scale, and can be used in wavelength monitoring and control applications such as wavelength lockers for tunable lasers.
Parallel detection of violations of color constancy
Foster, David H.; Nascimento, Sérgio M. C.; Amano, Kinjiro; Arend, Larry; Linnell, Karina J.; Nieves, Juan Luis; Plet, Sabrina; Foster, Jeffrey S.
2001-01-01
The perceived colors of reflecting surfaces generally remain stable despite changes in the spectrum of the illuminating light. This color constancy can be measured operationally by asking observers to distinguish illuminant changes on a scene from changes in the reflecting properties of the surfaces comprising it. It is shown here that during fast illuminant changes, simultaneous changes in spectral reflectance of one or more surfaces in an array of other surfaces can be readily detected almost independent of the numbers of surfaces, suggesting a preattentive, spatially parallel process. This process, which is perfect over a spatial window delimited by the anatomical fovea, may form an early input to a multistage analysis of surface color, providing the visual system with information about a rapidly changing world in advance of the generation of a more elaborate and stable perceptual representation. PMID:11438751
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.
2012-01-01
Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhousen; King, Michael D.
2011-01-01
Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
NASA Astrophysics Data System (ADS)
Liu, Runhan; Yuan, Ying; Long, Huabao; Peng, Sha; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
The intense surface plasmons (SPs) can be generated by patterned metal nano-structure arrays, through coupling incident light onto the functioned metal surface, so as to construct highly constrained surface electromagnetic modes. Therefore, a localized micro-nano-field array with a highly compressed surface electron distribution, can also be shaped and even nano-focused over the surface, which will lead to a lot of special physical effects such as anti-reflection effect, and thus indicate many new potential applications in the field of nano-photonics and -optoelectronics. In this paper, several typical patterned sub-wavelength metal nano-structure arrays were designed according to the process, in which common silicon wafer was employed as the substrate material and aluminum as the metal film with different structural size and arrangement circle. In addition, by adjusting the dielectric constant of metal material appropriately, the power control effect on metallic nanostructure was simulated. The key properties such as the excitation intensity of the surface plasmons were studied by simulating the reflectivity characteristic curves and the electric field distribution of the nanostructure excited by incident infrared beams. It is found that the angle of corners, the arrangement cycle and the metal material properties of the patterned nano-structures can be utilized as key factors to control the excitation intensity of surface plasmons.
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2011-02-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
NASA Technical Reports Server (NTRS)
Jones, W. R.; Lauer, J. L.
1979-01-01
Attenuated total reflection infrared spectroscopy was used to analyze ultrahigh molecular weight polyethylene wear test specimens. Three different specimens were analyzed. One specimen was gamma irradiated to a dose of 5.0 MRad, another to a dose of 2.5 MRad, and the final specimen was unirradiated. There was no conclusive evidence of chemical changes (i.e., unsaturation or oxidation) in the surface regions of any of the polyethylene samples. Therefore, it was concluded that the gamma irradiation sterilization procedure shoud not alter the boundary lubricating properties of the polyethylene.
Emissive and reflective properties of curved displays in relation to image quality
NASA Astrophysics Data System (ADS)
Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne
2016-03-01
Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
Reflectance of metallic indium for solar energy applications
NASA Technical Reports Server (NTRS)
Bouquet, F. L.; Hasegawa, T.
1984-01-01
An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.
NASA Astrophysics Data System (ADS)
Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten
2005-04-01
We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored.
Applications of Graphene to Photonics
2014-07-01
to plasmonic properties that stem from its two-dimensional electron gas (2DEG) and strong surface plasmon polariton (SPP) coupling in the visible and...have been created by coupling to surface plasmon polaritons (SPP) in the graphene. In one case, an attenuated total reflectance geometry was considered... polariton mode in graphene, then a SPP is excited in graphene and the reflectivity of the EM wave is reduced. The coupling of both TE and TM
Interactive Acoustic Simulation in Urban and Complex Environments
2015-03-21
and validity of the solution given by the two methods. Transfer functions are used to model two-way couplings to allow multiple orders of acoustic...Function ( BRDF )[79, 137]. The ray models have also been applied to inhomogeneous outdoor media by numerical integration of the differential ray...surface, the interaction can be modeled by specular reflection, Snell’s law refraction, or BRDF -based reflection, depending on the surface properties
NASA Astrophysics Data System (ADS)
Xiang, Bo; Zhang, Jun
2018-01-01
For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M.
1984-01-01
Efforts to develop a three dimensional model to predict canopy, bidirectional reflectance for heterogenous plant stands using incident radiation and canopy structural descriptions as inputs are described. Utility programs were developed to cope with the complex output from the 3 dimensional model. In addition an attempt was made to define leaf and soil properties, which are appropriate to the mode, by measuring leaf and soil bidirectional reflectance distribution functions; since almost no data exist on these distributions. In the process it was realized that most models probably are using the wrong leaf spectral properties, and that off-nadir reflectance measurements are difficult to make because of non-Lambertian properties of reference surfaces. Also, in the visible wavebands, rough soil may not be distinguishable from canopies when viewed from above.
NASA Astrophysics Data System (ADS)
Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.
2017-11-01
An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.
NASA Technical Reports Server (NTRS)
Maples, D.; Spiller, M. H.; Maples, G.
1973-01-01
Review of the results of an investigation aimed at determining experimentally the directional monochromatic reflectance changes caused under high-vacuum space conditions by a water spray impinging on thermally controlled surfaces consisting of three paint specimens (Z93, S13G, and 92-007) and an aluminum foil. The first two paints and the aluminum foil suffered considerable physical damage, but only small changes resulted in the reflectance of the paints while the reflectance of the aluminum foil decreased with increase in exposure time to the water jet. Only the 92-007 Dow Corning paint retained the same physical and reflective characteristics.
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
Common-midpoint radar surveys of ice sheets: a tool for better ice and bed property inversions
NASA Astrophysics Data System (ADS)
Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Jacobel, R. W.
2016-12-01
In response to the demand for observationally derived boundary conditions in ice-sheet models, geophysicists are striving to more quantitatively interpret the reflection amplitudes of ice penetrating radar data. Inversions for ice-flow parameters and basal properties typically use common-offset radar data, which contain a single observation of bed reflection amplitude at each location in the survey; however, the radar equation has more than one unknown - ice temperature, subglacial water content, and bedrock roughness cannot be uniquely determined without additional constraints. In this study, we adapt traditional seismic property inversion techniques to radar data, using additional information collected with a common-midpoint (CMP) radar survey geometry (which varies the source-receiver offset for each subsurface target). Using two of the first common-midpoint ice-penetrating radar data sets collected over thick ice in Antarctica and Greenland, we test the hypothesis that these data can be used to disentangle the contributions of ice conductivity and bed permittivity to the received reflection amplitudes. We focus specifically on the corrections for the angular dependence of antenna gain and surface reflectivity, refractive focusing effects, and surface scattering losses. Inferred temperature profiles, derived from the constrained ice conductivities at Kamb Ice Stream and the North East Greenland Ice Stream, suggest higher than expected depth-integrated temperatures, as well as non-physical depth trends (with elevated temperatures near the surface). We hypothesize that this is driven in part by offset-dependent interferences between the sub-wavelength layers that make up a single nadir reflection, and present a convolutional model that describes how this interference might systematically reduce reflection power with offset (thereby elevating the inferred attenuation rate). If these additional offset-dependent power losses can be isolated and removed, common-midpoint profiles could provide a promising new way to calibrate property inversions that use the more laterally extensive, airborne, common-offset radar surveys.
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di
2017-10-01
Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.
Fiber optic device for sensing the presence of a gas
Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin
1998-01-01
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-11-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.
2016-12-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Technical Reports Server (NTRS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-01-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
Surface profilometry using the incoherent self-imaging technique in reflection mode
NASA Astrophysics Data System (ADS)
Hassani, Khosrow; Nahal, Arashmid; Tirandazi, Negin
2018-01-01
In this paper, we introduce a highly sensitive and cost-effective surface profilometry technique based on the Lau self-imaging phenomenon in reflection mode, combined with the Moiré technique. Standard incoherent grating imaging with two Ronchi rulings is deployed to produce localized Fresnel pseudoimages, except that the light wavefront gets modulated after reflecting off the surface under test and before the final image forms. A third grating is superimposed on the pseudoimage to take advantage of the magnification property of the Moiré fringes and enhance the surface-induced modulations. A five-step phase-shifting technique is used to extract the 2D surface profile of the sample from the recorded Moiré patterns. To demonstrate our technique, we measure the profile of a 250 nm step-like metallic sample. The results show a few nanometer uncertainties, very good reproducibility, and agreement with other known optical and mechanical surface profilometry methods.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
Iterative atmospheric correction scheme and the polarization color of alpine snow
NASA Astrophysics Data System (ADS)
Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond
2012-07-01
Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories.In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction.In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and a likely high water content due to melting. The analysis benefits from ancillary information provided by the NASA Langley High Spectral Resolution Lidar deployed on the same aircraft.The results obtained from the iterative scheme are contrasted against the surface polarized reflectance obtained ignoring multiple reflections, via the simplistic subtraction of the atmospheric scattering contribution. Finally, the retrieved reflectance is modeled after the scattering properties of a dense collection of ice crystals at the surface. Confirming that the polarized reflectance of snow is spectrally flat would allow to extend the techniques already in use for polarimetric retrievals of aerosol properties over land to the large portion of snow-covered pixels plaguing orbital and suborbital observations.
Iterative Atmospheric Correction Scheme and the Polarization Color of Alpine Snow
NASA Technical Reports Server (NTRS)
Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond
2012-01-01
Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories. In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction. In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and a likely high water content due to melting. The analysis benefits from ancillary information provided by the NASA Langley High Spectral Resolution Lidar deployed on the same aircraft. The results obtained from the iterative scheme are contrasted against the surface polarized reflectance obtained ignoring multiple reflections, via the simplistic subtraction of the atmospheric scattering contribution. Finally, the retrieved reflectance is modeled after the scattering properties of a dense collection of ice crystals at the surface. Confirming that the polarized reflectance of snow is spectrally flat would allow to extend the techniques already in use for polarimetric retrievals of aerosol properties over land to the large portion of snow-covered pixels plaguing orbital and suborbital observations.
NASA Astrophysics Data System (ADS)
Hashimoto, Makiko; Nakajima, Teruyuki
2017-06-01
We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.
Optical differential reflectance spectroscopy for photochromic molecules on solid surfaces
NASA Astrophysics Data System (ADS)
Nickel, Fabian; Bernien, Matthias; Lipowski, Uwe; Kuch, Wolfgang
2018-03-01
Optical reflectance of thin adsorbates on solid surfaces is able to reveal fundamental changes of molecular properties compared to bulk systems. The detection of very small changes in the optical reflectance required several technical improvements in the past decades. We present an experimental setup that is capable of high-quality measurements of submonolayers and ultrathin layers of photochromic molecules on surfaces as well as quantifying their isomerization kinetics. By using photomultipliers as detectors, an enhancement of the signal-to-noise ratio by a factor of three with a total reduction of light exposure on the sample by at least four orders of magnitude is achieved. The potential of the experimental setup is demonstrated by a characterization of the photoswitching and thermal switching of a spirooxazine derivate on a bismuth surface.
NASA Technical Reports Server (NTRS)
Banin, Amos; Carle, Glenn C.; Chang, Sherwood; Coyne, Lelia M.; Orenberg, James B.
1988-01-01
A model system of Mars soil analog materials (MSAMs) was prepared, and the properties of these clays, such as chemical composition, surface-ion composition, water adsorption isotherms, and reflectance spectra, were examined. The results of these studies, performed along with simulations of the Viking Labeled Release Experiement using MSAMs, indicate that surface iron and adsorbed water are important determinants of clay behavior, as evidenced by changes in reflectance, water absorption, and clay surface reactions. The paper discusses the relevance of these results to the two major questions raised by prior explorations of Mars: has there ever been abundant water on Mars, and why is the iron found in the Martian soil not readily seen in the reflectance spectra of the surface?
Titan's surface from the Cassini RADAR radiometry data during SAR mode
Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.
2008-01-01
We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.
NASA Astrophysics Data System (ADS)
Miller, I.; Forster, B. C.; Laffan, S. W.
2012-07-01
Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.
The reflection and transmission properties of a triple band dichroic surface
NASA Technical Reports Server (NTRS)
Schneider, S. W.; Munk, B. A.
1990-01-01
The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band.
Color analysis and image rendering of woodblock prints with oil-based ink
NASA Astrophysics Data System (ADS)
Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji
2012-01-01
This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.
Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine
NASA Astrophysics Data System (ADS)
Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano
2017-08-01
Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.
Specimen illumination apparatus with optical cavity for dark field illumination
Pinkel, Daniel; Sudar, Damir; Albertson, Donna
1999-01-01
An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.
Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Helfenstein, Paul
1998-01-01
The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.
NASA Astrophysics Data System (ADS)
Zaremba, Krzysztof
2008-06-01
Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.
An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework
NASA Astrophysics Data System (ADS)
Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong
2016-07-01
This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the inversion framework. The next step of using this framework to study the aerosol information content in GEO-TASO measurements is also discussed.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1984-01-01
Two stream methods provide rapid approximate calculations of radiative transfer in scattering and absorbing media. Although they provide information on fluxes only, and not on intensities, their speed makes them attractive to more precise methods. The methods provide a comprehensive, unified review for a homogeneous layer, and solve the equations for reflectance and transmittance for a homogeneous layer over a non reflecting surface. Any of the basic kernels for a single layer can be extended to a vertically inhomogeneous medium over a surface whose reflectance properties vary with illumination angle, as long as the medium can be subdivided into homogeneous layers.
Creating photorealistic virtual model with polarization-based vision system
NASA Astrophysics Data System (ADS)
Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi
2005-08-01
Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.
Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs
NASA Astrophysics Data System (ADS)
Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi
2018-05-01
The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.
Parallel detecting, spectroscopic ellipsometers/polarimeters
Furtak, Thomas E.
2002-01-01
The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.
Spectropolarimetric Imaging Observations
NASA Astrophysics Data System (ADS)
Bradley, Christine Lavella
The capability to map anthropogenic aerosol quantities and properties over land can provide significant insights for climate and environmental studies on global and regional scales. One of the primary challenges in aerosol information monitoring is separating two signals measured by downward-viewing airborne or spaceborne instruments: the light scattered from the aerosols and light reflected from the Earth's surface. In order to study the aerosols independently, the surface signal needs to be subtracted out from the measurements. Some observational modalities, such as multispectral and multiangle, do not provide enough information to uniquely define the Earth's directional reflectance properties for this task due to the high magnitude and inhomogeneity of albedo for land surface types. Polarization, however, can provide additional information to define surface reflection. To improve upon current measurement capabilities of aerosols over urban areas, Jet Propulsion Laboratory developed the Multiangle SpectroPolarimetric Imager (MSPI) that can accurately measure the Degree of Linear Polarization to 0.5%. In particular, data acquired by the ground-based prototype, GroundMSPI, is used for directional reflectance studies of outdoor surfaces in this dissertation. This work expands upon an existing model, the microfacet model, to characterize the polarized bidirectional reflectance distribution function (pBRDF) of surfaces and validate an assumption, the Spectral Invariance Hypothesis, on the surface pBRDF that is used in aerosol retrieval algorithms. The microfacet model is commonly used to represent the pBRDF of Earth's surface types, such as ocean and land. It represents a roughened surface comprised of randomly oriented facets that specularly reflect incoming light into the upward hemisphere. The analytic form of the pBRDF for this model assumes only a single reflection of light from the microfaceted surface. If the incoming illumination is unpolarized, as it is with natural light from the Sun, the reflected light is linearly polarized perpendicular to the plane that contains the illumination and view directions, the scattering plane. However, previous work has shown that manmade objects, such as asphalt and brick, show a polarization signature that differs from the single reflection microfacet model. Using the polarization ray-tracing (PRT) program POLARIS-M, a numerical calculation for the pBRDF is made for a roughened surface to account for multiple reflections that light can experience between microfacets. Results from this numerical PRT method shows rays that experience two or more reflections with the microfacet surface can be polarized at an orientation that differs from the analytical single reflection microfacet model. This PRT method is compared against GroundMSPI data of manmade surfaces. An assumption made regarding the pBRDF for this microfacet model is verified with GroundMSPI data of urban areas. This is known as the Spectral Invariance Hypothesis and asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is the same for all wavelengths. This simplifies the microfacet model by assuming some surface parameters such as the index of refraction are spectrally neutral. GroundMSPI acquires the pBRF for five prominent region types, asphalt, brick, cement, dirt, and grass, for day-long measurements on clear sky conditions. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The pBRF is measured for the three polarimetric wavelengths of GroundMSPI, 470, 660, and 865nm, and the best fit slope of the spectral correlation is reported. This investigation shows agreement to the Spectral Invariance Hypothesis within 10% for all region types excluding grass. Grass measurements show a large mean deviation of 31.1%. This motivated an angle of linear polarization (AoLP) analysis of cotton crops to isolate single reflection cases, or specular reflections, from multiple scattering cases of light in vegetation. Results from this AoLP method show that specular reflections off the top surface of leaves follow the Spectral Invariance Hypothesis.
Detonation-to-shock wave transmission at a contact discontinuity
NASA Astrophysics Data System (ADS)
Peace, J. T.; Lu, F. K.
2018-02-01
The one-dimensional interaction of a detonation wave with a contact discontinuity was investigated analytically and experimentally for oxyhydrogen detonations. The analytical and experimental results showed that the transmitted shock through the contact surface and into a non-combustible gas can either be amplified or attenuated depending on the reflection type at the contact surface and on the ratio of acoustic impedance across it. Experiments were performed with a detonation-driven shock tube facility to determine the transmitted shock velocity into a non-combustible He/air mixture. The oxyhydrogen equivalence ratio in the detonation section was varied from 0.5 to 1.5, and the driven section He mole fraction was varied from 0.0 to 1.0 to test a broad range of acoustic impedance ratios ranging from approximately 0.36 to 1.69. The analytical results were shown to have acceptable agreement with the measured transmitted shock wave velocity in the case of a reflected rarefaction from the contact surface. Additionally, the results indicated that the detonation wave reaction zone properties could have an important role that influences the transmitted shock properties in the case of a reflected shock from the contact surface.
Biosignatures as revealed by spectropolarimetry of Earthshine.
Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric
2012-02-29
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectroscopic observations of the Moon at the lunar surface
NASA Astrophysics Data System (ADS)
Wu, Yunzhao; Hapke, Bruce
2018-02-01
The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Fan, Xiaoli; Chen, Jiajia; He, Siyu; Yi, Zao; Ye, Xin; Yi, Yougen
2018-05-01
A silicon substrate with micro-pyramid structure (black silicon) is prepared by wet chemical etching and then subjected to reactive ion etching (RIE) in the mixed gas condition of SF6, CHF3 and He. We systematically study the impacts of flow rates of SF6, CHF3 and He, the etching pressure and the etching time on the surface morphology and reflectivity through various characterizations. Meanwhile, we explore and obtain the optimal combination of parameters for the preparation of composite structure that match the RIE process based on the basis of micro-pyramid silicon substrate. The composite sample prepared under the optimum parameters exhibits excellent anti-reflective performance, hydrophobic, self-cleaning and anti-corrosive properties. Based on the above characteristics, the composite micro/nano structure can be applied to solar cells, photodetectors, LEDs, outdoor devices and other important fields.
Optical characterization of nanoporous AAO sensor substrate
NASA Astrophysics Data System (ADS)
Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup
2014-05-01
Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.
Martian surface weathering studies
NASA Technical Reports Server (NTRS)
Calvin, M.
1973-01-01
The nature of the Martian surface was characterized by means of its reflectance properties. The Mariner 9 photography was used to establish terrain units which were crossed by the Mariner 6 and 7 paths. The IR reflectance measured by the IR spectrometers on these spacecraft was to be used to indicate the nature of the surface within these units. There is an indication of physical size and/or compositional variation between units but too many natural parameters can vary (size, shape, composition, adsorbed phases, reradiation, atmospheric absorbtion, temperature gradients, etc.) to be certain what effect is causing those variations observed. It is suggested that the characterization could be fruitfully pursued by a group which was dedicated to peeling back the layers of minutia affecting IR reflectance.
Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)
NASA Technical Reports Server (NTRS)
Clymer, B. D.
1990-01-01
A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.
Special report, diffuse reflectivity of the lunar surface
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1972-01-01
The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.
