DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.
Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolicmore » and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia
2012-08-24
Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like proteinmore » (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.« less
Controlled drug release on amine functionalized spherical MCM-41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szegedi, Agnes, E-mail: szegedi@chemres.hu; Popova, Margarita; Goshev, Ivan
2012-10-15
MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin methodmore » and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.« less
Precise method to determine points on isentropic release curve on copper
NASA Astrophysics Data System (ADS)
Remiot, C.; Mexmain, J. M.; Bonnet, L.
1996-05-01
When a higher shock impedance foil (with several hundreds of μm in thickness) is set on the studied material surface, the release phase occurs by steps, whose duration of each plateau corresponds to a go and return of the shock wave in the foil. Step velocity levels can be easily measured by D.L.I. technique. The intermediate velocity values, connected with the knowledge of the foil Hugoniot, allow us to determine a few points on the isentropic release curve. The experiments have been achieved on a two stage light gas gun with a projectile velocity varying from 1400 to 3000 m/s. The caliber of the launcher is 30 mm. For this study concerning copper, the target is composed of a 2 mm thickness copper transmitter on which the sample is mechanically held. The tungsten (W) thick foil is, under pressure, sticked on the sample with UV stick-cord. The free surface velocity measurement accuracy of the tungsten foil is 0.4% for values between 1500 to 3500 m/s. The first shock in the sample is varying from 40 to 120 GPa and the mass velocity from 800 to 2000 m/s. By impedance matching between the copper sample and the tungsten thick foil, we deduce for each experiment three points on the copper isentropic release curve and the final free surface velocity. The accuracy we obtain is in order of 0.4 GPa for the pressure and 10 m/s for the mass velocity.
Weight loss and isotopic shifts for water drops frozen on a liquid nitrogen surface.
Eguchi, Keiko; Abe, Osamu; Hiyama, Tetsuya
2008-10-01
A liquid nitrogen freezing method was used to collect raindrops for the determination of isotope-size distribution. Water drops that fall onto a surface of liquid nitrogen stay suspended for 10 to 20 s, until their temperature reaches the Leidenfrost point (126 K). As their temperature falls to the freezing point, they release their heat by thermal conduction. At the freezing point, latent heat of fusion is released, along with a significant loss of water. After freezing completely, the ice droplets stay suspended, cooling by thermal conduction until they reach the Leidenfrost point. They then lose buoyancy and start sinking. Consistent isotopic changes of 1.5 +/- 0.4 and 0.33 +/- 0.05 per thousand for hydrogen and oxygen, respectively, were found for droplets with radii between 1.0 and 1.5 mm. Isotope fractionation appeared to occur at the same time as water loss, as the droplets were freezing, in what was probably a kinetic effect.
NASA Astrophysics Data System (ADS)
Wu, Xianyun; Wu, Ru-Shan
A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.
Precision Departure Release Capability (PDRC) Overview and Results: NASA to FAA Research Transition
NASA Technical Reports Server (NTRS)
Engelland, Shawn; Davis, Tom.
2013-01-01
NASA researchers developed the Precision Departure Release Capability (PDRC) concept to improve the tactical departure scheduling process. The PDRC system is comprised of: 1) a surface automation system that computes ready time predictions and departure runway assignments, 2) an en route scheduling automation tool that uses this information to estimate ascent trajectories to the merge point and computes release times and, 3) an interface that provides two-way communication between the two systems. To minimize technology transfer issues and facilitate its adoption by TMCs and Frontline Managers (FLM), NASA developed the PDRC prototype using the Surface Decision Support System (SDSS) for the Tower surface automation tool, a research version of the FAA TMA (RTMA) for en route automation tool and a digital interface between the two DSTs to facilitate coordination.
Wall thickness measuring method and apparatus
Salzer, L.J.; Bergren, D.A.
1987-10-06
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Wall thickness measuring method and apparatus
Salzer, Leander J.; Bergren, Donald A.
1989-01-01
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Cavallaro, Giuseppe; Lazzara, Giuseppe; Lisuzzo, Lorenzo; Milioto, Stefana; Parisi, Filippo
2018-08-10
Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of the PNIPAAM/halloysite based material. In particular, diclofenac release was slowed down above the LCST for PNIPAAM-co-MA/halloysite. Opposite trends occurred for halloysite functionalized with PNIPAAM at the outer surface. This work represents a further step toward the opportunity to extend and control the delivery conditions of active species, which represent a key point in technological applications.
Ocean experiments and remotely sensed images of chemically dispersed oil spills
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.
1983-01-01
A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.
Bielefeldt, Angela R; Stewart, Michael W; Mansfield, Elisabeth; Scott Summers, R; Ryan, Joseph N
2013-08-01
A quartz crystal microbalance was used to determine the effects of different water quality parameters on the detachment of silver nanoparticles from surfaces representative of ceramic pot filters (CPFs). Silver nanoparticles stabilized with casein were used in the experiments. The average hydrodynamic diameter of the nanoparticles ranged from 20 nm to 100 nm over a pH range of 6.5-10.5. The isoelectric point was about 3.5 and the zeta potential was -45 mV from pH 4.5 to 9.5. The silver nanoparticles were deposited onto silica surfaces and a quartz crystal microbalance was used to monitor silver release from the surface. At environmentally relevant ranges of pH (4.8-9.3), ionic strength (0 and 150 mol/m(3) NaNO3 or 150 mol/m(3) Ca(NO3)2), and turbidity (0 and 51.5 NTU kaolin clay), the rates of silver release were similar. A high concentration of sodium chloride and bacteria (Echerichia coli in 10% tryptic soy broth) caused rapid silver release. Water containing sodium hypochlorite removed 85% of the silver from the silica surface within 3 h. The results suggest that contact between CPFs and prechlorinated water or bleach CPF cleaning should be avoided. Copyright © 2013 Elsevier Ltd. All rights reserved.
Climate Report Points to Warming Earth
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-08-01
The year 2012 was the eighth or ninth warmest on record since 1850 at Earth's surface and the eighth to eleventh warmest since 1979 in the troposphere, depending on the data sets used, according to the "State of the Climate in 2012" report, released on 6 August.
NASA Astrophysics Data System (ADS)
Collins, David J.; Alan, Tuncay; Neild, Adrian
2014-07-01
We introduce a surface acoustic wave (SAW) based method for acoustically controlled concentration, capture, release, and sorting of particles in a microfluidic system. This method is power efficient by the nature of its design: the vertical direction of a traveling acoustic wave, in which the majority of the energy at the SAW-water interface is directed, is used to concentrate particles behind a microfabricated polydimethylsiloxane membrane extending partially into a channel. Sorting is also demonstrated with this concentration shown to be size-dependent. Low-power, miniature SAW devices, using methods such as the one demonstrated here, are well placed for future integration into point-of-care diagnostic systems.
Use of UUVs to Evaluate and Improve Model Performance Within a Tidally-Dominated Bay
2008-09-30
Sequim Bay Road Sequim , WA 98382 Phone: (360) 681-3616 Fax: (360) 681-3699 Email: lyle.hibler@pnl.gov Grant Number: N00014-07-1-1113 LONG-TERM...releasing rhodamine dye on the surface of Sequim Bay ( Sequim , Washington) from an anchored vessel in 2006. Concurrently collected data from the...advective transport from a point release in Sequim Bay , Washington. Tidal, wind-driven and density-driven circulation were accounted for in the model. The
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-11-27
Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-01-01
Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis. PMID:19038023
Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream
Flanders, J.R.; Turner, R.R.; Morrison, T.; Jensen, R.; Pizzuto, J.; Skalak, K.; Stahl, R.
2010-01-01
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14. km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1. N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg. ?? 2010 Elsevier Ltd.
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiguo; Shaw, William J.
This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over themore » domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.« less
Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E
2015-08-15
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.
Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.
2015-01-01
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.
NASA Astrophysics Data System (ADS)
Gong, K.; Fritsch, D.
2018-05-01
Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs' generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.
Spectroscopic Characterization and Nanosafety of Ag-Modified Antibacterial Leather and Leatherette.
Sportelli, Maria Chiara; Picca, Rosaria Anna; Paladini, Federica; Mangone, Annarosa; Giannossa, Lorena Carla; Franco, Cinzia Di; Gallo, Anna Lucia; Valentini, Antonio; Sannino, Alessandro; Pollini, Mauro; Cioffi, Nicola
2017-07-29
The development of antibacterial coatings is of great interest from both industry and the consumer's point of view. In this study, we characterized tanned leather and polyurethane leatherette, typically employed in the automotive and footwear industries, which were modified by photo-deposition of antibacterial silver nanoparticles (AgNPs). Material surface chemical composition was investigated in detail by X-ray photoelectron spectroscopy (XPS). The material's antibacterial capability was checked against Escherichia coli and Staphylococcus aureus , as representative microorganisms in cross transmissions. Due to the presence of silver in a nanostructured form, nanosafety issues were considered, as well. Ionic release in contact media, as well as whole nanoparticle release from treated materials, were quantitatively evaluated, thus providing specific information on potential product nanotoxicity, which was further investigated through cytocompatibility MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, also after surface abrasion of the materials. The proved negligible nanoparticle release, as well as the controlled release of antibacterial ions, shed light on the materials' potentialities, in terms of both high activity and safety.
Spectroscopic Characterization and Nanosafety of Ag-Modified Antibacterial Leather and Leatherette
Mangone, Annarosa; Di Franco, Cinzia; Gallo, Anna Lucia; Valentini, Antonio; Sannino, Alessandro
2017-01-01
The development of antibacterial coatings is of great interest from both industry and the consumer’s point of view. In this study, we characterized tanned leather and polyurethane leatherette, typically employed in the automotive and footwear industries, which were modified by photo-deposition of antibacterial silver nanoparticles (AgNPs). Material surface chemical composition was investigated in detail by X-ray photoelectron spectroscopy (XPS). The material’s antibacterial capability was checked against Escherichia coli and Staphylococcus aureus, as representative microorganisms in cross transmissions. Due to the presence of silver in a nanostructured form, nanosafety issues were considered, as well. Ionic release in contact media, as well as whole nanoparticle release from treated materials, were quantitatively evaluated, thus providing specific information on potential product nanotoxicity, which was further investigated through cytocompatibility MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, also after surface abrasion of the materials. The proved negligible nanoparticle release, as well as the controlled release of antibacterial ions, shed light on the materials’ potentialities, in terms of both high activity and safety. PMID:28758912
Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar
2017-12-20
For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p < 0.05) affected by lipid concentration. The release mechanism followed Higuchi and zero order models, while n > 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity.more » Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.« less
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.
1983-01-01
A specialized spectrometer was designed and developed to measure the mass and velocity distributions of neutral particles (molecules and molecular clusters) released from metal-backed Teflon and Kapton films. Promising results were obtained with an insulation breakdown initiation system based on a moveable contact touching the insulated surfaces. A variable energy, high voltage pulse is applied to the contact. The resulting surface damage sites can be made similar in size and shape to those produced by a high voltage electron beam system operating at similar discharge energies. The point discharge apparatus was used for final development of several high speed recording systems and for measurements of the composition of the materials given off by the discharge. Results with this apparatus show evolution of large amounts of fluorocarbon fragments from discharge through Teflon FEP, while discharges through Kapton produce mainly very light hydrocarbon fragments at masses below about 80 a.m.u.
Possibility of deriving the Hermean surface composition through low energy neutral atom detection
NASA Astrophysics Data System (ADS)
Milillo, A.; Orsini, S.; Massetti, S.; Mura, A.; de Angelis, E.; Lammer, H.; Wurz, P.; di Lellis, A. M.
2003-04-01
The release processes induced by ion sputtering and/or micrometeoroids impacts induces erosion of the Mercury surface. The sputtered neutrals exhibit spectra peaked at low energies (few eV). Nevertheless, a high-energy neutral signal also emerges, due to these release processes. In principle, the directional neutral signal can be detected, providing information on the local surface composition. In this study, we simulate the neutral signal due to ion sputtering below the cusp regions, assuming a highly anisotropic surface composition. The NPA SERENA / ELENA instrument proposed on board the ESA mission BepiColombo is a nadir-pointing 1-D sensor, able to detect neutral atoms, form tens of eV to about 5 keV with a capability of resolving the major species. The ELENA field-of-view (FOV) is ~ 60 degrees, with the FOV plane perpendicular to the MPO orbital plane. Here, we speculate on the possibility of discriminating composition anisotropies by detecting the high-energy portion of the sputtered signal.
USDA-ARS?s Scientific Manuscript database
The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...
Chronomodulated drug delivery system of urapidil for the treatment of hypertension
Chaudhary, Sona S.; Patel, Hetal K.; Parejiya, Punit B.; Shelat, Pragna K.
2015-01-01
Introduction: Hypertension is a disease which shows circadian rhythm in the pattern of two peaks, one in the evening at about 7pm and other in the early morning between 4 am to 8 am. Conventional therapies are incapable to target those time points when actually the symptoms get worsened. To achieve drug release at two time points, chronomodulated delivery system may offer greater benefits. Materials and methods: The chronomodulated system comprised of dual approach; immediate release granules (IRG) and pulsatile release mini-tablets (PRM) filled in the hard gelatin capsule. The mini-tablets were coated using Eudragit S-100 which provided the lag time. To achieve the desired release, various parameters like coating duration and coat thickness were studied. The immediate release granules were evaluated for micromeritical properties and drug release, while mini-tablets were evaluated for various parameters such as hardness, thickness, friability, weight variation, drug content, and disintegration time and in-vitro drug release. Compatibility of drug-excipient was checked by fourier transform infrared spectroscopy and Differential scanning calorimetry studies and pellets morphology was done by Scanning electron microscopy studies. Results: The in-vitro release profile suggested that immediate release granules gives drug release within 20 min at the time of evening attack while the programmed pulsatile release was achieved from coated mini-tablets after a lag time of 9hrs, which was consistent with the demand of drug during early morning hour attack. Pellets found to be spherical in shape with smooth surface. Moreover compatibility studies illustrated no deleterious reaction between drug and polymers used in the study. Conclusions: The dual approach of developed chronomodulated formulation found to be satisfactory in the treatment of hypertension. PMID:25838996
Bacterial Phosphating of Mild (Unalloyed) Steel
Volkland, Hans-Peter; Harms, Hauke; Müller, Beat; Repphun, Gernot; Wanner, Oskar; Zehnder, Alexander J. B.
2000-01-01
Mild (unalloyed) steel electrodes were incubated in phosphate-buffered cultures of aerobic, biofilm-forming Rhodococcus sp. strain C125 and Pseudomonas putida mt2. A resulting surface reaction leading to the formation of a corrosion-inhibiting vivianite layer was accompanied by a characteristic electrochemical potential (E) curve. First, E increased slightly due to the interaction of phosphate with the iron oxides covering the steel surface. Subsequently, E decreased rapidly and after 1 day reached −510 mV, the potential of free iron, indicating the removal of the iron oxides. At this point, only scattered patches of bacteria covered the surface. A surface reaction, in which iron was released and vivianite precipitated, started. E remained at −510 mV for about 2 days, during which the vivianite layer grew steadily. Thereafter, E increased markedly to the initial value, and the release of iron stopped. Changes in E and formation of vivianite were results of bacterial activity, with oxygen consumption by the biofilm being the driving force. These findings indicate that biofilms may protect steel surfaces and might be used as an alternative method to combat corrosion. PMID:11010888
Zero-point energy conservation in classical trajectory simulations: Application to H2CO
NASA Astrophysics Data System (ADS)
Lee, Kin Long Kelvin; Quinn, Mitchell S.; Kolmann, Stephen J.; Kable, Scott H.; Jordan, Meredith J. T.
2018-05-01
A new approach for preventing zero-point energy (ZPE) violation in quasi-classical trajectory (QCT) simulations is presented and applied to H2CO "roaming" reactions. Zero-point energy may be problematic in roaming reactions because they occur at or near bond dissociation thresholds and these channels may be incorrectly open or closed depending on if, or how, ZPE has been treated. Here we run QCT simulations on a "ZPE-corrected" potential energy surface defined as the sum of the molecular potential energy surface (PES) and the global harmonic ZPE surface. Five different harmonic ZPE estimates are examined with four, on average, giving values within 4 kJ/mol—chemical accuracy—for H2CO. The local harmonic ZPE, at arbitrary molecular configurations, is subsequently defined in terms of "projected" Cartesian coordinates and a global ZPE "surface" is constructed using Shepard interpolation. This, combined with a second-order modified Shepard interpolated PES, V, allows us to construct a proof-of-concept ZPE-corrected PES for H2CO, Veff, at no additional computational cost to the PES itself. Both V and Veff are used to model product state distributions from the H + HCO → H2 + CO abstraction reaction, which are shown to reproduce the literature roaming product state distributions. Our ZPE-corrected PES allows all trajectories to be analysed, whereas, in previous simulations, a significant proportion was discarded because of ZPE violation. We find ZPE has little effect on product rotational distributions, validating previous QCT simulations. Running trajectories on V, however, shifts the product kinetic energy release to higher energy than on Veff and classical simulations of kinetic energy release should therefore be viewed with caution.
Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing.
Ge, Shenguang; Zhang, Lina; Zhang, Yan; Liu, Haiyun; Huang, Jiadong; Yan, Mei; Yu, Jinghua
2015-12-01
A low-cost, simple, portable and sensitive paper-based electrochemical sensor was established for the detection of K-562 cell in point-of-care testing. The hybrid material of 3D Au nanoparticles/graphene (3D Au NPs/GN) with high specific surface area and ionic liquid (IL) with widened electrochemical windows improved the good biocompatibility and high conductivity was modified on paper working electrode (PWE) by the classic assembly method and then employed as the sensing surface. IL could not only enhance the electron transfer ability but also provide sensing recognition interface for the conjugation of Con A with cells, with the cell capture efficiency and the sensitivity of biosensor strengthened simultaneously. Concanavalin A (Con A) immobilization matrix was used to capture cells. As proof-of-concept, the paper-based electrochemical sensor for the detection of K-562 cells was developed. With such sandwich-type assay format, K-562 cells as model cells were captured on the surface of Con A/IL/3D AuNPs@GN/PWE. Con A-labeled dendritic PdAg NPs were captured on the surface of K-562 cells. Such dendritic PdAg NPs worked as catalysts promoting the oxidation of thionine (TH) by H2O2 which was released from K-562 cells via the stimulation of phorbol 12-myristate-13-acetate (PMA). Therefore, the current signal response was dependent on the amount of PdAg NPs and the concentration of H2O2, the latter of which corresponded with the releasing amount from cells. So, the detection method of K-562 cell was also developed. Under optimized experimental conditions, 1.5×10(-14) mol of H2O2 releasing from each cell was calculated. The linear range and the detection limit for K-562 cells were determined to be 1.0×10(3)-5.0×10(6) cells/mL and 200 cells/mL, respectively. Such as-prepared sensor showed excellent analytical performance with good fabrication reproducibility, acceptable precision and satisfied accuracy, providing a novel protocol in point-of-care testing of cells. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu
2015-04-01
Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2 concentrations. The CV of CO2 measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO2 concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO2 increases in a small-scale injection test. (3) The 5% CV of CO2 measurements for 30 minutes can be used for the early warning in CO2 storage sites.
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.; Toon, Owen B.; Kasting, James F.
1991-01-01
The possibility is considered that the atmosphere and climate of Mars could be altered to allow terrestrial life forms, and possibly human beings, to survive on the surface. Production of CFCs or other greenhouse gases on Mars would warm the surface enough for the regolith and polar caps to release their CO2 and raise atmospheric pressure to 100 mbar. If a large regolith and polar CO2 reservoirs exist, the pressure would continue to rise on its own. If these are absent, additional CO2 would have to be released from carbonate minerals. At this point, perhaps between 100 and 100,000 yrs, Mars might be suitable for plants. If there is a mechanism for sequestering the reduced carbon, these plants could slowly transform the CO2 to produce an O2-rich atmosphere in perhaps 100,000 yrs. If sufficient N2 could be released from putative soil deposits and the CO2 level could be kept low enough, then a human-breathable atmosphere would be produced.
Pazzaglia, U E; Apostoli, P; Congiu, T; Catalani, S; Marchese, M; Zarattini, G
2011-09-01
A patient with a total hip replacement developed optic, acoustic and peripheral neuropathy from metal ions intoxication, due to the wear products released from the prosthesis. Subsequently the kinetics of the metal ions was studied. Massive wear and acute intoxication allowed a study of the metal ions kinetics and of EDTA treatment. Plasma and other organic fluids were saturated by each of the metal ions released from the exposed surface according to the solubility of each ion; a larger fraction of Co ions was bound within red cells, while the plasmatic fraction appeared more movable. In a patient with a prosthesis subjected to wear, the ions released are from the prosthetic and from the debris surface (spread in the body). The latter is a function of the number and size of particles. Revision of the prosthesis from the point of view of the metal ions kinetics corresponded to a reduction of the releasing surface because of debris washed out by irrigation and tissue excision; however, the metal particles spread by lymphatic circulation continued to release ions even though the source of wear had been removed. Early diagnosis of high metal wear can be ascertained with mass spectrometry and after revision high levels of metal ions can only be reduced with repeated chelating treatment. It is preferable not to revise fractured ceramic components with a polyethylene-metal articulation.
Lee, Doug-Youn; Spångberg, Larz S W; Bok, Young-Bin; Lee, Chang-Young; Kum, Kee-Yeon
2005-07-01
The aim of this in vitro study was to evaluate the suitability of using chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA) to control the release of chlorhexidine digluconate (CHX) from a prototype of controlled release drug device for root canal disinfection. Four different prototypes with different formulations were prepared. Group A (n = 12): the device (absorbent paper point) was loaded with CHX as control. Group B (n = 12): same as group A, but the device was coated with chitosan (Texan MedTech). In Groups C and D, the device was treated in the same way as group A and then coated 3 times with 5% PMMA (Group C, n = 12, Aldrich), or coated 3 times with 3% PLGA (Group D, n = 12, Sigma). The devices were randomly allocated to experimental groups of 12 each. All the prototypes of controlled release drug device were soaked in 3 mL distilled water. The concentrations of CHX were determined using a UV spectrophotometer. The surface characteristics of each prototype were observed using a scanning electron microscope. The result showed that release rate of CHX was the greatest in the noncoated group, followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). Pores were observed on the surface of the prototypes that were coated with PLGA and PMMA. When the pore size was smaller, the release rate was lower. These data indicate that polymer coating can control the release rate of CHX from the prototypes of controlled release drug device.
Spacecraft thermal energy accommodation from atomic recombination
NASA Technical Reports Server (NTRS)
Carleton, Karen L.; Marinelli, William J.
1991-01-01
Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.
An approach to constrained aerodynamic design with application to airfoils
NASA Technical Reports Server (NTRS)
Campbell, Richard L.
1992-01-01
An approach was developed for incorporating flow and geometric constraints into the Direct Iterative Surface Curvature (DISC) design method. In this approach, an initial target pressure distribution is developed using a set of control points. The chordwise locations and pressure levels of these points are initially estimated either from empirical relationships and observed characteristics of pressure distributions for a given class of airfoils or by fitting the points to an existing pressure distribution. These values are then automatically adjusted during the design process to satisfy the flow and geometric constraints. The flow constraints currently available are lift, wave drag, pitching moment, pressure gradient, and local pressure levels. The geometric constraint options include maximum thickness, local thickness, leading-edge radius, and a 'glove' constraint involving inner and outer bounding surfaces. This design method was also extended to include the successive constraint release (SCR) approach to constrained minimization.
Nuclear reactor control apparatus
Sridhar, Bettadapur N.
1983-10-25
Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.
Ma, Sheng-Xing; Mayer, Emeran; Lee, Paul; Li, Xi-yan; Gao, Ellen Z.
2015-01-01
Objectives The purpose of this study was to consecutively capture and quantify nitric oxide (NO) and cGMP, the second messenger of NO, over the skin surface of acupuncture points (acupoints), meridian line without acupoint, and non-meridian control regions of the Pericardium meridian (PC) in humans, and investigate their response to transcutaneous electrical nerve stimulation (TENS). Design, setting, and main outcome measures Adhesive biocapture tubes were attached to the skin surface along PC regions and injected with 2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl solution, an NO-scavenging compound, contacting the skin surface for 20 minutes each during 4 consecutive biocapture intervals. TENS (1.0 mA, 6 Hz, 1.0 msec duration) was applied over acupoints PC 8 and PC 3 during the 2nd biocapture for 20 min. Total nitrite and nitrate (NOx-), the stable metabolic products of NO, and cGMP in biocaptured samples were quantified using chemiluminescence and ELISA. Results NOx- levels in the 1st biocapture over PC regions are almost two fold higher compared to subsequent biocaptures and are higher over PC acupoints versus non-meridian control region. Following TENS, NOx- concentrations over PC regions were significantly increased, and cGMP is predominantly released from the skin surface of PC acupoints. Conclusions TENS induces elevations of NO-cGMP concentrations over local skin region with a high level at acupoints. The enhanced signal molecules improve local circulation, which contributes to beneficial effects of the therapy. PMID:26369251
Thermodynamics of gas and steam-blast eruptions
Mastin, L.G.
1995-01-01
Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures ('boiling-point eruptions'); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic ('gas eruptions'); and (3) those caused by rapid mixing of hot rock and ground- or surface water ('mixing eruptions'). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (???10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (??????1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (??????0.4 MJ/kg), and least for boiling-point eruptions (??????0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (vmax) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (mr) near zero). For mixing eruptions, vmax ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when mr is high, hence vmax is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit. ?? 1995 Springer-Verlag.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara
2009-10-01
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Iglesias, Alejandra; Nebot, Carolina; Miranda, Jose M.; Vázquez, Beatriz I.; Abuín, Carlos M. Franco; Cepeda, Alberto
2013-01-01
Due to the continuous release of antimicrobials into the environment, the aim of this study was to compare the frequency of detection of sulfamethazine, sulfamethoxypyridazine and trimethoprim in surface water collected from urban and rural areas in Northwestern Spain. A monitoring study was conducted with 314 river water samples analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry. The results indicated that 37% of the samples contained residues of at least one of the investigated antimicrobials, and every sampling site yielded positive samples. At sites located near the discharge points of wastewater treatment plants and near the collection point of a drinking-water treatment plant, more than 6% of the samples were positive for the presence of antimicrobial residues. PMID:27029291
Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.
2013-01-01
Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624
Prospecting for Methane in Arabia Terra, Mars - First Results
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dotoyhy Z.; Venechuk, Elizabeth M.
2006-01-01
Methane has been measured in the Martian atmosphere at concentrations of approx. 10 ppb. Since the photochemical lifetime of this gas is approx. 300 years, it is likely that methane is currently being released from the surface. Possible sources for the methane include 1) hydrothermal activity, 2) serpentinization of basalts and other water-rock interactions, 3) thermal maturation of sedimentary organic matter, and 4) metabolism of living bacteria. Any such discovery would revolutionize our understanding of Mars. Longitudinal variations in methane concentration, as measured by the Planetary Fourier Spectrometer (PFS) on Mars Express, show the highest values over Arabia Terra, Elysium Planum, and Arcadia-Memnonia, suggesting localized areas of methane release. We are using orbital data and methodologies derived from petroleum exploration in an attempt to locate these release points.
Willey, Melvin G.