Some Insights of Spectral Optimization in Ocean Color Inversion
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert
2011-01-01
In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.
Reflectance from images: a model-based approach for human faces.
Fuchs, Martin; Blanz, Volker; Lensch, Hendrik; Seidel, Hans-Peter
2005-01-01
In this paper, we present an image-based framework that acquires the reflectance properties of a human face. A range scan of the face is not required. Based on a morphable face model, the system estimates the 3D shape and establishes point-to-point correspondence across images taken from different viewpoints and across different individuals' faces. This provides a common parameterization of all reconstructed surfaces that can be used to compare and transfer BRDF data between different faces. Shape estimation from images compensates deformations of the face during the measurement process, such as facial expressions. In the common parameterization, regions of homogeneous materials on the face surface can be defined a priori. We apply analytical BRDF models to express the reflectance properties of each region and we estimate their parameters in a least-squares fit from the image data. For each of the surface points, the diffuse component of the BRDF is locally refined, which provides high detail. We present results for multiple analytical BRDF models, rendered at novel orientations and lighting conditions.
NASA Astrophysics Data System (ADS)
Cho, Kyu-Gong
2000-12-01
In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.
Atmospheric and Science Complexity Effects on Surface Bidirectional Reflectance
NASA Technical Reports Server (NTRS)
Diner, D. J. (Principal Investigator); Martonchik, J. V.; Sythe, W. D.; Hessom, C.
1985-01-01
Among the tools used in passive remote sensing of Earth resources in the visible and near-infrared spectral regions are measurements of spectral signature and bidirectional reflectance functions (BDRFs). Determination of surface properties using these observables is complicated by a number of factors, including: (1) mixing of surface components, such as soil and vegetation, (2) multiple reflections of radiation due to complex geometry, such as in crop canopies, and (3) atmospheric effects. In order to bridge the diversity in these different approaches, there is a need for a fundamental physical understanding of the influence of the various effects and a quantiative measure of their relative importance. In particular, we consider scene complexity effects using the example of reflection by vegetative surfaces. The interaction of sunlight with a crop canopy and interpretation of the spectral and angular dependence of the emergent radiation is basically a multidimensional radiative transfer problem. The complex canopy geometry, underlying soil cover, and presence of diffuse as well as collimated illumination will modify the reflectance characteristics of the canopy relative to those of the individual elements.
NASA Technical Reports Server (NTRS)
Boyce, Joseph (Technical Monitor); Mustard, John
2004-01-01
Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations are due to surface properties. With this new understanding of reflectance and emission spectroscopy, mineralogic interpretations were derived and applied to the science objectives of the three regions.
FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.
2018-01-01
Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984
Surface property detection apparatus and method
Martens, J.S.; Ginley, D.S.; Hietala, V.M.; Sorensen, N.R.
1995-08-08
Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor. 4 figs.
Fiber optic device for sensing the presence of a gas
Benson, D.K.; Bechinger, C.S.; Tracy, C.E.
1998-01-13
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.
NASA Astrophysics Data System (ADS)
Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.
2018-04-01
This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.
Krotkov, N A; Vasilkov, A P
2000-03-20
Use of a vertical polarizer has been suggested to reduce the effects of surface reflection in the above-water measurements of marine reflectance. We suggest using a similar technique for airborne or spaceborne sensors when atmospheric scattering adds its own polarization signature to the upwelling radiance. Our own theoretical sensitivity study supports the recommendation of Fougnie et al. [Appl. Opt. 38, 3844 (1999)] (40-50 degrees vertical angle and azimuth angle near 135 degrees, polarizer parallel to the viewing plane) for above-water measurements. However, the optimal viewing directions (and the optimal orientation of the polarizer) change with altitude above the sea surface, solar angle, and atmospheric vertical optical structure. A polarization efficiency function is introduced, which shows the maximal possible polarization discrimination of the background radiation for an arbitrary altitude above the sea surface, viewing direction, and solar angle. Our comment is meant to encourage broader application of airborne and spaceborne polarization sensors in remote sensing of water and sea surface properties.
NASA Astrophysics Data System (ADS)
Farah, Abdiaziz A.; Zheng, Susan H.; Morin, Sylvie; Bensebaa, Farid; Pietro, William J.
2007-04-01
Surface-confined telechelic poly(ɛ-caprolactone) macroligand with two distinct functional groups per polymeric chain has been synthesized and characterized. The molecular microstructure of the macroligand with regard to the properties of the end-capped functionalities and with those on surface substrate has been studied by solution and surface analytical methods (i.e., X-ray photoelectron spectroscopy (XPS), grazing angle reflectance-Fourier transform IR spectroscopy (GA-FTIR), water contact angle measurements, and atomic force microscopy (AFM)) to elucidate the structure and properties of such multifunctional polymer on gold (1 1 1) substrate.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Technical Reports Server (NTRS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-01-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Astrophysics Data System (ADS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-04-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
NASA Technical Reports Server (NTRS)
Conel, James E.
1990-01-01
Groound-reflectance data on selected targets for calbiration of a Landsat TM image of Wind River Basin, Wyoming, acquired November 21, 1982 were examined. Field-derived calibration relationships together with Landsat radiometric calibration data are used to convert scanner DN values to spectral radiance for the TM bands and (together with a simplified homogeneous atmospheric model) to obtain estimates of single-scattering albedo and optical depth consistent with the derived path radiance and transmission properties of the atmosphere. These estimates are used to study the problems of evaluation of the magnitude of adjacency effects for reference targets, the assumption of isotropic properties, and the aggregate magnitude of multiple reflections between sky and ground. The radiance calibration equations are also used together with preflight measured signal/noise properties of the TM-4 system to estimate the noise-equivalent reflectance recoverable in practice from the system.
Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations
NASA Technical Reports Server (NTRS)
Roush, Ted L.
2016-01-01
Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.
Infrared Radiative Properties of Yttria-Stabilized Zirconia Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Eldridge, Jeff I.; Spuckler, Charles M.; Street, Ken W.; Markham, Jim R.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The infrared (IR) transmittance and reflectance of translucent thermal barrier coatings (TBCs) have important implications for both the performance of these coatings as radiation barriers and emitters as well as affecting measurements of TBC thermal conductivity, especially as TBCs are being pushed to higher temperatures. In this paper, the infrared spectral directional-hemispherical transmittance and reflectance of plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs are reported. These measurements are compared to those for single crystal YSZ specimens to show the effects of the plasma-sprayed coating microstructure. It is shown that the coatings exhibit negligible absorption at wavelengths up to about 5 micrometers, and that internal scattering rather than surface reflections dominates the hemispherical reflectance. The translucent nature of the 8YSZ TBCs results in the absorptance/emittance and reflectance of TBC-coated substrates depending on the TBC thickness, microstructure, as well as the radiative properties of the underlying substrate. The effects of these properties on TBC measurements and performance are discussed.
NASA Astrophysics Data System (ADS)
Chang, Kuo-En; Hsiao, Ta-Chih; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang
2016-08-01
In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AODmixture and SSAmixture about 10.0% and 1.4% respectively.
Simulation of the Reflected Blast Wave froma C-4 Charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, W M; Kuhl, A L; Tringe, J W
2011-08-01
The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 rangesmore » (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.« less
Simulation of the reflected blast wave from a C-4 charge
NASA Astrophysics Data System (ADS)
Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph
2012-03-01
The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.
NOAA AVHRR Land Surface Albedo Algorithm Development
NASA Technical Reports Server (NTRS)
Toll, D. L.; Shirey, D.; Kimes, D. S.
1997-01-01
The primary objective of this research is to develop a surface albedo model for the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The primary test site is the Konza prairie, Kansas (U.S.A.), used by the International Satellite Land Surface Climatology Project (ISLSCP) in the First ISLSCP Field Experiment (FIFE). In this research, high spectral resolution field spectrometer data was analyzed to simulate AVHRR wavebands and to derive surface albedos. Development of a surface albedo algorithm was completed by analysing a combination of satellite, field spectrometer, and ancillary data. Estimated albedos from the field spectrometer data were compared to reference albedos derived using pyranometer data. Variations from surface anisotropy of reflected solar radiation were found to be the most significant albedo-related error. Additional error or sensitivity came from estimation of a shortwave mid-IR reflectance (1.3-4.0 micro-m) using the AVHRR red and near-IR bands. Errors caused by the use of AVHRR spectral reflectance to estimate both a total visible (0.4-0.7 micro-m) and near-IR (0.7-1.3 micro-m) reflectance were small. The solar spectral integration, using the derived ultraviolet, visible, near-IR and SW mid-IR reflectivities, was not sensitive to many clear-sky changes in atmospheric properties and illumination conditions.
WhitebalPR: automatic white balance by polarized reflections
NASA Astrophysics Data System (ADS)
Fischer, Gregor; Kolbe, Karin; Sajjaa, Matthias
2008-02-01
This new color constancy method is based on the polarization degree of that light which is reflected at the surface of an object. The subtraction of at least two images taken under different polarization directions detects the polarization degree of the neutrally reflected portions and eliminates the remitted non-polarized colored portions. Two experiments have been designed to clarify the performance of the procedure, one to multicolored objects and another to objects of different surface characteristics. The results show that the mechanism of eliminating the remitted, non-polarized colored portions of light works very fine. Independent from its color, different color pigments seem to be suitable for measuring the color of the illumination. The intensity and also the polarization degree of the reflected light depend on the surface properties significantly. The results exhibit a high accuracy of measuring the color of the illumination for glossy and matt surfaces. Only strongly scattering surfaces account for a weak signal level of the difference image and a reduced accuracy. An embodiment is proposed to integrate the new method into digital cameras.
Surface Color Perception and Equivalent Illumination Models
Brainard, David H.; Maloney, Laurence T.
2011-01-01
Vision provides information about the properties and identity of objects. The ease with which we make such judgments belies the difficulty of the information-processing task that accomplishes it. In the case of object color, retinal information about object reflectance is confounded with information about the illumination as well as about the object’s shape and pose. Because of these factors, there is no obvious rule that allows transformation of the retinal images of an object to a color representation that depends primarily on the object’s surface reflectance properties. Despite the difficulty of this task, however, under many circumstances object color appearance is remarkably stable across scenes in which the object is viewed. Here we review experiments and theory that aim to understand how the visual system stabilizes the color appearance of object surfaces. Our emphasis is on a class of models derived from explicit analysis of the computational problem of estimating the physical properties of illuminants and surfaces from the information available in the retinal image and experiments that test these models. We argue that this approach has considerable promise for allowing generalization from simplified laboratory experiments to richer scenes that more closely approximate natural viewing. PMID:21536727
Improved backward ray tracing with stochastic sampling
NASA Astrophysics Data System (ADS)
Ryu, Seung Taek; Yoon, Kyung-Hyun
1999-03-01
This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.
Understanding Surface Adhesion in Nature: A Peeling Model.
Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao
2016-07-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.
Size Effects in Nanoscale Structural Phenomena
NASA Astrophysics Data System (ADS)
McElhinny, Kyle Matthew
The creation of nanostructures offers the opportunity to modify and tune properties in ways inaccessible in bulk materials. A key component in this development is the introduction of size effects which reduce the physical size, dimensionality, and increase the contribution of surface effects. The size effects strongly modify the structural dynamics in nanoscale systems and leads to changes in the vibrational, electrical, and optical properties. An increased level of understanding and control of nanoscale structural dynamics will enable more precise control over nanomaterial transport properties. My work has shown that 1D spatial confinement through the creation of semiconducting nanomembranes modifies the phonon population and dispersion. X ray thermal diffuse scattering distributions show an excess in intensity for nanomembranes less than 100 nm in thickness, for phonon modes with wavevectors spanning the entire Brillouin zone. This excess intensity indicates the development of new low energy phonon modes or the softening of elastic constants. Furthermore, an additional anisotropy in the phonon dispersion is observed with a symmetry matching the direction of spatial confinement. This work has also extended x ray thermal diffuse scattering for use in studying nanomaterials. In electro- and photoactive monolayers a structural reconfiguration can be produced by external optical stimuli. I have developed an electro and photoactive molecular monolayers on oxide surfaces. Using x ray reflectivity, I have evaluated the organization and reconfiguration of molecular monolayers deposited by Langmuir Blodgett technique. I have designed and probed the reconfiguration of optically reconfigurable monolayers of azobenzene donor molecules on semiconducting surfaces. These monolayers reconfigure through a cooperative switching process leading to the development of large isomeric domains. This work represents an advancement in the interpretation of x ray reflectivity from molecular monolayers and inhomogeneous surfaces. The growth 2D materials depends on the interactions between the substrate and the 2D material. I have studied the competition between kinetics and surface energetics which lead to a faceted Ge surface during the growth of Graphene nanoribbons. As part of this work, I have developed new methodologies for interpreting x ray reflectivity patterns from surfaces with multiple reflections. A systematic analysis of the temperature dependence of the faceting process indicates that the process is thermodynamically dominated at high temperatures.
Measuring Light Reflectance of BGO Crystal Surfaces
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-10-01
A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.
NASA Astrophysics Data System (ADS)
Loeb, N. G.; Wong, T.; Wang, H.
2017-12-01
Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.
NASA Technical Reports Server (NTRS)
Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.
1995-01-01
A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.
NASA Technical Reports Server (NTRS)
Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei
1995-01-01
A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.
NASA Astrophysics Data System (ADS)
Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.
2016-05-01
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.
2017-12-01
We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order <= λvis. This portends consequences for efforts to deploy surface landers on high ASSB's such as Europa. A spacecraft landing on Europa's surface would require wheel or footpads that would protect it from settling deeply into the surface. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth's radiation balance by injecting high albedo Al2O3 particulates into Earth's atmosphere for the purpose of Solar Radiation Management by reflecting sunlight back into space hence, offsetting the global warming effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.
A theoretical study on the optical properties of black silicon
NASA Astrophysics Data System (ADS)
Ma, Shijun; Liu, Shuang; Xu, Qinwei; Xu, Junwen; Lu, Rongguo; Liu, Yong; Zhong, Zhiyong
2018-03-01
There is a wide application prospect in black silicon, especially in solar cells and photoelectric detectors. For further optimization of black silicon, it is important to study its optical properties. Especially, the influence of the surface nanostructures on these properties and the light propagation within the nanostructures are relevant. In this paper, two kinds of black silicon models are studied via the finite differences time domain method. The simulated reflectance spectra matches well with the measured curve. Also, the light intensity distribution within the nanostructures shows that near 80% of the incident light are redirected and subjected to internal reflection, which provides powerful support for the good light trapping properties of black silicon.
Laboratory insights into the detection of surface biosignatures by remote-sensing techniques
NASA Astrophysics Data System (ADS)
Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.
2014-03-01
With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will also present our plan to incorporate polarization measurements, and particularly circular polarization, because it can be a marker of homochirality, which is supposed to be a universal property of life. Finally, the analyses of both biotic and abiotic materials will help to assess if (or in which peculiar conditions) remote sensing techniques can discriminate between false positive and strong biomarkers. Ultimately, these laboratory data can serve as reference data to guide and interpret future observations, paving the way for the detection of life on distant exoplanets.
Multilayer coating of optical substrates by ion beam sputtering
NASA Astrophysics Data System (ADS)
Daniel, M. V.; Demmler, M.
2017-10-01
Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.
GPS: A New Tool for Ocean Science
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Garrison, James L.; Zavorotny, Valery
2001-01-01
In this article, we demonstrate wind retrieval (estimate its speed) from reflected signals obtained by a GPS receiver on board an aircraft to illustrate the potential of using GPS for remote-sensing applications. Before showing those results, we provide some background on radar remote sensing and discuss the theoretical model we used to interpret reflection data. This model describes the power and correlation properties of the reflected GPS signals as a function of scattering geometry and environmental parameters related to the reflecting surface.
Exploring Asteroid Interiors: The Deep Interior Mission Concept
NASA Technical Reports Server (NTRS)
Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.
2003-01-01
Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.
2016-12-01
The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.
Thin film concentrator panel development
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1982-01-01
The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.
NASA Astrophysics Data System (ADS)
Meygret, Aimé; Santer, Richard P.; Berthelot, Béatrice
2011-10-01
La Crau test site is used by CNES since 1987 for vicarious calibration of SPOT cameras. The former calibration activities were conducted during field campaigns devoted to the characterization of the atmosphere and the site reflectances. Since 1997, au automatic photometric station (ROSAS) was set up on the site on a 10m height pole. This station measures at different wavelengths, the solar extinction and the sky radiances to fully characterize the optical properties of the atmosphere. It also measures the upwelling radiance over the ground to fully characterize the surface reflectance properties. The photometer samples the spectrum from 380nm to 1600nm with 9 narrow bands. Every non cloudy days the photometer automatically and sequentially performs its measurements. Data are transmitted by GSM (Global System for Mobile communications) to CNES and processed. The photometer is calibrated in situ over the sun for irradiance and cross-band calibration, and over the Rayleigh scattering for the short wavelengths radiance calibration. The data are processed by an operational software which calibrates the photometer, estimates the atmosphere properties, computes the bidirectional reflectance distribution function of the site, then simulates the top of atmosphere radiance seen by any sensor over-passing the site and calibrates it. This paper describes the instrument, its measurement protocol and its calibration principle. Calibration results are discussed and compared to laboratory calibration. It details the surface reflectance characterization and presents SPOT4 calibration results deduced from the estimated TOA radiance. The results are compared to the official calibration.
Spectral reflectance of surface soils: Relationships with some soil properties
NASA Technical Reports Server (NTRS)
Kiesewetter, C. H.
1983-01-01
Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.
NASA Astrophysics Data System (ADS)
Lagomasino, D.; Fatoyinbo, T. E.; Lee, S. K.; Feliciano, E. A.; Simard, M.; Trettin, C.
2016-12-01
Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.
The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less
Chen, Xianfeng; Weber, Irene; Harrison, Robert W
2008-09-25
Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (
Formation of nanostructured silicon surfaces by stain etching
2014-01-01
In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830
Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment
NASA Astrophysics Data System (ADS)
Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario
2009-01-01
Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.
APOLLO 17 - INFLIGHT Experiment Equipment
1972-11-28
S72-53950 (November 1972) --- The transmitter of the Surface Electrical Properties Experiment (S-204) in a deployed configuration. This experiment will be deployed at the Taurus-Littrow landing site by the Apollo 17 crewmen. The purpose of the SEP experiment is to obtain data about the electromagnetic energy transmission, absorption and reflection characteristics of the lunar surface and subsurface for use in the development of a geological model of the upper layers of the moon. The experiment is designed to determine layering in the lunar surface, to search for the presence of water below the surface, and to measure electrical properties of the lunar material in situ.
Method of sputter etching a surface
Henager, Jr., Charles H.
1984-01-01
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.
Method of sputter etching a surface
Henager, C.H. Jr.
1984-02-14
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.
Understanding Surface Adhesion in Nature: A Peeling Model
Gu, Zhen; Li, Siheng; Zhang, Feilong
2016-01-01
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on. PMID:27812476
Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery
NASA Technical Reports Server (NTRS)
Fraser, Robert S.; Kaufman, Yoram J.; Ferrare, Richard A.; Mattoo, Shana
1989-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Algorithm for atmospheric corrections of aircraft and satellite imagery
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Ferrare, R. A.; Kaufman, Y. J.; Markham, B. L.; Mattoo, S.
1992-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 microns. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Luminance-based specular gloss characterization.
Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter
2011-06-01
Gloss is a feature of visual appearance that arises from the directionally selective reflection of light incident on a surface. Especially when a distinct reflected image is perceptible, the luminance distribution of the illumination scene above the sample can strongly influence the gloss perception. For this reason, industrial glossmeters do not provide a satisfactory gloss estimation of high-gloss surfaces. In this study, the influence of the conditions of illumination on specular gloss perception was examined through a magnitude estimation experiment in which 10 observers took part. A light booth with two light sources was utilized: the mirror image of only one source being visible in reflection by the observer. The luminance of both the reflected image and the adjacent sample surface could be independently varied by separate adjustment of the intensity of the two light sources. A psychophysical scaling function was derived, relating the visual gloss estimations to the measured luminance of both the reflected image and the off-specular sample background. The generalization error of the model was estimated through a validation experiment performed by 10 other observers. In result, a metric including both surface and illumination properties is provided. Based on this metric, improved gloss evaluation methods and instruments could be developed.
Ultraviolet reflectance properties of asteroids
NASA Astrophysics Data System (ADS)
Butterworth, P. S.; Meadows, A. J.
1985-05-01
An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100-3200 A. The results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.
Structure and electromagnetic properties of FeSiAl particles coated by MgO
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhou, Ting-dong
2017-03-01
FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.
Gold coatings for cube-corner retro-reflectors
NASA Astrophysics Data System (ADS)
Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan
2005-09-01
The Space Interferometry Mission (SIM) PlanetQuest is managed by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. SIM requires, among other things, high precision double cube-corner retroreflectors. A test device has recently been fabricated for this project with demanding specifications on the optical surfaces and gold reflective coatings. Several gold deposition techniques were examined to meet the stringent specifications on uniformity, optical properties, micro-roughness and surface quality. We report on a comparative study of optical performance of gold films deposited by resistive and e-beam pvaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santiago, Denise Ester O.; Department of Chemical Engineering, University of the Philippines, Los Baños, College, Laguna 4031 Philippines; Pajarito, Bryan B.
The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonitemore » decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.« less
NASA Astrophysics Data System (ADS)
Sherman, James P.; McComiskey, Allison
2018-03-01
Aerosol optical properties measured at Appalachian State University's co-located NASA AERONET and NOAA ESRL aerosol network monitoring sites over a nearly four-year period (June 2012-Feb 2016) are used, along with satellite-based surface reflectance measurements, to study the seasonal variability of diurnally averaged clear sky aerosol direct radiative effect (DRE) and radiative efficiency (RE) at the top-of-atmosphere (TOA) and at the surface. Aerosol chemistry and loading at the Appalachian State site are likely representative of the background southeast US (SE US), home to high summertime aerosol loading and one of only a few regions not to have warmed during the 20th century. This study is the first multi-year ground truth
DRE study in the SE US, using aerosol network data products that are often used to validate satellite-based aerosol retrievals. The study is also the first in the SE US to quantify DRE uncertainties and sensitivities to aerosol optical properties and surface reflectance, including their seasonal dependence.Median DRE for the study period is -2.9 W m-2 at the TOA and -6.1 W m-2 at the surface. Monthly median and monthly mean DRE at the TOA (surface) are -1 to -2 W m-2 (-2 to -3 W m-2) during winter months and -5 to -6 W m-2 (-10 W m-2) during summer months. The DRE cycles follow the annual cycle of aerosol optical depth (AOD), which is 9 to 10 times larger in summer than in winter. Aerosol RE is anti-correlated with DRE, with winter values 1.5 to 2 times more negative than summer values. Due to the large seasonal dependence of aerosol DRE and RE, we quantify the sensitivity of DRE to aerosol optical properties and surface reflectance, using a calendar day representative of each season (21 December for winter; 21 March for spring, 21 June for summer, and 21 September for fall). We use these sensitivities along with measurement uncertainties of aerosol optical properties and surface reflectance to calculate DRE uncertainties. We also estimate uncertainty in calculated diurnally-averaged DRE due to diurnal aerosol variability. Aerosol DRE at both the TOA and surface is most sensitive to changes in AOD, followed by single-scattering albedo (ω0). One exception is under the high summertime aerosol loading conditions (AOD ≥ 0.15 at 550 nm), when sensitivity of TOA DRE to ω0 is comparable to that of AOD. Aerosol DRE is less sensitive to changes in scattering asymmetry parameter (g) and surface reflectance (R). While DRE sensitivity to AOD varies by only ˜ 25 to 30 % with season, DRE sensitivity to ω0, g, and R largely follow the annual AOD cycle at APP, varying by factors of 8 to 15 with season. Since the measurement uncertainties of AOD, ω0, g, and R are comparable at Appalachian State, their relative contributions to DRE uncertainty are largely influenced by their (seasonally dependent) DRE sensitivity values, which suggests that the seasonal dependence of DRE uncertainty must be accounted for. Clear sky aerosol DRE uncertainty at the TOA (surface) due to measurement uncertainties ranges from 0.45 (0.75 W m-2) for December to 1.1 (1.6 W m-2) for June. Expressed as a fraction of DRE computed using monthly median aerosol optical properties and surface reflectance, the DRE uncertainties at TOA (surface) are 20 to 24 % (15 to 22 %) for March, June, and September and 49 (50 %) for DEC. The relatively low DRE uncertainties are largely due to the low uncertainty in AOD measured by AERONET. Use of satellite-based AOD measurements by MODIS in the DRE calculations increases DRE uncertainties by a factor of 2 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. Diurnal variability in AOD (and to a lesser extent g) contributes to uncertainties in DRE calculated using daily-averaged aerosol optical properties that are slightly larger (by ˜ 20 to 30 %) than DRE uncertainties due to measurement uncertainties during summer and fall, with comparable uncertainties during winter and spring.
Optical and structural studies of films grown thermally on zirconium surfaces
NASA Astrophysics Data System (ADS)
Morgan, J. M.; McNatt, J. S.; Shepard, M. J.; Farkas, N.; Ramsier, R. D.
2002-06-01
Variable angle IR reflection spectroscopy and atomic force microscopy are used to determine the thickness and morphology of films grown thermally on Zr surfaces in air. The density and homogeneity of these films increases with temperature in the range studied (773-873 K) and growth at the highest temperature follows cubic rate law kinetics. We demonstrate a structure-property relationship for these thermally grown films and suggest the application of IR reflectivity as an inspection method during the growth of environmentally passive films on industrial Zr components.
NASA Technical Reports Server (NTRS)
Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.;
2017-01-01
We find that the reflectance of the lunar surface within 5 deg of latitude of theSouth Pole increases rapidly with decreasing temperature, near approximately 110K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5 deg from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10 deg to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al. 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200K and possibly at 300K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. 2015 based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.
NASA Astrophysics Data System (ADS)
Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.
2017-08-01
We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.
NASA Astrophysics Data System (ADS)
Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.
2015-09-01
In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.
Characterization of a Louisiana Bay Bottom
NASA Astrophysics Data System (ADS)
Freeman, A. M.; Roberts, H. H.
2016-02-01
This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.
The fabrication of subwavelength anti-reflective nanostructures using a bio-template
NASA Astrophysics Data System (ADS)
Xie, Guoyong; Zhang, Guoming; Lin, Feng; Zhang, Jin; Liu, Zhongfan; Mu, Shichen
2008-03-01
This paper describes a paradigm, a simple, low-cost and conventional approach to the fabrication of large-area subwavelength anti-reflective nanostructures on films directly with a bio-template. Specifically, the nano-nipple arrays on the surface of cicada wings have been precisely replicated to a PMMA (polymethyl methacrylate) film with high reproducibility by a technique of replica molding, which mainly involves two processes: one is that a negative Au mold is prepared directly from the bio-template of the cicada wing by thermal deposition; the other is that the Au mold is used to obtain the replica of the nanostructures on the original cicada wing by casting polymer. The reflectance spectra measurement shows that the replicated PMMA film can considerably reduce reflectivity at its surface over a large wavelength range from 250 to 800 nm, indicating that the anti-reflective property has also been inherited by the PMMA film.
Correlation of Windspeed and Antarctic Surface Roughness
NASA Astrophysics Data System (ADS)
Stockham, Mark; Anita Collaboration
2015-04-01
When electromagnetic waves interact with a media interface the transmitted and reflected portions of the incoming wave depend on the incident angle of the wave and wavelength (as well as the material properties of the media). The roughness of the surface of Antarctica affects the radio frequency signals received by airborne experiments, such as the balloon-borne experiment ANITA (ANtarctic Impulsive Transient Antenna) which observes the reflected radio waves from cosmic ray-induced extensive air showers (EAS). Roughness of a given scale can cause decoherence of the reflected signal and is an important effect to understand when estimating the amplitude of the incoming wave based on the reflected wave. It is challenging to get a survey of surface roughness over many of the areas that these experiments are likely to pass over. Correlating historical wind speed records with statistical roughness as observed by the backscatter of satellite [Rémy F, Parouty S. Remote Sensing. 2009] and airborne experiments operating at different frequencies can possibly be used to predict time-dependent surface roughness with surface wind speed as the input. These correlations will be presented for a variety of areas on the Antarctic ice shelf. NASA Grant NNX11AC47G.
Ion beam microtexturing and enhanced surface diffusion
NASA Technical Reports Server (NTRS)
Robinson, R. S.
1982-01-01
Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.
NASA Astrophysics Data System (ADS)
Combe, Jean-Philippe; Ammannito, Eleonora; Tosi, Federico; De Sanctis, Maria Cristina; McCord, Thomas B.; Raymond, Carol A.; Russell, Christopher T.
2015-10-01
Vesta's surface albedo variations and hydrated material content share similar spatial distribution. This observation is consistent with carbonaceous chondrite meteorites as a likely source material for dark surface units observed by the Dawn spacecraft, as presented by numerous publications. While these deposits have been studied extensively by analysis of data from the Framing Camera (FC) and the Visible and Infrared Spectrometer (VIR), we performed a new analysis based on an improved calibration of VIR. First we identified instrument and calibration artifacts, and we therefore developed corrections of the VIR flat field and response function. Then we developed a photometric correction for Vesta based on the lunar model by Shkuratov et al. (Shkuratov, Yu.G. et al. [1999]. Icarus 141, 132-155. http://dx.doi.org/10.1006/icar.1999.6154), and a semi-analytical inversion of the photometric parameters. This photometric model combines minimization of the scattering effects due to the topography (a disk function) and variations of multiple-scattering with phase angle (the phase function) caused by microscopic physical properties of the regolith. The improved calibration and photometric correction enable more accurate analysis of the spectral properties of Vesta's surface material, especially the reflectance at 1.4 μm and the 2.8 μm hydroxyl absorption band depth. We produced global and quadrangle maps that are used as a common dataset for this Icarus special issue on Vesta's surface composition. The joint interpretation of both the 1.4 μm reflectance and the 2.8 μm absorption band depth reveals unusual spectral properties for a number of impact craters and ejecta compared to the rest of Vesta. An area including the Bellicia, Arruntia and Pomponia craters, where olivine might be present, has relatively high reflectance and a strong hydroxyl absorption band. Another area in the vicinity of Capparonia crater has a high content of hydrated materials, although with moderate reflectance and typical pyroxene-rich composition. Ejecta blankets west of Oppia crater have a spectral behavior similar to Capparonia, except for the wider and more complex shape of the hydroxyl absorption band. On the other hand, some low-hydrated areas associated to crater floors and ejecta have higher reflectance and steeper spectral slope than most low-hydrated terrains Vesta. A broad lane that extends from Rheasilvia rim at Matronalia Rupes to the northern regions hosts little to no hydrated materials and exhibits a moderate spectral slope, similar to Rheasilvia's basin floor. These properties reinforce the hypothesis that the lane is composed of ejecta from Rheasilvia, as indicated by the distribution of pyroxene compositions by previous results from Dawn. A few small and fresh craters exhibit an association between low-reflectance, little to no hydrated materials and a strong positive spectral slope, suggesting optical effects by opaque coatings, as opposed to carbonaceous chondrite deposits, and possible coarser grains.
Comprehensive Understanding for Vegetated Scene Radiance Relationships
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Deering, D. W.
1984-01-01
The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.
Radar Scattering and Block Size Properties of Lunar Crater Ejecta From Mini-RF and LROC NAC Data
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Baloga, S. M.; Glaze, L. S.; Dixit, V.; Pantone, S. M.; Juvanescu, I.
2012-01-01
A major objective of the Mini-RF experiment is to distinguish lunar surfaces that may contain water/ice deposits [1,2]. Better understanding of the backscattering properties of craters of varying age and size is crucial for interpreting data received from the Mini-RF. The Mini-RF transmits a circularly polarized RF electromagnetic energy and coherently receives orthogonal linear polarization echoes [1]. The Mini- RF maps in two separate bands ( =12.6 and 4.5 cm) at a high resolution mode of 30 m/pixel [1]. Given the variables mentioned, the four stokes parameters are reconstructed. The Circular Polarization Ratio (CPR) is calculated for the purposes of understanding subsurface and surface roughness. The CPR is determined from reflections acquired from the ratio of power of the transmitted radio wave in same sense to the reflected radio wave in the opposite sense [1]. Ice in the permanently shadowed regions (PSRs) would be transparent to radar, but the inclusions of materials and imperfections would cause the radio wave to reflect multiple times [3], enhancing the number of same sense reflections and increasing the CPR. In addition, ice also displays the coherent backscatter opposition effect (CBOE), an interferrometric addition of same sense backscatter that further increases the CPR of ice targets [7]. High CPR values also correlate to multiple reflections and are typically associated with very rough surfaces [3]. The average dry lunar surface has a CPR in the range of 0.2-0.4 at 48deg incidence [3]. The purpose of this study is to begin to quantify degrees of surface wavelength-scale roughness with CPR and to understand how such surface roughness is created and gradually destroyed by erosion on the lunar surface. Another goal is to identify and isolate the possible causes of high CPR within the shadowed areas of anomalous polar craters [3]. All the studied craters are non-polar, so that we can see into their interiors in NAC images. The idea is to understand what controls blockiness in these craters so that we can rule out rocks (and rule in ice) for the anomalous polar dark ones [3].
Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium
Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny
2012-01-01
A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102
Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils
NASA Technical Reports Server (NTRS)
Eagleson, Peter S.; Jasinski, Michael F.
1988-01-01
The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures
Müller, Frank A.; Kunz, Clemens; Gräf, Stephan
2016-01-01
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces. PMID:28773596
Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.
Müller, Frank A; Kunz, Clemens; Gräf, Stephan
2016-06-15
Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M. (Principal Investigator)
1985-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.
Optical performance of segmented aperture windows for solar tower receivers
NASA Astrophysics Data System (ADS)
Buck, Reiner
2017-06-01
Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.
Simplifying BRDF input data for optical signature modeling
NASA Astrophysics Data System (ADS)
Hallberg, Tomas; Pohl, Anna; Fagerström, Jan
2017-05-01
Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.
Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben
2014-01-01
Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach. PMID:25383709
Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo
2017-10-02
GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana
2004-01-01
The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.
2017-11-20
Robert Youngquist, Ph.D., tests a sample disk with a "Solar White" cryogenic selective surface coating with a flash light, demonstrating the coating’s reflective properties. The innovative coating is predicted to reflect more than 99.9 percent of the simulated solar infrared radiation. This technology could enable storing super-cold, or cryogenic, liquids and support systems that shield astronauts against radiation during the Journey to Mars.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
NASA Technical Reports Server (NTRS)
Goudge, Timothy A.; Head, James W.; Kerber, Laura; Blewett, David T.; Denevi, Brett W.; Domingue, Deborah L.; Gillis-Davis, Jeffrey J.; Gwinner, Klaus; Helbert, Joern; Holsclaw, Gregory M.;
2014-01-01
We present new observations of pyroclastic deposits on the surface of Mercury from data acquired during the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. The global analysis of pyroclastic deposits brings the total number of such identified features from 40 to 51. Some 90% of pyroclastic deposits are found within impact craters. The locations of most pyroclastic deposits appear to be unrelated to regional smooth plains deposits, except some deposits cluster around the margins of smooth plains, similar to the relation between many lunar pyroclastic deposits and lunar maria. A survey of the degradation state of the impact craters that host pyroclastic deposits suggests that pyroclastic activity occurred on Mercury over a prolonged interval. Measurements of surface reflectance by MESSENGER indicate that the pyroclastic deposits are spectrally distinct from their surrounding terrain, with higher reflectance values, redder (i.e., steeper) spectral slopes, and a downturn at wavelengths shorter than approximately 400nm (i.e., in the near-ultraviolet region of the spectrum). Three possible causes for these distinctive characteristics include differences in transition metal content, physical properties (e.g., grain size), or degree of space weathering from average surface material on Mercury. The strength of the near-ultraviolet downturn varies among spectra of pyroclastic deposits and is correlated with reflectance at visible wavelengths. We suggest that this interdeposit variability in reflectance spectra is the result of either variable amounts of mixing of the pyroclastic deposits with underlying material or inherent differences in chemical and physical properties among pyroclastic deposits.
NASA Astrophysics Data System (ADS)
Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon
2018-04-01
Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.
Alteration of Lunar Rock Surfaces through Interaction with the Space Environment
NASA Technical Reports Server (NTRS)
Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.
2014-01-01
Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.
Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt
2017-08-01
The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.
NASA Technical Reports Server (NTRS)
Mielonen, T.; Levy, R. C.; Aaltonen, V.; Komppula, M.; de Leeuw, G.; Huttunen, J.; Lihavainen, H.; Kolmonen, P.; Lehtinen, K. E. J.; Arola, A.
2011-01-01
Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm.
Golick, V A; Kadygrob, D V; Yampol'skii, V A; Rakhmanov, A L; Ivanov, B A; Nori, Franco
2010-05-07
We predict a new branch of surface Josephson plasma waves (SJPWs) in layered superconductors for frequencies higher than the Josephson plasma frequency. In this frequency range, the permittivity tensor components along and transverse to the layers have different signs, which is usually associated with negative refraction. However, for these frequencies, the bulk Josephson plasma waves cannot be matched with the incident and reflected waves in the vacuum, and, instead of the negative-refractive properties, abnormal surface modes appear within the frequency band expected for bulk modes. We also discuss the excitation of high-frequency SJPWs by means of the attenuated-total-reflection method.
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals
NASA Technical Reports Server (NTRS)
Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo
2014-01-01
Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.
Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.; ...
2015-04-23
The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2010-05-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT) and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2) observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.
Optical properties of relativistic plasma mirrors
Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.
2014-01-01
The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2000-01-01
The optical properties of materials play a key role in spacecraft thermal control. In space, radiant heat transfer is the only mode of heat transfer that can reject heat from a spacecraft. One of the key properties for defining radiant heat transfer is emittance, a measure of how efficiently a surface can reject heat in comparison to a perfect black body emitter. Heat rejection occurs in the infrared region of the spectrum, nominally in the range of 2 to 25 mm. To calculate emittance, one obtains the reflectance over this spectral range, calculates spectral absorptance by difference, and then uses Kirchhoff s Law and the Stefan-Boltzmann equation to calculate emittance. A new portable infrared reflectometer, the SOC 400t, was designed and manufactured to evaluate the emittance of surfaces and coatings in the laboratory or in the field. It was developed by Surface Optics Corporation under a contract with the NASA Glenn Research Center at Lewis Field to replace the Center s aging Gier-Dunkle DB-100 infrared reflectometer. The specifications for the new instrument include a wavelength range of 2 to 25 mm; reflectance repeatability of +/-1 percent; self-calibrating, near-normal spectral reflectance measurements; a full scan measurement time of 3.5 min, a sample size of 1.27 cm (0.5 in.); a spectral resolution selectable from 4, 8, 16, or 32/cm; and optical property characterization utilizing an automatic integration to calculate total emittance in a selectable temperature range.
Surface-enhanced chiroptical spectroscopy with superchiral surface waves.
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2018-07-01
We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Martikainen, Julia; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri
2017-10-01
Asteroids have remained mostly the same for the past 4.5 billion years, and provide us information on the origin, evolution and current state of the Solar System. Asteroids and meteorites can be linked by matching their respective reflectance spectra. This is difficult, because spectral features depend strongly on the surface properties, and meteorite surfaces are free of regolith dust present in asteroids. Furthermore, asteroid surfaces experience space weathering which affects their spectral features.We present a novel simulation framework for assessing the spectral properties of meteorites and asteroids and matching their reflectance spectra. The simulations are carried out by utilizing a light-scattering code that takes inhomogeneous waves into account and simulates light scattering by Gaussian-random-sphere particles large compared to the wavelength of the incident light. The code uses incoherent input and computes phase matrices by utilizing incoherent scattering matrices. Reflectance spectra are modeled by combining olivine, pyroxene, and iron, the most common materials that dominate the spectral features of asteroids and meteorites. Space weathering is taken into account by adding nanoiron into the modeled asteroid spectrum. The complex refractive indices needed for the simulations are obtained from existing databases, or derived using an optimization that utilizes our ray-optics code and the measured spectrum of the material.We demonstrate our approach by applying it to the reflectance spectrum of (4) Vesta and the reflectance spectrum of the Johnstown meteorite measured with the University of Helsinki integrating-sphere UV-Vis-NIR spectrometer.Acknowledgments. The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).
Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.
NASA Technical Reports Server (NTRS)
Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert
2017-01-01
Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.
Durable thin film coatings for reflectors used in low earth orbit
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1989-01-01
This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.
Satellite remote sensing of primary production
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Sellers, P. J.