1981-01-01
An infinite blender that achieves a homogeneous mixture of fuel microspheres is provided. Blending is accomplished by directing respective groups of desired particles onto the apex of a stationary coaxial cone. The particles progress downward over the cone surface and deposit in a space at the base of the cone that is described by a flexible band provided with a wide portion traversing and in continuous contact with the circumference of the cone base and extending upwardly therefrom. The band, being attached to the cone at a narrow inner end thereof, causes the cone to rotate on its arbor when the band is subsequently pulled onto a take-up spool. As a point at the end of the wide portion of the band passes the point where it is tangent to the cone, the blended particles are released into a delivery tube leading directly into a mold, and a plate mounted on the lower portion of the cone and positioned between the end of the wide portion of the band and the cone assures release of the particles only at the tangent point.
NASA Astrophysics Data System (ADS)
Priyadarshini, Balasankar Meera; Fawzy, Amr S.
2017-04-01
In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag+ ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be <160 nm and indicated that CHXg treatment drastically shifted the surface charge from negative to high positive values, with homogenous distribution. TEM revealed spherical Ag-NSP/CHXg nanospheres with a clearly visible surface coating of CHXg. FTIR confirmed association of CHXg with Ag-NSP nanospheres, whereas SEM/EDX data verified presence of spectral peaks specific to silver (Ag), CHXg, and PVP. The %LE gradually increased with increasing incubation times. In vitro CHXg release exhibited a bi-phasic fashion showing maximum release of 74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag+ ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all proposed concentrations and exposure time points. CHXg accentuated the antibacterial properties of Ag-NSP.
Rekhi, G S; Nellore, R V; Hussain, A S; Tillman, L G; Malinowski, H J; Augsburger, L L
1999-06-02
The objective of this study, was to examine the influence of critical formulation and processing variables as described in the AAPS/FDA Workshop II report on scale-up of oral extended-release dosage forms, using a hydrophilic polymer hydroxypropyl methylcellulose (Methocel K100LV). A face-centered central composite design (26 runs+3 center points) was selected and the variables studied were: filler ratio (lactose:dicalcium phosphate (50:50)), polymer level (15/32.5/50%), magnesium stearate level (1/1.5/2%), lubricant blend time (2/6/10 min) and compression force (400/600/800 kg). Granulations (1.5 kg, 3000 units) were manufactured using a fluid-bed process, lubricated and tablets (100 mg metoprolol tartrate) were compressed on an instrumented Manesty D3B rotary tablet press. Dissolution tests were performed using USP apparatus 2, at 50 rpm in 900 ml phosphate buffer (pH 6.8). Responses studied included percent drug released at Q1 (1 h), Q4, Q6, Q12. Analysis of variance indicated that change in polymer level was the most significant factor affecting drug release. Increase in dicalcium phosphate level and compression force were found to affect the percent released at the later dissolution time points. Some interaction effects between the variables studied were also found to be statistically significant. The drug release mechanism was predominantly found to be Fickian diffusion controlled (n=0.46-0.59). Response surface plots and regression models were developed which adequately described the experimental space. Three formulations having slow-, medium- and fast-releasing dissolution profiles were identified for a future bioavailability/bioequivalency study. The results of this study provided the framework for further work involving both in vivo studies and scale-up.
Wulf, Katharina; Teske, Michael; Matschegewski, Claudia; Arbeiter, Daniela; Bajer, Dalibor; Eickner, Thomas; Schmitz, Klaus-Peter; Grabow, Niels
2018-06-01
The successive incorporation of several drugs into the polymeric bulk of implants mostly results in loss of considerable quantity of one drug, and/or the loss in quality of the coating and also in changes of drug release time points. A dual drug delivery system (DDDS) based on poly-L-lactide (PLLA) copolymers combining the effective inhibition of smooth muscle cell proliferation while simultaneously promoting re-endothelialization was successfully developed. To overcome possible antagonistic drug interactions and the limitation of the polymeric bulk material as release system for dual drugs, a novel concept which combines the bulk and surface drug immobilization for a DDDS was investigated. The advantage of this DDDS is that the bulk incorporation of fluorescein diacetate (FDAc) (model drug for paclitaxel (PTX)) via spray coating enhanced the subsequent cleavable surface coupling of vascular endothelial growth factor (VEGF) via the crosslinker bissulfosuccinimidyl suberate (BS 3 ). In the presence of the embedded FDAc, the VEGF loading and release are about twice times higher than in absence. Furthermore, the DDDS combines the diffusion drug delivery (FDAc or PTX) and the chemical controlled drug release, VEGF via hydrolysable ester bonds, without loss in quantity and quality of the drug release curves. Additionally, the performed in vitro biocompatibility study showed the bimodal influences of PTX and VEGF on human endothelial EA.hy926 cells. In conclusion, it was possible to show the feasibility to develop a novel DDDS which has a high potential for the medical application due to the possible easy and short modification of a polymer-based PTX delivery system.
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley
2017-04-01
Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.
Loo, Siew-Leng; Fane, Anthony G; Lim, Teik-Thye; Krantz, William B; Liang, Yen-Nan; Liu, Xin; Hu, Xiao
2013-08-20
This paper reports the preparation of poly(sodium acrylate) (PSA) cryogels decorated with silver nanoparticles (AgNPs) for point-of-use (POU) water disinfection. The PSA/Ag cryogels combine the high porosity, excellent mechanical and water absorption properties of cryogels, and uniform dispersion of fine AgNPs on the cryogel pore surface for rapid disinfection with minimal Ag release (<100 μg L(-1)). They were used in a process that employed their ability to absorb water, which subsequently could be released via application of mild pressure. Their antibacterial performance was evaluated based on the disinfection efficacies of E. coli and B. subtilis . The PSA/Ag cryogels had excellent disinfection efficacies showing close to a 3 log reduction of viable bacteria after a brief 15 s contact time. They were highly reusable as there was no significant difference in the disinfection efficacies over five cycles of operation. The biocidal action of the PSA/Ag cryogels is believed to be dominated by surface-controlled mechanisms that are dependent on direct contact of the interface of PSA/Ag cryogels with the bacterial cells. The PSA/Ag cryogels are thought to offer a simpler approach for drinking water disinfection in disaster relief applications.
NASA Astrophysics Data System (ADS)
Andrews, B. J.; Grocke, S.; Benage, M.
2016-12-01
The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These findings indicate that gas permeability may be proportional to magma ascent and strain rate in dome-forming eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert
Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2015-07-05
Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos
2012-11-19
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperaturemore » estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.« less
Xiao, Lian; Xia, Xianping; Xie, Changsheng; Ge, Man; Xiao, Cheng; Cai, Shuizhou
2013-07-01
Copper/low-density polyethylene (Cu/LDPE) porous composites are novel materials for copper-containing intrauterine devices (Cu-IUDs). Here we report a method, i.e., by changing the mass ratio of two kinds of porogens that have different melting points through the combined techniques of injection molding and particulate leaching, to prepare the Cu/LDPE porous composites with tunable pore morphology. After these Cu/LDPE porous composites with different pore morphologies were obtained, the influences of pore morphologies on their cupric ion release behaviors were studied. The results show that the pore morphology has great influence on the cupric ion release behavior of Cu/LDPE porous composites. This phenomenon is caused by the different influences of different pore morphologies on the effective porosity and the surface hydrophilicity. And those results can be applied to guide the fabrication of Cu/LDPE porous composite Cu-IUDs with minimal weight at an appropriate cupric ion release rate. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, X M; Wu, S L; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, C L; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2007-08-01
NiTi shape memory alloy is one of the promising orthopedic materials due to the unique shape memory effect and superelasticity. However, the large amount of Ni in the alloy may cause allergic reactions and toxic effects thereby limiting its applications. In this work, the surface of NiTi alloy was modified by nitrogen plasma immersion ion implantation (N-PIII) at various voltages. The materials were characterized by X-ray photoelectron spectroscopy (XPS). The topography and roughness before and after N-PIII were measured by atomic force microscope. The effects of the modified surfaces on nickel release and cytotoxicity were assessed by immersion tests and cell cultures. The XPS results reveal that near-surface Ni concentration is significantly reduced by PIII and the surface TiN layer suppresses nickel release and favors osteoblast proliferation, especially for samples implanted at higher voltages. The surfaces produced at higher voltages of 30 and 40 kV show better adhesion ability to osteoblasts compared to the unimplanted and 20 kV PIII samples. The effects of heating during PIII on the phase transformation behavior and cyclic deformation response of the materials were investigated by differential scanning calorimetry and three-point bending tests. Our results show that N-PIII conducted using the proper conditions improves the biocompatibility and mechanical properties of the NiTi alloy significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.
1999-11-29
COAMPS/LODI simulations of the tracer experiments at Diablo Canyon on August 31, September 2, and September 4, 1986 had mixed results. Simulated tracer concentrations on August 31 differed significantly from the measured concentrations. The model transported SF{sub 6} too far south and did not predict transport of SF{sub 6} north along highway 101 or into See Canyon. Early in the day the model rapidly transported SF{sub 6} away from the release point while observations suggested the tracer stayed close to Diablo Canyon for 1-2 hours. For September 2, simulations agreed very well with the measurements. The model accurately predicted themore » change of wind direction from north northwest to east northeast at the release point. It also predicted the advection of tracer over Mot-r-0 Bay and through the Los Osos Valley toward San Luis Obispo in excellent agreement with the observations. On September 4, the calculated transport of SF{sub 6} from Diablo Canyon had defects similar to those on August 31, a trajectory too far south and limited intrusion of tracer north along highway 101. Conversely, simulations of the Freon release from Los Osos Cemetery on September 4 corresponded well with observations. Since the simulations used only global meteorological data and no local winds for input, even the limited success of COAMPS/LODI is a favorable result. COAMPS's inability to generate southerly winds through the highway 101 corridor on August 31 and September 4 is a symptom of its underestimate of the sea breeze. The weak sea breeze correlates with a small diurnal range of air temperature possibly associated with underestimates of surface solar heating and/or overestimates of surface wetness. Improvement of COAMPS/LODI simulations requires development of new data assimilation techniques to use the local surface and low altitude wind and temperature measurements. Also, quantitative methods are needed to assess the accuracy of the models.« less
Miles, Robin R [Danville, CA; Belgrader, Phillip [Severna Park, MD; Fuller, Christopher D [Oakland, CA
2007-01-02
Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.
Maslov, Mikhail Y.; Edelman, Elazer R.; Pezone, Matthew J.; Wei, Abraham E.; Wakim, Matthew G.; Murray, Michael R.; Tsukada, Hisashi; Gerogiannis, Iraklis S.; Groothuis, Adam; Lovich, Mark A.
2014-01-01
Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively towards the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by the elevated drug levels in the coronary sinus effluent. Indeed, plasma levels, hemodynamic responses, and myocardial deposition remote from the point of release were similar following local EC or IV delivery. Therefore, the coronary vasculature shapes the pharmacokinetics of local myocardial delivery of small catecholamine drugs in large animal models. Optimal design of epicardial drug delivery systems must consider the underlying bulk capillary perfusion currents within the tissue to deliver drug to tissue targets and may favor therapeutic molecules with better potential retention in myocardial tissue. PMID:25234821
Contaminant transport from point source on water surface in open channel flow with bed absorption
NASA Astrophysics Data System (ADS)
Guo, Jinlan; Wu, Xudong; Jiang, Weiquan; Chen, Guoqian
2018-06-01
Studying solute dispersion in channel flows is of significance for environmental and industrial applications. Two-dimensional concentration distribution for a most typical case of a point source release on the free water surface in a channel flow with bed absorption is presented by means of Chatwin's long-time asymptotic technique. Five basic characteristics of Taylor dispersion and vertical mean concentration distribution with skewness and kurtosis modifications are also analyzed. The results reveal that bed absorption affects both the longitudinal and vertical concentration distributions and causes the contaminant cloud to concentrate in the upper layer. Additionally, the cross-sectional concentration distribution shows an asymptotic Gaussian distribution at large time which is unaffected by the bed absorption. The vertical concentration distribution is found to be nonuniform even at large time. The obtained results are essential for practical implements with strict environmental standards.
Mild Wind Series, Minute Steak Event
1992-11-20
radioactive gas and debris from reaching the atmosphere, thereby complying with the test ban treaty. distance from the source point to the surface was...percent of the active data recorded on film is also important in the event of excessive radioactive release. The weighing of the experiments is arbitrary...in a water-base Polution . S41 ’ The caldera 245 feet In diameter and 17 feet deep formed at +23 minutes (figure 4.2). There was consistent
Magnetic Resonance Spectroscopy; An Objective Modality to Identify the Pathology of Breast Neoplasms
2000-05-01
van Rooy H, Collard JG, Bruyneel EA, Mareel MMK (1986): Effect of cancer related and drug induced alterations in surface carbohydrates on the...R (1983): Interferon induced increase in neuraminidase-releasable sialic acid and glycosphingolipid metabolism in mouse lymphoma and L1210 leukemic...tified at excision. Tissue from the aspira- 900 pulse, 8,192 data points, 256 free induc - tion site (3 mm 3) was collected for tion decays, an
On-Demand Drug Release from Gold Nanoturf for a Thermo- & Chemo-Therapeutic Esophageal Stent (TES).
Lee, Sori; Hwang, Gyoyeon; Kim, Tae Hee; Kwon, S Joon; Kim, Jong Uk; Koh, Kyongbeom; Park, Byeonghak; Hong, Haeleen; Yu, Ki Jun; Chae, Heeyeop; Jung, Youngmee; Lee, Jiyeon; Kim, Tae-Il
2018-06-07
Stimuli-responsive delivery systems for cancer therapy have been increasingly used to promote the on-demand therapeutic efficacy of anticancer drugs, and in some cases, simultaneously generate heat in response to a stimulus, resulting in hyperthermia. However, their application is still limited due to the systemic drawbacks of intravenous delivery, such as rapid clearance from the bloodstream, and the repeat injections required for sustained safe dosage, which can cause over-dosing. Here, we propose a gold (Au)-coated nanoturf structure as an implantable therapeutic interface for near-infrared (NIR)-mediated on-demand hyperthermia chemotherapy. The Au nanoturf possessed long-lasting doxorubicin (DOX) duration, which helps facilitate drug release in a sustained and prolonged manner. Moreover, the Au-coated nanoturf provides reproducible hyperthermia induced by localized surface plasmon resonances (LSPRs) under NIR irradiation. Simultaneously, the NIR-mediated temperature increase can promote on-demand drug release at desired time points. For in vivo analysis, the Au nanoturf structure was applied on an esophageal stent, which needs sustained anticancer treatment to prevent tumor recurrence on the implanted surface. This thermo- and chemo-esophageal stent induced significant cancer cell death with released drug and hyperthermia. These phenomena were also confirmed by theoretical analysis. The proposed strategy provides a solution to achieve enhanced thermo-/chemotherapy, and has broad applications in sustained cancer treatments.
Drug release from slabs and the effects of surface roughness.
Kalosakas, George; Martini, Dimitra
2015-12-30
We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Practical considerations for volumetric wear analysis of explanted hip arthroplasties.
Langton, D J; Sidaginamale, R P; Holland, J P; Deehan, D; Joyce, T J; Nargol, A V F; Meek, R D; Lord, J K
2014-01-01
Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60-8.
Laser bioengineering of glass-titanium implants surface
NASA Astrophysics Data System (ADS)
Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.
2013-11-01
Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).
Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.
Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter
2008-05-01
The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.
NASA Technical Reports Server (NTRS)
1980-01-01
The plausibility that hydrogen peroxide, widely distributed within the Mars surface material, was responsible for the evocative response obtained by the Viking Labeled Release (LR) experiment on Mars was investigated. Although a mixture of gamma Fe2O3 and silica sand stimulated the LR nutrient reaction with hydrogen peroxide and reduced the rate of hydrogen decomposition under various storage conditions, the Mars analog soil prepared by the Viking Inorganic Analysis Team to match the Mars analytical data does not cause such effects. Nor is adequate resistance to UV irradiation shown. On the basis of the results and consideration presented while the hydrogen peroxide theory remains the most, if not only, attractive chemical explanation of the LR data, it remains unconvincing on critical points. Until problems concerning the formation and stabilization of hydrogen peroxide on the surface of Mars can be overcome, adhere to the scientific evidence requires serious consideration of the biological theory.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 19 August 2003The knobby terrain and eroded impact crater observed in this THEMIS image of the Eumenides Dorsum region are evidence to a surface that has been heavily modified and stripped over time. Variable layering of material within the impact crater suggest a succession of events which eroded the surface and exposed possibly different units. Slope streaks and dust avalanches are also observed within the impact crater and point to recent and continued modification of the surface.Image information: VIS instrument. Latitude 4.9, Longitude 203.6 East (156.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.An LNG release, transport, and fate model system for marine spills.
Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole
2007-02-20
LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially exceeds the spill spreading rate, both the thermal radiation fields and surface pool trail the vessel. The relative directions and speeds of the wind and vessel movement govern the orientation of the dispersed plume. If the vessel stops, the areas of the surface pool and incident radiation field (with burning) are maximized and the dispersed cloud area (without burning) minimized. The longer the delay in stopping the vessel, the smaller the peak values are for the pool area and the size of the thermal radiation field. Once the vessel stops, the spill pool is adjacent to the vessel and moving down current. The thermal radiation field is oriented similarly. These results may be particularly useful in contingency planning for underway vessels.
Swelling and gas release in oxide fuels during fast temperature transients
NASA Astrophysics Data System (ADS)
Dollins, C. C.; Jursich, M.
1982-05-01
A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.
Bird, Simon C; Drizo, Aleksandra
2009-11-01
Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter reaches its saturation point, the material could be re-used as soil amendment for the slow release of bioavailable P with minimal risk for loss of P to surface runoff, bringing further benefits to the environment.
von Haartman, Eva; Lindberg, Desiré; Prabhakar, Neeraj; Rosenholm, Jessica M
2016-12-01
The intracellular release mechanism of hydrophobic molecules from surface-functionalized mesoporous silica nanoparticles was studied in relation to the biodegradation behavior of the nanocarrier, with the purpose of determining the dominant release mechanism for the studied drug delivery system. To be able to follow the real-time intracellular release, a hydrophobic fluorescent dye was used as model drug molecule. The in vitro release of the dye was investigated under varying conditions in terms of pH, polarity, protein and lipid content, presence of hydrophobic structures and ultimately, in live cancer cells. Results of investigating the drug delivery system show that the degradation and drug release mechanisms display a clear interdependency in simple aqueous solvents. In pure aqueous media, the cargo release was primarily dependent on the degradation of the nanocarrier, while in complex media, mimicking intracellular conditions, the physicochemical properties of the cargo molecule itself and its interaction with the carrier and/or surrounding media were found to be the main release-governing factors. Since the material degradation was retarded upon loading with hydrophobic guest molecules, the cargo could be efficiently delivered into live cancer cells and released intracellularly without pronounced premature release under extracellular conditions. From a rational design point of view, pinpointing the interdependency between these two processes can be of paramount importance considering future applications and fundamental understanding of the drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.
An x ray archive on your desk: The Einstein CD-ROM's
NASA Technical Reports Server (NTRS)
Prestwich, A.; Mcdowell, J.; Plummer, D.; Manning, K.; Garcia, M.
1992-01-01
Data from the Einstein Observatory imaging proportional counter (IPC) and high resolution imager (HRI) were released on several CD-ROM sets. The sets released so far include pointed IPC and HRI observations in both simple image and detailed photon event list format, as well as the IPC slew survey. With the data on these CD-ROMS's the user can perform spatial analysis (e.g., surface brightness distributions), spectral analysis (with the IPC event lists), and timing analysis (with the IPC and HRI event lists). The next CD-ROM set will contain IPC unscreened data, allowing the user to perform custom screening to recover, for instance, data during times of lost aspect data or high particle background rates.
Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes
NASA Astrophysics Data System (ADS)
Bufe, C. G.
2002-12-01
Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay region over several decades preceding the 1906 San Francisco earthquake (M 7.8). Both the Kunlun and the Denali mainshocks occurred at new moon.
DFT studies on the mechanism of the reaction of C2H5S with NO2
NASA Astrophysics Data System (ADS)
Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun
The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.
Preparation and properties of an internal mold release for rigid urethane foam
NASA Astrophysics Data System (ADS)
Paker, B. G.
1980-08-01
Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.
de Carvalho Gomes, Franciane; Godoy, José Marcus; de Carvalho, Zenildo Lara; de Souza, Elder Magalhães; Rodrigues Silva, José Ivan; Tadeu Lopes, Ricardo
2014-10-01
Presently, two nuclear power plants operate in Brazil. Both are located at Itaorna beach, Angra dos Reis, approximately 133 km from Rio de Janeiro city. The reactor cooling circuits require the input of seawater, which is later discharged through a pipeline into the adjacent Piraquara de Fora Cove. The radioactive effluents undergo ion-exchange treatment prior to their release in batches, causing the enrichment of (3)H relative to other radionuclides in the discharged waters. Under steady state conditions, the (3)H gradient in the Piraquara de Fora waters can be used to determine the dependence of the dilution factor on the distance from the discharge point. The present work describes experiments carried out at the reactor site during batch release episodes, including time series sampling at the discharge point and surface seawater sampling every 250 m to a distance of 1250 m, after a double distillation, the (3)H concentration was measured by liquid scintillation counting applying a Quantulus liquid scintillation spectrometer. The obtained results showed a linear relationship between the (3)H concentration and distance from the discharge point. At 1250 m from the discharge point a dilution index of 1:15 was measured which fits the expected value based on modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
DNS of a turbulent lifted DME jet flame
Minamoto, Yuki; Chen, Jacqueline H.
2016-05-07
A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less
Drug release through liposome pores.
Dan, Nily
2015-02-01
Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.
Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.
2016-09-14
Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led to the following conclusions:The existing outlets at Lookout Point Dam, because of the range of depths, allow for greater temperature control than the two existing outlets at Hills Creek Dam that are relatively deep.Temperature control at HCR through operational scenarios generally was minimal near Hills Creek Dam, but improved downstream toward the head of LOP when decreased release rates held HCR at a low lake elevation year-round.Inflows from unregulated streams between HCR and LOP helped to dilute the effects of HCR and achieve more natural stream temperatures before the MFWR entered LOP.The relative benefit of any particular scenario depended on the location in the MFWR system used to assess the potential change, with most scenarios involving changes to Hills Creek Dam being less effective with increasing downstream distance, such as downstream of DEX.To achieve as much temperature control as the most successful structural scenarios, which were able to resemble without-dam conditions for part of the year, most operational scenarios had to be free of any power-generation requirements at Lookout Point Dam.Downstream of DEX, scenarios incorporating a hypothetical floating outlet at either HCR or LOP resulted in similar temperatures, with both scenarios causing a delay in the estimated spring Chinook egg emergence by about 9–10 days compared to base-case temperature-management scenarios.
Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker
2016-04-15
We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore pointing to the possibility to a 'multi-step and multisite' targeting by one nanocarrier. We therefore feel that this could be used for many cellular systems where the combined and orchestrated delivery of components is prerequisite in order to obtain the highest efficiency. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2017-10-30
Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.
Paradiso, Patrizia; Chu, Virginia; Santos, Luís; Serro, Ana Paula; Colaço, Rogério; Saramago, Benilde
2015-07-01
Although the plasma technology has long been applied to treat contact lenses, the effect of this treatment on the performance of drug-loaded contact lenses is still unclear. The objective of this work is to study the effect of nitrogen plasma treatment on two drug-loaded polymeric formulations which previously demonstrated to be suitable for therapeutic contact lenses: a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel loaded with levofloxacin and a silicone-based hydrogel loaded with chlorhexidine. Modifications of the surface and the optical properties, and alterations in the drug release profiles and possible losses of the antimicrobial activities of the drugs induced by the plasma treatment were assessed. The results showed that, depending on the system and on the processing conditions, the plasma treatment may be beneficial for increasing wettability and refractive index, without degrading the lens surface. From the point of view of drug delivery, plasma irradiation at moderate power (200 W) decreased the initial release rate and the amount of released drug, maintaining the drug activity. For lower (100 W) and higher powers (300 W), almost no effect was detected because the treatment was, respectively, too soft and too aggressive for the lens materials. © 2014 Wiley Periodicals, Inc.
Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating
NASA Astrophysics Data System (ADS)
Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.
2017-12-01
Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.
LIOY, PAUL J; VALLERO, DANIEL; FOLEY, GARY; GEORGOPOULOS, PANOS; HEISER, JOHN; WATSON, TOM; REYNOLDS, MICHAEL; DALOIA, JAMES; TONG, SAI; ISUKAPALLI, SASTRY
2014-01-01
A personal exposure study was conducted in New York City as part of the Urban Dispersion Program (UDP). It examined the contact of individuals with four harmless perflourocarbon tracers (PFT) released in Midtown Manhattan with approval by city agencies at separate locations, during two types of experiments, completed during each release period. Two continuous 1 h release periods separated by a 1.5 h ventilation time were completed on 3 October 2005. Stationary site and personal exposure measurements were taken during each period, and the first half hour after the release ended. Two types of scripted exposure activities are reported: Outdoor Source Scale, and Outdoor Neighborhood Scale; requiring 1- and 10-min duration samples, respectively. The results showed that exposures were influenced by the surface winds, the urban terrain, and the movements of people and vehicles typical in urban centers. The source scale exposure data indicated that local conditions significantly affected the distribution of each tracer, and consequently the exposures. The highest PFT exposures resulted from interaction of the scripted activities with local surface conditions. The range measured for 1- min exposures were large with measured values exceeding 5000 ppqv (parts per quadrillion by volume). The neighborhood scale measurements quantified exposures at distances up to seven blocks away from the release points. Generally, but not always, the PFT levels returned quickly to zero indicating that after cessation of the emissions the concentrations decrease rapidly, and reduce the intensity of local exposures. The near source and neighborhood personal exposure route results provided information to establish a baseline for determining how a release could affect both the general public and emergency responders, and evaluate the adequacy of re-entry or exit strategies from a local area. Finally, the data also show that local characteristics can produce “hot spots”. PMID:17505505
Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall
2011-12-01
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.
Incorporation of copper nanoparticles into paper for point-of-use water purification
Smith, James A.
2014-01-01
As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). PMID:25014431
NASA Astrophysics Data System (ADS)
Gomez Alvarez, E.; Soergel, M.; Bassil, S.; Zetzsch, C.; Gligorovski, S.; Wortham, H.
2011-12-01
Nitrous acid (HONO) is an important indoor pollutant. The adverse health effects due to the formation of nitrosamines are well known. HONO acts as a nitrosating agent after wall reactions of HONO with nicotine [Sleiman et al., 2010]. Indoor air can be surprisingly rich in HONO (homes with fireplaces, stoves, gas heating and cooking) and also surfaces are abundant. High HONO concentrations have been measured in indoor environments, from the direct emissions and heterogeneous reactions of NO2 in darkness. However, the measured HONO concentrations do not correspond to the HONO levels determined by the models [Carslaw, 2007]. We have tested in a flow tube reactor on-line coupled to a NOx analyzer and a sensitive Long Path Absorption Photometry instrument, the behaviour of various indoor surfaces towards NO2 under simulated solar light irradiation (λ= 300-700 nm). Our study has allowed us to obtain a deeper knowledge on the mechanisms of heterogeneous formation of HONO, quantifying the dependence of HONO formation on behalf of NO2 concentration and relative humidity and the enhancement of HONO formation in the presence of light. Pyrex, acidic detergent, alkaline detergent, paint and lacquer were tested on behalf of their heterogeneous reactivity towards NO2 in the absence and in presence of light. The results obtained demonstrated that indoor surfaces are photo-chemically active under atmospherically relevant conditions. The strongly alkaline surfaces (such as certain types of detergent) show a strong long-term uptake capacity. However, other surfaces such as detergents with a more acidic character released HONO. In some cases such as paint and varnish, a strong HONO release with light was detected, which was significantly higher than that obtained over clean glass surfaces. Certain organics present on their composition could exert a photo-sensitizing effect that may explain their increased reactivity. Unfortunately, the final balance points towards an important net production of HONO from organics usually applied on different indoor surfaces that add to the very powerful HONO production simply due to heterogeneous reactivity on bare indoor surfaces. The results of this study add to the increasing concern over the reactivity in indoor environments and in particular from the point of view of HONO formation kinetics.