1986-01-01
Leaf structure and function are shown to result in distinctive variations in the absorption and reflection of solar radiation from plant canopies. The leaf properties that determine the radiation-interception characteristics of plant canopies are directly linked to photosynthesis, stomatal resistance and evapotranspiration and can be inferred from measurements of reflected solar energy. The effects of off-nadir viewing and atmospheric constituents, coupled with the need to measure changing surface conditions, emphasize the need for multitemporal measurements of reflected radiation if primary production is to be estimated.
NASA Astrophysics Data System (ADS)
Wen, Wen; Li, Haibin; Chen, Xiaojing; Chang, Chengkang
Silica anti-reflective coatings have been prepared by a sol-gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate.
Maxwell, D J; Partridge, J C; Roberts, N W; Boonham, N; Foster, G D
2017-01-01
The way in which light is polarized when reflected from leaves can be affected by infection with plant viruses. This has the potential to influence viral transmission by insect vectors due to altered visual attractiveness of infected plants. The optical and topological properties of cuticular waxes and trichomes are important determinants of how light is polarized upon reflection. Changes in expression of genes involved in the formation of surface structures have also been reported following viral infection. This paper investigates the role of altered surface structures in virus-induced changes to polarization reflection from leaves. The percentage polarization of reflections from Arabidopsis thaliana cer5, cer6 and cer8 wax synthesis mutants, and the gl1 leaf hair mutant, was compared to those from wild-type (WT) leaves. The cer5 mutant leaves were less polarizing than WT on the adaxial and abaxial surfaces; gl1 leaves were more polarizing than WT on the adaxial surfaces. The cer6 and cer8 mutations did not significantly affect polarization reflection. The impacts of Turnip vein clearing virus (TVCV) infection on the polarization of reflected light were significantly affected by cer5 mutation, with the reflections from cer5 mutants being higher than those from WT leaves, suggesting that changes in CER5 expression following infection could influence the polarization of the reflections. There was, however, no significant effect of the gl1 mutation on polarization following TVCV infection. The cer5 and gl1 mutations did not affect the changes in polarization following Cucumber mosaic virus (CMV) infection. The accumulation of TVCV and CMV did not differ significantly between mutant and WT leaves, suggesting that altered expression of surface structure genes does not significantly affect viral titres, raising the possibility that if such regulatory changes have any adaptive value it may possibly be through impacts on viral transmission.
NASA Astrophysics Data System (ADS)
Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.
2016-12-01
Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
NASA Astrophysics Data System (ADS)
Petersen, E.; Holt, J. W.; Levy, J. S.; Lalich, D.
2017-12-01
Lobate debris aprons, lineated valley fill, and concentric crater fill are a class of Martian landform thought to be glaciers blanketed by a lithic debris layer. They are found in the mid latitudes (roughly 30-50°N and S) where surface ice is presently unstable. Shallow Radar (SHARAD) sounder observations are in many cases able to resolve the basal contact between the glacier and underlying bedrock, showing that the bulk composition of these features is water ice with < 20% lithic debris; they are thus often referred to as debris-covered glaciers (DCG). The basal contact of candidate glaciers is not always present in SHARAD radargrams, and variable reflection power between glacier sites suggests that non-detections may be due to a reduction of echo power below the noise floor. A likely candidate for signal loss is the variable roughness of different glacial surface textures. We test this mechanism of signal reduction via analysis of SHARAD reflections augmented by surface roughness analyses generated from HiRISE stereo DEMs. This method provides a means of constraining the electrical properties of the surface debris. We show that measured surface roughness is sufficient to explain basal reflection signal loss for five glacier sites in the region of Deuteronilus/Protonilus Mensae (R2 = 0.90), with the dielectric constant for the surface debris layer constrained to 4.9 ± 0.3. Assuming debris formed of basalt rock, this value is consistent with a porous debris layer containing up to 64% ice, or an ice-free debris layer with porosity of 28-34%. From this work, we conclude that (1) weak or non-existent basal reflections at these sites are due to roughness-induced radar signal loss and not due to differing properties of the basal interface, (2) all DCG candidates in this study exhibit similar bulk compositions of relatively pure water ice, and (3) the surface debris layer is formed of porous lithic debris which may contain a significant fraction of pore ice.
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1980-01-01
Thermal faceting was observed for the high index planes of LaB6. The (100), (110), and (111) planes were found to be the most thermodynamically stable faces in vacuum in a study of electrode materials for thermionic emitters. The properties of adsorbed carbon, cesium, and cesium-oxygen layers were investigated on LaB6 single crystal surfaces as well as on Zr/0/W(100) and W(100). Cesium was found to increase electron reflection near the collision threshold on LaB6(100) and W(100) and to decrease the reflection on Zr/0/W(100). This difference may be explained by the unusually high threshold reflection coefficient of Zr/0/W without adsorbed cesium.
Scanning microwave microscopy technique for nanoscale characterization of magnetic materials
NASA Astrophysics Data System (ADS)
Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.
2016-12-01
In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
NASA Astrophysics Data System (ADS)
Eide, H.; Stamnes, K.; Ottaviani, M.
2004-12-01
The specular reflection of the Sun off the ocean, or sun glint, is of major concern for ocean remote sensing. Typically, data from in and around the sunglint region are discarded because of the unknown contribution to the measured radiances or because of sensor saturation. On the other hand, accurate knowledge of the sunglint properties enables retrievals of atmospheric parameters. The challenge of the ocean retrieval problem is to get the ``water leaving radiance'', Lw, by subtracting the Rayleigh scattering, aerosol scattering, water vapor, ozone, and sun glint from the measured radiances at the top of the atmosphere (TOA). Thus, the task is to correct for both the atmospheric contribution and for surface effects. Two simplifying assumptions that are frequently employed in ocean remote sensing are that the ocean BRDF is isotropic and that one can de-couple the radiative properties of the atmosphere from those of the surface. Our previous studies have shown that neglecting the inherit coupling between the atmosphere and surface can lead to large errors in the retrievals. In order to do retrievals over bright, as well as darker surfaces, it is necessary to account for this coupling between the surface and the atmosphere. In the present study we use models for the reflection of light off the ocean surface to calculate the ocean BRDF. The differences between the various models are investigated as is the effect of using different types of wave statistics (e.g. Cox Munk). We present results from calculations where we vary the wind speed and direction as well as other parameters affecting the ocean surface. The error introduced in ocean retrievals by assuming an isotropic BRDF is assessed, and methods for improved treatment of sunglint are suggested.
Initial Results from the Bloomsburg University Goniometer Laboratory
NASA Technical Reports Server (NTRS)
Shepard, M. K.
2002-01-01
The Bloomsburg University Goniometer Laboratory (B.U.G. Lab) consists of three systems for studying the photometric properties of samples. The primary system is an automated goniometer capable of measuring the entire bi-directional reflectance distribution function (BRDF) of samples. Secondary systems include a reflectance spectrometer and digital video camera with macro zoom lens for characterizing and documenting other physical properties of measured samples. Works completed or in progress include the characterization of the BRDF of calibration surfaces for the 2003 Mars Exploration Rovers (MER03), Martian analog soils including JSC-Mars-1, and tests of photometric models.
Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To
2013-03-01
We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.
Spectral reflectance properties of minerals exposed to simulated Mars surface conditions
NASA Astrophysics Data System (ADS)
Cloutis, E. A.; Craig, M. A.; Kruzelecky, R. V.; Jamroz, W. R.; Scott, A.; Hawthorne, F. C.; Mertzman, S. A.
2008-05-01
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H 2O, with some structural groups showing more rapid H 2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe 3+- and H 2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe 3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in C sbnd H related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.
Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi
2017-12-14
The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.
Relation between textured surface and diffuse reflectance of Cu films
NASA Astrophysics Data System (ADS)
Shukla, Gaurav; Angappane, S.
2018-04-01
Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.
A reflection model for eclipsing binary stars
NASA Technical Reports Server (NTRS)
Wood, D. B.
1973-01-01
A highly accurate reflection model has been developed which emphasizes efficiency of computer calculation. It is assumed that the heating of the irradiated star must depend upon the following properties of the irradiating star: (1) effective temperature; (2) apparent area as seen from a point on the surface of the irradiated star; (3) limb darkening; and (4) zenith distance of the apparent centre as seen from a point on the surface of the irradiated star. The algorithm eliminates the need to integrate over the irradiating star while providing a highly accurate representation of the integrated bolometric flux, even for gravitationally distorted stars.
Properties of oscillating refractive optical wings with one reflective surface
NASA Astrophysics Data System (ADS)
Artusio-Glimpse, Alexandra B.; Swartzlander, Grover A.
2013-09-01
A new modality for optical micromanipulation is under investigation. Optical wings are shaped refractive objects that experience a force and torque owing to the reflection and transmission of uniform light at the object surface. We present wing designs that provide a restoring torque that returns the wing to a source facing orientation while preserving efficient thrust from radiation pressure. The torsional stiffness and orbital period of a set of optical wing cross-sectional shapes are determined from numerical ray-tracing analyses. These results demonstrate the potential to develop an efficient optomechanical device for applications in microbiology and space flight systems.
Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping
NASA Astrophysics Data System (ADS)
Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.
2018-04-01
We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2016-03-30
sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric
Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef
2010-08-15
The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.
2003-01-01
Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380EX). From all measurements assessing fluorescence, higher ChIF and blue/green emissions were measured from the abaxial leaf surfaces; Abaxial surfaces also produced higher reflectances in the 400-800 nm spectrum. Fluorescence information collected in Fraunhofer regions located on the shoulders of ChIF features compared favorably with peak emissions. This supports the potential capability of a future space-born interferometer sensor to capture plant canopy fluorescence.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
NASA Astrophysics Data System (ADS)
Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.
2015-12-01
Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.
Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy
McGee, Sasha; Mardirossian, Vartan; Elackattu, Alphi; Mirkovic, Jelena; Pistey, Robert; Gallagher, George; Kabani, Sadru; Yu, Chung-Chieh; Wang, Zimmern; Badizadegan, Kamran; Grillone, Gregory; Feld, Michael S.
2010-01-01
Objectives We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). Methods In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. Results Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. Conclusions Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined. PMID:19999369
NASA Astrophysics Data System (ADS)
Lembessis, V. E.; Babiker, M.; Andrews, D. L.
2009-01-01
It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.
NASA Technical Reports Server (NTRS)
Xie, Yunsong; Fan, Xin; Chen, Yunpeng; Wilson, Jeefrey D.; Simons, Rainee N.; Xiao, John Q.
2013-01-01
We validate through simulation and experiment that artificial magnetic conductors (AMC s) can be well characterized by a transmission line model. The theoretical bandwidth limit of the in-phase reflection can be expressed in terms of the effective RLC parameters from the surface patch and the properties of the substrate. It is found that the existence of effective inductive components will reduce the in-phase reflection bandwidth of the AMC. Furthermore, we propose design strategies to optimize AMC structures with an in-phase reflection bandwidth closer to the theoretical limit.
A New Algorithm for Retrieving Aerosol Properties Over Land from MODIS Spectral Reflectance
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Mattoo, Shana; Vermote, Eric F.; Kaufman, Yoram J.
2006-01-01
Since first light in early 2000, operational global quantitative retrievals of aerosol properties over land have been made from MODIS observed spectral reflectance. These products have been continuously evaluated and validated, and opportunities for improvements have been noted. We have replaced the original algorithm by improving surface reflectance assumptions, the aerosol model optical properties and the radiative transfer code used to create the lookup tables. The new algorithm (known as Version 5.2 or V5.2) performs a simultaneous inversion of two visible (0.47 and 0.66 micron) and one shortwave-IR (2.12 micron) channel, making use of the coarse aerosol information content contained in the 2.12 micron channel. Inversion of the three channels yields three nearly independent parameters, the aerosol optical depth (tau) at 0.55 micron, the non-dust or fine weighting (eta) and the surface reflectance at 2.12 micron. Finally, retrievals of small magnitude negative tau values (down to -0.05) are considered valid, thus normalizing the statistics of tau in near zero tau conditions. On a 'test bed' of 6300 granules from Terra and Aqua, the products from V5.2 show marked improvement over those from the previous versions, including much improved retrievals of tau, where the MODIS/AERONET tau (at 0.55 micron) regression has an equation of: y = 1.01+0.03, R = 0.90. Mean tau for the test bed is reduced from 0.28 to 0.21.
NASA Astrophysics Data System (ADS)
Che, X.; Feng, M.; Sexton, J. O.; Channan, S.; Yang, Y.; Song, J.
2017-12-01
Reflection of solar radiation from Earth's surface is the basis for retrieving many higher-level terrestrial attributes such as vegetation indices and albedo. However, reflectance varies with the illumination and viewing geometry of observation (Bi-directional Reflectance Distribution Function (BRDF)) even with constant surface properties, and correcting for these artifacts increases precision of comparisons of images and time series acquired from satellites with different illumination and observation geometries. The operational MODIS processing inverts MODIS BRDF/Albedo Model Parameters (MCD43A1) to retrieve directional reflectance at any solar and view angles, and recently the MCD43A1 (Collection 6) was updated and distributed. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance compared to Collection 5 and tested whether changes in the land surface change over a 16-day composite period affect time series of directional reflectance. Correcting the Terra MODIS daily Surface Reflectance (MOD09GA) to the illumination and view geometries of coincidental Aqua MODIS daily Surface Reflectance (MYD09GA), MCD43A4 Collection 6 and Landsat-5 TM imagery show that the BRDF-corrected results using MCD43A1 Collection 6 hold a higher consistency with higher R2 (0.63 0.955), the slopes close to unity (0.718 0.955) and the lower RMSD (0.422 3.142) and MAE (0.282 1.735) reduced by about 10% than Collection 5. A simple parameter calibration to evaluate the variability of the roughness (R) and the volumetric (V) BRDF parameters for MCD43A1 Collection 6 shows that the assumption of stable land surface characteristic over 16-days composite period, used for BRDF parameters inversion, is plausible in spite of small improvement of directional reflectance and BRDF parameters time series. The larger fluctuations for the MCD43A1 Collection 6 do not have a discernable impact on the reflectance time series. All of these results shows that MCD43A1 Collection 6 product with daily temporal resolution is a valuable product representing the anisotropy of surface features, and reasonably more accurate for directional reflectance derivation at any solar and view geometries than Collection 5, which holds a great potential for many Earth's science research.
NASA Astrophysics Data System (ADS)
Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia
2018-01-01
We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.
Modification of polycarbonate surface in oxidizing plasma
NASA Astrophysics Data System (ADS)
Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.
2017-11-01
The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.
Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates
2014-01-01
Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799
NASA Astrophysics Data System (ADS)
Yang, Ying
2014-11-01
Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.
POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)
NASA Technical Reports Server (NTRS)
Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.
1989-01-01
The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans
2014-03-11
We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.
Determining biological tissue optical properties via integrating sphere spatial measurements
Baba, Justin S [Knoxville, TN; Letzen, Brian S [Coral Springs, FL
2011-01-11
An optical sample is mounted on a spatial-acquisition apparatus that is placed in or on an enclosure. An incident beam is irradiated on a surface of the sample and the specular reflection is allowed to escape from the enclosure through an opening. The spatial-acquisition apparatus is provided with a light-occluding slider that moves in front of the sample to block portions of diffuse scattering from the sample. As the light-occluding slider moves across the front of the sample, diffuse light scattered into the area of the backside of the light-occluding slider is absorbed by back side surface of the light-occluding slider. By measuring a baseline diffuse reflectance without a light-occluding slider and subtracting measured diffuse reflectance with a light-occluding slider therefrom, diffuse reflectance for the area blocked by the light-occluding slider can be calculated.
NASA Astrophysics Data System (ADS)
Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro
2006-04-01
A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.
NASA Astrophysics Data System (ADS)
Zeng, Z. C.; Natraj, V.; Pongetti, T.; Shia, R. L.; Sander, S. P.; Yung, Y. L.
2017-12-01
The surface reflectance is a key ingredient in the remote sensing of surface and atmospheric properties from space. The determination of atmospheric composition, including greenhouse gas (GHG) and aerosol concentrations, from reflected sunlight requires accurate knowledge of the contribution from the underlying surface. Over megacity areas, such as the Los Angeles (LA) basin, which are major sources of GHGs and anthropogenic aerosols, the quantification of surface reflectance is challenging due to the associated complex land use types. In this study, we investigate the bidirectional reflectance in the Los Angeles megacity area using multiangle and hyperspectral radiance measurements from the California Laboratory for Atmospheric Remote Sensing (CLARS). The CLARS facility is located near the top of Mt. Wilson, at an altitude of 1670 m a.s.l., overlooking the LA megacity area with an FTS operating since 2011 to continuously monitor the GHGs and near-surface aerosols in the basin. The CLARS-FTS offers continuous high-resolution spectral measurements in the visible, near infrared and shortwave infrared spectral regions. The CLARS measurements mimic the off-nadir viewing of a low-Earth orbiting instrument, such as GOSAT and OCO-2, but with daily viewing capability. Eight surface targets with different land use types, including urban parks, industrial and residential areas, are selected in this study. The surface reflectance for specific solar incident and viewing angles is calculated by dividing, for non-absorbing spectral channels on clear days (such that gas and aerosol extinction can be ignored), the observed radiance reflected from surface targets by the observed irradiance. The non-linear Rahman-Pinty-Verstraete (RPV) model is used to model the Bidirectional Reflectance Distribution Function (BRDF) by fitting the multiangle and hyperspectral measurements. By evaluating the retrieved RPV parameters, we find that the RPV model provides a good representation of the BRDF in the LA megacity area. The fitted RPV parameters and their dependence on wavelength provides quantification of BRDF and potentially contributes towards reducing uncertainties in retrievals of GHGs and aerosols in megacity from space.
Atmospheric Effect on Remote Sensing of the Earth's Surface
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)
1985-01-01
Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.
Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD
NASA Technical Reports Server (NTRS)
Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.
2011-01-01
Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors
NASA Astrophysics Data System (ADS)
Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.
2006-05-01
Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH groups. The H2O density profiles and other structural and dynamic characteristics of water at the two siloxane surfaces are very different from each other and from the hydroxide surfaces, since the muscovite surface is negatively charged and hydrophilic, while the talc surface is electrostatically neutral and hydrophobic. In general, at hydrophilic neutral surfaces both donating and accepting H-bonds from the H2O molecules are contributing to the development of the interfacial H-bond network, whereas at hydrophilic but charged surfaces only accepting or donating H-bonds with H2O molecules are possible. At the hydrophobic talc surface H-bonds among H2O molecules dominate the interfacial H-bond network and the water-surface interactions are very weak. The first water layer at all substrates is well ordered parallel to the surface, reflecting substrate crystal structures and indicating the reduced translational and orientational mobility of interfacial H2O molecules. At longer time scale (~100ps) their dynamics can be decomposed into a slow, virtually frozen, regime due to the substrate- bound H2O and a faster regime of almost free water reflecting the dynamics far from the surface. At shorter times (>10ps) the two dynamical regimes are superimposed. The much higher ordering of interfacial water (compared to bulk liquid) can not be adequately described as simply "ice-like". To some extent, it rather resembles the behavior of supercooled water.
Photometric Properties of Icy Bodies: A Comparison
NASA Technical Reports Server (NTRS)
Arakalian, B. J.; Buratti, T.
1997-01-01
Photometry is the quantitative measurement of reflected or emitted radiation. In the past 15 years, the classical study on planetary surfaces of arbitrary albedo, including bright icy satellites (e.g., Hapke, 1981 JGR, 1984 and 1986, Icarus).
Bulk Fermi surface and electronic properties of Cu0.07Bi2Se3
NASA Astrophysics Data System (ADS)
Martin, C.; Craciun, V.; Miller, K. H.; Uzakbaiuly, B.; Buvaev, S.; Berger, H.; Hebard, A. F.; Tanner, D. B.
2013-05-01
The electronic properties of Cu0.07Bi2Se3 have been investigated using Shubnikov-de Haas and optical reflectance measurements. Quantum oscillations reveal a bulk, three-dimensional Fermi surface with anisotropy kFc/kFab≈ 2 and a modest increase in free-carrier concentration and in scattering rate with respect to the undoped Bi2Se3, also confirmed by reflectivity data. The effective mass is almost identical to that of Bi2Se3. Optical conductivity reveals a strong enhancement of the bound impurity bands with Cu addition, suggesting that a significant number of Cu atoms enter the interstitial sites between Bi and Se layers or may even substitute for Bi. This conclusion is also supported by x-ray diffraction measurements, where a significant increase of microstrain was found in Cu0.07Bi2Se3, compared to Bi2Se3.
NASA Astrophysics Data System (ADS)
Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.
2014-12-01
The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon
2018-05-01
As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.
Photometric study of cometary analogs in the LOSSy laboratory at the University of Bern
NASA Astrophysics Data System (ADS)
Pommerol, A.; Thomas, N.; Jost, B.; Poch, O.
2014-07-01
We have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectro-photometric properties of various analogs of planetary-object surfaces, with a special emphasis on icy samples and their evolution under simulated space conditions. This laboratory is currently equipped with two facilities: the PHIRE-2 radio-goniometer, designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber, designed to follow the evolution of icy samples subliming under low temperature and low pressure conditions by means of VIS-NIR hyperspectral imaging. We will report on the characterization of cometary analogs using both facilities. We produce these analogs by mixing in various proportions fine-grained ice, mineral and organic matter. Various preparation protocols have been defined to produce different textures of sample. Using the PHIRE-2 radio-goniometer, we are building a catalog of bidirectional reflectance data for various cometary analogs, varying by steps the different parameters susceptible to affect the reflectance phase function. In particular, we have recently upgraded the instrument to be able to characterize in detail the opposition effect by allowing measurements of the reflectance at very low phase angle. This laboratory dataset is intended to be used for the analysis of the data acquired by the OSIRIS imager onboard Rosetta. Using the SCITEAS simulation chamber, we have followed for 30 hours the evolution of a cometary analog placed under secondary vacuum (<10^{-6} mbar) and maintained at low temperature (170-200 K) for more than 30 hours. We analyzed the temporal evolution of the morphology and the photometry of the surface of the sample to identify which processes affect the surfaces of cometary nuclei during sublimation and how they affect their visible and near-infrared surface properties.
Bao, Hua; Ruan, Xiulin; Fisher, Timothy S
2010-03-15
A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.
Enabling High Performance Instruments for Astronomy and Space Exploration and ALD
NASA Technical Reports Server (NTRS)
Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.;
2012-01-01
Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.
Endothelial glycocalyx: permeability barrier and mechanosensor.
Curry, F E; Adamson, R H
2012-04-01
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
NASA Astrophysics Data System (ADS)
Stewart, S. A.; Wynn, T. J.
2000-08-01
Maps of the three-dimensional geometry of geologic surfaces show that structural curvature commonly varies with scale of observation: This fact can be viewed as superposition of structures at different wavelengths. Rock properties such as fracture density and orientation reflect the contribution of superimposed structures. For this reason, characterization of geologic surfaces is fundamentally different from purely geometrical characterization, for which local description of surface properties is sufficient. We show that measured curvature decays according to a power law with increasing size of measurement window, so short-wavelength curvatures do not obscure long-wavelength curvatures in the same data set. This property can be taken advantage of in a simple technique for automatically mapping multiwavelength curvatures. At each point on a surface, curvature is measured at a range of wavelengths. This curvature spectrum can be analyzed in map view or collapsed into a single value at each point in space. The results indicate that complex geologic surfaces can be characterized without any prior knowledge of structural wavelengths and orientation. The method should prove useful in applications requiring knowledge of spatial variation in rock properties from remotely sensed data, such as exploration for hydrocarbon reservoirs or nuclear waste repositories.
NASA Astrophysics Data System (ADS)
Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun
2017-08-01
For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.
The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument
NASA Astrophysics Data System (ADS)
Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.
2015-12-01
Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.
Harvey, E. Newton; McMillen, J. Howard
1947-01-01
The spark shadowgram method of studying shock waves is described. It has been used to investigate the properties of such waves produced by the impact of a high velocity missile on the surface of water. The method can be adapted for study of behavior of shock waves in tissue by placing the tissue on a water surface or immersing it in water. Spark shadowgrams then reveal waves passing from tissue to water or reflected from tissue surfaces. Reflection and transmission of shock waves from muscle, liver, stomach, and intestinal wall are compared with reflection from non-living surfaces such as gelatin gel, steel, plexiglas, cork, and air. Because of its heterogeneous structure, waves transmitted by tissue are dispersed and appear as a series of wavelets. When the accoustical impedance (density x wave velocity) of a medium is less than that in which the wave is moving, reflection will occur with inversion of the wave; i.e., a high pressure wave will become a low pressure wave. This inversion occurs at an air surface and is illustrated by shadowgrams of reflection from stomach wall, from a segment of colon filled with gas, and from air-filled rubber balloons. Bone (human skull and beef ribs) shows good reflection and some transmission of shock waves. When steel is directly hit by a missile, clearly visible elastic waves pass from metal to water, but a similar direct hit on bone does not result in elastic waves strong enough to be detected by a spark shadowgram. PMID:19871617
NASA Astrophysics Data System (ADS)
Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.
2016-10-01
The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) - the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.
Results of Observations over Jupiter's Galilean Satellites
NASA Astrophysics Data System (ADS)
Chigladze, Revaz; Tateshvili, Maia
The work describes the polarization properties of the light reflected from the surfaces of Galileo Jupiter's satellites, with their physical characteristics studied based on their analysis. Europe turned out to have the most homogeneous, and Callisto has the least homogeneous. Time variations are the most typical to satellite Io what must be the result of the volcanic actions on the satellite surface.
Liang, Zhongwei; Zhou, Liang; Liu, Xiaochu; Wang, Xiaogang
2014-01-01
It is obvious that tablet image tracking exerts a notable influence on the efficiency and reliability of high-speed drug mass production, and, simultaneously, it also emerges as a big difficult problem and targeted focus during production monitoring in recent years, due to the high similarity shape and random position distribution of those objectives to be searched for. For the purpose of tracking tablets accurately in random distribution, through using surface fitting approach and transitional vector determination, the calibrated surface of light intensity reflective energy can be established, describing the shape topology and topography details of objective tablet. On this basis, the mathematical properties of these established surfaces have been proposed, and thereafter artificial neural network (ANN) has been employed for classifying those moving targeted tablets by recognizing their different surface properties; therefore, the instantaneous coordinate positions of those drug tablets on one image frame can then be determined. By repeating identical pattern recognition on the next image frame, the real-time movements of objective tablet templates were successfully tracked in sequence. This paper provides reliable references and new research ideas for the real-time objective tracking in the case of drug production practices. PMID:25143781
NASA Astrophysics Data System (ADS)
Qi, Yanli; Xiang, Bo; Tan, Wubin; Zhang, Jun
2017-10-01
Hydrophobic surface modification of TiO2 was conducted for production of acrylonitrile-styrene-acrylate (ASA) terpolymer/titanium dioxide (TiO2) composited cool materials. Different amount of 3-methacryloxypropyl-trimethoxysilane (MPS) was employed to change hydrophilic surface of TiO2 into hydrophobic surface. The hydrophobic organosilane chains were successfully grafted onto TiO2 through Sisbnd Osbnd Ti bonds, which were verified by Fourier transformed infrared spectra and X-ray photoelectron spectroscopy. The water contact angle of the sample added with TiO2 modified by 5 wt% MPS increased from 86° to 113°. Besides, all the ASA/TiO2 composites showed significant improvement in both solar reflectance and cooling property. The reflectance of the composites throughout the near infrared (NIR) region and the whole solar wavelength is increased by 113.92% and 43.35% compared with pristine ASA resin. Simultaneously, significant drop in temperature demonstrates excellent cooling property. A maximum decrease approach to 27 °C was observed in indoor temperature test, while a decrease around 9 °C tested outdoors is achieved.
Kojima, Taisuke
2018-01-01
Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.
On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.
2011-12-01
The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.
Epitaxial graphene-encapsulated surface reconstruction of Ge(110)
NASA Astrophysics Data System (ADS)
Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.
2018-04-01
Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.
NASA Astrophysics Data System (ADS)
Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik
2016-06-01
The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.
Tholins as Coloring Agents on Solar System Bodies
NASA Technical Reports Server (NTRS)
Cruikshank, D. P.; Ore, C. M. Dalle; Imanaka, H.
2004-01-01
Pre-biotic organic materials appear to be common on many small bodies in the outer Solar System, as evidenced by the color properties of these objects. We report on our continuing study of color properties in connection with the presence of complex organic solids (tholins) among the planets and their satellites, the asteroids, and the trans- Neptunian objects (Kuiper Belt objects). Most small, icy bodies in the Solar System, whether they have high or low surface reflectance (albedo), show a pronounced downward slope in reflectance at wavelengths shorter than approx. 1 micron. This increasing absorption of sunlight toward shorter wavelengths is characteristic of pi-bonds in hydrocarbons having chains or rings of conjugated C atoms. Tholins, which contain polycyclic aromatic and aliphatic hydrocarbons, exhibit these color properties. Using the complex refractive indices of tholins in models of the reflectance spectra of icy bodies in the Solar System, we find that these complex organic materials satisfactorily account for the coloration so widely observed. The new results presented here show that the wide variety of colors of Kuiper Belt objects can be fit very well with tholins, as can the colors of Pluto and Triton. The implications of these fits of Kuiper Belt objects is that complex organic material is created on their surfaces by energetic particle bombardment of native ices, and also may be accreted from external sources. In the cases of Pluto and Triton, photochemistry of their weak N2 + CH4 + CO atmospheres produces complex organic molecules that precipitate to the surface, providing local color.
The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
2017-06-01
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.
Reflectance spectra of subarctic lichens
NASA Technical Reports Server (NTRS)
Petzold, Donald E.; Goward, Samuel N.
1988-01-01
Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.
Measuring Ocean Surface Waves using Signal Reflections from Geostationary Satellites
NASA Astrophysics Data System (ADS)
Ouellette, J. D.; Dowgiallo, D. J.; Hwang, P. A.; Toporkov, J. V.
2017-12-01
The delay-Doppler response of communications signals (such as GNSS) reflected off the ocean surface is well-known to have properties which strongly correlate with surface wind conditions and ocean surface roughness. This study extends reflectometry techniques currently applied to the GNSS constellation to include geostationary communications satellites such as XM Radio. In this study, ocean wind conditions and significant wave height will be characterized using the delay-Doppler response of XM Radio signals reflected off of ocean surface waves. Using geostationary satellites for reflectometry-based remote sensing of oceans presents two primary advantages. First, longer coherent integration times can be achieved, which boosts signal processing gain and allows for finer Doppler resolution. Second, being designed for wide-area broadcast communications, the ground-received power of these geostationary satellite signals tends to be many orders of magnitude stronger than e.g. GNSS signals. Reflections of such signals from the ocean are strong enough to be received well outside of the specular region. This flexibility of viewing geometry allows signal processing to be performed on data received from multiple incidence/reception angles, which can provide a more complete characterization of ocean surface roughness and surface wind vectors. This work will include studies of simulated and measured delay-Doppler behavior of XM Radio signals reflected from dynamic ocean surfaces. Simulation studies will include inter-comparison between a number of hydrodynamic and electromagnetic models. Results from simulations will be presented as delay-Doppler plots and will be compared with delay-Doppler behavior observed in measured data. Measured data will include field campaign results from early- to mid-2017 in which the US Naval Research Laboratory's in-house XM reflectometer-receiver was deployed near the coasts of Virginia and North Carolina to observe reflections from wind-driven ocean waves. Preliminary results from a significant wave height retrieval algorithm will also be presented.
Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment
NASA Astrophysics Data System (ADS)
Zahid, A.; Dai, B.; Hong, R.; Zhang, D.
2017-10-01
In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.
A hybrid HDRF model of GOMS and SAIL: GOSAIL
NASA Astrophysics Data System (ADS)
Dou, B.; Wu, S.; Wen, J.
2016-12-01
Understanding the surface reflectance anisotropy is the key facet in interpreting the features of land surface from remotely sensed information, which describes the property of land surface to reflect the solar radiation directionally. Most reflectance anisotropy models assumed the nature surface was illuminated only by the direct solar radiation, while the diffuse skylight becomes dominant especially for the over cast sky conditions and high rugged terrain. Correcting the effect of diffuse skylight on the reflectance anisotropy to obtain the intrinsic directional reflectance of land surface is highly desirable for remote sensing applications. This paper developed a hybrid HDRF model of GOMS and SAIL called GOSAIL model for discrete canopies. The accurate area proportions of four scene components are calculated by the GOMS model and the spectral signatures of scene components are provided by the SAIL model. Both the single scattering contribution and the multiple scattering contributions within and between the canopy and background under the clear and diffuse illumination conditions are considered in the GOSAIL model. The HDRF simulated by the 3-D Discrete Anisotropic Radiative Transfer (DART) model and the HDRF measurements over the 100m×100m mature pine stand at the Järvselja, Estonia are used for validating and evaluating the performance of proposed GOSAIL model. The comparison results indicate the GOSAIL model can accurately reproducing the angular feature of discrete canopy for both the clear and overcast atmospheric conditions. The GOSAIL model is promising for the land surface biophysical parameters retrieval (e.g. albedo, leaf area index) over the heterogeneous terrain.
Evanescent excitation and emission in fluorescence microscopy.
Axelrod, Daniel
2013-04-02
Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bin, Xiaomin; Horswell, Sarah L.; Lipkowski, Jacek
2005-01-01
Charge density measurements and polarization modulation infrared reflection absorption spectroscopy were employed to investigate the spreading of small unilamellar vesicles of a dimyristoylphosphatidylcholine (DMPC)/cholesterol (7:3 molar ratio) mixture onto an Au (111) electrode surface. The electrochemical experiments demonstrated that vesicles fuse and spread onto the Au (111) electrode surface, forming a bilayer, at rational potentials −0.4 V < (E − Epzc) < 0.4 V or field strength <6×107 V m−1. Polarization modulation infrared reflection absorption spectroscopy experiments provided information concerning the conformation and orientation of the acyl chains of DMPC molecules. Deuterated DMPC was used to subtract the contribution of C-H stretching bands of cholesterol and of the polar head region of DMPC from spectra in the C-H stretching region. The absorption spectra of the C-H stretch bands in the acyl chains were determined in this way. The properties of the DMPC/cholesterol bilayer have been compared with the properties of a pure DMPC bilayer. The presence of 30% cholesterol gives a thicker and more fluid bilayer characterized by a lower capacity and lower tilt angle of the acyl chains. PMID:15849259
Titan's Surface Composition from Cassini VIMS Solar Occultation Observations
NASA Astrophysics Data System (ADS)
McCord, Thomas; Hayne, Paul; Sotin, Christophe
2013-04-01
Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is consistent with a mixture of typical Titan hydrocarbons and CO2, or possibly methane/ethane; the concentration mechanism proposed is something similar to a terrestrial playa lake evaporate deposit, based on the fact that river channels are known to feed into at least Hotei Regio.
NASA Astrophysics Data System (ADS)
Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann
2014-05-01
Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models using the LWIR-window (sand content: R2 = 0.84 and RMSECV = 1.09 %, and for clay content: R2 = 0.77 and RMSECV = 1.0 %, both with 3 factor models). In comparison, the quantification from the solar-reflective window showed its limitations in its relative complex PLSR models and a lower prediction accuracy (sand content: R2 = 0.69 and RMSECV = 1.5 % with 7 factors, and for clay content: R2 = 0.64 and RMSECV = 1.26 % with 9 factors). The prediction of the SOC content, on the other hand, showed minor disparity between the two atmospheric windows (LWIR: R2 = 0.73 and RMSECV = 0.1 % with 6 factors, VNIR-SWIR: R2 = 0.69 and RMSECV = 0.11 %, with 9 factors). The prospect of the LWIR for determining soil texture was demonstrated to be even more impressive when reduced to the spectral band specifications of airborne (TASI-600) and spaceborne (ASTER) sensors. The results demonstrate the high potential of the LWIR to detect and quantify soil surface properties in the future for a monitoring via LWIR hyperspectral remote sensing.
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
Fabrication and characterization of the noble metal nanostructures on the GaAs surface
NASA Astrophysics Data System (ADS)
Gladskikh, Polina V.; Gladskikh, Igor A.; Toropov, Nikita A.; Vartanyan, Tigran A.
2016-04-01
Self-assembled silver, gold, and copper nanostructures on the monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current-voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 2, 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands of Au and Ag nanostructures caused by major transformations of the film morphology. While the as prepared films predominantly had a small scale labyrinth structure, after annealing well-separated nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.
Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique
NASA Astrophysics Data System (ADS)
Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung
2016-05-01
We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.
Optical modeling of agricultural fields and rough-textured rock and mineral surfaces
NASA Technical Reports Server (NTRS)
Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.
1973-01-01
Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.
Hyperspectral retrieval of surface reflectances: A new scheme
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan
2013-05-01
Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space borne, hyperspectral imagers. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes.
Changes in spectral properties of detached leaves
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Biehl, L. L.
1984-01-01
If leaf senescence can be delayed for several days without significant changes in spectral properties, then samples of leaves at remote test sites could be prepared and shipped to laboratories to measure spectral properties. The changes in spectral properties of detached leaves were determined. Leaves from red birch and red pine were immersed in water or 0.001 M benzylaminopurine (BAP) and stored in plastic bags in the dark at either 5 or 25 C. Total directional-hemispherical reflectance and transmittance of the adaxial surface of birch leaves were measured over the 400 to 1100 nm wavelength region with a spectroradiometer and integrating sphere. Pine needles were taped together and reflectance of the mat of needles was measured. Spectral properties changed less than 5% of initial values during the first week when leaves were stored at 5 C. Storage at 25 C promoted rapid senescence and large changes in spectral properties. BAP delayed, but did not stop, senescence at 25 C.
Understanding Europa's Surface Texture from Remote Sensing Photopolarimetry
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Shkuratov, Y.; Vandervoort, K.; Vides, C. L.
2016-12-01
We use a Goniometric Photopolarimeter (GPP) to make angular scattering reflectance and polarization measurements of the light reflected from particulate materials that simulate a planetary regolith. We compare these laboratory results to astronomical remote sensing observations in an effort to understand the chemical and textural state of object's surface. The GPP employs the Helmholtz Reciprocity Principle (1,2) -the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces, improving signal to noise. These lab data are physically equivalent to the astronomical data. Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our laboratory data exhibit polarization phase curves that are remarkably similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials also agree with the reflectance phase curves reported by same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al. report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data and indicate that Europa's regolith is fine-grained, highly porous with void space exceeding 90%. Future spacecraft missions to the Jovian system will enhance science return by incorporating angular scattering measurements of the reflectance and polarizatin of the surface. Minnaert, M. (1941).Asrophys. J., 93, 403-410. Hapke, B. W. (2012). ISBN 978-0-521-88349-8 Nelson, R. M. et al. (1998). Icarus, 131, 223-230. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.
Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto
2011-04-01
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.
Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy
NASA Technical Reports Server (NTRS)
Tsay, S. C.; Holben, B. N.; Privette, J. L.
2005-01-01
Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Hagopian, John G.; Getty, Stephanie; Kinzer, Raymond (Robin) E., Jr.; Wollack, Edward
2011-01-01
Recent visible wavelength observations of Multiwalled Carbon Nanotubes (MWCNT) coatings have revealed that they represent the blackest materials known in nature with a Total Hemispherical Reflectance (THR) less than .25%. This makes them as exceptionally good absorbers, with the potential to provide order-of-magnitude improvement in stray-light suppression over current black surface treatments when used in an optical system. Here we extend the characterization of this class of materials into the infrared spectral region to further evaluate their potential for use on instrument baffles for stray-light suppression and to manage spacecraft thermal properties to dissipate heat through radiant heat transfer process. These characterizations will include the wavelength-dependent Total Hemispherical Reflectance properties in the mid-IR and far-infrared spectral regions (2-100 micrometers). Determination of the temperature-dependent emittance will be investigated in the temperature range of 20 to 300 K. These results will be compared against other more conventional black coatings such as Acktar Fractal Black or Z-306 coatings among others.
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.