Multivalent Nanoparticle Networks Enable Point of Care Detection of Human Phospholipase-A2 in Serum
Burnapp, Mark; Bentham, Andrew; Hillier, David; Zabron, Abigail; Khan, Shahid; Tyreman, Matthew; Stevens, Molly M.
2017-01-01
A rapid and highly sensitive point of care (PoC) lateral flow assay for phospholipase-A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multi-armed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localised surface plasmon resonance (LSPR) effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimising the molecular weight and multivalency of these biotinylated polymer linkers the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human-PLA2 in serum within 10 minutes. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point of care device for the first time. PMID:25756526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Bowyer, Ted W.; Cameron, Ian M.
2015-10-01
The International Monitoring System contains up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear tests. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point.
Nguyen, Tinh; Petersen, Elijah J.; Pellegrin, Bastien; Gorham, Justin M.; Lam, Thomas; Zhao, Minhua; Sung, Lipiin
2017-01-01
Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed. PMID:28603293
Shape analysis of cylindrical micromirrors for angular focusing
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Hong, Pei-Yuan; Chen, Rongshun
2001-11-01
In this paper, we analyze the shape of the cylindrical micromirror, which directly defines the profile of the reflecting surface, and is very important for the function on focusing. A cylindrical micromirror can converge incident rays to a real focal line after reflection, namely angular focusing. Therefore, under specific design two cylindrical micromirrors, the primary and secondary, can converge incident rays into a real focal point after twice reflection. The curved shape of micromirror, formed due to the stress-induced bending of the bilayer microstructure upon release, has been theoretically analyzed and numerically simulated. The results show that the reflecting surface, especially at boundaries, is not perfectly cylindrical, while adding longitudinal frames can make some improvement.
Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That
NASA Astrophysics Data System (ADS)
Volovik, G. E.; Zhang, K.
2017-12-01
The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In this case the horizon with Painlevé-Gullstrand metric serves as the surface of the Lifshitz transition. This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using the fermionic superfluid with supercritical velocity, and the Dirac and Weyl semimetals with the interface separating the type-I and type-II states. The difference between such type of the artificial event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. Different configurations of the Fermi surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point connects the Fermi pockets and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (flat) band with zero energy and singular density of states, which opens the route to room-temperature superconductivity. Originally, the idea of the enhancement of T_c due to flat band has been put forward by the nuclear physics community, and this also demonstrates the close connections between different areas of physics.
Practical considerations for volumetric wear analysis of explanted hip arthroplasties
Langton, D. J.; Sidaginamale, R. P.; Holland, J. P.; Deehan, D.; Joyce, T. J.; Nargol, A. V. F.; Meek, R. D.; Lord, J. K.
2014-01-01
Objectives Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. Methods We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Results Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Conclusions Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60–8. PMID:24627327
Release of Membrane-associated Mucins from Ocular Surface Epithelia
Blalock, Timothy D.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Gipson, Ilene K.
2008-01-01
Purpose Three membrane-associated mucins (MAMs)—MUC1, MUC4 and MUC16—are expressed at the ocular surface epithelium. Soluble forms of MAMs are detected in human tears, but the mechanisms of their release from the apical cells are unknown. The purpose of this study was to identify physiologic agents that induce ocular surface MAM release. Methods An immortalized human corneal-limbal epithelial cell line (HCLE) expressing the same MAMs as native tissue was used. An antibody specific to MUC16’s cytoplasmic tail was developed to confirm that only the extracellular domain is released into the tear fluid or culture media. Effects of agents that have been shown to be present in tears or are implicated in release/shedding of MAMs in other epithelia (neutrophil elastase, tumor necrosis factor (TNF), TNF-α-converting enzyme, and matrix metalloproteinases-7 and –9) were assessed on HCLE cells. HCLE cell surface proteins were biotinylated to measure efficiency of induced MAM release and surface restoration. Effects of induced release on surface barrier function were measured by rose bengal dye penetrance. Results MUC16 in tears and in HCLE-conditioned medium lacked the cytoplasmic tail. TNF induced release of MUC1, MUC4, and MUC16 from the HCLE surface. Matrix metalloproteinase-7 and neutrophil elastase induced release of MUC16 but not MUC1 or MUC4. Neutrophil elastase removed 68% of MUC16—78% of which was restored to the HCLE cell surface 24 hours after release. Neutrophil elastase-treated HCLE cells showed significantly reduced rose bengal dye exclusion. Conclusions Results suggest that extracellular domains of MUC1, 4, and 16 can be released from the ocular surface by agents present in tears. Neutrophil elastase and TNF present in higher amounts in dry eye patients’ tears may cause MAM release—allowing rose bengal staining. PMID:18436821
NASA Astrophysics Data System (ADS)
Bird, Adam; Murphy, Christophe; Dobson, Geoff
2017-09-01
RANKERN 16 is the latest version of the point-kernel gamma radiation transport Monte Carlo code from AMEC Foster Wheeler's ANSWERS Software Service. RANKERN is well established in the UK shielding community for radiation shielding and dosimetry assessments. Many important developments have been made available to users in this latest release of RANKERN. The existing general 3D geometry capability has been extended to include import of CAD files in the IGES format providing efficient full CAD modelling capability without geometric approximation. Import of tetrahedral mesh and polygon surface formats has also been provided. An efficient voxel geometry type has been added suitable for representing CT data. There have been numerous input syntax enhancements and an extended actinide gamma source library. This paper describes some of the new features and compares the performance of the new geometry capabilities.
77 FR 1976 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data AGENCY: Surface Transportation Board, DOT. ACTION: Release of Waybill Data; Correction. SUMMARY: This document corrects a notice... certain data from the Board's 2009 Carload Waybill Sample.'' The statement should read ``[t]he Surface...
Experimental Studies of Adhesion of a Highly Swollen Gel
NASA Astrophysics Data System (ADS)
Cole, Phillip; Emerson, John
2003-03-01
A fracture mechanics methodology based on the Johnson-Kendall-Roberts (JKR) theory is used to quantify the self-adhesion of a highly swollen gel. The solid phase of the gel is a cross-linked polybutadiene and the liquid phase is dibutylphthlate (maximum 60% by weight). In these experiments two nearly identical gel lenses are brought into contact. Bonding and separation of contact is analyzed in terms of the modified JKR theory of Shull [1]. Simultaneous measurements of the applied load, the load point displacement and the contact radius between the lenses allow us to determine the elastic modulus of the gel and the energy release rate. It also allows us to determine whether the observed hysteresis is primarily due to surface dissipation or due to bulk viscoelasticity. The energy release rate is found to be approximately constant during the bonding phase of the experiment. During the debonding phase, the energy release rate increases with the crack velocity or the receding rate of contact radius. Self-adhesion is quantified in the debonding phase through the relationship between the energy release rate and the crack growth rate. The energy release rate during the bonding phase is compared to the surface tension of the liquid and the solid. We also study the effect of liquid phase on the self-adhesion by varying the amount of liquid from zero percent to the maximum of sixty percent. [1] Shull, K. R. Materials Science and Engineering R-Reports, 36 (2002) 1-45. This work was performed at Sandia National Laboratories, supported by the United States Department of Energy under contract number DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun
2017-12-01
Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.
Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0
Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.
2011-01-01
The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.
Antonić, Oleg; Sudarić-Bogojević, Mirta; Lothrop, Hugh; Merdić, Enrih
2014-09-01
The direct inclusion of environmental factors into the empirical model that describes a density-distance relationship (DDR) is demonstrated on dispersal data obtained in a capture-mark-release-recapture experiment (CMRR) with Culex tarsalis conducted around the community of Mecca, CA. Empirical parameters of standard (environmentally independent) DDR were expressed as linear functions of environmental variables: relative orientation (azimuthal deviation of north) of release point (relative to recapture point) and proportions of habitat types surrounding each recapture point. The yielded regression model (R(2) = 0.5373, after optimization on the best subset of linear terms) suggests that spatial density of recaptured individuals after 12 days of a CMRR experiment significantly depended on 1) distance from release point, 2) orientation of recapture points in relation to release point (preferring dispersal toward the south, probably due to wind drift and position of periodically flooded habitats suitable for species egg clutches), and 3) habitat spectrum in surroundings of recapture points (increasing and decreasing population density in desert and urban environment, respectively).
NASA Astrophysics Data System (ADS)
Domènech, Guillem; Corominas, Jordi; Mavrouli, Olga; Merchel, Silke; Abellán, Antonio; Pavetich, Stefan; Rugel, Georg
2018-04-01
Cliff erosion may be a major problem in settled areas affecting populations and producing economic and ecological losses. In this paper we present a procedure to calculate the long-term retreat rate of a cliff affected by rockfalls in the Montsec Range, Eastern Pyrenees (Spain). It is composed of low, densely fractured limestones; and the rockwall is affected by rockfalls of different sizes. The rockfall scars are clearly distinguishable by their regular boundaries and by their orange colour, which contrast with the greyish old reference surface (S0) of the cliff face. We have dated different stepped surfaces of the rockwall, including S0, using cosmogenic 36Cl. The total amount of material released by rockfall activity was calculated using a high definition point cloud of the slope face obtained with a terrestrial laser scanner (TLS). The present rockwall surface has been subtracted from the reconstructed old cliff surface. This has allowed the calculation of the total volume released by rockfalls and of the retreat rate. The latter ranges from 0.31 to 0.37 mm·a- 1. This value is of the same order of magnitude as that obtained by other researchers in neighbouring regions in Spain, having similar geology and affected by rockfalls.
Air Pathway Dose Modeling for the E-Area Low-Level Waste Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, K. L.; Minter, K. M.
2017-09-06
Dose-release factors (DRFs) were calculated for potential atmospheric releases of several radionuclides from the E-Area Low-Level Waste Facility (ELLWF). The ELLWF receives solid low-level radioactive waste from across the Savannah River Site (SRS) and offsite for disposal. These factors represent the maximum dose a receptor would receive if standing at either 100 m or 11,410 m (Site Boundary) from the edge of an ELLWF disposal unit which are points of assessment (POA) for Department of Energy (DOE) Order 435.1 performance assessments (PA). The DRFs were calculated for 1 Ci of the specified radionuclide being released from the ground surface tomore » the atmosphere (mrem per curie released). The calculation conservatively represented the ELLWF as a point source, and conservatively assumed the receptor was positioned at the center of the contaminant plume and continuously exposed for a period of one year. These DRFs can be refined to take into consideration disposal unit size, proximity and timing of peak dose to establish less conservative radionuclide specific disposal limits. DRFs were calculated for H-3 and C-14 in Revision 0 of this report. H-3 as HTO and C-14 as CO 2 were identified as volatile radionuclides of potential concern in earlier radionuclide screening studies. In Revision 1, DRFs were calculated for eight additional radionuclides identified by an updated screening analysis as potentially important volatile radionuclides. These include Ar-37, Ar-39, Ar-42, Hg-194, Hg- 203, Kr-81, Kr-85, and Xe-127.« less
NASA Astrophysics Data System (ADS)
Boutt, D. F.
2017-12-01
The isotopic composition of surface and groundwater is impacted by a multitude of hydrologic processes. The long-term response of these systems to hydrologic change is critical for appropriately interpreting isotopic information for streamflow generation, stream-aquifer-coupling, sources of water to wells, and understanding recharge processes. To evaluate the response time of stream-aquifer systems to extreme precipitation events we use a long-term isotope dataset from Western Massachusetts with drainage areas ranging from 0.1 to > 800 km2. The year of 2011 was the wettest calendar year on record and the months of August and September of 2011 were the wettest consecutive two-month period in the 123 year record. Stable isotopic composition of surface waters of catchments ranging from 1 - 1000 km2 show an enrichment due to summertime and Tropical Storm precipitation. Enrichment in potential recharge water is shown to have a significant long-term impact (> 3 hydrologic years) on the isotopic composition of both surface and groundwater. This highlights the importance of groundwater sources of baseflow to streams and the transient storage and release mechanisms of shallow groundwater storage. The length of isotopic recession of stream water are also a strong function of watershed area. It is concluded that the stream water isotopes are consistent with a large pulse of water being stored and released from enriched groundwater emplaced during this period of above-average precipitation. Ultimately the results point to the importance of considering hydrological processes of streamflow generation and their role in hydrologic processes beyond traditional catchment response analysis.
Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.
Yonezawa, Y; Ishida, S; Sunada, H
2001-11-01
Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.
Tension - Type - Headache treated by Positional Release Therapy: a case report.
Mohamadi, Marzieh; Ghanbari, Ali; Rahimi Jaberi, Abbas
2012-10-01
Tension Type Headache (T.T.H) is the most prevalent headache. Myofascial abnormalities & trigger points are important in this type of headache which can be managed by Positional Release Therapy (PRT). This is a report of a 47 years old female patient with Tension Type Headache treated by Positional Release Therapy for her trigger points. She had a constant dull headache, which continued all the day for 9 months. A physiotherapist evaluated the patient and found active trigger points in her cervical muscles. Then, she received Positional Release Therapy for her trigger points. After 3 treatment sessions, the patient's headache stopped completely. During the 8 months following the treatment she was without pain, and did not use any medication. Positional Release Therapy was effective in treating Tension Type Headache. This suggests that PRT could be an alternative treatment to medication in patients with T.T.H if the effectiveness of that can be confirmed by further studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.
Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane
2015-02-15
Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Yao, Chaoqun; Donelson, John E.; Wilson, Mary E.
2007-01-01
Major surface protease (MSP), also called GP63, is a virulence factor of Leishmania spp. protozoa. There are three pools of MSP, located either internally within the parasite, anchored to the surface membrane, or released into the extracellular environment. The regulation and biological functions of these MSP pools are unknown. We investigated here the trafficking and extrusion of surface versus internal MSPs. Virulent Leishmania chagasi undergo a growth-associated lengthening in the t1/2 of surface-localized MSP, but this did not occur in the attenuated L5 strain. The release of surface-localized MSP was enhanced in a dose-dependent manner by MβCD, which chelates membrane cholesterol-ergosterol. Furthermore, incubation of promastigotes at 37°C with Matrigel matrix, a soluble basement membrane extract of Engelbreth-Holm-Swarm tumor cells, stimulated the release of internal MSP but not of surface-located MSP. Taken together, these data indicate that MSP subpopulations in distinct cellular locations are released from the parasite under different environmental conditions. We hypothesize that the internal MSP with its lengthy t1/2 does not serve as a pool for promastigote surface MSP in the sand fly vector but that it instead functions as an MSP pool ready for quick release upon inoculation of metacyclic promastigotes into mammals. We present a model in which these different MSP pools are released under distinct life cycle-specific conditions. PMID:17693594
Overview of environmental and hydrogeologic conditions at Barrow, Alaska
McCarthy, K.A.
1994-01-01
To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-03-28
In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less
Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M
2002-04-01
The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.
Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission
NASA Astrophysics Data System (ADS)
Chen, Guoliang; Chen, Xiaoyang
Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.
Fluoride release, recharge, and re-release from four orthodontic bonding systems
NASA Astrophysics Data System (ADS)
Bouvier, Amy Johanna
Objectives: To determine the amount of initial fluoride release from four orthodontic bonding systems over a period of four weeks, and then to subject these materials to an external source of fluoride for recharge in order to measure the amount of fluoride re-release over another four-week interval. Additionally the surface morphology of these materials was analyzed under the scanning electron microscope in order to identify microscopic changes in the materials that may have occurred during the experiment. Methods: Four orthodontic adhesives: Fuji Ortho LC (GC America, Alsip, IL), Transbond XT (3M Unitek, Monrovia, CA), Illuminate Light Cure (Ortho Organizers, Carlsbad, CA), and Opal Seal with Opal Bond MV (Ultradent, South Jordan, UT), n=120 (30/material) were tested for fluoride release at 1 hour, 24 hours, 3 days, 1 week, 2 weeks, 3 weeks and 4 weeks. Samples (10/subgroup/material) were then recharged with an external source of fluoride (toothpaste, foam, or varnish), and retested for fluoride re-release at 1 hour, 24 hours, 3 days, 1 week, 2 weeks, 3 weeks and 4 weeks. The scanning electron microscope was utilized in order to assess each material's surface morphology before testing and after completion of the experiment (n=16). Descriptive statistics, means and standard deviations were calculated for all four materials and their subgroups at each time interval. A mixed model two-way ANOVA was run, using a level of significance of 0.05. Bonferroni multiple comparison tests were conducted using if groups were found to be statistically significantly different. To determine significant differences between fluoride release and re-release for each recharge subgroup within each material group, paired t-tests were performed for the time intervals of 24 hours, 2 weeks, and 4 weeks. For the paired t-tests, the level of significance used was 0.02 to allow for Bonferroni correction. Results: During the initial 24 hours the fluoride measurements (in mg/L or ppm) were as follows: Fuji 9.78+/-0.65, Illuminate 7.83+/-1.49, Opal 0.05+/-0.02, and Transbond 0.01+/-0.0. At the initial four weeks time point, the readings were as follows: Fuji 6.68+/-0.79, Illuminate 3.82+/-1.84, Opal 0.06+/-0.01, and Transbond 0.01+/-0.01. The greatest fluoride release came from the varnish subgroups from each of the materials at 2 weeks post re-charge: Fuji 9.16+/-1.53, Illuminate 7.5+/-3.1 (tied with foam subgroup 7.5+/-4.4), Opal 5.3+/-2.45, and Transbond 3.75+/-1.67. The greatest fluoride measurement for each material at the final week post-recharge was: Fuji varnish subgroup 8.3+/-3.58, Illuminate foam subgroup 6.5+/-3.5, Opal varnish subgroup 2.50+/-1.1, and Transbond varnish subgroup 1.72+/-1.82. SEM results showed an observable difference between the materials pre-experiment and post-experiment at a magnification of 50X and 500X. The Fuji foam and paste subgroups displayed surface crackling patterns at both magnifications when compared to the control and varnish samples. The Illuminate control, foam, and paste specimens all had a roughened grainy appearance, while the varnish specimen seemed to be smoothed over by the varnish material. The Transbond samples appeared to have observable differences in surface morphology at 50X, but not at 500X. The Opal paste and foam specimens appeared to have a smoother surface than both the control and the varnish samples. Conclusions: There were significant differences in release and re-release of fluoride among all four adhesives at different time intervals over a period of eight weeks. Significant increase in fluoride re-release was seen for all three of the recharge subgroups for both Opal and Transbond at each time interval. A significant increase in fluoride re-release for the Illuminate group was mainly observed at the end of second and fourth week. Though no significant increase in fluoride re-release was observed, Fuji released highest amount of fluoride during release and re-release, at all different time intervals. Fluoride varnish was the superior recharge material, as it provided the greatest fluoride measurements, followed by foam and toothpaste. There were observable changes in the surface morphology of the materials pre-experiment and post-experiment at a magnification of 50X and 500X, which may have an affect on the fluoride releasing capabilities of the materials.
Yassen, Ghaeth H; Huang, Ruijie; Al-Zain, Afnan; Yoshida, Takamitsu; Gregory, Richard L; Platt, Jeffrey A
2016-11-01
This study evaluated selected properties of a prototype root repair cement containing surface pre-reacted glass ionomer fillers (S-PRG) in comparison to mineral trioxide aggregate (MTA) and intermediate restorative material (IRM). The antibacterial effect of S-PRG, MTA, and IRM cements was tested against Porphyromonas gingivalis and Enterococcus faecalis after 1 and 3 days of aging of the cements. The set cements were immersed in distilled water for 4 h to 28 days, and ion-releasing ability was evaluated. Initial and final setting times of all cements were evaluated using Gilmore needles. The push-out bond strength between radicular dentin and all cements was tested at different levels of the roots. S-PRG and IRM cements, but not MTA cement, demonstrated significant antibacterial effect against P. gingivalis. All types of cements exhibited significant antibacterial effect against E. faecalis without being able to eliminate the bacterium. S-PRG cement provided continuous release of fluoride, strontium, boron, sodium, aluminum, and zinc throughout all tested time points. Both initial and final setting times were significantly shorter for S-PRG and IRM cements in comparison to MTA. The push-out bond strength was significantly lower for S-PRG cement in comparison to MTA and IRM at coronal and middle levels of the roots. S-PRG cement demonstrated significant antibacterial effects against endodontic pathogens, multiple ion-releasing ability, relatively short setting time, and low bonding strength. S-PRG cement can be used as a one-visit root repair material with promising antibacterial properties and ion-releasing capacity.
Tiwari, S; Nandlal, B
2013-01-01
To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. This in vitro study comprised of total 80 samples (40 samples of each with and without surface coating). Specimens were prepared, G coat plus was applied and light cured. Fluoride release of the sample was measured every 24 h for 7 days and weekly from 7th to 21 st day using Sension4 pH/ISE/MV Meter. Descriptive Statistics, Repeated Measure ANOVA, Paired Sample t-test, Independent Sample t-test, Scheffe post hoc test. Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both groups. Non-coated group released significantly more fluoride than surface coated group (P<0.001). It can be concluded that nanofilled surface coating agent will reduce the amount of fluoride released into oral environment as compared to non-coated group and at the same time releasing fluoride into surrounding cavity walls to create zones of inhibition into the cavity floor to help internal remineralization.
Micropollutant loads in the urban water cycle.
Musolff, Andreas; Leschik, Sebastian; Reinstorf, Frido; Strauch, Gerhard; Schirmer, Mario
2010-07-01
The assessment of micropollutants in the urban aquatic environment is a challenging task since both the water balance and the contaminant concentrations are characterized by a pronounced variability in time and space. In this study the water balance of a central European urban drainage catchment is quantified for a period of one year. On the basis of a concentration monitoring of several micropollutants, a contaminant mass balance for the study area's wastewater, surface water, and groundwater is derived. The release of micropollutants from the catchment was mainly driven by the discharge of the wastewater treatment plant. However, combined sewer overflows (CSO) released significant loads of caffeine, bisphenol A, and technical 4-nonylphenol. Since an estimated fraction of 9.9-13.0% of the wastewater's dry weather flow was lost as sewer leakages to the groundwater, considerable loads of bisphenol A and technical 4-nonylphenol were also released by the groundwater pathway. The different temporal dynamics of release loads by CSO as an intermittent source and groundwater as well as treated wastewater as continuous pathways may induce acute as well as chronic effects on the receiving aquatic ecosystem. This study points out the importance of the pollution pathway CSO and groundwater for the contamination assessments of urban water resources.
Hydrology of a nuclear-processing plant site, Rocky Flats, Jefferson County, Colorado
Hurr, R. Theodore
1976-01-01
Accidental releases of contaminants resulting from the operation of the U.S. Energy Research and Development Administration's nuclear-processing and recovery plant located on Rocky Flats will move at different rates through -different parts of the hydrologic system. Rates of movement are dependent upon the magnitude of the accidental release and the hydrologic conditions at the time of the release. For example, during wet periods, a contaminant resulting from a 5,000-gallon (19,000-1itre) release on the land surface would enter the ground-water system in about 2 to 12 hours. Ground-water flow in the Rocky Flats Alluvium might move the contaminant eastward at a rate of about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved. Maximum time to a point of discharge would be about 3 years; minimum time could be a few days. A contaminant entering a stream would then move at a rate of about 60 feet (18 metres) per minute under pool-and-riffle conditions. The rate of movement might be about 420 feet (128 metres) per minute under open-channel-flow conditions following intense thunderstorms.
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-29
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity
NASA Astrophysics Data System (ADS)
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-01
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer
2008-09-01
The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.
Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.
Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R
2014-08-13
Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.
Fluoride release from glass ionomer restorative materials and the effects of surface coating.
Hattab, F N; Amin, W M
2001-06-01
This in vitro study on fluoride (F) release from conventional and metal-reinforced glass ionomer investigated the following: (1) the release of F in deionized water compared to artificial saliva, (2) the effect of various surface coatings on F release, (3) the uptake of released F by hydroxyapatite, (4) the expression of the release data in a mathematical model, (5) F content in the powders and set materials, and (6) surface morphology of varnished and resin-coated specimens. Glass ionomer Ketac-Fil (KF), Fuji II (FJ), and Ketac-Silver (KS) were mixed according to the manufacturers' instructions, and prepared into specimens of 137.8 mm2 surface area. All three specimens were suspended in 50 ml of deionized water, artificial saliva, or aqueous solution of hydroxyapatite and submitted to constant agitation at 37 degrees C. In a separate experiment, the specimens were coated with varnish or light-cured bonding resin and tested for F release in solutions similar to those for uncoated specimens. The release of F occurred for 28 days. The concentration of F was measured with F-ion-specific electrode. All tested products showed a strong initial rate of F release which decreased with time until it reached a relatively steady rate after two weeks. The F released from KF and FJ was comparable in both pattern and magnitude. They released approximately four times more F than KS. In all cases, the release of F in artificial saliva was significantly (p < 0.001) less than in deionized water. Surface coating the specimens significantly reduced the F release ( p < 0.05 top < 0.001, depending on the product and type of coating). The inhibitory effect of coating markedly decreased with time. Resin coating reduced F release more than varnish in KF and KS, but not for FJ. Essentially, all F released in aqueous solution was taken up by the hydroxyapatite, with FJ ranking the highest in increasing hydroxyapatite F concentration. Over the 28 days, the quantities of F released from FJ, KF, and KS were, respectively, 3.8, 2.3, and 1.0% of the total F content in the specimens. The F concentration in the set KS was 53.9 and 72.5% of that found in KF and FJ, respectively. The release data as a function of time were best described by the power curve. Micromorphological examinations revealed remnants of surface coatings on specimens after 14 days storage in artificial saliva. Glass ionomer cements released significantly less F in artificial saliva than in deionized water. Surface coating the specimens substantially reduced F release. These clinically relevant factors were not considered by many in vitro release studies which overestimate the F availability from glass ionomers. A recall appointment 24 h after the placement of glass ionomer restoration should be given for surface finishing.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.
2014-12-01
Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.
Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2
NASA Astrophysics Data System (ADS)
Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.
2017-12-01
Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that the source of carbon was similar for both events.
Simulating future water temperatures in the North Santiam River, Oregon
NASA Astrophysics Data System (ADS)
Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.
2016-04-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
Understanding cracking failures of coatings: A fracture mechanics approach
NASA Astrophysics Data System (ADS)
Kim, Sung-Ryong
A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness were found upon impact loading. This analysis provides a basis for a quantitative approach to measuring coating toughness.
Chlorhexidine Uptake and Release From Modified Titanium Surfaces and Its Antimicrobial Activity.
Ryu, Hyo-Sook; Kim, Yoon-Il; Lim, Bum-Soon; Lim, Young-Jun; Ahn, Sug-Joon
2015-11-01
Decontamination by adjunctive antiseptic agents such as chlorhexidine (CHX) is often recommended for the treatment of peri-implant infections. However, its action on the titanium implant surface needs further research. This study is designed to evaluate the ability of modified titanium surfaces to release chlorhexidine after periodic CHX exposure. Four titanium surfaces were prepared: 1) no surface treatment control (machined surface [MA]); 2) an acid mix of 10% HNO3 and 5% HF (HNF); 3) resorbable blast media (RBM); and 4) sandblasting and acid etching (SLA). Each surface was analyzed using a confocal laser scanning microscope and a scanning electron microscope. Each sample was incubated with whole saliva or phosphate-buffered saline for 2 hours. Measurements of CHX release were performed using spectrometry on days 1, 2, and 5 after 1-minute exposure to 0.5% chlorhexidine digluconate solution during a 5-day cycle. CHX-releasing experiments were repeated three consecutive times for 15 days. The antimicrobial activity of CHX-adsorbed disks was determined by a disk diffusion test using Streptococcus gordonii. The CHX-adsorbed titanium surfaces exhibited a short-term release of CHX, and CHX levels dropped rapidly within 3 days. SLA and RBM with smaller and narrower depressions released more CHX than HNF and MA, specifically in the saliva-coated group. The disk diffusion test revealed that after CHX uptake, saliva-coated SLA and RBM showed the highest antimicrobial activity. This study suggests that CHX release is significantly influenced by titanium surface modifications and that SLA and RBM might provide effective CHX uptake capacity in the saliva-filled oral cavity.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Rani, Raj
2015-10-01
The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.
Pettersson, Mattias; Pettersson, Jean; Molin Thorén, Margareta; Johansson, Anders
2017-01-01
Abstract In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement. PMID:29242814
Natural gum-type biopolymers as potential modified nonpolar drug release systems.
Salamanca, Constain H; Yarce, Cristhian J; Moreno, Roger A; Prieto, Vanessa; Recalde, Juanita
2018-06-01
In this work, the relationship between surface properties and drug release mechanism from binary composition tablets formed by quetiapine fumarate and biopolymer materials was studied. The biopolymers correspond to xanthan and tragacanth gums, which are projected as modified drug release systems. The surface studies were carried out by the sessile drop method, while the surface free energy (SFE) was determinate through Young-Dupree and OWRK semi-empirical models. On the other hand, the drug release studies were performed by in vitro dissolution tests, where the data were analyzed through kinetic models of zero order, first order, Higuchi, and Korsmeyer-Peppas. The results showed that depending on the type and the proportion of biopolymer, surface properties, and the drug release processes are significantly affected, wherein tragacanth gum present a usual erosion mechanism, while xanthan gum describes a swelling mechanism that controls the release of the drug. Copyright © 2018 Elsevier Ltd. All rights reserved.
Incorporation of copper nanoparticles into paper for point-of-use water purification.
Dankovich, Theresa A; Smith, James A
2014-10-15
As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). Copyright © 2014 Elsevier Ltd. All rights reserved.
MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Cong; Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn
2013-07-10
We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when currentmore » sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.« less
Innis, Charles J; Merigo, Constance; Cavin, Julie M; Hunt, Kathleen; Dodge, Kara L; Lutcavage, Molly
2014-01-01
The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme.
Section 11: Surface Water Pathway - Likelihood of Release
Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w
Peitsch, T; Klocke, A; Kahl-Nieke, B; Prymak, O; Epple, M
2007-09-01
The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.
NASA Technical Reports Server (NTRS)
Albyn, Keith
2005-01-01
The photolysis of three organic materials, by vacuum ultraviolet (VUV) radiation, has been quantified using 15-MHz temperature-controlled quartz microbalances (TQCM's). The rate at which molecular species, released from the individual samples, condensed on two TQCM s was measured for periods of up to 139.9-hours. The individual samples were heated in an effusion cell and the emitted molecular species collected on a pair of TQCM's which were maintained at -40 degrees Celsius. At several points during the deposition measurement, the deposition surface of one TQCM was illuminated by a 30 Watt deuterium lamp, and the loss of material from that surface was observed. V W illumination of the TQCM, concurrent with condensation, reduced the rate that material was lost from the deposition surface. These measurements present a contrasting picture of molecular deposition, in the presence of VUV, to that presented by other investigators who observed an enhanced rate of molecular deposition, when the deposition surface was illuminated by VUV.
Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D
2016-07-01
Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Dionysopoulos, Dimitrios; Tolidis, Kosmas; Gerasimou, Paris; Sfeikos, Thrasyvoulos
The purpose of this study was to investigate the effect of radiant heat, ultrasonic treatment, and 42.7 wt% CaCl₂ solution on fluoride release and surface hardness in three conventional glass-ionomer cements (GICs). The fluoride release patterns of each GIC were evaluated during a 28-day period using a fluoride ion-selective electrode. The surface hardness of the tested GICs was evaluated 24 hours after preparation of the specimens using Vickers hardness test. Statistical analysis of the data was made using analysis of variance and Bonferroni post hoc test (α = .05). Radiant heat, ultrasonic, and CaCl₂ solution treatments reduced fluoride release and increased the surface hardness of the tested GICs (P < .05). Among the tested GICs, differences in fluoride release and surface hardness were observed (P < .05). The clinical treatments investigated may be effective methods for improving the setting reaction of GICs and may achieve sufficient initial mechanical properties earlier. Although a reduction in fluoride release occurs after the treatments, anticariogenic properties of the GICs may not be significantly affected.
Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy
Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit
2011-01-01
Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641
Sankar, Mohan Udhaya; Aigal, Sahaja; Maliyekkal, Shihabudheen M; Chaudhary, Amrita; Anshup; Kumar, Avula Anil; Chaudhari, Kamalesh; Pradeep, Thalappil
2013-05-21
Creation of affordable materials for constant release of silver ions in water is one of the most promising ways to provide microbially safe drinking water for all. Combining the capacity of diverse nanocomposites to scavenge toxic species such as arsenic, lead, and other contaminants along with the above capability can result in affordable, all-inclusive drinking water purifiers that can function without electricity. The critical problem in achieving this is the synthesis of stable materials that can release silver ions continuously in the presence of complex species usually present in drinking water that deposit and cause scaling on nanomaterial surfaces. Here we show that such constant release materials can be synthesized in a simple and effective fashion in water itself without the use of electrical power. The nanocomposite exhibits river sand-like properties, such as higher shear strength in loose and wet forms. These materials have been used to develop an affordable water purifier to deliver clean drinking water at US $2.5/y per family. The ability to prepare nanostructured compositions at near ambient temperature has wide relevance for adsorption-based water purification.
Sankar, Mohan Udhaya; Aigal, Sahaja; Maliyekkal, Shihabudheen M.; Chaudhary, Amrita; Anshup; Kumar, Avula Anil; Chaudhari, Kamalesh; Pradeep, Thalappil
2013-01-01
Creation of affordable materials for constant release of silver ions in water is one of the most promising ways to provide microbially safe drinking water for all. Combining the capacity of diverse nanocomposites to scavenge toxic species such as arsenic, lead, and other contaminants along with the above capability can result in affordable, all-inclusive drinking water purifiers that can function without electricity. The critical problem in achieving this is the synthesis of stable materials that can release silver ions continuously in the presence of complex species usually present in drinking water that deposit and cause scaling on nanomaterial surfaces. Here we show that such constant release materials can be synthesized in a simple and effective fashion in water itself without the use of electrical power. The nanocomposite exhibits river sand-like properties, such as higher shear strength in loose and wet forms. These materials have been used to develop an affordable water purifier to deliver clean drinking water at US $2.5/y per family. The ability to prepare nanostructured compositions at near ambient temperature has wide relevance for adsorption-based water purification. PMID:23650396
NASA Technical Reports Server (NTRS)
Banin, A.; Rishpon, J.
1979-01-01
Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.
Johnson, Michelle L.; Uhrich, Kathryn E.
2008-01-01
A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627
Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Torkzaban, S.; Leij, F. J.; Simunek, J.
2014-12-01
Colloid retention and release is well known to depend on a wide variety of physical, chemical, and microbiological factors that may vary temporally in the subsurface environment. We present equilibrium, kinetic, combined equilibrium and kinetic, and two-site kinetic models of colloid release during transient physicochemical conditions. Our mathematical modeling approach relates colloid release under transient conditions to changes in the fraction of the solid surface area that contributes to retention. The developed models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of E. coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity, respectively. The retention and release of 20 nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca2+ than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2 mM CaCl2 solution, and release of NPs only occurred after exchange of Ca2+ by Na+ and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider Born repulsion and nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque. Collectively, experimental and modeling results indicate that episodic colloid transport in the subsurface is expected because of transient conditions.
Cleated Print Surface for Fused Deposition Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, Christopher Scott; Siddel, Derek H.; Elliott, Amy M.
Fused Deposition Modeling (FDM) has become popular among Additive Manufacturing technologies due to its speed, geometric scalability, and low cost; however, the primitive nature of the FDM build surface fundamentally limits the utility of FDM in terms of reliability, autonomy, and material selection. Currently, FDM relies on adhesive forces between the first layer of a print and the build surface; depending on the materials involved, this adhesive bond may or may not be reliable. Thermal contraction between the build plate and build materials can break that bond, which causes warpage and delamination of the part from the build surface andmore » subsequent failure of the part. Furthermore, with each print, the user must use tools or manual maneuvering to separate the printed part from the build surface as well as retexture or replace the used build surface. In this paper, we present a novel build platform that allows for a mechanical bond between the print and build surface by using dovetail-shaped features. The first layer of the print flows into the features and becomes mechanically captivated by the build platform. Once the print is completed, the platform is rolled or flexed open to release the part from the mechanical bond. This design not only lowers the risk of delamination during printing but also eliminates the need for a user to reset or replace the build surface between print jobs. The effectiveness of each geometry was determined by measuring the distance at the pinch point compared to the distance that the extrusion filled below the pinch point. The captivation ratio was measured to compare the different geometries tested and determine which direction of extrusion creates a better ratio.« less
Cleated Print Surface for Fused Deposition Modeling
Shafer, Christopher Scott; Siddel, Derek H.; Elliott, Amy M.
2017-01-28
Fused Deposition Modeling (FDM) has become popular among Additive Manufacturing technologies due to its speed, geometric scalability, and low cost; however, the primitive nature of the FDM build surface fundamentally limits the utility of FDM in terms of reliability, autonomy, and material selection. Currently, FDM relies on adhesive forces between the first layer of a print and the build surface; depending on the materials involved, this adhesive bond may or may not be reliable. Thermal contraction between the build plate and build materials can break that bond, which causes warpage and delamination of the part from the build surface andmore » subsequent failure of the part. Furthermore, with each print, the user must use tools or manual maneuvering to separate the printed part from the build surface as well as retexture or replace the used build surface. In this paper, we present a novel build platform that allows for a mechanical bond between the print and build surface by using dovetail-shaped features. The first layer of the print flows into the features and becomes mechanically captivated by the build platform. Once the print is completed, the platform is rolled or flexed open to release the part from the mechanical bond. This design not only lowers the risk of delamination during printing but also eliminates the need for a user to reset or replace the build surface between print jobs. The effectiveness of each geometry was determined by measuring the distance at the pinch point compared to the distance that the extrusion filled below the pinch point. The captivation ratio was measured to compare the different geometries tested and determine which direction of extrusion creates a better ratio.« less
Structured wafer for device processing
Okandan, Murat; Nielson, Gregory N
2014-05-20
A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.
Structured wafer for device processing
Okandan, Murat; Nielson, Gregory N
2014-11-25
A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.
Controlled exosome release from the retinal pigment epithelium in situ.
Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S
2014-12-01
Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calculation note for an underground leak which remains underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, H.J.
1997-05-20
This calculation note supports the subsurface leak accident scenario which remains subsurface. It is assumed that a single walled pipe carrying waste from tank 106-C ruptures, releasing the liquid waste into the soil. In this scenario, the waste does not form a surface pool, but remains subsurface. However, above the pipe is a berm, 0.762 m (2.5 ft) high and 2.44 m (8 ft) wide, and the liquid released from the leak rises into the berm. The slurry line, which transports a source term of higher activity than the sluice line, leaks into the soil at a rate of 5%more » of the maximum flow rate of 28.4 L/s (450 gpm) for twelve hours. The dose recipient was placed a perpendicular distance of 100 m from the pipe. Two source terms were considered, mitigated and unmitigated release as described in section 3.4.1 of UANF-SD-WM-BIO-001, Addendum 1. The unmitigated consisted of two parts of AWF liquid and one part AWF solid. The mitigated release consisted of two parts SST liquid, eighteen parts AWF liquid, nine parts SST solid, and one part AWF solid. The isotopic breakdown of the release in these cases is presented. Two geometries were considered in preliminary investigations, disk source, and rectangular source. Since the rectangular source results from the assumption that the contamination is wicked up into the berm, only six inches of shielding from uncontaminated earth is present, while the disk source, which remains six inches below the level of the surface of the land is often shielded by a thick shield due to the slant path to the dose point. For this reason, only the rectangular source was considered in the final analysis. The source model was a rectangle 2.134 m (7 ft) thick, 0.6096 m (2 ft) high, and 130.899 m (131 ft) long. The top and sides of this rectangular source was covered with earth of density 1.6 g/cm{sup 3} to a thickness of 15.24 cm (6 in). This soil is modeled as 40% void space. The source consisted of earth of the same density with the void spaces filled with the liquid waste which added 0.56 g/cm{sup 3} to the density. The dose point was 100 m (328 ft) away from the berm in a perpendicular direction off the center. The computer code MICROSKYSHINEO was used to calculate the skyshine from the source. This code calculates exposure rate at the receptor point. The photon spectrum from 2 MeV to 0.15 MeV, obtained from ISOSHLD, was used as input, although this did not differ substantially from the results obtained from using Co, 137mBa, and 154Eu. However, this methodology allowed the bremsstrahlung contribution to be included in the skyshine calculation as well as in the direct radiation calculation.« less
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturgeon, Richard W.
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources.more » This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.« less
Herting, G; Wallinder, I Odnevall; Leygraf, C
2008-09-01
Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.
Time-dependent Calculations of an Impact-triggered Runaway Greenhouse Atmosphere on Mars
NASA Technical Reports Server (NTRS)
Segura, T. L.; Toon, O. B.; Colaprete, A.
2003-01-01
Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.
Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen
2018-06-01
We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Flow-driven Assembly of Microcapsule Towers
NASA Astrophysics Data System (ADS)
Shum, Henry; Balazs, Anna
2016-11-01
Large populations of the slime mold, Dictyostelium discoideum, are able to aggregate over a surface and collectively form a long, vertical stalk. Inspired by this biological behavior, we develop a synthetic mechanism for assembling tower-like structures using microcapsules as the building blocks. We accomplish this in simulations by generating a fluid flow field that draws microcapsules together along a surface and lifts them up at a central point. We considered a fluid flow generated by the local release of a chemical species from a patch on the surface. The concentration gradient of the diffusing chemical species causes radial diffusioosmotic flow along the solid surface toward the patch. Adhesive interactions keep the microcapsules attached to the surface as they are drawn together above the patch. To build a tower-like structure, some of the microcapsules must detach from the surface but remain attached to the rest of the cluster. The upward directed fluid flow above the patch then draws out the cluster into a tower shape. The final morphology of the aggregate structure depends on the flow field, the adhesive capsule-capsule and capsule-surface interaction strengths, and the sedimentation force on the capsules. Tuning these factors changes the structures that are produced.
NASA Astrophysics Data System (ADS)
Gourdji, S. M.; Yadav, V.; Karion, A.; Mueller, K. L.; Conley, S.; Ryerson, T.; Nehrkorn, T.; Kort, E. A.
2018-04-01
Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the ‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG observations also have the potential to help quantify point-source emissions that may not be adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA from October 2015–February 2016, using atmospheric inverse models with airborne CH4 observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a mesoscale atmospheric transport model. This leak event has been well-quantified previously using various methods by the California Air Resources Board, thereby providing high confidence in the mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results. Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average, within a third of the mass balance values, with remaining errors in estimated leak rates predominantly explained by modeled wind speed errors of up to 10 m s‑1, quantified by comparing airborne meteorological observations with modeled values along the flight track. An inversion setup using scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to significantly reduce the influence of transport model errors on spatial patterns and estimated leak rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment (i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of transport model error on atmospheric inversions of point-source emissions, while suggesting future potential for integrating surface tower and aircraft atmospheric GHG observations in top-down urban emission monitoring systems.
Measuring Aggregation of Events about a Mass Using Spatial Point Pattern Methods
Smith, Michael O.; Ball, Jackson; Holloway, Benjamin B.; Erdelyi, Ferenc; Szabo, Gabor; Stone, Emily; Graham, Jonathan; Lawrence, J. Josh
2017-01-01
We present a methodology that detects event aggregation about a mass surface using 3-dimensional study regions with a point pattern and a mass present. The Aggregation about a Mass function determines aggregation, randomness, or repulsion of events with respect to the mass surface. Our method closely resembles Ripley’s K function but is modified to discern the pattern about the mass surface. We briefly state the definition and derivation of Ripley’s K function and explain how the Aggregation about a Mass function is different. We develop the novel function according to the definition: the Aggregation about a Mass function times the intensity is the expected number of events within a distance h of a mass. Special consideration of edge effects is taken in order to make the function invariant to the location of the mass within the study region. Significance of aggregation or repulsion is determined using simulation envelopes. A simulation study is performed to inform researchers how the Aggregation about a Mass function performs under different types of aggregation. Finally, we apply the Aggregation about a Mass function to neuroscience as a novel analysis tool by examining the spatial pattern of neurotransmitter release sites as events about a neuron. PMID:29046865
Abu Taleb, Walaa; Rehan Youssef, Aliaa; Saleh, Amir
2016-10-01
Manual pressure release (MPR) is a popular treatment of trigger points. Yet, treatment response may be influenced by inconsistent application of pressure. Further, it may contribute to increased risk of work-related musculoskeletal disorders of the wrist and hand in therapists. Therefore, this study aimed at introducing a novel method to apply pressure using the algometer and to compare its effectiveness to MPR. Forty-five volunteers with active trigger points of the upper trapezius received algometer pressure release (APR), MPR, or sham ultrasound (US). Pain pressure threshold (PPT) and contralateral active and passive neck side-bending ranges were assessed at baseline and immediately after a single session. Results showed no significant differences in post-treatment PPT between the study groups (p > 0.05). The APR group showed a significant increase in passive side-bending range compared with the two other groups, whereas active range improved in the APR compared with the US group (p < 0.05). Our results show that using algometer to apply pressure release to upper trapezius trigger points is more effective compared with manual release and sham US. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.
Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit
2011-04-01
A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu
2015-06-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
NASA Astrophysics Data System (ADS)
Behrens, Alison Anne
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
Solberg, Ingrid; Kaartvedt, Stein
2014-01-01
Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat ( Sprattus sprattus ) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day -1 . The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Woei L.; Nathan, Graham J.; School of Mechanical Engineering, The University of Adelaide
2010-04-15
Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificantmore » presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)« less
Concept of Operations for Deploying a Lander on the Secondary Body of Binary Asteroid 1996 FG3
NASA Astrophysics Data System (ADS)
Tardivel, Simon; Michel, P.; Scheeres, D.
2012-10-01
The European Space Agency is currently performing an assessment study of the MarcoPolo-R space mission, in the framework of the M3 class competition of its Cosmic Vision Program. MarcoPolo-R is a sample return mission to a primitive asteroid, whose baseline target is the binary asteroid 1996FG3. The baseline mission, including the sample, is focused on the primary of the binary system. To date, little has yet been considered for the investigation of the secondary, apart from remote observations from the spacecraft. However, MarcoPolo-R may carry an optional lander, and if such a lander could be accommodated it may be relevant to use it for a more detailed investigation of the secondary. This poster presents a strategy for deploying a lander using an unpowered trajectory towards the secondary. This ballistic deployment allows for the design of a light lander with minimum platform overhead and maximum payload. The deployment operations are shown to be very simple and require minimum preparation. The main spacecraft is set on an orbit that reaches a specific point near the binary system L2 Lagrange Point facing the far side of the secondary, about 220 meters from the secondary surface, with a relative speed of about 10cm/s. The lander is then jettisoned using a spring-release mechanism that sets it on an impact trajectory that robustly intersects with the secondary surface. On impact, the lander only needs to dissipate a small amount of kinetic energy in order to ensure that it is energetically and dynamically trapped on the surface. Considering errors on spacecraft GNC and on the spring-release mechanism, and very large uncertainties on the gravity field of the asteroids, the strategy presented here yields a successful landing in more than 99.9% of cases, while ensuring the absolute safety of the spacecraft before, during and after deployment operations.
Li, Ze; Xiong, Fangfang; He, Jintian; Dai, Xiaojing; Wang, Gaizhen
2016-12-01
In the present study, surface-functionalized, pH-responsive poly(lactic-co-glycolic acid) (PLGA) microparticles were investigated for nasal delivery of hepatitis B surface Antigen (HBsAg). pH-responsive PLGA, chitosan modified PLGA (CS-PLGA), mannan modified PLGA (MN-PLGA), mannan and chitosan co-modified PLGA (MN-CS-PLGA) microparticles were prepared utilizing a double-emulsion method. Antigen was released rapidly from four types of microparticles at pH5.0 and pH 6.0, but slowly released at pH 7.4. Mannan and chitosan surface modification enhanced intracellular microparticle uptake by macrophages. Following intracellular macrophage antigen uptake, antigen release occurred in three different patterns: fast release from PLGA and MN-PLGA microparticles in endosomes/lysosomes, slow release from CS-PLGA microparticles in cytoplasm and a combination of fast release and slow release patterns from MN-CS-PLGA microparticles. Furthermore, chitosan coating modification increased the residence time of CS-PLGA and MN-CS-PLGA microparticles in the nasal cavity. In vivo immunogenicity studies indicated that MN-CS-PLGA microparticles induced stronger humoral and cell-mediated immune responses compared with PLGA, MN-PLGA and CS-PLGA microparticles. These results suggest that surface modification of pH-responsive PLGA microparticles with mannan and chitosan is a promising tool for nasal delivery of HBsAg. Copyright © 2016. Published by Elsevier B.V.
2014-11-13
It is about two weeks later in Inca City and the season is officially spring. Numerous changes have occurred. Large blotches of dust cover the araneiforms. Dark spots on the ridge show places where the seasonal polar ice cap has ruptured, releasing gas and fine material from the surface below. At the bottom of the image fans point in more than one direction from a single source, showing that the wind has changed direction while gas and dust were flowing out. Was the flow continuous or has the vent opened and closed? http://photojournal.jpl.nasa.gov/catalog/PIA18893
2017-04-26
Although Mars is known for having the largest volcano in our solar system, Olympus Mons, we also find small-scale volcanic features on its surface, as shown in this image from HiRISE onboard NASA's Mars Reconnaissance Orbiter (MRO). This fissure, less than 500 meters across at its widest point, lies in the Tharsis region and is believed to be a vent from which lava flowed in ancient eruptions. The total volume of lava released from this fissure is much less than what would erupt from nearby volcanoes, but the mark left on the landscape is dramatic nonetheless. https://photojournal.jpl.nasa.gov/catalog/PIA21601
STS-39 SPAS-II/IBSS spacecraft is released by RMS above the Earth's surface
1991-05-06
STS039-17-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) as it approaches the remote manipulator system (RMS) end effector following a period of free-flight and data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS. A huge blanket of white clouds obscures identifiable points on Earth, nearly 300 statute miles away. The target grappling apparatus on SPAS is clearly seen near bottom center of frame.
Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...
Self-Replenishing Vascularized Fouling-Release Surfaces
2014-01-01
similar results. Surfaces submerged for 12 days in static cultures of B. braunii, a green microalga known for its potential in the algae biofuels...Technol. 2004, 32, 219−222. (12) Kirschner, C. M.; Brennan, A. B. Bio -Inspired Antifouling Strategies. Annu. Rev. Mater. Res. 2012, 42, 211−229. (13...Release from Fouling Release Coatings. Biofouling 2000, 15, 73−81. (25) Liu, K.; Jiang, L. Bio -Inspired Self-Cleaning Surfaces. Annu. Rev. Mater. Res
Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan
2007-06-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Pressure Effects on the Ejection of Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.
2007-12-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger
2014-09-15
About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert
2012-09-17
The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pHmore » 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.« less
ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-09-01
Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.
Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.
Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A
2017-10-01
Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.
Measuring surface salinity in the N. Atlantic subtropical gyre. The SPURS-MIDAS cruise, spring 2013
NASA Astrophysics Data System (ADS)
Font, Jordi; Ward, Brian; Emelianov, Mikhail; Morisset, Simon; Salvador, Joaquin; Busecke, Julius
2014-05-01
SPURS-MIDAS (March-April 2013) on board the Spanish R/V Sarmiento de Gamboa was a contribution to SPURS (Salinity Processes in the Upper ocean Regional Study) focused on the processes responsible for the formation and maintenance of the salinity maximum associated to the North Atlantic subtropical gyre. Scientists from Spain, Ireland, France and US sampled the mesoscale and submesoscale structures in the surface layer (fixed points and towed undulating CTD, underway near surface TSG) and deployed operational and experimental drifters and vertical profilers, plus additional ocean and atmospheric data collection. Validation of salinity maps obtained from the SMOS satellite was one of the objectives of the cruise. The cruise included a joint workplan and coordinated sampling with the US R/V Endeavor, with contribution from SPURS teams on land in real time data and analysis exchange. We present here an overview of the different kinds of measurements made during the cruise, as well as a first comparison between SMOS-derived sea surface salinity products and salinity maps obtained from near-surface sampling in the SPURS-MIDAS area and from surface drifters released during the cruise.
Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B
2006-01-01
The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.
Modeling of the dispersion of depleted uranium aerosol.
Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M
2003-04-01
Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.
Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N
2014-09-01
We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hao, Yuwei; Li, Yingying; Zhang, Feilong; Cui, Haijun; Hu, Jinsong; Meng, Jingxin; Wang, Shutao
2018-03-23
Highly efficient cell capture and release with low background are urgently required for early diagnosis of diseases such as cancer. Herein, we report an electrochemical responsive superhydrophilic surface exhibiting specific cell capture and release with high yields and extremely low nonspecific adhesion. Through electrochemical deposition, 3-substituted thiophene derivatives are deposited onto indium tin oxide (ITO) nanowire arrays with 4-n-nonylbenzeneboronic acid (BA) as dopant, fabricating the electrochemical responsive superhydrophilic surfaces. The molecular recognition between sialic acids over-expressed on the cell membrane and doped BAs endows the electrochemical responsive surfaces with the ability to capture and release targeted cancer cells. By adjusting the substituent group of thiophene derivatives, the surface wettability can be readily regulated and further utilized for reducing nonspecific cell adhesion. Significantly, the released cells still maintain a high proliferation ability, which indicates that the applied potential does not significantly harm the cells. Therefore, these results may provide a new strategy to achieve advanced functions of biomedical materials, such as low nonspecific adhesion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bignardi, Chiara; Cavazza, Antonella; Laganà, Carmen; Salvadeo, Paola; Corradini, Claudio
2015-10-01
A new UHPLC-ESI-Orbitrap method for the identification and the quantitative determination of bisphenol A and some common additives employed in plastic manufacturing has been developed and validated. The method has been applied to evaluate the migration from 14 samples of tableware of different age and degree of surface damage, in both ethanol and isooctane (used as food simulants according to EU plastic regulation). Bisphenol A, three UV light absorbers, and one whitening agent were detected and quantified. Data were analyzed with the aim of exploring a possible correlation between bisphenol A and additives release, ageing, and surface integrity. A high correlation between age of samples, surface damage, and bisphenol A migration has been evaluated, while the release of additives was not correlated with other parameters. Obtained data showed for the first time that the release of bisphenol A seems to be more connected to ageing than to scratches and cracks occurrence. Graphical Abstract Bisphenol A and additives released by polycarbonate tableware: influence of ageing and surface damage.