2016-01-01
In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri
2017-10-01
We combine numerical tools to analyze the reflectance spectra of granular materials. Our motivation comes from the lack of tools when it comes to intimate mixing of materials and modeling space-weathering effects with nano- or micron-sized inclusions. The current practice is to apply a semi-physical models such as the Hapke models (e.g., Icarus 195, 2008). These are expressed in a closed form so that they are fast to apply. The problem is that the validity of the model is not guaranteed, and the derived properties related to particle scattering can be unrealistic (JQSRT 113, 2012).Our pipeline consists of individual scattering simulation codes and a main program that chains them together. The chain for analyzing a macroscopic target with space-weathered mineral would go as: (1) Scattering properties of small inclusions inside a host matrix are derived using exact Maxwell equation solvers. From the scattering properties, we use the so-called incoherent fields and Mueller matrices as input for the next step; (2) Scattering by a regolith grain is solved using a geometrical optics method with surface reflections, internal absorption, and internal diffuse scattering; (3) The radiative transfer simulation is executed inputting the regolith grains from the previous step as the scatterers in a macroscopic planar volume element.For the most realistic asteroid reflectance model, the chain would produce the properties of a planar surface element. Then, a shadowing simulation over the surface elements would be considered, and finally the asteroid phase function would be solved by integrating the bidirectional reflectance distribution function of the planar element over the object's realistic shape model.The tools in the proposed chain already exist, and practical task for us is to tie these together into an easy-to-use public pipeline. We plan to open the pipeline as a web-based open service a dedicated server, using Django application server and Python environment for the main functionality. The individual programs to be ran under the chain can still be programmed with Fortran, C, or other.We acknowledge the ERC AdG No. 320773 ‘SAEMPL’ and the computational resources provided by CSC — IT Center for Science Ltd., Finland.
NASA Astrophysics Data System (ADS)
Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin
2017-02-01
Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.
NASA Astrophysics Data System (ADS)
Diner, D. J.; Martonchik, J. V.; Sanghavi, S.; Xu, F.; Garay, M. J.; Bradley, C.; Chipman, R.; McClain, S.
2011-12-01
Passive retrievals of aerosol properties from aircraft or satellite must account for surface reflection at the lower boundary. Future missions such as Aerosol-Cloud-Ecosystem (ACE) will use multiangular, multispectral, and polarimetric imagery for aerosol remote sensing. Interpreting such multidimensional measurements requires representing the aerosols by a set of optical and microphysical parameters and modeling the surface bidirectional reflectance distribution function (BRDF). We are developing a surface model represented by a matrix BRDF that describes both intensity and polarization. The BRDF is the sum of a depolarizing volumetric (diffuse) scattering term represented by the modified Rahman-Pinty-Verstraete (mRPV) function, and a specular reflection term corresponding to a distribution of tilted microfacets, each of which reflects according to the Fresnel laws. In order to limit the number of parameters that need to be retrieved, empirical constraints are placed on the surface reflection model, e.g., that the volumetric component can be written as the product of a function only of wavelength and a function only of illumination and view geometry and that the polarized surface reflectance is spectrally neutral. Validation of these assumptions is required to establish a successful surface reflectance model that can be used as part of the aerosol retrievals. The Ground-based and Airborne Multiangle SpectroPolarimetric Imagers (GroundMSPI and AirMSPI) are pushbroom cameras that use a novel dual-photoelastic modulator (PEM) design to measure the Stokes vector components I, Q, and U, degree of linear polarization (DOLP), and angle of linear polarization (AOLP) with high accuracy. Intensity bands are centered at 355, 380, 445, 555, 660, 865, and 935 nm, and polarization channels are at 470, 660, and 865 nm. GroundMSPI and AirMSPI data collected on clear days are being used to further develop and validate the parametric surface model. For GroundMSPI, time sequences of intensity and polarization imagery are acquired throughout the day, and motion of the Sun through the sky provides variable scattering angle. AirMSPI acquires multiangular imagery from the NASA ER-2 aircraft by pointing the camera at different angles using a motorized gimbal. In this paper, we will present examples of GroundMSPI and AirMSPI imagery and explore how well the parametric surface model is able to represent the measured intensity and polarization data.
Evaluation of Improved Engine Compartment Overheat Detection Techniques.
1986-08-01
radiation properties (emissivity and reflectivity) of the surface. The first task of the numerical procedure is to investigate the radiosity (radiative heat...and radiosity are spatially uniform within each zone. 0 Radiative properties are spatially uniform and independent of direction. 0 The enclosure is...variation in the radiosity will be nonuniform in distribution in that region. The zone analysis method assumes the : . ,. temperature and radiation
M. E. Miller; William Elliot; M. Billmire; Pete Robichaud; K. A. Endsley
2016-01-01
Post-wildfire flooding and erosion can threaten lives, property and natural resources. Increased peak flows and sediment delivery due to the loss of surface vegetation cover and fire-induced changes in soil properties are of great concern to public safety. Burn severity maps derived from remote sensing data reflect fire-induced changes in vegetative cover and soil...
NASA Astrophysics Data System (ADS)
Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph
2011-02-01
In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.
Experimental method for testing diffraction properties of reflection waveguide holograms.
Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping
2014-07-01
Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.
Thermal consequences of colour and near-infrared reflectance.
Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana
2017-07-05
The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
Prediction of Viking lander camera image quality
NASA Technical Reports Server (NTRS)
Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.
1976-01-01
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.
2013-01-30
example from the Negev Desert, Israel, Journal of Geophysical Research, (05 2009): 1. doi: 01/14/2013 5.00 Michael Young, Eric McDonald, Jianting Zhu... radiation (incoming – reflected) x Solar Radiation Eppley Incoming solar radiation x Surface temperature IR Apogee Continuous surface...and electrical properties (dielectric permittivity and electrical conductivity). Additional measurements of solar radiation (four components), air
10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.
2008-01-01
In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Astrophysics Data System (ADS)
Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang
2018-02-01
The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation characteristics that were affected by land surface vegetation coverage as well as by soil physical properties.
Estimation of the remote-sensing reflectance from above-surface measurements.
Mobley, C D
1999-12-20
The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.
Effects of Rocket Exhaust on Lunar Soil Reflectance Properties
NASA Astrophysics Data System (ADS)
Clegg, R. N.; Jolliff, B. L.; Robinson, M. S.; Hapke, B. W.; Plescia, J. B.
2012-12-01
The Apollo, Surveyor, and Luna spacecraft descent engine plumes affected the regolith at and surrounding their landing sites. Owing to the lack of rapid weathering processes on the Moon, surface alterations are still visible as photometric anomalies in Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images. These areas are interpreted as disturbance of the regolith by rocket exhaust during descent of the spacecraft, which we refer to as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters out from the landers. We use phase-ratio images for each landing site to determine the spatial extent of the disturbed regions and to quantify differences in reflectance and backscattering characteristics within the BZs compared to nearby undisturbed regolith. We also compare the reflectance changes and BZ dimensions at the Apollo sites with those at Luna and Surveyor sites. We seek to determine the effects of rocket exhaust in terms of erosion and particle redistribution, as well as the cause(s) of the reflectance variations, i.e., physical changes at the regolith surface. When approximated as an ellipse, the average Apollo BZ area is ~29,000 m2 (~175 ± 60 m by 200 ± 27 m) which is 10x larger than the average Luna BZ, and over 100x larger than the average Surveyor BZ. Moreover, BZ area scales roughly with lander mass (as a proxy for thrust). The LR-BZs are evident at the Apollo sites, especially where astronaut bioturbation has roughened the soil, leading to a 2-14% reduction in reflectance at ~30° phase. The LR-BZs at the Luna and Surveyor sites are less evident and may be mostly confined to the area below the landers. The average normalized reflectance in the HR-BZs for images with a 30° phase angle is 2-16% higher than in the undisturbed surrounding areas; this magnitude is the same, within uncertainty, for all sites, indicating a common process or combination of processes causing differences in reflectance properties of the regolith. Phase-ratio images and photometric data collected over a range of illumination geometries show that a greater separation in reflectance occurs between the HR-BZs and undisturbed areas with increasing phase angle and indicate that the HR-BZs are less backscattering than undisturbed areas. As working hypotheses, we consider the following possibilities to explain BZ reflectance phenomena: change in macroscopic roughness, microscopic modification of surface structure, redistribution of fines (excavation from LR-BZ and deposition in HR-BZ), change in compaction, contamination from fuel, and modification of maturity. The LR-BZ is affected by macroscopic disruption of the surface and increased shadowing. We infer that HR-BZ reflectance has been affected by scouring from particles entrained by exhaust gases with low-angle trajectories. Entrained particles with trajectories greater than a few degrees relative to horizontal travel well beyond the BZ boundary and do not contribute to BZ reflectance variations. Regolith particle interactions with surface soil within HR-BZs may destroy fine-scale surface structure (e.g., "fairy-castle") and decrease macroscopic roughness, contributing to a decrease in backscattering character within the HR-BZ.
NASA Astrophysics Data System (ADS)
Bishop, J. L.
2010-12-01
Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to <125 µm. Both the dried pellet spectrum and the crushed pellet spectrum are darker than the original spectrum of the same composition. Erosion and weathering are likely the dominant processes forming the soils on Mars. However, reaction of surface grains with sulfates and perchlorates probably also influenced the soil grains. The perchlorates found by Phoenix are a strong oxidant. Consideration is being given to the interactions of perchlorates with minerals identified in surface rocks (pyroxene, olivine, feldspar, phyllosilicate, iron oxides, sulfate, silica, carbonate) and how perchlorates might be contributing to soil formation from these minerals and what their spectral properties might be.
A mechanism study of sound wave-trapping barriers.
Yang, Cheng; Pan, Jie; Cheng, Li
2013-09-01
The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.
Photometric properties of Mars soils analogs
Pommerol, A.; Thomas, N.; Jost, B.; Beck, P.; Okubo, C.; McEwen, A.S.
2013-01-01
We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.
Granados, Eduardo; Martinez-Calderon, Miguel; Gomez, Mikel; Rodriguez, Ainara; Olaizola, Santiago M
2017-06-26
We study the fabrication of photonic surface structures in single crystal diamond by means of highly controllable direct femtosecond UV laser induced periodic surface structuring. By appropriately selecting the excitation wavelength, intensity, number of impinging pulses and their polarization state, we demonstrate emerging high quality and fidelity diamond grating structures with surface roughness below 1.4 nm. We characterize their optical properties and study their potential for the fabrication of photonic structure anti-reflection coatings for diamond Raman lasers in the near-IR.
Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.A.; Green, R.O.; Adams, J.B.
1997-12-01
Little research has focused on the use of imaging spectrometry for change detection. In this paper, the authors apply Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to the monitoring of seasonal changes in atmospheric water vapor, liquid water, and surface cover in the vicinity of the Jasper Ridge, CA, for three dates in 1992. Apparent surface reflectance was retrieved and water vapor and liquid water mapped by using a radiative-transfer-based inversion that accounts for spatially variable atmospheres. Spectral mixture analysis (SMA) was used to model reflectance data as mixtures of green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, and shade. Temporal andmore » spatial patterns in endmember fractions and liquid water were compared to the normalized difference vegetation index (NDVI). The reflectance retrieval algorithm was tested by using a temporally invariant target.« less
Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico
Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; ...
2014-11-27
A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
Additive manufacturing of reflective optics: evaluating finishing methods
NASA Astrophysics Data System (ADS)
Leuteritz, G.; Lachmayer, R.
2018-02-01
Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.
Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs
NASA Astrophysics Data System (ADS)
Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz
2018-02-01
The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.
Rowenczyk, Laura; Picard, Céline; Duclairoir-Poc, Cécile; Hucher, Nicolas; Orange, Nicole; Feuilloley, Marc; Grisel, Michel
2016-08-20
Model emulsions were developed with or without commercial titanium dioxide nanoparticles (NP) carrying various surface treatments in order to get close physicochemical properties whatever the NP surface polarity (hydrophilic and hydrophobic). Rheology and texturometry highlighted that the macroscopic properties of the three formulated emulsions were similar. However, characterizations by optical microscopy, static light scattering and zetametry showed that their microstructures reflected the diversity of the incorporated NP surface properties. In order to use these model emulsions as tools for biological evaluations of the NP in use, they had to show the lowest initial microbiological charge and, specifically for the NP-free emulsion, the lowest bactericidal effect. Hence, formulae were developed preservative-free and a thermal sterilization step was conducted. Efficiency of the sterilization and its impact on the emulsion integrity were monitored. Results highlighted the effect of the NP surface properties: only the control emulsion and the emulsion containing hydrophilic NP fulfilled both requirements. To ensure the usability of these model emulsions as tools to evaluate the 'NP effect' on representative bacteria of the skin microflora (S. aureus and P. fluorescens), impact on the bacterial growth was measured on voluntary inoculated formulae. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1984-01-01
Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.
Improved mathematical and computational tools for modeling photon propagation in tissue
NASA Astrophysics Data System (ADS)
Calabro, Katherine Weaver
Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy of extracted optical property values from experimentally-acquired reflectance spectra. From this analysis, probe geometries that offer the best robustness against error in estimation of physiological properties from tissue, are presented. Finally, several in vivo studies demonstrating the use of reflectance spectroscopy for both research and clinical applications are presented.
Structured light optical microscopy for three-dimensional reconstruction of technical surfaces
NASA Astrophysics Data System (ADS)
Kettel, Johannes; Reinecke, Holger; Müller, Claas
2016-04-01
In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less
Antifogging abilities of model nanotextures
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; ...
2017-02-27
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less
Antifogging abilities of model nanotextures
NASA Astrophysics Data System (ADS)
Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; Checco, Antonio; Black, Charles T.; Rahman, Atikur; Midavaine, Thierry; Clanet, Christophe; Quéré, David
2017-06-01
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators
NASA Astrophysics Data System (ADS)
Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain
2018-03-01
We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.
Self-aligning concave relativistic plasma mirror with adjustable focus
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; ...
2017-01-04
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity (10 180<10 19W/cm 2) by near-normally incident (4°), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective (0.6–0.8) and focus a significant fraction of reflected light to intensity as large as ~10I0 at distance f as small as ~25 μm from the PM, provided that pre-pulses do not exceed 10 14 W/cm 2 prior to ~20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusingmore » results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲L ≲ 3 μm. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.« less
Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners
NASA Astrophysics Data System (ADS)
Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu
2018-05-01
Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.
Self-aligning concave relativistic plasma mirror with adjustable focus
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; Stark, David J.; Wang, Xiaoming; Zgadzaj, Rafal; Downer, M. C.
2017-01-01
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity ( 10 18 < I 0 < 10 19 W / cm 2 ) by near-normally incident ( 4 ° ), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective ( 0.6 - 0.8 ) and focus a significant fraction of reflected light to intensity as large as ˜ 10 I 0 at distance f as small as ˜ 25 μ m from the PM, provided that pre-pulses do not exceed 1014 W/cm2 prior to ˜ 20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusing results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲ L ≲ 3 μ m. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.
Mars analog minerals' spectral reflectance characteristics under Martian surface conditions
NASA Astrophysics Data System (ADS)
Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.
2018-05-01
We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.
Tunable geometric Fano resonances in a metal/insulator stack
NASA Astrophysics Data System (ADS)
Grotewohl, Herbert
We present a theoretical analysis of surface-plasmon-mediated mode-coupling in a planar thin film metal/insulator stack. The spatial overlap of a surface plasmon polariton (SPP) and a waveguide mode results in a Fano interference analog. Tuning of the material parameters effects the modes and output fields of the system. Lastly, the intensity and phase sensitivity of the system are compared to a standard surface plasmon resonance (SPR). We begin with background information on Fano interference, an interference effect between two indistinguishable pathways. Originally described for autoionization, we discuss the analogs in other systems. We discuss the features of Fano interference in the mode diagrams, and the Fano resonance observed in the output field. The idea of a geometric Fano resonance (GFR) occurring in the angular domain is presented. Background information on surface plasmon polaritons is covered next. The dielectric properties of metals and how they relate to surface plasmons is first reviewed. The theoretical background of SPPs on an infinite planar surface is covered. The modes of a two planar interface metal/insulator stack are reviewed and the leaky properties of the waveguide are shown in the reflectance. We solve for modes of a three interface metal/insulator stack and shows an avoided crossing in the modes indicative of Fano interference. We observe the asymmetric Fano resonance in the angular domain in the reflectance. The tunability of the material parameters tunes the GFR of the system. The GFR tuning is explored and different Fano lineshapes are observed. We also observe a reversal of the asymmetry Fano lineshape, attributed to the relate phase interactions of the non-interacting modes. The phase of the GFR is calculated and discussed for the variations of the parameters. The reflected field is explored as the insulator permittivities are varied. As the waveguide permittivity is varied, we show there is little response from the system. As the exterior permittivity is varied, the reflectance exhibits the geometric Fano resonance and the tunability of the lineshape is explored. Finally, we calculate the sensitivities of our metal/insulator stack to changes in the permittivity and compare them to the sensitivities of SPRs.
The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less
NASA Astrophysics Data System (ADS)
Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio
2016-05-01
The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2016-12-01
Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.
NASA Astrophysics Data System (ADS)
Feaga, L. M.; Holt, C. E.; Steffl, A.; Stern, S. A.; Bertaux, J. L.; Parker, J. W.; A'Hearn, M. F.; Feldman, P.; Keeney, B. A.; Knight, M. M.; Noonan, J.; Vervack, R. J., Jr.; Weaver, H. A., Jr.
2017-12-01
In 2016, Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet-orbiting spacecraft Rosetta, completed a 2-year characterization of 67P/Churyumov-Gerasimenko (C-G), a bi-lobed Jupiter family comet with extreme seasons and diverse surface features. In addition to coma studies, Alice monitored the sunlit surface of C-G from 700-2050 Å to establish the FUV bidirectional reflectance properties and albedo of the surface, determine homogeneity, correlate spectral features with morphological regions, and infer the compositional makeup of the comet. The heliocentric distance coverage (3.7 AU from the Sun, through perihelion at 1.24 AU, and back out to 3.8 AU) over a period of 2 years and spatial resolution of the Alice data (e.g., 30 m by 150 m at the comet from a spacecraft distance of 30 km) resulted in the first resolved observations of a cometary nucleus in the FUV throughout much of its orbit. Upon arrival in 2014, initial characteristics and properties of the surface were derived for the northern hemisphere, revealing a dark, homogeneous, and blue-sloped surface in the FUV with an average geometric albedo of 5% at 1475 Å, consistent with a homogeneous layer of dust covering that hemisphere and similar to nucleus properties derived for this and other comets in the visible. Now, with a fully calibrated dataset, properties of the southern and northern hemispheres, before and after perihelion, have been quantified and preliminarily show minimal change in the comet's surface in the FUV through the apparition. Analyses are ongoing and we will highlight any detected variability. En-route to C-G, Alice made history during the flybys of asteroid (2867) Steins and (21) Lutetia obtaining the first global FUV reflectivity measurement and acquiring spatially resolved observations of an asteroid surface, respectively. The asteroid properties will be compared to those derived for C-G to demonstrate commonalities across small bodies in our solar system. Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA's Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute (SwRI). This work was supported by a subcontract from SwRI to the University of Maryland.
NASA Astrophysics Data System (ADS)
Stephan, K.; Ciarniello, M.; Beck, P.; Filacchione, G.; Moroz, L.; Pilorget, C.; Pommerol, A.; Quirico, E.; Raponi, A.; Schröder, S.; Kappel, D.; Vinogradoff, V.; Istiqomah, I.; Rousseau, B.
2017-12-01
Remote sensing observations at visible-infrared (VIS-IR) wavelengths of the nucleus of comet 67P/Churyumov-Gerasimenko performed by VIRTIS (Coradini et al., 2007) aboard the Rosetta mission have revealed a surface ubiquitously covered by low-albedo material (Capaccioni et al., 2015; Ciarniello et al., 2015), characterized by the presence of refractory and semi-volatile organics and dark opaque phases (Capaccioni et al., 2015; Quirico et al., 2016). However, a quantitative determination of the physical properties (grain size, porosity) and chemical composition of the surface regolith, from spectrophotometric analysis, is still missing. This subject will be investigated within an international team hosted by ISSI (International Space Science Institute), taking advantage of available and dedicated laboratory reflectance measurements on cometary analogue samples and radiative transfer models (Hapke, 2012; Shkuratov et al., 1999; Monte Carlo ray-tracing), applied to Rosetta spectrophotometric observations of the nucleus. The convergence between models and measurements will allow us to provide a thorough characterization of 67P/Churyumov-Gerasimenko surface. At the same time, the comparison of theoretical predictions with results from laboratory reflectance spectroscopy on powders of analog materials give us the possibility to constrain the capability of the models to characterize their composition (endmember abundances and mixing modalities) and physical properties. We report about the state of the art of laboratory reflectance spectroscopy and spectral modeling applied to 67P/Churyumov-Gerasimenko VIS-IR spectrum as well as preliminary results of the team activity and planned future work. Acknowledgements: the team thanks ISSI-Switzerland for the logistic and financial support.
On the performance of infrared sensors in earth observations
NASA Technical Reports Server (NTRS)
Johnson, L. F.
1972-01-01
The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.
Optical Thin Film Modeling: Using FTG's FilmStar Software
NASA Technical Reports Server (NTRS)
Freese, Scott
2009-01-01
Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.