Silicon-Containing Polymers and Composites
2012-03-28
superhydrophobic . FluoroPOSS polymer composite surfaces can be superhydrophobic and superoleophobic. Superhydrophilic and superoleophobic surfaces...Superhydrophilic Hydrophilic Hydrophobic Superhydrophobic θ ~ 0° 0°< θ < 90° θ > 90° θ* > 150° 3DISTRIBUTION A. Approved for public release; distribution...public release; distribution unlimited. . Electrospun Surfaces HV power Electrode P l 160 Superhydrophobic Surfaces supply o ymer flow rate
Differential BPA levels in sewage wastewater effluents from metro Detroit communities.
Santos, Julia M; Putt, David A; Jurban, Michael; Joiakim, Aby; Friedrich, Klaus; Kim, Hyesook
2016-10-01
The endocrine disruptor Bisphenol A (BPA) is ubiquitous in both aquatic and surface sediment environments because it is continuously released into sewage wastewater effluent. The measurement of BPA at wastewater treatment plants is rarely performed even though the United States Environmental Protection Agency (EPA) states that current levels of environmental BPA could be a threat to aquatic organisms. Therefore, the aims of this study were to measure BPA levels in sewage wastewater at different collection points over a 1-year period and to compare the levels of BPA to 8-isoprostane, a human derived fatty acid, found in sewage wastewater. We analyzed pre-treated sewage samples collected from three source points located in different communities in the metropolitan Detroit area provided by the Detroit Water and Sewerage Department. Human urine samples were also used in the study. BPA and 8-isoprostane were measured using ELISA kits from Detroit R&D, Inc. BPA levels from the same collection point oscillated more than 10-fold over 1 year. Also, BPA levels fluctuated differentially at each collection point. Highly fluctuating BPA values were confirmed by LC/MS/MS. The concentration of BPA in sewage wastewater was ~100-fold higher than the concentration of 8-isoprostane, while urinary concentration was ~20-fold higher. Thus, BPA levels discharged into the sewage network vary among communities, and differences are also observed within communities over time. The difference in BPA and 8-isoprostane levels suggest that most of the BPA discharged to sewage wastewater might be derived from industries rather than from human urine. Therefore, the continuous monitoring of BPA could account for a better regulation of BPA release into a sewage network.
Ground deposition of liquid droplets released from a point source in the atmospheric surface layer
NASA Astrophysics Data System (ADS)
Panneton, Bernard
1989-01-01
A series of field experiments is presented in which the ground deposition of liquid droplets, 120 and 150 microns in diameter, released from a point source at 7 m above ground level, was measured. A detailed description of the experimental technique is provided, and the results are presented and compared to the predictions of a few models. A new rotating droplet generator is described. Droplets are produced by the forced breakup of capillary liquid jets and droplet coalescence is inhibited by the rotational motion of the spray head. The two dimensional deposition patterns are presented in the form of plots of contours of constant density, normalized arcwise distributions and crosswind integrated distributions. The arcwise distributions follow a Gaussian distribution whose standard deviation is evaluated using a modified Pasquill's technique. Models of the crosswind integrated deposit from Godson, Csanady, Walker, Bache and Sayer, and Wilson et al are evaluated. The results indicate that the Wilson et al random walk model is adequate for predicting the ground deposition of the 150 micron droplets. In one case, where the ratio of the droplet settling velocity to the mean wind speed was largest, Walker's model proved to be adequate. Otherwise, none of the models were acceptable in light of the experimental data.
Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P
2010-02-01
Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.
Yang, Zhihong; Xie, Changsheng; Xiang, Hua; Feng, Jinqing; Xia, Xianping; Cai, Shuizhou
2009-03-01
Copper/indomethacin/low-density polyethylene (Cu/IDM/LDPE) nanocomposite was prepared as a novel material for intra-uterine device (IUD). IDM release profile of the nanocomposite was investigated by using spectrophotometer. The results show that IDM release rate of Cu/IDM/LDPE nanocomposite is higher in simulated uterine solution than that in methanol, confirming that the release process of IDM is dominated mainly by pore diffusion. The decrease in copper particle size and the increase in copper mass content all accelerate IDM release, indicating that IDM release rate can be adjusted by changing copper loading or copper particle size. The surface of the incubated nanocomposite was characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray microanalysis. A few deposits composed of P, Cl, Ca, Cu and O were observed on the nanocomposite surface, which may be related to the presence of IDM particles with large particle size.
Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.
Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J
2012-09-21
The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.
Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn
2014-11-20
We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and,more » beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.« less
Simulating future water temperatures in the North Santiam River, Oregon
Buccola, Norman; Risley, John C.; Rounds, Stewart A.
2016-01-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-98):
Landmeyer, James E.; Chapelle, Francis H.; Bradley, Paul M.; Pankow, James F.; Church, Clinton D.; Tratnyek, Paul G.
1998-01-01
Methyl tert-butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert-butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.
Liu, Hongliang; Li, Yingying; Sun, Kang; Fan, Junbing; Zhang, Pengchao; Meng, Jingxin; Wang, Shutao; Jiang, Lei
2013-05-22
Artificial stimuli-responsive surfaces that can mimic the dynamic function of living systems have attracted much attention. However, there exist few artificial systems capable of responding to dual- or multistimulation as the natural system does. Herein, we synthesize a pH and glucose dual-responsive surface by grafting poly(acrylamidophenylboronic acid) (polyAAPBA) brush from aligned silicon nanowire (SiNW) array. The as-prepared surface can reversibly capture and release targeted cancer cells by precisely controlling pH and glucose concentration, exhibiting dual-responsive AND logic. In the presence of 70 mM glucose, the surface is pH responsive, which can vary from a cell-adhesive state to a cell-repulsive state by changing the pH from 6.8 to 7.8. While keeping the pH at 7.8, the surface becomes glucose responsive--capturing cells in the absence of glucose and releasing cells by adding 70 mM glucose. Through simultaneously changing the pH and glucose concentration from pH 6.8/0 mM glucose to pH 7.8/70 mM glucose, the surface is dual responsive with the capability to switch between cell capture and release for at least 5 cycles. The cell capture and release process on this dual-responsive surface is noninvasive with cell viability higher than 95%. Moreover, topographical interaction between the aligned SiNW array and cell protrusions greatly amplifies the responsiveness and accelerates the response rate of the dual-responsive surface between cell capture and release. The responsive mechanism of the dual-responsive surface is systematically studied using a quartz crystal microbalance, which shows that the competitive binding between polyAAPBA/sialic acid and polyAAPBA/glucose contributes to the dual response. Such dual-responsive surface can significantly impact biomedical and biological applications including cell-based diagnostics, in vivo drug delivery, etc.
Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology
NASA Astrophysics Data System (ADS)
Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.
2014-12-01
When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts and rates of colloid release and indicate that episodic colloid transport is expected under transient physicochemical conditions. Published by Elsevier B.V.
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2012-01-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2013-04-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Modulation of venlafaxine hydrochloride release from press coated matrix tablet.
Gohel, M C; Soni, C D; Nagori, S A; Sarvaiya, K G
2008-01-01
The aim of present study was to prepare novel modified release press coated tablets of venlafaxine hydrochloride. Hydroxypropylmethylcellulose K4M and hydroxypropylmethylcellulose K100M were used as release modifier in core and coat, respectively. A 3(2) full factorial design was adopted in the optimization study. The drug to polymer ratio in core and coat were chosen as independent variables. The drug release in the first hour and drug release rate between 1 and 12 h were chosen as dependent variables. The tablets were characterized for dimension analysis, crushing strength, friability and in vitro drug release. A check point batch, containing 1:2.6 and 1:5.4 drug to polymer in core and coat respectively, was prepared. The tablets of check point batch were subjected to in vitro drug release in dissolution media with pH 5, 7.2 and distilled water. The kinetics of drug release was best explained by Korsmeyer and Peppas model (anomalous non-Fickian diffusion). The systematic formulation approach enabled us to develop modified release venlafaxine hydrochloride tablets.
HerMES: point source catalogues from Herschel-SPIRE observations II
NASA Astrophysics Data System (ADS)
Wang, L.; Viero, M.; Clarke, C.; Bock, J.; Buat, V.; Conley, A.; Farrah, D.; Guo, K.; Heinis, S.; Magdis, G.; Marchetti, L.; Marsden, G.; Norberg, P.; Oliver, S. J.; Page, M. J.; Roehlly, Y.; Roseboom, I. G.; Schulz, B.; Smith, A. J.; Vaccari, M.; Zemcov, M.
2014-11-01
The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ˜380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ˜74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the SUSSEXTRACTOR point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, STARFINDER, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES).
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids
NASA Technical Reports Server (NTRS)
Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.
1996-01-01
The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.
Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping
2015-02-01
The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.
Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.
Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira
2018-03-24
Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.
2017-12-01
Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.
NASA Astrophysics Data System (ADS)
Gillmann, Cedric; Golabek, Gregor; Tackley, Paul
2015-04-01
We investigate the influence of impacts on the history of terrestrial planets from the point of view of internal dynamics and surface conditions. Our work makes use of our previous studies on Venus' long term evolution through a coupled atmosphere/mantle numerical code. The solid part of the planet is simulated using the StagYY code (Armann and Tackley, 2012) and releases volatiles into the atmosphere through degassing. Coupling with the atmosphere is obtained by using surface temperature as a boundary condition. The evolution of surface temperature is calculated from CO2 and water concentrations in the atmosphere with a gray radiative-convective atmosphere model. These concentrations vary due to degassing and escape mechanisms. We take into account hydrodynamic escape, which is dominant during the first hundred million years, and non-thermal processes as observed by the ASPERA instrument and modeled in various works. Impacts can have different effects: they can bring (i) volatiles to the planet, (ii) erode its atmosphere and (iii) modify mantle dynamics due to the large amount of energy they release. A 2D distribution of the thermal anomaly due to the impact is used leading to melting and subjected to transport by the mantle convection. Volatile evolution is still strongly debated. We therefore test a wide range of impactor parameters (size, velocity, timing) and different assumptions related to impact erosion, from large eroding power to more moderate ones (Shuvalov, 2010). Atmospheric erosion appears to have significant effects only for massive impacts and to be mitigated by volatiles brought by the impactor. While small (0-10 km) meteorites have a negligible effect on the global scale, medium ones (50-150 km) are able to bring volatiles to the planet and generate melt, leading to strong short term influence. However, only larger impacts (300+ km) have lasting effects. They can cause volcanic event both immediately after the impact and later on. Additionally, the amount of volatiles released is large enough to modify normal evolution and surface temperatures (tens of Kelvins). This is enough to modify mantle convection patterns. Depending on when such an impact occurs, the surface conditions history can appear radically different. A key factor is thus the timing of the impact and how it interacts with other processes.
Mills, M.S.; Thurman, E.M.
1994-01-01
The loss of the preemergent herbicide atrazine in surface runoff from experimental field plots growing corn (Zea mays L.) was significantly reduced using a starchencapsulated formulation versus a conventional powdered formulation. Field edge losses of starch-encapsulated atrazine were described as following a Rayleigh distribution totaling 1.8% of applied herbicide compared to exponential powdered atrazine losses of 2.9% applied - a 40% decrease. This has important implications for the reduction of nonpoint source contamination of surface water by agricultural chemicals. Unsaturated zone release of starchencapsulated atrazine was gradual, but comparable weed control was maintained. Deethylatrazine was a major dealkylated metabolite from each formulation, and deisopropylatrazine was a minor metabolite. The determination of soil partition coefficients for deethylatrazine and deisopropylatrazine (0.4 and 0.3, respectively), aqueous solubilities (3200 and 670 mg/L, respectively), and melting points (133 and 177 ??C, respectively) confirmed that the dealkylated metabolites should move more rapidly through the soil profile to groundwater than atrazine.
Thakur, P
2016-01-01
After almost 15 years of operations, the Waste Isolation Pilot Plant (WIPP) had one of its waste drums breach underground as a result of a runaway chemical reaction in the waste it contained. This incident occurred on February 14, 2014. Moderate levels of radioactivity were released into the underground air. A small portion of the contaminated underground air also escaped to the surface through the ventilation system and was detected approximately 1 km away from the facility. According to the source term estimation, the actual amount of radioactivity released from the WIPP site was less than 1.5 mCi. The highest activity detected on the surface was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately 1 km northwest of the WIPP facility. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment. In this paper, the early stage monitoring data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and an oversight monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP) LLC were utilized to estimate the actual amount of radioactivity released from the WIPP underground. The Am and Pu isotope ratios were measured and used to support the hypothesis that the release came from one drum identified as having breached that represents a specific waste stream with this radionuclide ratio in its inventory. This failed drum underwent a heat and gas producing reaction that overpowered its vent and lifted its lid to allow release of waste into the underground air. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adsorption and release of biocides with mesoporous silica nanoparticles
NASA Astrophysics Data System (ADS)
Popat, Amirali; Liu, Jian; Hu, Qiuhong; Kennedy, Michael; Peters, Brenton; Lu, Gao Qing (Max); Qiao, Shi Zhang
2012-01-01
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11691j
Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger
2014-01-01
Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879
Controlled viable release of selectively captured label-free cells in microchannels.
Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan
2011-12-07
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.
Gas release and conductivity modification studies
NASA Technical Reports Server (NTRS)
Linson, L. M.; Baxter, D. C.
1979-01-01
The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.
Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M
2008-07-24
The kinetics of loading of polystyrene197-block-poly(acrylic acid)47 (PS197-b-PAA47) micelles, suspended in water, with thiocyanomethylthiobenzothiazole biocide and its subsequent release were investigated. Loading of the micelles was found to be a two-step process. First, the surface of the PS core of the micelles is saturated with biocide, with a rate determined by the transfer of solid biocide to micelles during transient micelle-biocide contacts. Next, the biocide penetrates as a front into the micelles, lowering the Tg in the process (non-Fickian case II diffusion). The slow rate of release is governed by the height of the energy barrier that a biocide molecule must overcome to pass from PS into water, resulting in a uniform biocide concentration within the micelle, until Tg is increased to the point that diffusion inside the micelles becomes very slow. Maximum loading of biocide into micelles is approximately 30% (w/w) and is achieved in 1 h. From partition experiments, it can be concluded that the biocide has a similar preference for polystyrene as for ethylbenzene over water, implying that the maximum loading is governed by thermodynamics.
Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides
Jia, Haibo; Halilou, Amadou I.; Hu, Liang; Cai, Wenqian; Liu, Jing; Huang, Bo
2011-01-01
Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule. PMID:21969171
Microfabrication of microsystem-enabled photovoltaic (MEPV) cells
NASA Astrophysics Data System (ADS)
Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul J.; Wanlass, Mark W.; Clews, Peggy J.; Pluym, Tammy C.; Sanchez, Carlos A.; Gupta, Vipin P.
2011-02-01
Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.
Stress release structures for actuator beams with a stress gradient
NASA Astrophysics Data System (ADS)
Klaasse, G.; Puers, R.; Tilmans, H. A. C.
2007-10-01
Stress release structures are introduced in fixed-fixed beams or membranes for releasing average stress. The influence of a stress gradient on the initial deformation of a fixed-fixed beam with stress release structures is studied in this paper. The objective is to obtain actuator beams that are insensitive to both the average stress and the stress gradient. The target application for the actuator beam in this study is a surface micromachined variable capacitor with a fixed electrode at the center of the beam. An analytical one-dimensional model is derived which predicts the initial deflection of a fixed-fixed beam with one stress release structure at any location and with two stress release structures, placed symmetrically with respect to the center of the beam at any location. The initial center deflection of the beam with one stress release structure was found from the analytical modeling to be zero for a specific set of parameters, but a negative deflection is always present for this specific configuration, leading to beams that touch the substrate at undesired positions, which implies non-functional devices. The configuration with the two symmetrically placed stress release structures can have zero initial center deflection, according to the analytical model, when the stress release structures are placed at a distance of a quarter of the beam length from the anchor points. Finite-element simulations are performed for both configurations and validate the theory. Deviations from the assumed model result in small initial center deflections, but can be compensated for by a little shift of the stress release structures. Experiments are performed for less ideal configurations with two stress release structures where they are shaped as round meanders. These structures do not fully release the stress and the center deflection therefore depends on the average stress to some extent, as demonstrated by finite element simulations. However, the location can be chosen such that there is an initial center deflection that is close to zero. These experiments are, therefore, in qualitative agreement with the analytical model.
Dong, Yiwen; Ye, Hui; Liu, Yi; Xu, Lihua; Wu, Zuosu; Hu, Xiaohui; Ma, Jianfeng; Pathak, Janak L; Liu, Jinsong; Wu, Gang
2017-10-01
Peri-implant infection control is crucial for implant fixation and durability. Antimicrobial administration approaches to control peri-implant infection are far from satisfactory. During bacterial infection, pH level around the peri-implant surface decreases as low as pH 5.5. This change of pH can be used as a switch to control antimicrobial drug release from the implant surface. Silver nanoparticles (AgNPs) have broad-spectrum antimicrobial properties. In this study, we aimed to design a pH-dependent AgNPs releasing titania nanotube arrays (TNT) implant for peri-implant infection control. The nanotube arrays were fabricated on the surface of titanium implant as containers; AgNPs were grafted on TNT implant surface via a low pH-sensitive acetal linker (TNT-AL-AgNPs). SEM, TEM, AFM, FTIR as well as XPS data showed that AgNPs have been successfully linked to TNT via acetal linker without affecting the physicochemical characteristics of TNT. The pH 5.5 enhanced AgNPs release from TNT-AL-AgNPs implant compared with pH 7.4. AgNPs released at pH 5.5 robustly increased antimicrobial activities against gram-positive and gram-negative bacteria compared with AgNPs released at pH 7.4. TNT-AL-AgNPs implant enhanced osteoblast proliferation, differentiation, and did not affect osteoblast morphology in vitro. In conclusion, incorporation of AgNPs in TNT via acetal linker maintained the surface characteristics of TNT. TNT-AL-AgNPs implant was biocompatible to osteoblasts and showed osteoinductive properties. AgNPs were released from TNT-AL-AgNPs implant in high dose at pH 5.5, and this release showed strong antimicrobial properties in vitro. Therefore, this novel design of low pH-triggered AgNPs releasing TNT-AL-AgNPs could be an infection-triggered antimicrobial releasing implant model to control peri-implant infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.
Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela
2015-12-30
Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.
Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B
2017-03-31
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.
Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.
2017-01-01
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966
NASA Astrophysics Data System (ADS)
Hühnerfuss, Heinrich; Garrett, W. D.
1981-01-01
Practical applications of organic surface films added to the sea surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the sea [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the sea surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider sea surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial sea slicks at Portsmouth (England) in October of 1773. Although the sea was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.
2002-01-01
DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES This article is from ADA409494 Proceedings of...been shown to be independently capable, respectively, of diminishing viability and minimizing bioburdens on interior surfaces. Unique combinations of...active bacterial bioburdens and total retained biomass can be significantly reduced by these surface modifications. Interior surface coatings of TiO2
Sensible and latent heat forced divergent circulations in the West African Monsoon System
NASA Astrophysics Data System (ADS)
Hagos, S.; Zhang, C.
2008-12-01
Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...
Atmospheric Science Data Center
2018-04-03
Surface meteorology and Solar Energy (SSE) Data and Information The Release 6.0 Surface meteorology and Solar Energy ( SSE ) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...
VizieR Online Data Catalog: The Chandra Source Catalog, Release 1.1 (Evans+ 2012)
NASA Astrophysics Data System (ADS)
Evans, I. N.; Primini, F. A.; Glotfelty, C. S.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G.; Grier, J. D.; Hain, R. M.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2014-01-01
This version of the catalog is release 1.1. It includes the information contained in release 1.0.1, plus point and compact source data extracted from HRC imaging observations, and catch-up ACIS observations released publicly prior to the end of 2009. (1 data file).
Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA
NASA Astrophysics Data System (ADS)
Wang, Can; Zhuang, Jiaqi; Jiang, Shan; Li, Jun; Yang, Wensheng
2012-10-01
Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups ( R N/C) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R N/C ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98 %, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.
Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.
Johnson, Lilian C; Landrum, Benjamin J; Zia, Roseanna N
2018-06-05
Yield of colloidal gels during start-up of shear flow is characterized by an overshoot in shear stress that accompanies changes in network structure. Prior studies of yield of reversible colloidal gels undergoing strong flow model the overshoot as the point at which network rupture permits fluidization. However, yield under weak flow, which is of interest in many biological and industrial fluids shows no such disintegration. The mechanics of reversible gels are influenced by bond strength and durability, where ongoing rupture and re-formation impart aging that deepens kinetic arrest [Zia et al., J. Rheol., 2014, 58, 1121], suggesting that yield be viewed as release from kinetic arrest. To explore this idea, we study reversible colloidal gels during start-up of shear flow via dynamic simulation, connecting rheological yield to detailed measurements of structure, bond dynamics, and potential energy. We find that pre-yield stress grows temporally with the changing roles of microscopic transport processes: early time behavior is set by Brownian diffusion; later, advective displacements permit relative particle motion that stretches bonds and stores energy. Stress accumulates in stretched, oriented bonds until yield, which is a tipping point to energy release, and is passed with a fully intact network, where the loss of very few bonds enables relaxation of many, easing glassy arrest. This is immediately followed by a reversal to growth in potential energy during bulk plastic deformation and condensation into larger particle domains, supporting the view that yield is an activated release from kinetic arrest. The continued condensation of dense domains and shrinkage of network surfaces, along with a decrease in the potential energy, permit the gel to evolve toward more complete phase separation, supporting our view that yield of weakly sheared gels is a 'non-equilibrium phase transition'. Our findings may be particularly useful for industrial or other coatings, where weak, slow application via shear may lead to phase separation, inhibiting smooth distribution.
Radiation chemistry related to nuclear power technology
NASA Astrophysics Data System (ADS)
Ishigure, Kenkichi
A brief review is given to the radiation chemical problems, especially with the emphasis on water radiolysis, in the nuclear power technology. Radiation chemistry in aqueous system is pointed out to be closely related to the problems such as corrosion of Zircaloy, the formation of insoluble corrosion products or crud, stress corrosion cracking of stainless steel in BWR and the radioactive waste managements. The results of the constant extention rate tests on sensitized 304 stainless steel under irradiation are shown, and the computer calculations were carried out to simulate the model experiments on the release of crud from the corroding surface under irradiation and also the water radiolysis in core of BWR.
Heat generation in aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1985-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
Heat generation in aircraft tires
NASA Technical Reports Server (NTRS)
Clark, S. K.
1983-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
What can nuclear energy do for society.
NASA Technical Reports Server (NTRS)
Rom, F. E.
1971-01-01
Nuclear fuel is a compact and abundant source of energy. Its cost per unit of energy is less than that of fossil fuel. Disadvantages of nuclear fuel are connected with the high cost of capital equipment required for releasing nuclear energy and the heavy weight of the necessary shielding. In the case of commercial electric power production and marine propulsion the advantages have outweighed the disadvantages. It is pointed out that nuclear commercial submarines have certain advantages compared to surface ships. Nuclear powerplants might make air-cushion vehicles for transoceanic ranges feasible. The problems and advantages of a nuclear aircraft are discussed together with nuclear propulsion for interplanetary space voyages.
DWH MC 252: Subsurface Oil Transport
NASA Astrophysics Data System (ADS)
Beegle-Krause, C. J.; Boyer, T.; Murray, D.
2010-12-01
Before reaching the ocean surface, the oil and gas released from the DWH MC 252 blowout at 1500 m moves as a buoyant plume until the trapping depth and plume transition point are reached (Zheng et al 2002). At the transition point, the oil droplets and bubbles move independently of each other, and rise at a rate related to their diameter. The oil density, droplet size distribution and currents primarily determine the distribution of the oil between: Large droplets that rise quickly and create a surface expression of the oil. Moderate size droplets that rise over the course of days, and so spread out quite differently than the surface oil, and commonly do not reach the surface in large enough quantities to create a surface sheen. These droplets separate in the currents, particularly in the strong current shear in upper 500 m currents. Very tiny droplets that rise very slowly, over the course or weeks to months, and may be removed by dissolution, biodegradation or marine snow before ever reaching the surface. Modeling and observations (Joint Analysis Group, 2010) confirm the presence of a deep layer of oil and gas between approximately 1100 and 1300 m over the release location and spreading out along the isopycnal surfaces. Later in the event, a small oxygen depression was a proxy for where oil and gas had been. The DWH MC252 well is located at intermediate depth in the Gulf of Mexico (GoM). The water mass is Antarctic Intermediate Water, which enters and exits the GoM through the Yucatan Straits. Surface influences, such as Loop Current Frontal Eddies (e.g. Berger et al 2000) can reach down to these depths, and alter the flow within De Soto Canyon. The water mass containing the deep layer of oil droplets changes depth within the GoM, but does not reach above a depth of about 900 m. There are no physical processes that could cause this deep layer of oil to reach the continental shelf or the Florida Straits. Observed and historical hydrographic data, observations, previous research and modeling were combined to tell the story of the DWH MC 252 from the subsurface perspective. The Comprehensive Deepwater Oil and Gas model (CDOG, Yapa and Xie, 2005), and the General NOAA Operational Modeling Environment (GNOME, Beegle-Krause, 1999) were used with the NOAA Gulf of Mexico Model nowcast/forecast model to understand the 3D evolution of the subsurface spill. Model/observational comparisons are favorable, though limitations of the available models are apparent. Historical perspective on Thunder Horse (a deepwater well incident that was a dress-rehearsal for the DWH MC 252, Beegle-Krause and Walton, 2004), transitioning models from research to operations, and research needs will also be discussed.
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph
2010-05-01
Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.
ICOADS: A Foundational Database with a new Release
NASA Astrophysics Data System (ADS)
Angel, W.; Freeman, E.; Woodruff, S. D.; Worley, S. J.; Brohan, P.; Dumenil-Gates, L.; Kent, E. C.; Smith, S. R.
2016-02-01
The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) offers surface marine data spanning the past three centuries and is the world's largest collection of marine surface in situ observations with approximately 300 million unique records from 1662 to the present in a common International Maritime Meteorological Archive (IMMA) format. Simple gridded monthly summary products (including netCDF) for 2° latitude x 2° longitude boxes back to 1800 and 1° x 1° boxes since 1960 are computed for each month. ICOADS observations made available in the IMMA format are taken primarily from ships (merchant, ocean research, fishing, navy, etc.) and moored and drifting buoys. Each report contains individual observations of meteorological and oceanographic variables, such as sea surface and air temperatures, winds, pressure, humidity, wet bulb, dew point, ocean waves and cloudiness. A monthly summary for an area box includes ten statistics (e.g. mean, median, standard deviation, etc.) for 22 observed and computed variables (e.g. sea surface and air temperature, wind, pressure, humidity, cloudiness, etc.). ICOADS is the most complete and heterogeneous collection of surface marine data in existence. A major new historical update, Release 3.0 (R3.0), now in production (with availability anticipated in mid-2016) will contain a variety of important updates. These updates will include unique IDs (UIDs), new IMMA attachments, ICOADS Value-Added Database (IVAD), and numerous new or improved historical and contemporary data sources. UIDs are assigned to each individual marine report, which will greatly facilitate interaction between users and data developers, and affords record traceability. A new Near-Surface Oceanographic (Nocn) attachment has been developed to include oceanographic profile elements, such as sea surface salinity, sea surface temperatures, and their associated measurement depths. Additionally, IVAD allows a feedback mechanism of data adjustments which can be stored within each IMMA report. R3.0 includes near-surface ocean profile measurements from sources such as the World Ocean Database (WOD), Shipboard Automated Meteorological and Oceanographic System (SAMOS), as well as many others. An in-depth look at the improvements and the data inputs planned for R3.0 will be further discussed.
Effect of bioceramic functional groups on drug binding and release kinetics
NASA Astrophysics Data System (ADS)
Trujillo, Christopher
Bioceramics have been studied extensively as drug delivery systems (DDS). Those studies have aimed to tailor the drug binding and release kinetics to successfully treat infections and other diseases. This research suggests that the drug binding and release kinetics are predominantly driven by the functional groups available on the surface of a bioceramic. The goal of the present study is to explain the role of silicate and phosphate functional groups in drug binding to and release kinetics from bioceramics. alpha-cristobalite (Cris; SiO2) particles (90-150 microm) were prepared and doped with 0 microg (P-0), 39.1 microg (P-39.1), 78.2 microg (P-78.2), 165.5 microg (P-165.5) or 331 microg (P-331) of P 2O5 per gram Cris, using 85% orthophosphoric (H3PO 4) acid and thermal treatment. The material structure was analyzed using X-ray diffraction (XRD) with Rietveld Refinement and Fourier Transform Infrared (FTIR) spectroscopy with Gaussian fitting. XRD demonstrated an increase from sample P-0 (170.5373 A3) to P-331 (170.6466 A 3) in the unit cell volume as the P2O5 concentration increased in the material confirming phosphate silicate substitution in Cris. Moreover, FTIR showed the characteristic bands of phosphate functional groups of nu4 PO4/O-P-O bending, P-O-P stretching, P-O-P bending, P=O stretching, and P-O-H bending in doped Cris indicating phosphate incorporation in the silicate structure. Furthermore, FTIR showed that the nu4 PO4/O-P-O bending band around 557.6 cm-1 and P=O stretching band around 1343.9 cm-1 increased in area for samples P-39.1 to P-331 from 3.5 to 10.5 and from 10.1 to 22.4, respectively due to phosphate doping. In conjunction with the increase of the nu4 PO4/O-P-O bending band and P=O stretching band, a decrease in area of the O-Si-O bending bands around 488.1 and 629.8 cm-1 was noticed for samples P-39.1 to P-331 from 5 to 2 and from 11.8 to 5.4, respectively. Furthermore, Cris samples (200 mg, n=5 for each sample) were immersed separately in DI water for 2 days and the concentrations of dissolved silicate and phosphate ions released from the surface of Cris were measured using Inductively Coupled Plasma -- Optical Emission Spectrometry (ICP-OES). The phosphate ions released from the material activated the surface and exposed the silicate functional groups as indicated by the FTIR analysis. Pre-immersed Cris particles and control non-immersed samples (200 mg, n=5 for each sample) of particle size 90-150 mum were immersed in 2 mL of vancomycin (Vanc) solution (8 mg/ml) in PBS on an orbital shaker at 37°C for 24 hours. The amount of drug bound to the material was measured by High Performance Liquid Chromatography (HPLC). Control non-immersed Cris samples P-0 and P-39.1 adsorbed a comparable amount of drug. While there was a statistically significant lower amount of drug adsorbed onto P-78.2 than that adsorbed onto P-39.1 (p < 0.001), comparable amounts of drug were adsorbed onto P-78.2, P-165.5, and P-331. Releasing phosphate ions from the material surface resulted in a significant increase in drug adsorption for pre-immersed samples. Higher Vanc adsorption was noticed for all pre-immersed Cris samples compared to their corresponding control non-immersed samples. Moreover, for pre-immersed samples the amount of drug adsorbed significantly increased from P-0 to P-78.2 (P-0 < P-39.1 < P-78.2; p < 0.05). However, at phosphate content higher than 78.2 microg per gram of Cris there was a significant decrease in drug adsorption (P-78.2 > P-165.5 > P-331; p < 0.001). ICP-OES analyses showed that the percent of released phosphate ions during immersion decreased as the phosphate content in doped Cris increased (P-39.1 released 92+/-.08% and P-331 released 71+/-.05%). Therefore, the decrease in drug binding could be attributed to the presence of high phosphate content on the material surface. Comparison between the HPLC and FTIR analyses showed that ceramics that had higher content of O-Si-O bending (at ~498 cm-1 and ~620 cm-1) bands facilitated Vanc adsorption. On the other hand surfaces with a higher content of nu 4 PO4/O-P-O bending (at ~557 cm-1) and P=O stretching (at ~1343.9 cm-1) bands did not enhance Vanc adsorption. Drug loaded pre-immersed and control non-immersed Cris samples (each 200 mg, n=5 for each sample) were immersed in 2 mL of PBS on an orbital shaker at 37°C, and a 0.5 mL aliquot was removed from the solution and replenished at 1, 3, 6, 8, 24, and 48 hour, and every 48 hour intervals to 22 days thereafter. Drug concentration released from Cris samples after each time point was measured using HPLC. The drug release kinetics demonstrated a statistically significant decrease (p < 0.05) in the cumulative and percent of Vanc released from control non-immersed Cris samples P-0 (1.521 +/- .026 mg; 37.66 +/- .89 %) to P-331 (1.276 +/- .016 mg; 33.46 +/- .77 %) of Vanc, respectively. Additionally, release kinetics also demonstrated statistically significant increase (p < 0.05) in the cumulative and percent of Vanc released from pre-immersed samples P-0 (1.505 +/- .014 mg; 33.59 +/- 1.35 %) to P-331 (1.581 +/- .057 mg; 42.27 +/- 1.51 %) of Vanc, respectively. Furthermore, in the first 4 hours, the deceleration of drug release from sample P-0 to P-331 decreased from -66.92 to -34.07 microg of Vanc/mL /hr 2, for control non immersed Cris and from -72.60 to -46.04 microg of Vanc/mL/hr2, for pre-immersed samples. Furthermore, during the first 4 hours of burst release the percentage of drug released from the total amount of drug loaded for non-immersed samples P-0 was 41 % and for P-331was 26 %. After the 4 hours of Vanc release the amount of Vanc available for release for samples P-0 and P-331 was .898 mg and .945 mg, respectively. The same relationship was found for pre-immersed samples during the first 4 hours of burst release the percentage of drug released from the total amount of drug loaded for samples P-0 was 42 % and for P-331 was 30 %. After the 4 hours of Vanc release the amount of Vanc available for release for samples P-0 and P-331 was .873 mg and 1.106 mg, respectively. These results indicated the effect of phosphate content on decreasing the drug release rate. The drug release kinetics study showed that the release of phosphate ions from the surface of Cris prior to drug loading exposed active silicate functional groups that enhanced drug binding by physisorption which in turn facilitated rapid release kinetics. On the other hand, a slower drug release rate was observed as the phosphate functional groups increased on the material surface due to chemisorption. Results from the present study indicate that it is possible to enhance the burst release stage of a bioceramic drug carrier by increasing the silicate functional groups. The sustained release profile can be engineered by controlling the phosphate content of the bioceramic drug carrier.
Protected electrode structures and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhaylik, Yuriy V.; Laramie, Michael G.; Kopera, John Joseph Christopher
2017-08-08
An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer. The first release layer may have a low mean peak to valley surface roughness, which may enable the formation of a thin protective layer with a low mean peak to valley surface roughness.
NASA Technical Reports Server (NTRS)
Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.
2004-01-01
The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.
Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.
2002-01-01
Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.
NASA Astrophysics Data System (ADS)
Gallo, Annemarie; Mani, Gopinath
2013-08-01
Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel - PAT) and an endothelial cell promoting agent (nitric oxide - NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.
PRN 98-6: Flammability Labeling Requirements for Total Release Fogger Pesticides
This notice describes new labeling requirements for total release foggers and provides the procedures and time frame for compliance. It ONLY affects total release foggers containing a propellant with a flash point at or below 20 degrees Fahrenheit.
Turco, Gianluca; Cadenaro, Milena; Maravić, Tatjana; Frassetto, Andrea; Marsich, Eleonora; Mazzoni, Annalisa; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Breschi, Lorenzo
2018-03-01
The present study evaluated the influence of time, mass and surface area of demineralized dentin collagen matrices on telopeptides release. The hypotheses tested were that the rates of ICTP and CTX release by matrix bound endogenous proteases are 1) not time-dependent, 2) unrelated to specimen mass, 3) unrelated to specimen surface area. Non-carious human molars (N=24) were collected and randomly assigned to three groups. Dentin slabs with three different thicknesses: 0.37mm, 0.75mm, and 1.50mm were completely demineralized and stored in artificial saliva for one week. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptidases. Activity of MMPs in the aging medium was evaluated using fluorometric activity assay kit. A statistically significant (p<0.05) decrease in the release of both ICTP and CTX fragments over time was observed irrespective of the specimen thickness. When data were normalized by the specimen mass, no significant differences were observed. Releases of ICTP and CTX were significantly related to the aging time as a function of surface area for the first 12h. Total MMP activity, mainly related to MMP-2 and -9, decreased with time (p<0.05). Because the release of collagen fragments was influenced by specimen storage time and surface area, it is likely that cleaved collagen fragments closer to the specimen surface diffuse into the incubation medium; those further away from the exposed surface are still entrapped within the demineralized dentin matrix. Bound MMPs can only degrade the substrate within the limited zone of their molecular mobility. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Wu, Biyun; Gerlitz, Bruce; Grinnell, Brian W.; Meyerhoff, Mark E.
2007-01-01
Multi-functional bilayer polymeric coatings are prepared with both controlled nitric oxide (NO) release and surface-bound active thrombomodulin (TM) alone or in combination with immobilized heparin. The outer-layer is made of CarboSil, a commercially available copolymer of silicone rubber (SR) and polyurethane (PU). The CarboSil is either carboxylated or aminated via an allophanate reaction with a diisocyanate compound followed by a urea-forming reaction between the generated isocyanate group of the polymer and the amine group of an amino acid (glycine), an oligopeptide (triglycine) or a diamine. The carboxylated CarboSil can then be used to immobilize TM through the formation of an amide bond between the surface carboxylic acid groups and the lysine residues of TM. Aminated CarboSil can also be employed to initially couple heparin to the surface, and then the carboxylic acid groups on heparin can be further used to anchor TM. Both surface-bound TM and heparin’s activity are evaluated by chromogenic assays and found to be at clinically significant levels. The underlying NO release layer is made with another commercial SR-PU copolymer (PurSil) mixed with a lipophilic NO donor (N-diazeniumdiolated dibutylhexanediamine (DBHD/N2O2)). The NO release rate can be tuned by changing the thickness of top coatings, and the duration of NO release at physiologically relevant levels can be as long as 2 weeks. The combination of controlled NO release as well as immobilized active TM and heparin from/on the same polymeric surface mimics the highly thromboresistant endothelium layer. Hence, such multifunctional polymer coatings should provide more blood-compatible surfaces for biomedical devices. PMID:17597201
NASA Technical Reports Server (NTRS)
Bledsoe, Kristin
2013-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.
Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.
Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong
2018-03-01
It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Newman, Alan Paul; Aitken, Douglas; Antizar-Ladislao, Blanca
2013-12-15
This paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits of a pervious pavement when the use of traditional paving surfaces is the preferred option. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of Land Use Land Cover Change on East Asian monsoon
NASA Astrophysics Data System (ADS)
Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.
2017-12-01
Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon regions. The LULCC caused reduction in water released into the atmosphere from the surface through a reduction in transpiration and canopy evaporation, and changes in magnitude and pattern of moisture flux convergence, resulting in precipitation changes, and reduced evaporation lead to warm surface temperature during the summer season.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2012 CFR
2012-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2013 CFR
2013-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2014 CFR
2014-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2010 CFR
2010-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
NASA Astrophysics Data System (ADS)
Jatiault, R.; Dhont, D.; Loncke, L.; Durrieu De Madron, X.; Dubucq, D.; Channelliere, C.; Bourrin, F.
2017-12-01
Key words: Hydrocarbon seepage, Oil Slick, Lower Congo Basin, Underwater deflection, Deep-water Pockmark, Ascent speedThe space-borne imagery provides a significant means to locate active oil seeps and to estimate the expelled volume in the marine environment. The analysis of numerous overlapping satellite images revealed an abundant volume of 4400 m3 of oil naturally reaching the sea surface per year, expelled from more than a hundred seep sites through the Lower Congo Basin. The active seepage area is located in the distal compressional province of the basin where salt napes and squeezed diapirs. The integration of current data was used to link accurately sea surface manifestations of natural oil leakages with active fluid flow features on the seafloor. A mooring with ADCPs (Acoustic Doppler Current Profilers) distributed throughout the water column provided an efficient calibration tool to evaluate the horizontal deflection of oil droplets. Using a Eulerian propagation model that considered a range of probable ascent speeds, we estimated the oil migration pathways through the water column using two different approaches. The first approach consisted in simulating the backwards trajectory of oil droplets using sea surface oil slicks locations and concomitant current measurements. The second method analyzed the spatial spreading of the surfacing signatures of natural oil slicks based on 21 years of satellite observations. The location of the surfacing points of oil droplets at the sea surface is restricted to a circle of 2.5 km radius around the release point at the seafloor. Both approaches provided a range of ascent speeds of oil droplets between 3 to 8 cm.s-1. The low deflection values validate the near-vertical links between the average surfacing area of oil slicks at the sea surface with specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.
Observations and theory of the AMPTE magnetotail barium releases
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Roussel-Dupre, R. A.; Pongratz, M. B.; Haerendel, G.; Valenzuela, A.
1987-01-01
The barium releases in the magnetotail during the Active Magnetospheric Particle Tracer Explorers (AMPTE) operation were monitored by ground-based imagers and by instruments on the Ion Release Module. After each release, the data show the formation of a structured diamagnetic cavity. The cavity grows until the dynamic pressure of the expanding ions balances the magnetic pressure on its surface. The magnetic field inside the cavity is zero. The barium ions collect on the surface of the cavity, producing a shell. Plasma irregularities form along magnetic field lines draped over the surface of the cavity. The scale size of the irregularities is nearly equal to the thickness of the shell. The evolution and structuring of the diamagnetic cavity are modeled using magnetohydrodynamics theory.
Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping
2015-11-21
The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.
Development of albumin-based nanoparticles for the delivery of abacavir.
Wilson, Barnabas; Paladugu, Latishkumar; Priyadarshini, S R Brahmani; Jenita, J Josephine Leno
2015-11-01
The study was designed to prepare and evaluate albumin nanoparticles containing antiviral drug abacavir sulphate. Various batches of albumin nanoparticles containing abacavir sulphate were prepared by desolvation method. The abacavir loaded particles were characterized for their yield, percentage of drug loading, surface morphology, particle size, surface charge, pattern of in vitro drug release and release mechanism studies. Drug loading ranged from 1.2 to 5.9%w/w. The mean particle size and the surface charge were 418.2nm and -40.8mV respectively. The in vitro drug release varied between 38.73 and 51.36%w/w for 24h. The n value for Korsmeyer-Peppas was 0.425 indicating Fickian type drug release. The preliminary findings indicated that albumin nanoparticles of abacavir can be prepared by desolvation method with good yield, high drug loading and sustained release. Copyright © 2015 Elsevier B.V. All rights reserved.
Beatty, W L; Russell, D G
2000-12-01
Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.
ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms
NASA Astrophysics Data System (ADS)
Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.
2012-04-01
MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.
Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V
1999-10-01
We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.
NASA Astrophysics Data System (ADS)
Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian
2017-03-01
The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
NASA Astrophysics Data System (ADS)
Labay, C.; Canal, J. M.; Navarro, A.; Canal, C.
2014-10-01
Cosmetic and medical applications of technical textiles are a research expanding field. One of the added values of these new materials would be that they are suitable to contain and release active ingredients in a controlled manner. The influence of the initial state of the surface of polyamide 6.6 (PA66) fibers on the wetting properties of the fibers as well as on the incorporation of caffeine on the fibers and on its release kinetics from the fibers has been investigated. Comparison between industrially-finished PA66 fabrics and laboratory washed fabrics has been done to carry out this study. Furthermore, surface modification of the PA66 fibers by low temperature plasma has been studied regarding the modification of the physical, chemical and topographical properties of the textile fibers. Corona plasma treatment has been investigated to achieve surface modification in the first nanometers of polymer fibers surface in order to modulate the incorporation and the release of caffeine. It has been demonstrated that both initial state of the PA66 surface and prior plasma treatment of the PA66 fibers before the active principle incorporation condition caffeine release kinetics from the textile fibers. The final release percentage increases linearly with the C-O and Cdbnd O functional groups incorporated by plasma on the surface. It has also been established that the release amounts of caffeine achieved after 8 h from the PA66 fabric are in the same order of magnitude than topical doses of commercial gel-based formulations.
Zhao, Zhen-hua; Wu, Yu; Jiang, Xin; Xia, Li-ling; Ni, Li-xiao
2009-10-15
The kinetic release behaviors of a-endosulfan from red soil with three kinds of low-molecular-weight organic acids (LMWOA: oxalate, tartrate and citrate) solution and water leaching were investigated by kinetic device designed by ourselves and batch method. The results show that: the release percentage of endosulfan from red soil by tartrate and citrate solution (10 mmol/L) can increase by 7%-18% more than that by distilled water and oxalate solution, especially for tartrate solution. There is no significant difference between distilled water and oxalate solution for the release percentage of endosulfan (p > 0.05). There are two stages of quick and slow for the release of endosulfan from red soil, and the leaching speed is quicker especially for the initial 200 mL leaching solution. When using distilled water or oxalate solution as leaching solution, the best equations that described the kinetic release behavior of endosulfan from red soil were parabola diffuse equation and double constant equation, and weren't the apparent first dynamics equation that represented the simple surface diffusion mechanism. The kinetic release behavior of endosulfan in tartrate or citrate leaching system can be described by Elovich equation (R2 > 0.99, p < 0.0001), it implied that the simple surface diffusion mechanism is not the primary factor that effected the release of endosulfan, which three-dimensional molecule structure is complex, from red soil in aqueous phase leaching systems, and it maybe related to the outward diffuse mechanism from soil particle, activation and deactivation function of soil particles surface, the dissolution of soil mineral surface and structure change of inherent organic matter that coating onto the soil mineral surface induced by LMW organic acid. It suggested that the tartrate and citrate induced the complication of the release mechanisms of the pesticides from red soil.
Additively Manufactured and Surface Biofunctionalized Porous Nitinol.
Gorgin Karaji, Z; Speirs, M; Dadbakhsh, S; Kruth, J-P; Weinans, H; Zadpoor, A A; Amin Yavari, S
2017-01-18
Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.
NASA Astrophysics Data System (ADS)
Haberle, R. M.
1986-05-01
The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed
Excitonic mechanism of the photoinduced surface restructuring of copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotskii, Michel
An explanation for the photoinduced reconstruction of Cu single-crystal surfaces that was observed by Ernst et al. [Science 279, 679 (1998)] under the influence of visible light is proposed. It is suggested that reconstruction can be attributed to the energy released during the nonradiative decay of excitons that were excited by light irradiation and captured on surface active centers. The estimates performed show that exciton decay on surface steps and adatoms releases enough energy to create surface defects.
Eslinger, Paul W; Bowyer, Ted W; Cameron, Ian M; Hayes, James C; Miley, Harry S
2015-10-01
The radionuclide network of the International Monitoring System comprises up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear explosions. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point. Consider the plume center-line concentration seen by a ground-level sampler as a function of time based on a short-duration ground-level release of a nondepositing radioactive tracer. The concentration C (Bq m(-3)) near the ground varies with distance from the source with the relationship C=R×A(D,C) ×e (-λ(-1.552+0.0405×D)) × 5.37×10(-8) × D(-2.35) where R is the release magnitude (Bq), D is the separation distance (km) from the ground level release to the measurement location, λ is the decay constant (h(-1)) for the radionuclide of interest and AD,C is an attenuation factor that depends on the length of the sample collection period. This relationship is based on the median concentration for 10 release locations with different geographic characteristics and 365 days of releases at each location, and it has an R(2) of 0.99 for 32 distances from 100 to 3000 km. In addition, 90 percent of the modeled plumes fall within approximately one order of magnitude of this curve for all distances. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation and analysis of chemical release in the ionosphere
NASA Astrophysics Data System (ADS)
Gao, Jing-Fan; Guo, Li-Xin; Xu, Zheng-Wen; Zhao, Hai-Sheng; Feng, Jie
2018-05-01
Ionospheric inhomogeneous plasma produced by single point chemical release has simple space-time structure, and cannot impact radio wave frequencies higher than Very High Frequency (VHF) band. In order to produce more complicated ionospheric plasma perturbation structure and trigger instabilities phenomena, multiple-point chemical release scheme is presented in this paper. The effects of chemical release on low latitude ionospheric plasma are estimated by linear instability growth rate theory that high growth rate represents high irregularities, ionospheric scintillation occurrence probability and high scintillation intension in scintillation duration. The amplitude scintillations and the phase scintillations of 150 MHz, 400 MHz, and 1000 MHz are calculated based on the theory of multiple phase screen (MPS), when they propagate through the disturbed area.
Watson, Gene E.; Evans, Katie; Thurston, Sally W.; van Wijngaarden, Edwin; Wallace, Julie M. W.; McSorley, Emeir M.; Bonham, Maxine P.; Mulhern, Maria S.; McAfee, Alison J.; Davidson, Philip W.; Shamlaye, Conrad F.; Strain, J.J.; Love, Tanzy; Zareba, Grazyna; Myers, Gary J.
2012-01-01
Background Dental amalgam is approximately 50% metallic mercury and releases mercury vapor into the oral cavity, where it is inhaled and absorbed. Maternal amalgams expose the developing fetus to mercury vapor. Mercury vapor can be toxic, but uncertainty remains whether prenatal amalgam exposure is associated with neurodevelopmental consequences in offspring. Objective To determine if prenatal mercury vapor exposure from maternal dental amalgam is associated with adverse effects to cognition and development in children. Methods We prospectively determined dental amalgam status in a cohort of 300 pregnant women recruited in 2001 in the Republic of Seychelles to study the risks and benefits of fish consumption. The primary exposure measure was maternal amalgam surfaces present during gestation. Maternal occlusal points were a secondary measure. Outcomes were the child’s mental (MDI) and psychomotor (PDI) developmental indices of the Bayley Scales of Infant Development-II (BSID-II) administered at 9 and 30 months. Complete exposure, outcome, and covariate data were available on a subset of 242 mother-child pairs. Results The number of amalgam surfaces was not significantly (p>0.05) associated with either PDI or MDI scores. Similarly, secondary analysis with occlusal points showed no effect on the PDI or MDI scores for boys and girls combined. However, secondary analysis of the 9 month MDI was suggestive of an adverse association present only in girls. Conclusion We found no evidence of an association between our primary exposure metric, amalgam surfaces, and neurodevelopmental endpoints. Secondary analyses using occlusal points supported these findings, but suggested the possibility of an adverse association with the MDI for girls at 9 months. Given the continued widespread use of dental amalgam, we believe additional prospective studies to clarify this issue are a priority. PMID:23064204
Watson, Gene E; Evans, Katie; Thurston, Sally W; van Wijngaarden, Edwin; Wallace, Julie M W; McSorley, Emeir M; Bonham, Maxine P; Mulhern, Maria S; McAfee, Alison J; Davidson, Philip W; Shamlaye, Conrad F; Strain, J J; Love, Tanzy; Zareba, Grazyna; Myers, Gary J
2012-12-01
Dental amalgam is approximately 50% metallic mercury and releases mercury vapor into the oral cavity, where it is inhaled and absorbed. Maternal amalgams expose the developing fetus to mercury vapor. Mercury vapor can be toxic, but uncertainty remains whether prenatal amalgam exposure is associated with neurodevelopmental consequences in offspring. To determine if prenatal mercury vapor exposure from maternal dental amalgam is associated with adverse effects to cognition and development in children. We prospectively determined dental amalgam status in a cohort of 300 pregnant women recruited in 2001 in the Republic of Seychelles to study the risks and benefits of fish consumption. The primary exposure measure was maternal amalgam surfaces present during gestation. Maternal occlusal points were a secondary measure. Outcomes were the child's mental (MDI) and psychomotor (PDI) developmental indices of the Bayley Scales of Infant Development-II (BSID-II) administered at 9 and 30 months. Complete exposure, outcome, and covariate data were available on a subset of 242 mother-child pairs. The number of amalgam surfaces was not significantly (p>0.05) associated with either PDI or MDI scores. Similarly, secondary analysis with occlusal points showed no effect on the PDI or MDI scores for boys and girls combined. However, secondary analysis of the 9-month MDI was suggestive of an adverse association present only in girls. We found no evidence of an association between our primary exposure metric, amalgam surfaces, and neurodevelopmental endpoints. Secondary analyses using occlusal points supported these findings, but suggested the possibility of an adverse association with the MDI for girls at 9 months. Given the continued widespread use of dental amalgam, we believe additional prospective studies to clarify this issue are a priority. Copyright © 2012 Elsevier Inc. All rights reserved.
Wei, Ting; Zhan, Wenjun; Yu, Qian; Chen, Hong
2017-08-09
Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
A Coupled Surface Nudging Scheme for use in Retrospective ...
A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem modeling. This scheme is known as the flux-adjusting surface data assimilation system (FASDAS) developed by Alapaty et al. (2008). This scheme provides continuous adjustments for soil moisture and temperature (via indirect nudging) and for surface air temperature and water vapor mixing ratio (via direct nudging). The simultaneous application of indirect and direct nudging maintains greater consistency between the soil temperature–moisture and the atmospheric surface layer mass-field variables. The new method, FASDAS, consistently improved the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as well as for high resolution regional climate predictions. This new capability has been released in WRF Version 3.8 as option grid_sfdda = 2. This new capability increased the accuracy of atmospheric inputs for use air quality, hydrology, and ecosystem modeling research to improve the accuracy of respective end-point research outcome. IMPACT: A new method, FASDAS, was implemented into the WRF model to consistently improve the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as wel
Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.
Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan
2013-08-20
Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.
3-D Modeling of a Nearshore Dye Release
NASA Astrophysics Data System (ADS)
Maxwell, A. R.; Hibler, L. F.; Miller, L. M.
2006-12-01
The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool for plume tracking in data-limited environments. The Delft-PART stochastic particle transport model is also being examined to determine its utility for the present study.