NASA Technical Reports Server (NTRS)
Clark, R. N.
1980-01-01
New reflectance spectra of Ganymede, Europe, Callisto, Io, Saturn's rings, and Mars were obtained. The new data is combined with data covering other spectral regions for compositional interpretation. The spectral properties of water and mixtures of water plus other minerals were studied in the laboratory at the low temperatures typical of Mars, the Galilean satellites, and Saturn's rings. High precision reflectance spectra of water ice were studied.
Properties of nanocrystalline Si layers embedded in structure of solar cell
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.
How clear-sky polarization varies with wavelength in the visible-NIR
NASA Astrophysics Data System (ADS)
Pust, Nathan J.; Shaw, Joseph A.
2013-10-01
Because of the increasing variety of applications for polarization imaging and sensing, there is a growing need for information about polarization phenomenology in the natural environment, including the spectral distribution of polarization in the atmosphere. A computer model that has been validated in comparisons with measurements from our all-sky polarization imager has been used here to simulate the spectrum of clear-sky polarization at a many locations around the world, with a wide variety of underlying surface-reflectance and aerosol conditions. This study of the skylight polarization spectral variability shows that there is no simple spectrum that can be assumed or predicted without knowledge of the atmospheric aerosol properties and underlying surface reflectance.
Prediction of moisture and temperature changes in composites during atmospheric exposure
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Tenney, D. R.; Unnan, J.
1978-01-01
The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank
2017-12-01
Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.
Gonioreflectometric properties of metal surfaces
NASA Astrophysics Data System (ADS)
Jaanson, P.; Manoocheri, F.; Mäntynen, H.; Gergely, M.; Widlowski, J.-L.; Ikonen, E.
2014-12-01
Angularly resolved measurements of scattered light from surfaces can provide useful information in various fields of research and industry, such as computer graphics, satellite based Earth observation etc. In practice, empirical or physics-based models are needed to interpolate the measurement results, because a thorough characterization of the surfaces under all relevant conditions may not be feasible. In this work, plain and anodized metal samples were prepared and measured optically for bidirectional reflectance distribution function (BRDF) and mechanically for surface roughness. Two models for BRDF (Torrance-Sparrow model and a polarimetric BRDF model) were fitted to the measured values. A better fit was obtained for plain metal surfaces than for anodized surfaces.
Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land
Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano
2010-01-01
Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558
Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques
NASA Astrophysics Data System (ADS)
Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.
2018-05-01
In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.
Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy
NASA Astrophysics Data System (ADS)
Dennett, Cody A.; Short, Michael P.
2018-06-01
The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.
Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, C.
2017-12-01
Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.
NASA Astrophysics Data System (ADS)
Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-08-01
The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.
NASA Astrophysics Data System (ADS)
Qiu, Huatan
A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.
NASA Technical Reports Server (NTRS)
Sellers, P. J.
1987-01-01
The ability of satellite sensor systems to estimate area-averaged canopy photosynthetic and transpirative properties is evaluated. The near linear relationship between the simple ratio (SR) and normalized difference (ND) and the surface biophysical properties of canopy photosynthetically active radiation (PAR) absorption, photosynthesis, and bulk stomatal resistance is studied. The models utilized to illustrate the processes of canopy reflectance, photosynthesis, and resistance are described. The dependence of SR, the absorbed fraction of PAR, and canopy photosynthesis and resistance on total leaf area index is analyzed. It is noted that the SR and ND vegetation indices and vegetation-dependent qualities are near-linearly related due to the proportion of leaf scattering coefficient in visible and near IR wavelength regions. The data reveal that satellite sensor systems are useful for the estimation of photosynthesis and transpirative properties.
NASA Astrophysics Data System (ADS)
Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.
2017-12-01
The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.
NASA Astrophysics Data System (ADS)
Goguen, Jay D.; Bauer, James M.
2017-10-01
The reflectivity of solar system surfaces ‘spikes’ sharply when the Sun is less than 1 degree from directly behind the observer. The Galileo spacecraft measured the reflectivity of part of Europa’s surface to increase by as much as a factor of 8 as the observer moves from 5 degrees to the exact backscattering direction! One mechanism explains this spike as coherent light scattering that occurs only close to this unique retro-reflection geometry. Due to the tight linear alignment of the target, observer and Sun required to measure the peak brightness of the spike, accurate and complete measurements of the amplitude and decay of the spike exist for only a few targets. We used the unique capabilities of the automated Las Cumbres Observatory global telescope network (LCO) to systematically measure this extreme opposition surge for 60+ asteroids sampling a variety of taxonomic classes in the Bus/DeMeo taxonomy.Each asteroid was observed in the SDSS r’ and g’ filters during the ~8 hour interval when it passes within ~0.1 deg of the point opposite the Sun on the sky. Supporting observations of each asteroid with LCO collected over ~50 days measure asteroid rotation and phase angle brightness changes to enable accurate characterization of the retro-reflection spike. This data set vastly increases the number and variety of the surfaces characterized at such small phase angles compared to existing asteroid data. We examine how the spike characteristics vary with surface composition, albedo, and wavelength providing new constraints on physical models of this ubiquitous yet poorly understood phenomenon.Analysis and modeling of these measurements will advance our understanding of the physical mechanism responsible for this enhanced retro-reflection thereby improving our ability to characterize these surfaces from remote observations. The ability to infer surface physical properties from remote sensing data is a key capability for future asteroid missions, manned exploration, impact hazard assessment, and fundamental asteroid science.
NASA Astrophysics Data System (ADS)
Curchin, John; Clark, R. N.; Hoefen, T. M.
2006-09-01
In order to properly interpret reflectance spectra of Titan's surface, laboratory spectra of candidate materials for comparative analysis is needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics at cryotemperatures at visible to near infrared wavelengths. Measurement of reflectance is required for characterizing weak features not seen in transmittance. Such features may be important in remote sensing of planetary surfaces. The USGS Spectroscopy Laboratory uses Nicolet FT-IR and ASD field spectrometers in combination with cryogenic chambers to acquire reflectance spectra of organic ices at approximately 80-90 ºK in a wavelength range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of major organic molecules including those with hydrogen-carbon, carbon-carbon (single, double and triple bonds), carbon-oxygen, oxygen-hydrogen, carbon-nitrogen, and nitrogen-hydrogen bonds. Because most organic compounds belong to families with similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. Only by measuring spectral reflectance of the pure laboratory ices from the visible through the near and mid-infrared can absorption bands unique to each be observed, cataloged and compared to planetary reflectance data. We present here spectra of organic ices belonging to eight families, the alkanes, cycloalkanes, alkenes, alkynes, aromatics, nitriles, amines, and cyanides. Many of these compounds are predicted to coat the surface of Titan and indeed, a number of atmospheric windows, particularly at 5 microns, have allowed their identification with VIMS (Clark et al., DPS 2006, this volume). The spectral properties of these materials have applications to other solar system surfaces and remote sensing of terrestrial environments, including hazardous waste and disaster site characterization.
Microwave limb sounder, graphite epoxy support structure
NASA Technical Reports Server (NTRS)
Pynchon, G.
1980-01-01
The manufacturing and processing procedures which were used to fabricate a precision graphite/epoxy support structure for a spherical microwave reflecting surface are described. The structure was made fromm GY-70/930 ultra high modulus graphite prepreg, laminated to achieve an isotropic in plane thermal expansion of less than + or - 0.1 PPM/F. The structure was hand assembled to match the interface of the reflective surface, which was an array of 18 flexure supported, aluminum, spherically contoured tiles. Structural adhesives were used in the final assembly to bond the elements into their final configuration. A eutectic metal coating was applied to the composite surface to reduce dimensional instabilities arising from changes in the composite epoxy moisture content due to environmental effects. Basic materials properties data are reported and the results of a finite element structural analysis are referenced.
NASA Astrophysics Data System (ADS)
Qi, Yanli; Chen, Tingting; Zhang, Jun
2018-03-01
Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.
2011-10-01
One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.
Evaluation of space environmental effects on metals and optical thin films on EOIM-3
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.
1995-01-01
Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.
NASA Astrophysics Data System (ADS)
Zare, Maryam; Shokrollahi, Abbas; Seraji, Faramarz E.
2011-09-01
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.
Quick and Easy Measurements of the Inherent Optical Property of Water by Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Dina; Hajiesmaeilbaigi, Fereshteh
2009-04-19
To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less
NASA Technical Reports Server (NTRS)
Mustard, John F.
1993-01-01
A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.
Optical properties of silicene, Si/Ag(111), and Si/Ag(110)
NASA Astrophysics Data System (ADS)
Hogan, C.; Pulci, O.; Gori, P.; Bechstedt, F.; Martin, D. S.; Barritt, E. E.; Curcella, A.; Prevot, G.; Borensztein, Y.
2018-05-01
We present a state-of-the-art study of the optical properties of free-standing silicene and of single-layer Si one- and two-dimensional (1D and 2D) nanostructures supported on Ag(110) and Ag(111) substrates. Ab initio simulations of reflectance anisotropy spectroscopy (RAS) and surface differential reflectivity spectroscopy (SDRS) applied to the clean Ag surface and Si/Ag interfaces are compared with new measurements. For Si/Ag(110), we confirm a pentagonal nanoribbon geometry, strongly bonded to the substrate, and rule out competing zigzag chain and silicenelike models. For Si/Ag(111), we reproduce the main experimental features and isolate the optical signal of the epitaxial silicene overlayer. The absorption spectrum of a silicene sheet computed including excitonic and local field effects is found to be quite similar to that calculated within an independent particle approximation and shows strong modifications when adsorbed on a Ag substrate. Important details of the computational approach are examined and the origins of the RAS and SDRS signals are explained in terms of the interface and substrate response functions. Our study does not find any evidence for Si adlayers that retain the properties of freestanding silicene.
Metasurface optical antireflection coating
Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; ...
2014-12-15
Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. In conclusion, the demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.
1977-01-01
Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-12-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver
NASA Astrophysics Data System (ADS)
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-03-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
NASA Astrophysics Data System (ADS)
Guillén, C.; Herrero, J.
2015-01-01
Metal layers with high roughness and electrical conductivity are required as back-reflector electrodes in several optoelectronic devices. The metal layer thickness and the process temperature should be adjusted to reduce the material and energetic costs for the electrode preparation. Here, Ag thin films with thickness ranging from 30 to 200 nm have been deposited by sputtering at room temperature on glass substrates. The structure, morphology, optical and electrical properties of the films have been analyzed in the as-grown conditions and after thermal treatment in flowing nitrogen at various temperatures in the 150-550 °C range. The surface texture has been characterized by the root-mean-square roughness and the correlation length coefficients, which are directly related to the electrical resistivity and the light-scattering parameter (reflectance haze) for the various samples. The increment in the reflectance haze has been used to detect surface agglomeration processes that are found dependent on both the film thickness and the annealing temperature. A good compromise between light-scattering and electrical conductivity has been achieved with 70 nm-thick Ag films after 350 °C heating.
Selectively reflective transparent sheets
NASA Astrophysics Data System (ADS)
Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.
2015-08-01
We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.
Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis J.; Brann, Michelle R.; Suter, Jonathan D.
White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time.more » The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J.
In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection,more » and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.« less
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions
NASA Technical Reports Server (NTRS)
Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick
2015-01-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.
Application of Polarization to the MODIS Aerosol Retrieval Over Land
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine R.; Kaufman, Yoram J.
2004-01-01
Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
Solution algorithm of dwell time in slope-based figuring model
NASA Astrophysics Data System (ADS)
Li, Yong; Zhou, Lin
2017-10-01
Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.
Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
Gao, M; Huang, X; Yang, P; Kattawar, G W
2013-08-20
The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.
Physical properties of the tunic in the pinkish-brown salp Pegea confoederata (Tunicata: Thaliacea).
Sakai, Daisuke; Kakiuchida, Hiroshi; Nishikawa, Jun; Hirose, Euichi
2018-01-01
Invisibility in the water column is a crucial strategy for gelatinous zooplanktons in avoiding detection by visual predators, especially for animals distributed in the euphotic zone during the daytime; i.e., surface dwellers that do not undergo diel vertical migration. Salps, a member of the subphylum Tunicata (Urochordata), usually have a transparent body that is entirely covered with a cellulosic matrix, called the tunic. Some non-migrator species are known to exhibit a nano-scale nipple array on the tunic surface. However, the physical properties of the salp tunic has been poorly investigated, except for Thetys vagina , in which the tunic was expected to show low reflectance based on the refractive index of the tunic. Pegea confoederata is a non-vertical migrant salp showing pinkish-brown body. We measured the hardness, water content, absorption spectra, and refractive index of its tunic to evaluate its fragility and visibility. There are nipple-like protuberances about 80 nm high on the surface of the tunic in P. confoederata . The tunic is very soft; the maximum force to pierce the tunic with a steel rod (1 mm diameter) was < 1 N. The water content of the tunic was > 95%. The absorption spectra of the tunic had no prominent peaks in the wavelength range of 280-800 nm, indicating the tunic is nearly transparent. The difference in refractive indices between tunic and seawater was estimated as 0.002-0.015 at 589 nm. Rigorous coupled wave analyses (RCWA) of light reflection based on 3-dimensional models supported an anti-reflective effect of the nipple array on the tunic surface, which was estimated to vary slightly depending on the forms and the arrangement patterns of nipple-like protuberances in an array. The tunic of P. confoederata is very soft and contains more water than those of sessile tunicates (ascidians). Based on the refractive index of the tunic, light reflection is expected to be very low, making this salp's tunic barely visible in water column. Our results suggest that the nipple array may produce an anti-reflective effect.
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.
2016-12-01
The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol properties using CAI data around campaign region by the multi-wavelength and multi-pixel method (MWPM) (Hashimoto AGU Fall meeting, 2014) using CAI UV-band. In the analysis, we use CAI four bands to retrieve aerosol optical properties including cloud optical characteristics. We also like to introduce the analysis result of aerosol optical properties during wildfire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjornrattanawanich, Benjawan
2002-09-01
The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their yttrium layers, respectively. Based on the optical properties, multilayers with higher oxygen content should have higher absorption. However, the 25%-oxygen multilayer had less interface roughness and thus had higher reflectance than the 0%-oxygen sample. The 39%-oxygen multilayer had the highest absorption and roughness, thus had the lowest reflectance among three samples. The optical and structural properties of the multilayers are competing in the reflectance results.« less
Different atmospheric effects in remote sensing of uniform and nonuniform surfaces
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1982-01-01
The atmospheric effect on the radiance of sunlight scattered from the earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.
Skin surface removal on breast microwave imagery using wavelet multiscale products
NASA Astrophysics Data System (ADS)
Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen
2006-03-01
In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.
Vogelmann, James E.; DeFelice, Thomas P.
2003-01-01
Landsat-7 and Landsat-5 have orbits that are offset from each other by 8 days. During the time that the sensors on both satellites are operational, there is an opportunity for conducting analyses that incorporate multiple intra-annual high spatial resolution data sets for characterizing the Earth's land surface. In the current study, nine Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) data sets, covering the same path and row on different dates, were acquired during a 1-year time interval for a region in southeastern South Dakota and analyzed. Scenes were normalized using pseudoinvariant objects, and digital data from a series of test sites were extracted from the imagery and converted to surface reflectance. Sunphotometer data acquired on site were used to atmospherically correct the data. Ground observations that were made throughout the growing season by a large group of volunteers were used to help interpret spectroradiometric patterns and trends. Normalized images were found to be very effective in portraying the seasonal patterns of reflectance change that occurred throughout the region. Many of the radiometric patterns related to plant growth and development, but some also related to different background properties. The different kinds of land cover in the region were spectrally and radiometrically characterized and were found to have different seasonal patterns of reflectance. The degree to which the land cover classes could be separated spectrally and radiometrically, however, depended on the time of year during which the data sets were acquired, and no single data set appeared to be adequate for separating all types of land cover. This has practical implications for classification studies because known patterns of seasonal reflectance properties for the different types of land cover within a region will facilitate selection of the most appropriate data sets for producing land cover classifications.
Hydrophobic Surface Modification of Silk Fabric Using Plasma-Polymerized Hmdso
NASA Astrophysics Data System (ADS)
Rani, K. Vinisha; Chandwani, Nisha; Kikani, Purvi; Nema, S. K.; Sarma, Arun Kumar; Sarma, Bornali
In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140∘. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45∘ angle; stain droplets easily roll off from the fabric.
NASA Astrophysics Data System (ADS)
Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.
2017-12-01
This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.
NASA Astrophysics Data System (ADS)
González-Campuzano, R.; Saniger, J. M.; Mendoza, D.
2017-11-01
The size-controllable and ordered Al nanocavities and nanodomes arrays were synthesized by electrochemical anodization of aluminum using phosphoric acid, citric acid and mixture both acids. Few layer graphene (FLG) was transferred directly on top of Al nanostructures and their morphology were evaluated by scanning electron microscopy. The interaction between FLG and the plasmonic properties of Al nanostructures arrays were investigated based on specular reflectivity in the ultraviolet-visible-infrared range and Raman spectroscopy. We found that their optical reflectivity was dramatically reduced as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 200-896 nm wavelength range, which were ascribed to plasmonic resonances. The plasmonic properties of these nanostructures do not exhibit evident changes by the presence of FLG in the UV-vis range of the electromagnetic spectrum. By contrast, the surface-enhanced Raman spectroscopy of FLG was observed in nanocavities and nanodomes structures that result in an intensity increase of the characteristic G and 2D bands of FLG induced by the plasmonic properties of Al nanostructures.
Broadband and polarization reflectors in the lookdown, Selene vomer
Zhao, Shulei; Brady, Parrish Clawson; Gao, Meng; Etheredge, Robert Ian; Kattawar, George W.; Cummings, Molly E.
2015-01-01
Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields. PMID:25673301
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2016-04-01
Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS measurements in our algorithm. We validated three case studies with AErosol Robotic NETwork (AERONET) AOD, and the results show that the AOD retrieval was improved compared to C6_DT AOD, with the increase of within expected accuracy ±(0.05 + 15%) by ranging from 2.7% to 7.5% for the best quality only (Quality Assurance =3), and from 5.8% to 9.5% for the marginal and better quality (Quality Assurance ≥ 1).
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-04-01
We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
Maroudas, Alice
1968-01-01
Ion exchange theory has been applied to articular cartilage. Relationships were derived between permeability, diffusivity, electrical conductivity, and streaming potential. Systematic measurements were undertaken on these properties. Experimental techniques are described and data tabulated. Theoretical correlations were found to hold within the experimental error. The concentration of fixed negatively-charged groups in cartilage was shown to be the most important parameter. Fixed charge density was found to increase with distance from the articular surface and this variation was reflected in the other properties. PMID:5699797
Sakota, Daisuke; Kani, Yuki; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu
2013-01-01
To achieve quantitative non-invasive optical diagnosis of blood abnormalities during extracorporeal circulation therapies, plasma surface reflectance spectroscopy was developed by implementing oblique-incidence optical fiber reflectometry on the surface of circulating blood. The reflected light in the wavelength range from 450 to 600 nm changed with respect to the plasma free hemoglobin level and could be used to quantify the free hemoglobin at an accuracy of 5.7 ± 3.5 mg/dL. In contrast, the spectrum did not changed by varying the hematocrit. In the wavelength range from 600 to 800 nm, the obtained spectrum was affected by both the hematocrit change and hemolysis. The linear correlation between the hematocrit value and the spectrum was confirmed at R(2) = 0.99. The feasibility of determining of the hematocrit of arbitrary hemolyzed blood was confirmed. The developed system permits the extraction of the optical characteristics of both plasma and red blood cells without centrifugation. The study establishes non-invasive optical diagnostics capable of analyzing the optical properties of both plasma and red blood cells.
Hydra Emerges from the Shadows
2015-07-15
Since its discovery in 2005, Pluto's moon Hydra has been known only as a fuzzy dot of uncertain shape, size, and reflectivity. Imaging obtained during NASA's New Horizons' historic transit of the Pluto-Charon system and transmitted to Earth early this morning has definitively resolved these fundamental properties of Pluto's outermost moon. Long Range Reconnaissance Imager (LORRI) observations revealed an irregularly shaped body characterized by significant brightness variations over the surface. With a resolution of 2 miles (3 kilometers) per pixel, the LORRI image shows the tiny potato-shaped moon measures 27 miles (43 kilometers) by 20 miles (33 kilometers). Like that of Charon, Hydra's surface is probably covered with water ice, the most abundant ice in the universe. Observed within Hydra's bright regions is a darker circular structure with a diameter of approximately 6 miles (10 kilometers). Hydra's reflectivity (the percentage of incident light reflected from the surface) is intermediate between that of Pluto and Charon. Hydra was approximately 400,000 miles away from New Horizons when this image was acquired. http://photojournal.jpl.nasa.gov/catalog/PIA19711
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
Digital Beamforming Interferometry
NASA Technical Reports Server (NTRS)
Rincon, Rafael F. (Inventor)
2016-01-01
Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.