NASA Astrophysics Data System (ADS)
Galeska, Izabela Ewa
The rational design and characterization of biocompatible, semipermeable and calcification resistant materials to serve as an outer membrane for implantable glucose biosensors, was the primary focus of this research. Multilayered films of polyanions (i.e. Nafion(TM), a perfluorinated ionomer, and Humic Acids (HAs), naturally occurring biopolymers), fabricated by layer-by-layer self-assembly with oppositely charged ferric ions were investigated as potential membranes. Spectroscopic ellipsometry and quartz crystal microbalance studies point towards a stepwise film growth, with growth rates of 47 and 24.3 nm per layer (for Nafion and HAs respectively) that can be altered depending on the pH and ionic strength of the polyanion solution. Nafion/Fe3+ assembled films exhibited an order of magnitude lower calcification as compared to dip-coated Nafion films and did not require annealing to impart insolubility. Similarly the HAs/Fe3+ films were also devoid of calcification, even after four-week immersion in DMEM cell culture media. Significantly, in vivo studies on the HAs/Fe3 films point to their biocompatibility as demonstrated by mild tissue reaction. These results, along with controllable glucose permeability, could prove vital in prolonging the lifetime of implantable biosensors. Additionally in effort to minimize tissue trauma upon implantation, novel poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites were investigated for dexamethasone delivery. A release rate of 25 to 40% over one month, following a zero order profile, was achieved by preferential adsorption of surface active polyacids (poly(acrylic acid), Nafion and HAs) on the hydrogel dispersed microspheres. Environmental scanning electron microscopy investigation on the degradation mechanism of the microspheres pointed towards their slow homogeneous degradation in the PVA hydrogels that was significantly surface-accelerated in the presence of polyacids. The physico-mechanical properties (fluid uptake and Young's modulus) and release of unencapsulated dexamethasone (80 to 100%) from the hydrogels were related to their crystallinity. Significantly, with Young's modulus in the range of 0.1 to 4 MPa, comparable to human sub-dermal tissue, the hydrated gels provide soft and flexible tissue/sensor interface.
Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger
2013-02-01
Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.
Scaling of titanium implants entrains inflammation-induced osteolysis
Eger, Michal; Sterer, Nir; Liron, Tamar; Kohavi, David; Gabet, Yankel
2017-01-01
With millions of new dental and orthopedic implants inserted annually, periprosthetic osteolysis becomes a major concern. In dentistry, peri-implantitis management includes cleaning using ultrasonic scaling. We examined whether ultrasonic scaling releases titanium particles and induces inflammation and osteolysis. Titanium discs with machined, sandblasted/acid-etched and sandblasted surfaces were subjected to ultrasonic scaling and we physically and chemically characterized the released particles. These particles induced a severe inflammatory response in macrophages and stimulated osteoclastogenesis. The number of released particles and their chemical composition and nanotopography had a significant effect on the inflammatory response. Sandblasted surfaces released the highest number of particles with the greatest nanoroughness properties. Particles from sandblasted/acid-etched discs induced a milder inflammatory response than those from sandblasted discs but a stronger inflammatory response than those from machined discs. Titanium particles were then embedded in fibrin membranes placed on mouse calvariae for 5 weeks. Using micro-CT, we observed that particles from sandblasted discs induced more osteolysis than those from sandblasted/acid-etched discs. In summary, ultrasonic scaling of titanium implants releases particles in a surface type-dependent manner and may aggravate peri-implantitis. Future studies should assess whether surface roughening affects the extent of released wear particles and aseptic loosening of orthopedic implants. PMID:28059080
NASA Astrophysics Data System (ADS)
Boltenko, E. A.
2016-10-01
The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).
Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K
2014-02-26
Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to dynamically tune the highly ordered herringbone patterning through mechanical stretching or other actuation makes these wrinkles excellent candidates for tunable multifunctional surfaces properties such as reflectivity, friction, anisotropic liquid flow or boundary layer control.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Atmospheric Science Data Center
2018-04-04
Surface meteorology and Solar Energy (SSE) Data and Information A new POWER home page ... The Release 6.0 Surface meteorology and Solar Energy (SSE) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...
New anti fouling coatings based on conductive polymers.
DOT National Transportation Integrated Search
2009-10-01
Traditional antifouling paints were designed to release toxins from the surface of the paint to prevent micro-organisms attaching to the surface. The toxicity of the released chemical species has been found to be damaging to the marine ecology and po...
Pierce, Todd P; Issa, Kimona; Gilbert, Benjamin T; Hanly, Brian; Festa, Anthony; McInerney, Vincent K; Scillia, Anthony J
2017-06-01
To compare complications, function, pain, and patient satisfaction after conventional open, percutaneous, or arthroscopic release of the extensor origin for the treatment of lateral epicondylitis. A thorough review of 4 databases-PubMed, EBSCOhost, CINAHL (Cumulative Index to Nursing and Allied Health Literature) Plus, and Scopus-was performed to identify all studies that addressed surgical management of lateral epicondylitis. We included (1) studies published between 2000 and 2015 and (2) studies with clearly defined surgical techniques. We excluded (1) non-English-language manuscripts, (2) isolated case reports, (3) studies with fewer than 10 subjects, (4) animal studies, (5) studies with additional adjunctive procedures aside from release of the extensor origin, (6) clinical or systematic review manuscripts, (7) studies with a follow-up period of 6 months or less, and (8) studies in which less than 80% of patients completed follow-up. Each study was analyzed for complication rates, functional outcomes, pain, and patient satisfaction. Thirty reports were identified that included 848 open, 578 arthroscopic, and 178 percutaneous releases. Patients within each release group had a similar age (46 years vs 46 years vs 48 years; P = .9 and P = .4, respectively), whereas there was a longer follow-up time in patients who underwent surgery by an open technique (49.4 months vs 42.6 months vs 23 months, P < .001). There were no differences in complication rates among these techniques (3.8% vs 2.9% vs 3.9%; P = .5 and P = .9, respectively). However, open techniques were correlated with higher surgical-site infection rates than arthroscopic techniques (0.7% vs 0%, P = .04). Mean Disabilities of the Arm, Shoulder and Hand scores were substantially better with both open and arthroscopic techniques than with percutaneous release (19.9 points vs 21.3 points vs 29 points, P < .001). In addition, there was less pain reported in the arthroscopic and percutaneous release groups as opposed to their open counterparts (1.9 points vs 1.4 points vs 1.3 points, P < .0001). There were no differences among the techniques in patient satisfaction rate (93.7% vs 89% vs 88%; P = .08 and P = .07, respectively). Functional outcomes of open and arthroscopic releases may be superior to those of percutaneous release. In addition, patients may report less pain with arthroscopic and percutaneous techniques. Although the risk of complications is similar regardless of technique, patients may be counseled that their risk of infectious complications may be slightly higher with open releases. However, it is important to note that this statistical difference may not necessarily portend noticeable clinical differences. Level IV, systematic review of Level III and IV evidence. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Samshuri, S. F.; Daud, R.; Rojan, M. A.; Mat, F.; Basaruddin, K. S.; Hassan, R.
2017-10-01
This paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith’s energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding.
Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization.
Elnaggar, Yosra S R; El-Massik, Magda A; Abdallah, Ossama Y
2009-10-01
Tamoxifen citrate is an antiestrogen for peroral breast cancer treatment. The drug delivery encounters problems of poor water solubility and vulnerability to enzymatic degradation in both intestine and liver. In the current study, tamoxifen citrate self-nanoemulsifying drug delivery systems (SNEDDS) were prepared in an attempt to circumvent such obstacles. Preliminary screening was carried out to select proper ingredient combinations. All surfactants screened were recognized for their bioactive aspects. Ternary phase diagrams were then constructed and an optimum system was designated. Three tamoxifen SNEDDS were then compared for optimization. The systems were assessed for robustness to dilution, globule size, cloud point, surface morphology and drug release. An optimum system composed of tamoxifen citrate (1.6%), Maisine 35-1 (16.4%), Caproyl 90 (32.8%), Cremophor RH40 (32.8%) and propylene glycol (16.4%) was selected. The system was robust to different dilution volumes and types. It possessed a mean globule size of 150 nm and a cloud point of 80 degrees C. Transmission electron microscopy demonstrated spherical particle morphology. The drug release from the selected formulation was significantly higher than other SNEDDS and drug suspension, as well. Realizing drug incorporation into an optimized nano-sized SNEDD system that encompasses a bioactive surfactant, our results proposed that the prepared system could be promising to improve oral efficacy of the tamoxifen citrate.
Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment
NASA Astrophysics Data System (ADS)
Shitashima, K.; Sakamoto, A.; Maea, Y.
2013-12-01
CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao
2018-01-08
Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.
Wang, Mengjia; Hartman, Philip S; Loni, Armando; Canham, Leigh T; Bodiford, Nelli; Coffer, Jeffery L
2015-06-09
Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.
75 FR 74146 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface... Montana (WB10-069(1)), for permission to use certain data from the Board's 2006 through 2009 (when... handling this waybill sample request. The waybill sample contains confidential railroad and shipper data...
76 FR 6651 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface...-9--12/21/ 10), for permission to use certain data from the Board's 2009 Carload Waybill Samples. A... Administration. The waybill sample contains confidential railroad and shipper data; therefore, if any parties...
75 FR 1118 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface.../17/09), for permission to use certain data from the Board's 1985 through 2008 Carload Waybill Samples... Administration. The waybill sample contains confidential railroad and shipper data; therefore, if any parties...
Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin
2018-03-03
Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.
Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya
2011-01-01
Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155
Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael
2002-01-01
We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888
NASA Astrophysics Data System (ADS)
Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.
2017-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.
Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)
NASA Astrophysics Data System (ADS)
Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad
2017-07-01
Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.
HF-Release of Sacrificial Layers in CMOS-integrated MOEMS structures
NASA Astrophysics Data System (ADS)
Döring, S.; Friedrichs, M.; Pufe, W.; Schulze, M.
2016-10-01
In this paper we will present details of the release process of SiO2 sacrificial layers we use within a multi-level MOEMS process developed by IPMS. Using such sacrificial layers gain a lot of benefits necessary for the production of high-end MOEMS devices like high surface quality and great surface planarity. However the HF-release of the sacrificial layer can be connected with specific issues. We present, which mechanisms are involved in the release process and how knowing them, can be the key for an optimized performance of the device. More-over we will present how to protect the CMOS backplane of our devices from unwanted HF attack during the release.
Cren(ulation)-1,2 Preshot Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2015-12-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.
Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less
Hoffman, John M.; Ebara, Mitsuhiro; Lai, James J.; Hoffman, Allan S.; Folch, Albert
2011-01-01
We report a mechanistic study of how flow and recirculation in a microreactor can be used to optimize the capture and release of stimuli-responsive polymer-protein reagents on stimuli-responsive polymer-grafted channel surfaces. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to poly(dimethyl)siloxane (PDMS) channel walls, creating switchable surfaces where PNIPAAm-protein conjugates would adhere at temperatures above the lower critical solution temperature (LCST) and released below the LCST. A PNIPAAm-streptavidin conjugate that can capture biotinylated antibody-antigen targets was first characterized. The conjugate’s immobilization and release were limited by mass transport to and from the functionalized PNIPAAm surface. Transport and adsorption efficiencies were dependent on the aggregate size of the PNIPAAm-streptavidin conjugate above the LCST and also was dependent on whether the conjugates were heated in the presence of the stimuli-responsive surface or pre-aggregated and then flowed across the surface. As conjugate size increased, through the addition of non-conjugated PNIPAAm, recirculation and mixing were shown to markedly improve conjugate immobilization compared to diffusion alone. Under optimized conditions of flow and reagent concentrations, approximately 60% of a streptavidin conjugate bolus could be captured at the surface and subsequently successfully released. The kinetic release profile sharpness was also strongly improved with recirculation and helical mixing. Finally, the concentration of protein-polymer conjugates could be achieved by continuous conjugate flow into the heated recirculator, allowing nearly linear enrichment of the conjugate reagent from larger volumes. This capability was shown with anti-p24 HIV monoclonal antibody reagents that were enriched over 5-fold using this protocol. These studies provide insight into the mechanism of smart polymer-protein conjugate capture and release in grafted channels and show the potential of this purification and enrichment module for processing diagnostic samples. PMID:20882219
Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.; ...
2017-12-05
Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less
Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping
2015-01-01
We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259
Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.
Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased
2017-06-01
Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.
The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, M B
2008-05-11
Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reactsmore » with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.« less
Silver particle monolayers — Formation, stability, applications.
Oćwieja, Magdalena; Adamczyk, Zbigniew; Morga, Maria; Kubiak, Katarzyna
2015-08-01
The formation of silver particle monolayers at solid substrates in self-assembly processes is thoroughly reviewed. Initially, various silver nanoparticle synthesis routes are discussed with the emphasis focused on the chemical reduction in aqueous media. Subsequently, the main experimental methods aimed at bulk suspension characterization are critically reviewed by pointing out their advantages and limitations. Also, various methods enabling the in situ studies of particle deposition and release kinetics, especially the streaming potential method are discussed. In the next section, experimental data are invoked illustrating the most important features of particle monolayer formation, in particular, the role of bulk suspension concentration, particle size, ionic strength, temperature and pH. Afterward, the stability of monolayers and particle release kinetics are extensively discussed. The results obtained by the ex situ AFM/SEM imaging of particles are compared with the in situ streaming potential measurements. An equivalency of both methods is demonstrated, especially in respect to the binding energy determination. It is shown that these experimental results can be adequately interpreted in terms of the hybrid theoretical approach that combines the bulk transport step with the surface blocking effects derived from the random sequential adsorption model. It is also concluded that the particle release kinetics is governed by the discrete electrostatic interactions among ion pairs on particle and substrate surfaces. The classical theories based on the mean-field (averaged) zeta potential concept proved inadequate. Using the ion pair concept the minor dependence of the binding energy on particle size, ionic strength, pH and temperature is properly explained. The final sections of this review are devoted to the application of silver nanoparticles and their monolayers in medicine, analytical chemistry and catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn
2014-04-01
We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefullymore » establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.« less
RLINE: A Line Source Dispersion Model for Near-Surface Releases
This paper describes the formulation and evaluation of RLINE, a Research LINE source model for near surface releases. The model is designed to simulate mobile source pollutant dispersion to support the assessment of human exposures in near-roadway environments where a significant...
75 FR 517 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface... permission to use certain data from the Board's 2008 Carload Waybill Samples. A copy of this request may be... contains confidential railroad and shipper data; therefore, if any parties object to these requests, they...
76 FR 6842 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface... permission to use certain data from the Board's Carload Waybill Samples. A copy of this request may be obtained from the Office of Economics. The waybill sample contains confidential railroad and shipper data...
76 FR 12412 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface...-TFGen 01 01 (WB11-021), for permission to use certain data from the Board's 2008 and 2009 Carload... contains confidential railroad and shipper data; therefore, if any parties object to these requests, they...
Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.
2016-01-01
ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066
Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T
2007-01-01
A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.
On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys
NASA Astrophysics Data System (ADS)
Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín
2018-01-01
The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less
Looking and homing: how displaced ants decide where to go.
Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang
2014-01-01
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s(-1) and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information.
NASA Astrophysics Data System (ADS)
Poje, Andrew C.; Ã-zgökmen, Tamay M.; Bogucki, Darek J.; Kirwan, A. D.
2017-02-01
Using two-point velocity and position data from the near-simultaneous release of O(100) GPS-tracked surface drifters in the northern Gulf of Mexico, we examine the applicability of classical turbulent scaling laws to upper ocean velocity fields. The dataset allows direct estimates of both velocity structure functions and the temporal evolution of the distribution of particle pair separations. On 100 m-10 km spatial scales, and time scales of order 1-10 days, all metrics of the observed surface fluctuations are consistent with standard Kolmogorov turbulence theory in an energy cascade inertial-range regime. The sign of the third-order structure function is negative and proportional to the separation distance for scales ≲10 km where local, fluctuating Rossby numbers are found to be larger than 0.1. The scale-independent energy dissipation rate, or downscale spectral flux, estimated from Kolmogorov's 4/5th law in this regime closely matches nearby microscale dissipation measurements in the near-surface. In contrast, similar statistics derived from a like-sized set of synthetic drifters advected by purely geostrophic altimetric AVISO data agree well with Kolmogorov-Kraichnan scaling for 2D turbulence in the forward enstrophy cascade range.
Raman, Namrata; Lee, Myung-Ryul
2014-01-01
Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale ‘polyelectrolyte multilayers’ (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700 nm thick fabricated from poly-L-glutamic acid (PGA) and poly-L-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4 months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C albicans and substantially reduced the formation of C albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to exploit these new agents in other biomedical and personal care applications in which fungal infections are endemic. PMID:24862322
HONO fluxes from soil surfaces: an overview
NASA Astrophysics Data System (ADS)
Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina
2016-04-01
Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.
Impact of nitinol stent surface processing on in-vivo nickel release and biological response.
Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon
2018-05-01
Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed this knowledge gap by implanting single and overlapped nitinol stents with different surface finishes to assess systemic impact on minipigs (i.e. serum and urine nickel levels, liver and kidney function, immune and blood count) over the 6 month implantation period. In addition, nickel levels and histopathology in stented arteries were analyzed on explant to determine relationships between surface processing and local adverse tissue reactions. The findings presented here highlight the importance of surface processing on in-vivo nickel release and subsequent impact on local biological response for nitinol implants. Published by Elsevier Ltd.
Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall
2013-04-01
Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.
Beatty, Wandy L.; Russell, David G.
2000-01-01
Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome. PMID:11083824
NASA Astrophysics Data System (ADS)
Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy
2012-12-01
A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.
Concentration dependences of the physicochemical properties of a water-acetone system
NASA Astrophysics Data System (ADS)
Fedyaeva, O. A.; Poshelyuzhnaya, E. G.
2017-01-01
Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.
Statistics for laminar flamelet modeling
NASA Technical Reports Server (NTRS)
Cant, R. S.; Rutland, C. J.; Trouve, A.
1990-01-01
Statistical information required to support modeling of turbulent premixed combustion by laminar flamelet methods is extracted from a database of the results of Direct Numerical Simulation of turbulent flames. The simulations were carried out previously by Rutland (1989) using a pseudo-spectral code on a three dimensional mesh of 128 points in each direction. One-step Arrhenius chemistry was employed together with small heat release. A framework for the interpretation of the data is provided by the Bray-Moss-Libby model for the mean turbulent reaction rate. Probability density functions are obtained over surfaces of the constant reaction progress variable for the tangential strain rate and the principal curvature. New insights are gained which will greatly aid the development of modeling approaches.
Heat generation in aircraft tires under free rolling conditions
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1982-01-01
A method was developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions of the wheel and runway surface. Comparison with data obtained with buried thermocouples in tires shows good agreement.
Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery.
Kim, Seungil; Chen, Yufei; Ho, Emmanuel A; Liu, Song
2017-01-01
To provide better protection for women against sexually transmitted infections, on-demand intravaginal drug delivery was attempted by synthesizing reversibly pH-sensitive polyether-polyurethane copolymers using poly(ethylene glycol) (PEG) and 1,4-bis(2-hydroxyethyl)piperazine (HEP). Chemical structure and thermo-characteristics of the synthesized polyurethanes were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 1 H-nuclear magnetic resonance ( 1 H-NMR), and melting point testing. Membranes were cast by solvent evaporation method using the prepared pH-sensitive polyurethanes. The impact of varying pH on membrane swelling and surface morphology was evaluated via swelling ratio change and scanning electron microscopy (SEM). The prepared pH-responsive membranes showed two times higher swelling ratio at pH 4 than pH 7 and pH-triggered switchable surface morphology change. The anionic anti-inflammatory drug diclofenac sodium (NaDF) was used as a model compound for release studies. The prepared pH-responsive polyurethane membranes allowed continuous NaDF release for 24h and around 20% release of total NaDF within 3h at pH 7 but little-to-no drug release at pH 4.5. NaDF permeation across the prepared membranes demonstrated a reversible pH-responsiveness. The pH-responsive polyurethane membranes did not show any noticeable negative impact on vaginal epithelial cell viability or induction of pro-inflammatory cytokine production compared to controls. Overall, the non-cytotoxic HEP-based pH-responsive polyurethane demonstrated its potential to be used in membrane-based implants such as intravaginal rings to achieve on-demand "on-and-off" intravaginal drug delivery. A reversible and sharp switch between "off" and "on" drug release is achieved for the first time through new pH-sensitive polyurethane membranes, which can serve as window membranes in reservoir-type intravaginal rings for on-demand drug delivery to prevent sexually transmitted infections (STIs). Close to zero drug release occurs at the normal vaginal pH (4.5) for minimal side effects. Drug release is only triggered by elevation of pH to 7 during heterosexual intercourse. The reversibly sharp and fast "on-and-off" switch arises from the creative incorporation of a pH-sensitive monomer in the soft segment of polyurethane. This polyurethane biomaterial holds great potential to better protect women who are generally at higher risk and are more vulnerable to STIs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Enzymatic Detachment of Staphylococcus epidermidis Biofilms
Kaplan, Jeffrey B.; Ragunath, Chandran; Velliyagounder, Kabilan; Fine, Daniel H.; Ramasubbu, Narayanan
2004-01-01
The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by releasing extracellular slime from S. epidermidis cells. Precoating surfaces with the enzyme prevented S. epidermidis biofilm formation. Our findings demonstrate that biofilm-releasing enzymes can exhibit broad-spectrum activity and that these enzymes may be useful as antibiofilm agents. PMID:15215120
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Sewart, Rene; Land, Kevin; Roux, Pieter; Gärtner, Claudia; Becker, Holger
2016-03-01
Lab-on-a-chip devices are often applied to point-of-care diagnostic solutions as they are low-cost, compact, disposable, and require only small sample volumes. For such devices, various reagents are required for sample preparation and analysis and, for an integrated solution to be realized, on-chip reagent storage and automated introduction are required. This work describes the implementation and characterization of effective liquid reagent storage and release mechanisms utilizing blister pouches applied to various point-of-care diagnostic device applications. The manufacturing aspects as well as performance parameters are evaluated.
The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation
NASA Technical Reports Server (NTRS)
Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.
2012-01-01
Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.
Nitrogen release from rock and soil under simulated field conditions
Holloway, J.M.; Dahlgren, R.A.; Casey, W.H.
2001-01-01
A laboratory study was performed to simulate field weathering and nitrogen release from bedrock in a setting where geologic nitrogen has been suspected to be a large local source of nitrate. Two rock types containing nitrogen, slate (1370 mg N kg-1) and greenstone (480 mg N kg-1), were used along with saprolite and BC horizon sand from soils derived from these rock types. The fresh rock and weathered material were used in batch reactors that were leached every 30 days over 6 months to simulate a single wet season. Nitrogen was released from rock and soil materials at rates between 10-20 and 10-19 mo1 N cm-2 s-1. Results from the laboratory dissolution experiments were compared to in situ soil solutions and available mineral nitrogen pools from the BC horizon of both soils. Concentrations of mineral nitrogen (NO3- + NH4+) in soil solutions reached the highest levels at the beginning of the rainy season and progressively decreased with increased leaching. This seasonal pattern was repeated for the available mineral nitrogen pool that was extracted using a KCl solution. Estimates based on these laboratory release rates bracket stream water NO3-N fluxes and changes in the available mineral nitrogen pool over the active leaching period. These results confirm that geologic nitrogen, when present, may be a large and reactive pool that may contribute as a non-point source of nitrate contamination to surface and ground waters. ?? 2001 Elsevier Science B.V. All rights reserved.
News release from February 10, 2005 announcing a memorandum of understanding (MOU) that offers a joint framework to improve permit application procedures for surface coal mining operations that place dredged or fill material in waters of the United States.
77 FR 322 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface... permission to use certain data from the Board's 2010 Carload Waybill Sample. A copy of this request may be... shipper data; therefore, if any parties object to these requests, they should file their objections with...
76 FR 13447 - Release of Waybill Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Release of Waybill Data The Surface... (WB468-12-- 3/2/11), for permission to use certain data from the Board's 2009 Carload Waybill Sample. A... confidential railroad and shipper data; therefore, if any parties object to these requests, they should file...
Moradigaravand, Danesh; Gouliouris, Theodore; Ludden, Catherine; Reuter, Sandra; Jamrozy, Dorota; Blane, Beth; Naydenova, Plamena; Judge, Kim; H Aliyu, Sani; F Hadjirin, Nazreen; A Holmes, Mark; Török, Estée; M Brown, Nicholas; Parkhill, Julian; Peacock, Sharon
2018-03-02
There is growing evidence that patients with Clostridiumdifficile-associated diarrhoea often acquire their infecting strain before hospital admission. Wastewater is known to be a potential source of surface water that is contaminated with C. difficile spores. Here, we describe a study that used genome sequencing to compare C. difficile isolated from multiple wastewater treatment plants across the East of England and from patients with clinical disease at a major hospital in the same region. We confirmed that C. difficile from 65 patients were highly diverse and that most cases were not linked to other active cases in the hospital. In total, 186 C. difficile isolates were isolated from effluent water obtained from 18 municipal treatment plants at the point of release into the environment. Whole genome comparisons of clinical and environmental isolates demonstrated highly related populations, and confirmed extensive release of toxigenic C. difficile into surface waters. An analysis based on multilocus sequence types (STs) identified 19 distinct STs in the clinical collection and 38 STs in the wastewater collection, with 13 of 44 STs common to both clinical and wastewater collections. Furthermore, we identified five pairs of highly similar isolates (≤2 SNPs different in the core genome) in clinical and wastewater collections. Strategies to control community acquisition should consider the need for bacterial control of treated wastewater.
NASA Astrophysics Data System (ADS)
Fischer, T.; Matyska, C.; Heinicke, J.
2017-02-01
The West Bohemia/Vogtland region is characterized by earthquake swarm activity and degassing of CO2 of mantle origin. A fast increase of CO2 flow rate was observed 4 days after a ML 3.5 earthquake in May 2014 in the Hartoušov mofette, 9 km from the epicentres. During the subsequent 150 days the flow reached sixfold of the original level, and has been slowly decaying until present. Similar behavior was observed during and after the swarm in 2008 pointing to a fault-valve mechanism in long-term. Here, we present the results of simulation of gas flow in a two dimensional model of Earth's crust composed of a sealing layer at the hypocentre depth which is penetrated by the earthquake fault and releases fluid from a relatively low-permeability lower crust. This simple model is capable of explaining the observations, including the short travel time of the flow pulse from 8 km depth to the surface, long-term flow increase and its subsequent slow decay. Our model is consistent with other analyse of the 2014 aftershocks which attributes their anomalous character to exponentially decreasing external fluid force. Our observations and model hence track the fluid pressure pulse from depth where it was responsible for aftershocks triggering to the surface where a significant long-term increase of CO2 flow started 4 days later.
Moradigaravand, Danesh; Gouliouris, Theodore; Ludden, Catherine; Reuter, Sandra; Jamrozy, Dorota; Blane, Beth; Naydenova, Plamena; Judge, Kim; H. Aliyu, Sani; F. Hadjirin, Nazreen; A. Holmes, Mark; Török, Estée; M. Brown, Nicholas; Parkhill, Julian; Peacock, Sharon
2018-01-01
There is growing evidence that patients with Clostridiumdifficile-associated diarrhoea often acquire their infecting strain before hospital admission. Wastewater is known to be a potential source of surface water that is contaminated with C. difficile spores. Here, we describe a study that used genome sequencing to compare C. difficile isolated from multiple wastewater treatment plants across the East of England and from patients with clinical disease at a major hospital in the same region. We confirmed that C. difficile from 65 patients were highly diverse and that most cases were not linked to other active cases in the hospital. In total, 186 C. difficile isolates were isolated from effluent water obtained from 18 municipal treatment plants at the point of release into the environment. Whole genome comparisons of clinical and environmental isolates demonstrated highly related populations, and confirmed extensive release of toxigenic C. difficile into surface waters. An analysis based on multilocus sequence types (STs) identified 19 distinct STs in the clinical collection and 38 STs in the wastewater collection, with 13 of 44 STs common to both clinical and wastewater collections. Furthermore, we identified five pairs of highly similar isolates (≤2 SNPs different in the core genome) in clinical and wastewater collections. Strategies to control community acquisition should consider the need for bacterial control of treated wastewater. PMID:29498619
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B; Lindau, Manfred; Holowka, David A; Baird, Barbara A; Kan, Edwin C
2015-12-21
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.