Clark, R.N.; Lucey, P.G.
1984-01-01
The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors
Silva, R M; Elvira, C; Mano, J F; San Román, J; Reis, R L
2004-04-01
Novel chitosan (cts) and soybean protein isolate (SI) blended membranes were prepared. These membranes were produced by solvent casting. Besides combining the advantages of both materials, cts/SI membranes exhibit a biphasic structure that will eventually originate in situ porous formation, through a two-step degradation mechanism. In this particular work the effect of beta-radiation over the properties of these membranes was evaluated. beta-radiation sterilisation was performed at three different doses (25, 50 and 100 kGy) and eventual surface chemical changes were evaluated by Fourier transformed infrared--with attenuated total reflection and contact angle measurements. Moreover, eventual bulk properties changes due to beta-radiation were assessed by means of mechanical tensile tests and water uptake measurements. In general, no substantial changes were detected on the studied properties, with the exception of the surface energy that was found to be slightly increased for higher applied doses.
An in-vitro evaluation of mechanical and esthetic properties of orthodontic sealants
Premaraj, Thyagaseely Sheela; Rohani, Nima; Covey, David; Premaraj, Sundaralingam; Hua, Yi; Watanabe, Hidehiko
2014-01-01
Objective: To evaluate mechanical and esthetic Properties of two commercially available orthodontic sealants: Opal®Seal (OS) and L.E.D. Pro Seal (PS). Materials and Methods: Discs of each sealant were prepared to test the following properties: Micro hardness, wear resistance and color stability. Samples were randomly selected after the wear test for SEM imaging to analyze surface morphology. Results: OS was significantly harder than PS (P < 0.001). PS was significantly more wear resistant than OS (P < 0.05). PS showed a greater ∆E*ab (increased staining) when placed in wine or coffee showing a significant difference (P < 0.05). SEM showed particle size, shape and distribution were different for PS and OS reflecting the pattern seen on wear surfaces. Conclusion: Both orthodontic sealants are beneficial for protecting enamel. However with better wear properties PS was superior in resisting mechanical stresses. OS was more color stable. PMID:25512729
2010-03-02
Applied Surface Science 253, 6305-6309 (2007). 22. Komarov, P. L., Burzo, M. G., Kaytaz, G. & Raad , P. E. Transient thermo- reflectance...1118 (2003). 23. Kulish, V. V., Lage, J. L., Komarov, P. L. & Raad , P. E. A fractional-diffusion theory for calculating thermal properties of thin
Ultraviolet reflecting photonic microstructures in the King Penguin beak.
Dresp, Birgitta; Jouventin, Pierre; Langley, Keith
2005-09-22
King and emperor penguins (Aptenodytes patagonicus and Aptenodytes forsteri) are the only species of marine birds so far known to reflect ultraviolet (UV) light from their beaks. Unlike humans, most birds perceive UV light and several species communicate using the near UV spectrum. Indeed, UV reflectance in addition to the colour of songbird feathers has been recognized as an important signal when choosing a mate. The king penguin is endowed with several highly coloured ornaments, notably its beak horn and breast and auricular plumage, but only its beak reflects UV, a property considered to influence its sexual attraction. Because no avian UV-reflecting pigments have yet been identified, the origin of such reflections is probably structural. In an attempt to identify the structures that give rise to UV reflectance, we combined reflectance spectrophotometry and morphological analysis by both light and electron microscopy, after experimental removal of surface layers of the beak horn. Here, we characterize for the first time a multilayer reflector photonic microstructure that produces the UV reflections in the king penguin beak.
Direct Aerosol Forcing Uncertainty
Mccomiskey, Allison
2008-01-15
Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.
NASA Technical Reports Server (NTRS)
Mustard, John F.
1991-01-01
A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. These are the main transient surface constituents that are expected to change with shifts in land use or climatic influences and viewing conditions ('shade' only). The spectral distinction between the other three endmembers is very small, yet the spatial distributions are coherent and interpretable. These distributions cross anthropogenic and vegetation boundaries and are best interpreted as different soil types. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.
NASA Astrophysics Data System (ADS)
Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng
2014-05-01
The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.
Optical properties (bidirectional reflectance distribution function) of shot fabric.
Lu, R; Koenderink, J J; Kappers, A M
2000-11-01
To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.
NASA Astrophysics Data System (ADS)
Sayoud, N.; Lazri, H.; Ogam, E.; Boumaiza, Y.; Boudour, A.
2018-05-01
This work involves the development of a method using the principle of acoustic microscopy to determine the elastic properties of high-temperature superconducting materials, the method is applied to analyse the variation of the elastic properties of the superconducting alloy DyBa 2-x Sr x Cu 3 O 7‑δ for different variations of the concentration parameters (x = 0, x = 0.3 and x = 0.6), porosity and temperature. The method is based on the reconstruction of the reflection coefficient calculated from the acoustic signature of the signal received by the microscope during the exploration of the superconducting material for different concentrations. This permitted the determination of the velocities of the surface and volume waves from the modelled reflection coefficient. On the other hand, the elastic parameters of the material such as Young’s, shear and bulk moduli were also deduced.
Han, Jie; Su, Huilan; Song, Fang; Zhang, Di; Chen, Zhixin
2010-10-01
In this contribution, the subtle periodic nanostructures in butterfly wings and peacock feathers are applied as natural PhC matrices to in situ embed CdS nanocrystallites (nano-CdS) on the structure surface via a convenient solution process. The resulting nano-CdS/natural PhCs nanocomposites show typical 1D, quasi 1D and 2D PhC structures at the nanoscale, which is inherited from the corresponding natural periodic bio-matrices. Moreover, their reflection properties are investigated and show dependence on PhC type, structure parameter, loading amount, as well as collecting angle. This work suggests that natural periodic bio-structures could be perfect matrices to construct novel nanocomposite PhCs, whose photonic band structures are tunable and thus achieve controllable optical properties. Related ideas could inspire the design and synthesis of future nanocomposite PhCs.
NASA Astrophysics Data System (ADS)
Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.
2013-12-01
Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed if hyperspectral ground-based data are available to validate the current modelling approaches. The results presented here extend the work of previous studies by recording the HDRF of Arctic snow covered tundra at high solar zenith angles over several sites. Demonstrating the strong forward scattering nature of snow reflectance at high solar zenith angles, but also showing clear wavelength dependence in the shape of the HDRF, and an increasing anisotropy with wavelength.
NASA Technical Reports Server (NTRS)
Sagan, C.
1978-01-01
Completed or published research supported by NASA is summarized. Topics cover limb darkening and the structure of the Jovian atmosphere; the application of generalized inverse theory to the recovery of temperature profiles; models for the reflection spectrum of Jupiter's North Equatorial Belt; isotropic scattering layer models for the red chromosphore on Titan; radiative-convective equilibrium models of the Titan atmosphere; temperature structure and emergent flux of the Jovian planets; occultation of epsilon Geminorum by Mars and the structure and extinction of the Martian upper atmosphere; lunar occultation of Saturn; astrometric results and the normal reflectances of Rhea, Titan, and Iapetus; near limb darkening of solids of planetary interest; scattering light scattering from particulate surfaces; comparing the surface of 10 to laboratory samples; and matching the spectrum of 10: variations in the photometric properties of sulfur-containing mixtures.
Modeling of forest canopy BRDF using DIRSIG
NASA Astrophysics Data System (ADS)
Rengarajan, Rajagopalan; Schott, John R.
2016-05-01
The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.
NASA Technical Reports Server (NTRS)
Cimorelli, A. J.; House, F. B.
1974-01-01
The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.
The joint effect of mesoscale and microscale roughness on perceived gloss.
Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu
2015-10-01
Computer simulated stimuli can provide a flexible method for creating artificial scenes in the study of visual perception of material surface properties. Previous work based on this approach reported that the properties of surface roughness and glossiness are mutually interdependent and therefore, perception of one affects the perception of the other. In this case roughness was limited to a surface property termed bumpiness. This paper reports a study into how perceived gloss varies with two model parameters related to surface roughness in computer simulations: the mesoscale roughness parameter in a surface geometry model and the microscale roughness parameter in a surface reflectance model. We used a real-world environment map to provide complex illumination and a physically-based path tracer for rendering the stimuli. Eight observers took part in a 2AFC experiment, and the results were tested against conjoint measurement models. We found that although both of the above roughness parameters significantly affect perceived gloss, the additive model does not adequately describe their mutually interactive and nonlinear influence, which is at variance with previous findings. We investigated five image properties used to quantify specular highlights, and found that perceived gloss is well predicted using a linear model. Our findings provide computational support to the 'statistical appearance models' proposed recently for material perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bias Correction of MODIS AOD using DragonNET to obtain improved estimation of PM2.5
NASA Astrophysics Data System (ADS)
Gross, B.; Malakar, N. K.; Atia, A.; Moshary, F.; Ahmed, S. A.; Oo, M. M.
2014-12-01
MODIS AOD retreivals using the Dark Target algorithm is strongly affected by the underlying surface reflection properties. In particular, the operational algorithms make use of surface parameterizations trained on global datasets and therefore do not account properly for urban surface differences. This parameterization continues to show an underestimation of the surface reflection which results in a general over-biasing in AOD retrievals. Recent results using the Dragon-Network datasets as well as high resolution retrievals in the NYC area illustrate that this is even more significant at the newest C006 3 km retrievals. In the past, we used AERONET observation in the City College to obtain bias-corrected AOD, but the homogeneity assumptions using only one site for the region is clearly an issue. On the other hand, DragonNET observations provide ample opportunities to obtain better tuning the surface corrections while also providing better statistical validation. In this study we present a neural network method to obtain bias correction of the MODIS AOD using multiple factors including surface reflectivity at 2130nm, sun-view geometrical factors and land-class information. These corrected AOD's are then used together with additional WRF meteorological factors to improve estimates of PM2.5. Efforts to explore the portability to other urban areas will be discussed. In addition, annual surface ratio maps will be developed illustrating that among the land classes, the urban pixels constitute the largest deviations from the operational model.
NASA Astrophysics Data System (ADS)
Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier
2016-09-01
Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.
Diffuse-Illumination Systems for Growing Plants
NASA Technical Reports Server (NTRS)
May, George; Ryan, Robert
2010-01-01
Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation
Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-14
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
NASA Astrophysics Data System (ADS)
Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-01
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
Controlling interferometric properties of nanoporous anodic aluminium oxide
2012-01-01
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884
NASA Astrophysics Data System (ADS)
Wiktorczyk, Tadeusz; Biegański, Piotr; Serafińczuk, Jarosław
2016-09-01
Yttrium oxide thin films of a thickness 221-341 nm were formed onto quartz substrates by reactive physical vapor deposition in an oxygen atmosphere. An electron beam gun was applied as a deposition source. The effect of substrate temperature during film deposition (in the range of 323-673 K) on film structure, surface morphology and optical properties was investigated. The surface morphology studies (with atomic force microscopy and diffuse spectra reflectivity) show that the film surface was relatively smooth with RMS surface roughness in the range of 1.7-3.8 nm. XRD analysis has revealed that all diffraction lines belong to a cubic Y2O3 structure. The films consisted of small nanocrystals. Their average grain size increases from 1.6 nm to 22 nm, with substrate temperature rising from 323 K to 673 K. Optical examinations of transmittance and reflectance were performed in the spectral range of 0.2-2.5 μm. Optical constants and their dispersion curves were determined. Values of the refractive index of the films were in the range of n = 1.79-1.90 (at 0.55 μm) for substrate temperature during film deposition of 323-673 K. The changes in the refractive index upon substrate temperature correspond very well with the increase in the nanocrystals grain diameter and with film porosity.
NASA Astrophysics Data System (ADS)
Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.
2010-09-01
Silicon (Si) subwavelength grating (SWG) structures were fabricated on Si substrates by holographic lithography and subsequent inductively coupled plasma (ICP) etching process using SiCl4 with or without Ar addition for solar cell applications. To ensure a good nanosized pattern transfer into the underlying Si layer, the etch selectivity of Si over the photoresist mask is optimized by varying the etching parameters, thus improving antireflection characteristics. For antireflection analysis of Si SWG surfaces, the optical reflectivity is measured experimentally and it is also calculated theoretically by a rigorous coupled-wave analysis. The reflectance depends on the height, period, and shape of two-dimensional periodic Si subwavelength structures, correlated with ICP etching parameters. The optimized Si SWG structure exhibits a dramatic decrease in optical reflection of the Si surface over a wide angle of incident light ( θ i ), i.e. less than 5% at wavelengths of 300-1100 nm, leading to good wide-angle antireflection characteristics (i.e. solar-weighted reflection of 1.7-4.9% at θ i <50°) of Si solar cells.
Germer, Thomas A
2017-11-20
We measured the Mueller matrix bidirectional reflectance distribution function (BRDF) of a sintered polytetrafluoroethylene (PTFE) sample over the scattering hemisphere for six incident angles (0°-75° in 15° steps) and for four wavelengths (351 nm, 532 nm, 633 nm, and 1064 nm). The data for each wavelength were fit to a phenomenological description for the Mueller matrix BRDF, which is an extension of the bidirectional surface scattering modes developed by Koenderink and van Doorn [J. Opt. Soc. Am. A.15, 2903 (1998)JOAOD60740-323210.1364/JOSAA.15.002903] for unpolarized BRDF. This description is designed to be complete, to obey the appropriate reciprocity conditions, and to provide a full description of the Mueller matrix BRDF as a function of incident and scattering directions for each wavelength. The description was further extended by linearizing the surface scattering mode coefficients with wavelength. This data set and its parameterization provides a comprehensive on-demand description of the reflectance properties for this commonly used diffuse reflectance reference material over a wide range of wavelengths.
Yao, Xiayuan; Liang, Bingyuan; Bai, Ming
2017-09-18
In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
Radiometry simulation within the end-to-end simulation tool SENSOR
NASA Astrophysics Data System (ADS)
Wiest, Lorenz; Boerner, Anko
2001-02-01
12 An end-to-end simulation is a valuable tool for sensor system design, development, optimization, testing, and calibration. This contribution describes the radiometry module of the end-to-end simulation tool SENSOR. It features MODTRAN 4.0-based look up tables in conjunction with a cache-based multilinear interpolation algorithm to speed up radiometry calculations. It employs a linear reflectance parameterization to reduce look up table size, considers effects due to the topology of a digital elevation model (surface slope, sky view factor) and uses a reflectance class feature map to assign Lambertian and BRDF reflectance properties to the digital elevation model. The overall consistency of the radiometry part is demonstrated by good agreement between ATCOR 4-retrieved reflectance spectra of a simulated digital image cube and the original reflectance spectra used to simulate this image data cube.
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-05-16
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.
Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Gordon A.; Yang, Mengjin; Berweger, Samuel
In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI 3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (R GB(z)). Furthermore, lateral conductivity measurements indicate that R GB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBsmore » is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.« less
Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang
2018-01-01
Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced. PMID:29772661
Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties
MacDonald, Gordon A.; Yang, Mengjin; Berweger, Samuel; ...
2016-09-23
In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI 3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (R GB(z)). Furthermore, lateral conductivity measurements indicate that R GB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBsmore » is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.« less
Stoleru, Elena; Zaharescu, Traian; Hitruc, Elena Gabriela; Vesel, Alenka; Ioanid, Emil G; Coroaba, Adina; Safrany, Agnes; Pricope, Gina; Lungu, Maria; Schick, Christoph; Vasile, Cornelia
2016-11-23
Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.
Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan
2018-05-29
Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Nolin, A.; Box, J.; Key, J.; Zwally, J.; Stober, M.; Kreuter, J.
1996-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp.
NASA Astrophysics Data System (ADS)
Myung, Sung-Woon; Kim, Byung-Hoon
2016-01-01
Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.
Method and apparatus for measuring surface density of explosive and inert dust in stratified layers
Sapko, Michael J.; Perlee, Henry E.
1988-01-01
A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
NASA Astrophysics Data System (ADS)
Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.
2016-12-01
Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.
NASA Astrophysics Data System (ADS)
Deparis, Olivier; Khuzayim, Nadia; Parker, Andrew; Vigneron, Jean Pol
2009-04-01
The wings of the moth Cacostatia ossa (Ctenuchinae) are covered on both sides by non-close-packed nipple arrays which are known to act as broadband antireflection coatings. Experimental evaluation of the antireflection property of these biological structures is problematic because of the lack of a proper reference for reflectance measurements, i.e., a smooth surface made of the same material as the wing. Theoretical evaluation, on the other hand, is much more reliable provided that optical simulations are carried out on a realistic structural model of the wing. Based on detailed morphological characterizations, we established a three-dimensional (3D) model of the wing and used 3D transfer-matrix optical simulations in order to demonstrate the broadband antireflection property of the wings of Cacostatia ossa. Differences between hemispherical and specular reflectance spectra revealed that diffraction effects were not negligible for this structure although they did not jeopardize the antireflection efficiency. The influences of the backside corrugation and of the material’s absorption on the reflectance spectrum were also studied. In addition, simulations based on an effective-medium model of the wing were carried out using a multilayer thin-film code. In comparison with the latter simulations, the 3D transfer-matrix simulations were found to be more accurate for evaluating the antireflection property.
Li, Gang; Wang, Min; Jin, Yi-Xi; Zhang, Shu-Jing; Wu, Meng-Yao
2017-01-01
The 4 properties of Chinese materia medica refer to cold, hot, warm, and cool. In the present study, the effects of the Coptis, the prepared aconite root, and dried ginger rhizome were compared with regard to the rectal and skin temperature changes of the related body surface acupuncture points (Dazhui, Zhiyang, Mingmen, Zhongwan, and Shenque). The investigation aimed to explore the thermal sensitive points, which can reflect the cold and hot properties of the Chinese herbs. This study showed that the prepared aconite root and dried ginger rhizome exhibited a warming effect on the body temperature, whereas the warming sensitive points were Zhongwan, Shenque, Dazhui, and Zhiyang. Coptis exhibited both a warming and a cooling effect on the body temperature, and the cooling sensitive point was Dazhui. The concomitant effect of these three Chinese herbs on the regulation of the body temperature was reflected by Dazhui. However, there are still some limitations and one-sidedness. For instance, the cold and hot property of some herbs cannot be fully reflected through relevant acupoints on the conception and governor vessels. More detecting sites such as ears and internal organs will be selected for further exploration of Chinese herbs' cold and hot property. PMID:29259648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Kishwar, E-mail: kknano@hotmail.com; Rehman, Sarish
2014-02-01
Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of themore » calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.« less
NASA Technical Reports Server (NTRS)
Orenberg, J. B.; Handy, J.; Quinn, R.
1992-01-01
Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it has been used as the major method of identifying a possible mineral analogue of the martian surface. A summary of proposed martian surface compositions from reflectance spectroscopy before 1979 was presented by Singer et al. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite have been suggested as Mars soil analogue materials. Palagonite in petrological terms is best described as an amorphous, hydrated, ferric iron, silica gel. Montmorillonite is a member of the smectite clay group, and its structure is characterized by an octahedral sheet in coordination with two tetrahedral sheets in which oxygen atoms are shared. The crystal unity of montmorillonite is well defined in contrast to palagonite where it is considered amorphous or poorly crystalline at best. Because of the absence of the diagnostic strong 2.2-micron reflectance band characteristic of clays in the near-infrared (NIR) spectrum of Mars and palagonite and based upon a consideration of wide wavelength coverage (0.3-50 microns), Roush et al. concluded that palagonite is a more likely Mars surface analogue. In spite of the spectral agreement of palagonite and the Mars reflectance spectrum in the 2.2-micron region, palagonite shows poor correspondence with the results of the Viking LR experiment. In contrast, iron-rich montmorillonite clays show relatively good agreement with the results of the Viking LR experiment. This spectral study was undertaken to evaluate the spectral properties of mixtures of palagonite and Mars analogue iron-rich montmorillonite clay (16-18 wt. percent Fe as Fe2O3) as a Mars surface mineralogical model. Mixtures of minerals as Mars surface analogue materials have been studied before, but the mixtures were restricted to crystalline clays and iron oxides.