Fisk, Gregory G.; Ferguson, S.A.; Rankin, D.R.; Wirt, Laurie
1994-01-01
In June 1988, The U.S. Geological Survey began a 4-year study of the occurrence and movement of radionuclides and other chemical constituents in ground water and surface water in the Little Colorado River basin in Arizona and New Mexico. Radionuclides and other chemical constituents occur naturally in water, rock, and sediment throughout the region; however, discharge of mine--dewatering effluents released by mining operations increased the quantity of radionuclides and other chemical contaminants. Additionally, in 1979, the failure of a tailings-pond dike resulted in the largest known single release of water contaminated by uranium tailings in the United States. Ground-water data and surface-water data were collected from July 1988 through September 1991. Sixty-nine wells were sampled, and collected data include well- construction information, lithologic logs, water levels and chemical analysis of water samples. The wells include 31 wells drilled by the U.S. Geological Survey, 7 wells drilled by the New Mexico Environment Department, 11 private wells, and 20 temporary drive-point wells; in addition, 1 spring was sampled. Data from nine continual-record and five partial-record stxeamflow-gaging stations include daily mean discharge, daily mean suspended-sediment concentration and discharge, and chemical analysis for discrete water and sediment samples. Precipitation data also were collected at the nine continual-record stations.
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B.; Lindau, Manfred; Holowka, David A.; Baird, Barbara A.; Kan, Edwin C.
2015-01-01
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry. PMID:26686301
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. From a vantage point above, a worker observes the Deep Impact spacecraft exposed after removal of the canister and protective cover. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Golomb, D; Pennell, S; Ryan, D; Barry, E; Swett, P
2007-07-01
The release into the deep ocean of an emulsion of liquid carbon dioxide-in-seawater stabilized by fine particles of pulverized limestone (CaCO3) is modeled. The emulsion is denser than seawater, hence, it will sink deeper from the injection point, increasing the sequestration period. Also, the presence of CaCO3 will partially buffer the carbonic acid that results when the emulsion eventually disintegrates. The distance that the plume sinks depends on the density stratification of the ocean, the amount of the released emulsion, and the entrainment factor. When released into the open ocean, a plume containing the CO2 output of a 1000 MW(el) coal-fired power plant will typically sink hundreds of meters below the injection point. When released from a pipe into a valley on the continental shelf, the plume will sink about twice as far because of the limited entrainment of ambient seawater when the plume flows along the valley. A practical system is described involving a static mixer for the in situ creation of the CO2/seawater/pulverized limestone emulsion. The creation of the emulsion requires significant amounts of pulverized limestone, on the order of 0.5 tons per ton of liquid CO2. That increases the cost of ocean sequestration by about $13/ ton of CO2 sequestered. However, the additional cost may be compensated by the savings in transportation costs to greater depth, and because the release of an emulsion will not acidify the seawater around the release point.
Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad
2015-01-01
This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.
Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912
Cao, Qing-Ri; Kim, Tae-Wan; Lee, Beom-Jin
2007-07-18
Two types of the carnauba wax-based lipophilic matrix tablet using spray-dried granules (SDT) or directly compressible powdered mixtures (DCT) were prepared for sustained release. The model drug was a highly water-soluble potassium citrate and loaded about 74% of the total tablet weight. The SDT slowly eroded and disintegrated during the release study without showing sustained release when the hydrophilic excipients were added. In contrast, the DCT was more efficient for sustained release. The release rate decreased with increasing carnauba wax concentration. In particular, the sustained release rate was markedly pronounced when the lipophilic stearyl alcohol and stearic acid were combined with the carnauba wax. The surface of the intact DCT appeared to be smooth and rusty. The DCT rose to the surface from the bottom of the vessel during the release test, and numerous pores and cracks with no signs of disintegration were also observed after the release test. The release profile was dependent on the formulation composition and preparation method of the matrix tablet. Diffusion-controlled leaching through the channels of the pores and cracks of the lipophilic matrix tablet (DCT) is a key to the sustained release.
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Surface currents of Lake Michigan, 1931 and 1932
Van Oosten, John
1963-01-01
Seven hundred fourty-five bottles containing post cards for recording of information were released at stations in Lake Michigan; 283 were released June 17 to August 17, 1931, south of a line from Frankfort, Michigan, to Algoma, Wisconsin, and 462 during May 9 to August 25, 1932, both south and north of that line. One hundred eighty-six bottles or 65.7 percent of those released in 1931, 331 bottles or 71.6 percent of 1932 releases, and 517 bottles or 69.4 percent of releases in the 2 years were recovered. Recoveries of bottles from both years indicated that the surface currents were somewhat variable, but their general direction was from west to east and predominately northeast in 1931 and northeast and southeast in 1932.
40 CFR 61.24 - Annual reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including their location, diameter, flow rate, effluent temperature and release height. (5) A description of...) Distances from the points of release to the nearest residence, school, business or office and the nearest...
NASA Astrophysics Data System (ADS)
Sasikumar, Swamiappan
2013-09-01
Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier. Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier. The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fluid, at 37.3°C. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic λ max of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.
Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.
Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla
2016-01-15
Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.
The surface chemistry of multi-oxide silicates
NASA Astrophysics Data System (ADS)
Oelkers, Eric H.; Golubev, Sergey V.; Chairat, Claire; Pokrovsky, Oleg S.; Schott, Jacques
2009-08-01
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ˜8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ˜1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ˜3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ˜4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional 'internal' adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pH IEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO 2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.
Yang, Zhihong; Xie, Changsheng; Xia, Xianping; Cai, Shuizhou
2008-11-01
To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn(2+) release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn(2+) release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn(2+) release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn(2+) release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn(2+) at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 mum. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.
Mannermaa, J P; Muttonen, E; Yliruusi, J; Juppo, A
1992-01-01
The effect of sterilization on the number of particles released from five different types of rubber stoppers, as well as on their surface roughness and elemental composition before and after sterilization is described. The stoppers were immersed in 200 ml of 0.9% sodium chloride solution in conical flasks. The number of particles released into the sodium chloride solution was measured by Coulter Counter. The surface roughness and the elemental composition of the stoppers were determined by SEM/EDX. All measurements were made both before and after sterilization at 121 degrees C to F0 15 mins. The number of particles released from a stopper during sterilization varies considerably between different stoppers and even between different batches of the same stopper. The only non-siliconized stopper in this study performed well. The absence of surface siliconization may have contributed to this performance. The scanning electron micrographs revealed well the differences in the surface roughness of the stoppers. The sterilization generally increases the surface roughness of the samples. The x-ray microanalysis revealed that the elemental composition of the stoppers may vary not only between different types of stoppers but also between different batches of the same stopper.
Self-Replenishing Vascularized Fouling-Release Surfaces
Howell, Caitlin; Vu, Thy L.; Lin, Jennifer J.; ...
2014-08-13
Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the selfreplenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectiousmore » bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.« less
Development of a Model for the Heat Release Rate of Wood. A Status Report.
1985-05-01
K) *contraction factor L effective heat of gasification (kJ/kg) (positive) Lv latent heat of vaporization of water (kJ/kg) (positive) m mass (kg) M...designates the slice bounded by the rear surface 0 ambient or original *0 oxygen R radiation rel release S front surface of specimen Vol volatiles ix w water ...calorimeter. Along the other pathway, char is formed with the release of water and other volatiles having low heats of combustion. The effective heat of
Modeling Reconnection-Driven Solar Polar Jets with Gravity and Wind
NASA Astrophysics Data System (ADS)
Karpen, Judith T.; DeVore, C. R.; Antiochos, S. K.
2013-07-01
Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.Abstract (2,250 Maximum Characters): Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.
NASA Astrophysics Data System (ADS)
Carpenter, Alexis Wells
Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.
Juhász, Kata; Thuenauer, Roland; Spachinger, Andrea; Duda, Ernő; Horváth, Ibolya; Vígh, László; Sonnleitner, Alois; Balogi, Zsolt
2013-01-01
Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma. PMID:22920897
Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Camino-Sánchez, F J; Blanc, R; Navalón, A; Pérez-Trujillo, J P; Vílchez, J L
2014-02-15
Alcohol sulfates (AS) and alcohol ethoxysulfates (AES) are all High Production Volume and 'down-the-drain' chemicals used globally in detergent and personal care products, resulting in low levels ultimately released to the environment via wastewater treatment plant effluents. They have a strong affinity for sorption to sediments. Almost 50% of Tenerife Island surface area is environmentally protected. Therefore, determination of concentration levels of AS/AES in marine sediments near wastewater discharge points along the coast of the Island is of interest. These data were obtained after pressurized liquid extraction and liquid chromatography-tandem mass spectrometry analysis. Short chains of AES and especially of AS dominated the homologue distribution for AES. The Principal Components Analysis was used. The results showed that the sources of AS and AES were the same and that both compounds exhibit similar behavior. Three different patterns in the distribution for homologues and ethoxymers were found. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Unified Lunar Control Network 2005
Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.
2006-01-01
This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.
Eddy Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application
NASA Astrophysics Data System (ADS)
Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.
2013-04-01
A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into warm-core Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in eddies met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during warm water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped core of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve the release algorithm, still based on ocean conditions measured only at one depth. We found that much better performance could have been achieved with an algorithm that detected IRs based on a temperature difference from a long-term running mean rather than a fixed temperature threshold. This highlights the challenge of designing an appropriate release strategy with limited a priori information on the amplitude and time scales of the background variability.
NASA Astrophysics Data System (ADS)
Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.
2013-12-01
It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (HyTES), retrievals which interrogate spectral features in the 7.5 to 8.5 μm region. Here we discuss preliminary results from the JPL activities during the RMOTC controlled release experiment, including capabilities of airborne sensors for total columnar atmospheric methane detection and comparison to results from ground measurements and dispersion models. Potential application areas for these remote sensing technologies include assessment of anthropogenic and natural methane sources over wide spatial scales that represent significant unconstrained factors to the global methane budget.
Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei
2016-05-01
Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Initial Inflammatory Response to Bioactive Implants Is Characterized by NETosis
Stoiber, Walter; Hannig, Matthias; Klappacher, Michaela; Hartl, Dominik
2015-01-01
Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release. Further studies showed that albumin or acetylsalicylic acid had no significant effects on the inflammatory response to SLA surfaces. In contrast to bioinert materials, which do not osseointegrate, the bioactivity of SLA surfaces is coupled with the ability to release NETs. Further investigations are necessary for clarifying the role of NETosis for osseointegration. PMID:25798949
Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers
NASA Astrophysics Data System (ADS)
Sun, Baichuan; Barnard, Amanda S.
2016-07-01
Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03068h
X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende
NASA Astrophysics Data System (ADS)
Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.
2000-04-01
An Arthrobacter species capable of extracting Fe from hornblende was isolated from a soil from the Adirondacks, NY (USA). This bacteria isolate, used in batch experiments with hornblende, accelerated the release of Fe from hornblende without measurably affecting Al release. The isolate produces both low molecular weight organic acids (LMWOA) and a catecholate siderophore. Polished hornblende (glass and crystal) discs were analyzed with X-ray photoelectron spectroscopy (XPS) before and after incubation with growing Arthrobacter sp. to investigate whether the bacteria caused a distinguishable chemical signature on the upper 100 Å of mineral surface. After removal of the arthrobacter grown on hornblende crystal or glass substrates using lysozyme, XPS revealed surface depletion of Fe for samples grown for several days in buffered (crystal) and unbuffered (crystal and glass) media. Fe/Si ratios of hornblende surfaces dissolved under biotic conditions are significantly lower than Fe/Si ratios on surfaces dissolved under abiotic conditions for similar amounts of time. Enhanced Fe release and the formation of Fe-depleted surfaces is inferred to be caused by catechol complexation at the mineral surface. Because natural siderophore was not isolated in sufficient quantities to run bacteria-free leaching experiments, parallel investigations were run with a commercially available siderophore (desferrioxamine B). Desferrioxamine B was observed to enhance release of Fe, Si, and Al from hornblende both with and without added bacteria. Formation of desferrioxamine-Fe surface complexes were probed by studying the multiple splitting and shift in intensities of the N 1s line analyzed by XPS on siderophore ± Fe on gold surfaces and siderophore + hornblende crystal surfaces. Based upon the observed formation of an hydroxamate (desferrioxamine) surface complex on hornblende, we infer that catecholate siderophores, such as those produced by the arthrobacter, also complex on the hornblende surface. Surface complexation is favored because of the extremely high association constants for siderophore + Fe(III). X-ray photoelectron spectroscopic data is therefore consistent with a model wherein enhanced Fe release by these bacteria or desferrioxamine B is caused by Fe-siderophore complexation at the silicate surface. Such complexation presumably weakens bonds between the Fe and the oxide lattice, causing enhanced Fe leaching and an Fe-depleted surface. Some leaching may also be due to LMWOA, although this is interpreted to be of secondary importance.
NASA Astrophysics Data System (ADS)
Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.
2016-12-01
Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to Fe(III) at pH's 2.0 and 7.0. This indicates that bitumen can play a large role in Fe oxidation and speciation in the subsurface. This work shows that shale mineralogy has a significant impact on the morphology and phases of Fe(III) precipitates in the subsurface which in turn can significantly impact subsurface solution flow.
Influence of Surface Coating on Metal Ion Release: Evaluation in Patients With Metal Allergy.
Thomas, Peter; Weik, Thomas; Roider, Gabriele; Summer, Burkhard; Thomsen, Marc
2016-05-01
Nickel, chromium, and cobalt in stainless steel and Cobalt-chrome-molybdenum (CoCrMo) alloys may induce allergy. The objectives of this study were to evaluate surface coating regarding ion release, patch test reactivity, and arthroplasty performance. Materials and methods included patch test in 31 patients with metal allergy and 30 patients with no allergy to stainless steel and CoCrMo disks that are uncoated or coated by titanium nitride/zirconium nitride (TiN/ZrN). Assessment include atomic absorption spectrometry of released nickel, cobalt, and chromium from the disks after exposure to distilled water, artificial sweat and culture medium. Results showed that both coatings reduced the nickel and chromium release from stainless steel and CoCrMo disks and mostly the cobalt release from the disks (maximally 11.755 µg/cm(2)/5 d to 1.624 by Ti-N and to 0.442 by ZrN). Six of the 31 patients with metal allergy reacted to uncoated disks, but none reacted to the coated disks. The current authors report on exemplary patients with metal allergy who had symptom relief by revision with surface-coated arthroplasty. The authors concluded that the surface coating may prevent cutaneous and peri-implant allergic reactions. [Orthopedics. 2016; 39(3):S24-S30.]. Copyright 2016, SLACK Incorporated.
Modeling MIC copper release from drinking water pipes.
Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R
2014-06-01
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.
Detection of the urban release of a bacillus anthracis simulant by air sampling.
Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M
2014-01-01
In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.
Göhler, Daniel; Stintz, Michael; Hillemann, Lars; Vorbau, Manuel
2010-01-01
Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles. PMID:20696941
Toxic Release Inventory (TRI) (2017 EIC)
Focusing on air releases, explore tried and true access points along with new ways to access the data including the new P2 tool (currently available) and the TRI Analyzer tool (schedule to go public summer 2015)
NASA Astrophysics Data System (ADS)
Wang, I. T.
A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.
NASA Technical Reports Server (NTRS)
Mautner, M. N.; Leonard, R. L.; Deamer, D. W.
1995-01-01
Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.
Active adaptive management for reintroduction of an animal population
Runge, Michael C.
2013-01-01
Captive animals are frequently reintroduced to the wild in the face of uncertainty, but that uncertainty can often be reduced over the course of the reintroduction effort, providing the opportunity for adaptive management. One common uncertainty in reintroductions is the short-term survival rate of released adults (a release cost), an important factor because it can affect whether releasing adults or juveniles is better. Information about this rate can improve the success of the reintroduction program, but does the expected gain offset the costs of obtaining the information? I explored this question for reintroduction of the griffon vulture (Gyps fulvus) by framing the management question as a belief Markov decision process, characterizing uncertainty about release cost with 2 information state variables, and finding the solution using stochastic dynamic programming. For a reintroduction program of fixed length (e.g., 5 years of releases), the optimal policy in the final release year resembles the deterministic solution: release either all adults or all juveniles depending on whether the point estimate for the survival rate in question is above or below a specific threshold. But the optimal policy in the earlier release years 1) includes release of a mixture of juveniles and adults under some circumstances, and 2) recommends release of adults even when the point estimate of survival is much less than the deterministic threshold. These results show that in an iterated decision setting, the optimal decision in early years can be quite different from that in later years because of the value of learning.
[Preparation of ondansetron hydrochloride osmotic pump tablets and their in vitro drug release].
Zheng, Hang-sheng; Bi, Dian-zhou
2005-12-01
To prepare ondansetron hydrochloride osmotic pump tablets (OND-OPT) and investigate their in vitro drug release behavior. OND-OPT were prepared with a single punch press and pan coating technique. Osmotic active agents and plasticizer of coating film were chosen by drug release tests. The effects of the number, position and direction of drug release orifice on release behavior were investigated. The relation between drug release duration and thickness of coating film, PEG content of coating film and size of drug release orifice was established by uniform design experiment. The surface morphological change of coating film before and after drug release test was observed by scanning electron microscopy. The osmotic pumping release mechanism of OND-OPT was confirmed by drug release test with high osmotic pressure medium. Lactose-mannitol (1:2) was chosen as osmotic active agents and PEG400 as plasticizer of coating film. The direction of drug release orifice had great effect on the drug release of OND-OPT without HPMC, and had no effect on the drug release of OND-OPT with HPMC. The OND-OPT with one drug release orifice at the centre of the coating film on one surface of tablet released their drug with little fluctuation. The drug release duration of OND-OPT correlated with thickness of coating film and PEG content of coating film, and didn't correlate significantly with the size of drug release orifice. OND-OPT released their drug with osmotic pumping mechanism predominantly. OND-OPT are able to realize ideal controlled drug release.
Zhu, Xiaojing; Zhang, Hui; Zhang, Xinchun; Ning, Chengyun; Wang, Yan
2017-09-26
To fabricate a sustained-release delivery system of bone morphogenetic protein (BMP-2) on titanium surface, explore the effect of BMP-2 concentration on the loading/release behavior of BMP-2 and evaluate the cell compatibility of the system in vitro, pure titanium specimens were immersed into supersaturated calcium phosphate solutions (SCP) containing 4 different concentrations of BMP-2: 0, 50, 100, 200 and 400 ng/mL. Biomimetic calcium phosphate coating was formed on titanium surface and BMP-2 was incorporated into the coating through co-deposition. The release profile of BMP-2 suggested that BMP-2 were delivered sustainably up to 20 days. CCK-8 and ALP assay showed that 200 group and 400 ng/mL BMP-2 group have significant effect on promoting MC3T3-E1 cell proliferation and differentiation. The BMP-2 incorporated into the hybrid coating released in a sustained manner and significantly promoted the proliferation and differentiation of MC3T3-E1 on the titanium surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimasa, Y.; Ichimasa, M.; Jiang, H.
1995-10-01
The oxidation activity of molecular tritium (HT) in soils and vegetation collected in experimental plots during the 1994 chronic HT release experiment at Chalk River was determined in vitro laboratory experiments after the release. HT oxidation activity was highest in surface soils in the natural plot, about 3-4 times that in soils in the cultivated plots. HT oxidation activity in weeds and Komatsuna leaves was about 2 and 0.4% of that in the cultivated soil, respectively. The number of HT-oxidizing bacteria isolated from soils was highest in the surface soil (0-5 cm) in the natural plot. The viable cell numbersmore » in surface soils in the cultivated and natural plots were almost the same. The total occurrence rates of HT-oxidizing bacteria in the surface soils were 22% in the natural plot, and 7.5% in the cultivated plot. The occurrence rates of HT-oxidizing airborne bacteria during the release on two culture media were 4.2 and 1.9%. 16 refs., 3 figs., 3 tabs.« less
Zhang, Licheng; Zhang, Lihai; Yang, Yun; Zhang, Wei; Lv, Houchen; Yang, Fei; Lin, Changjian; Tang, Peifu
2016-07-01
The antibacterial properties of super-hydrophobic silver (Ag) on implant surface have not yet to be fully illuminated. In our study, we investigate the protective effects of super-hydrophobic coating of silver/titanium dioxide (Ag/TiO2 ) nanotubes against bacterial pathogens, as well as its pattern of Ag release. Ag/TiO2 nanotubes are prepared by a combination of electrochemical anodization and pulse electrodeposition. The super-hydrophobic coating is prepared by modifying the surface of Ag/TiO2 nanotubes with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES). Surface features and Ag release are examined by SEM, X-ray photoelectron spectroscopy, contact-angle measurement, and inductively coupled plasma-mass spectrometry (ICP-MS). The antibacterial activity of super-hydrophobic coating Ag/TiO2 nanotubes is investigated both in vitro and in vivo. Consequently, the super-hydrophobic coating on Ag/TiO2 nanotubes shows a regularly arranged structure; and nano-Ag particles (10-30 nm) are evenly distributed on the surface or inside the nanotubes. The contact angles of water on the super-hydrophobic coating Ag/TiO2 nanotubes are all above 150°. In addition, the super-hydrophobic character displays a certain conserved effect that contributes to the sustained release of Ag. The super-hydrophobic Ag/TiO2 nanotubes are also effective in inhibiting bacterial adhesion, killing the adhering bacteria and preventing postoperative infection in rabbits. Therefore, it is expected that the super-hydrophobic Ag/TiO2 nanotubes which can contain the release of Ag, leading to stable release, may show a consistent surface antibacterial capability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1004-1012, 2016. © 2015 Wiley Periodicals, Inc.
Romanowicz, Genevieve E.; He, Weilue; Nielsen, Matthew; Frost, Megan C.
2013-01-01
Nitric oxide (NO) is an ubiquitous signaling molecule of intense interest in many physiological processes. Nitric oxide is a highly reactive free radical gas that is difficult to deliver with precise control over the level and timing that cells actually experience. We describe and characterize a device that allows tunable fluxes and patterns of NO to be generated across the surface upon which cells are cultured. The system is based on a quartz microscope slide that allows for controlled light levels to be applied to a previously described photosensitive NO-releasing polydimethylsiloxane (PDMS). Cells are cultured in separate wells that are either NO-releasing or a chemically similar PDMS that does not release NO. Both wells are then top coated with DowCorning RTV-3140 PDMS and a polydopamine/gelatin layer to allow cells to grow in the culture wells. When the waveguide is illuminated, the surface of the quartz slide propagates light such that the photosensitive polymer is evenly irradiated and generates NO across the surface of the cell culture well and no light penetrates into the volume of the wells where cells are growing. Mouse smooth muscle cells (MOVAS) were grown in the system in a proof of principle experiment, whereby 60% of the cells were present in the NO-releasing well compared to control wells after 17 h. The compelling advantage of illuminating the NO-releasing polymers with the waveguide system is that light can be used to tunably control NO release while avoiding exposing cells to optical radiation. This device provides means to quantitatively control the surface flux, timing and duration of NO cells experience and allows for systematic study of cellular response to NO generated at the cell/surface interface in a wide variety of studies. PMID:24024168
Iron and copper release in drinking-water distribution systems.
Shi, Baoyou; Taylor, James S
2007-09-01
A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.
Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal Structures
Doré, Andrew S.; Bortolato, Andrea; Hollenstein, Kaspar; Cheng, Robert K.Y.; Read, Randy J.; Marshall, Fiona H.
2017-01-01
The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Cor-ticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the trans-membrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hex-agonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs. PMID:28183242
Pino-Ramos, Victor H.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2017-01-01
Abstract A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli. PMID:29491777
NASA Astrophysics Data System (ADS)
Dupas, Rémi; Tittel, Jörg; Jordan, Phil; Musolff, Andreas; Rode, Michael
2018-05-01
A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995-September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
Fluoride-releasing restorative materials and secondary caries.
Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine
2003-03-01
Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.
Lietz-Kijak, Danuta; Kopacz, Łukasz; Grzegocka, Marta
2018-01-01
Chronic face pain syndrome is a diagnostic and therapeutic problem for many specialists, and this proves the interdisciplinary and complex nature of this ailment. Physiotherapy is of particular importance in the treatment of pain syndrome in the course of temporomandibular joint functional disorders. In patients with long-term dysfunction of masticatory muscles, the palpation examination can localize trigger points, that is, thickening in the form of nodules in the size of rice grains or peas. Latent trigger points located in the muscles can interfere with muscular movement patterns, cause cramps, and reduce muscle strength. Because hidden trigger points can spontaneously activate, they should be found and released to prevent further escalation of the discomfort. Kinesiotaping (KT) is considered as an intervention that can be used to release latent myofascial trigger points. It is a method that involves applying specific tapes to the patient's skin in order to take advantage of the natural self-healing processes of the body. The aim of the study was to evaluate the effect of the kinesiotaping method and trigger points inactivation on the nonpharmacological elimination of pain in patients with temporomandibular disorders. The study was conducted in 60 patients (18 to 35 years old). The subjects were randomly divided into two subgroups of 30 people each. Group KT (15 women and 15 men) were subjected to active kinesiotaping application. Group TrP, composed of 16 women and 14 men, was subjected to physiotherapy with the release of trigger points by the ischemic compression method. The results show that the KT method and TrP inactivation brought significant therapeutic analgesic effects in the course of pain-related functional disorders of the muscles of mastication. The more beneficial outcomes of the therapy were observed after using the KT method, which increased the analgesic effect in dysfunctional patients. PMID:29861804
An Active Englacial Hydrological System in a Cold Glacier: Blood Falls, Taylor Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Carr, C. G.; Pettit, E. C.; Carmichael, J.; Badgeley, J.; Tulaczyk, S. M.; Lyons, W. B.; Mikucki, J.
2016-12-01
Blood Falls is a supraglacial hydrological feature formed by episodic release of iron-rich subglacial brine derived from an extensive aquifer beneath the cold, polar, Taylor Glacier. While fluid transport in non-temperate ice typically occurs through meltwater delivery from the glacier surface to the bed (hydrofracturing, supraglacial lake drainage), Blood Falls represents the opposite situation: brine moves from a subglacial source to the glacier surface. Here, we present the first complete conceptual model for brine transport and release, as well as the first direct evidence of a wintertime brine release at Blood Falls obtained through year-round time-lapse photography. Related analyses show that brine pools subglacially underneath the northern terminus of Taylor Glacier, rather than flowing directly into proglacial Lake Bonney because ice-cored moraines and channelized surface topography provide hydraulic barriers. This pooled brine is pressurized by hydraulic head from the upglacier brine source region. Based on seismic data, we propose that episodic supraglacial release is initiated by high strain rates coupled with pressurized subglacial brine that drive intermittent subglacial and englacial fracturing. Ultimately, brine-filled basal crevasses propagate upward to link with surface crevasses, allowing brine to flow from the bed to the surface. The observation of wintertime brine release indicates that surface-generated meltwater is not necessary to trigger crack propagation or to maintain the conduit as previously suggested. The liquid brine persists beneath and within the cold ice (-17°C) despite ambient ice/brine temperature differences of as high as 10°C through both locally depressed brine freezing temperatures through cryoconcentration of salts and increased ice temperatures through release of latent heat during partial freezing of brine. The existence of an englacial hydrological system initiated by basal crevassing extends to polar glaciers a process thought limited to temperate glaciers and confirms that supraglacial, englacial, and subglacial hydrological systems act in concert to provide critical forcing on glacier dynamics, even in cold polar ice.
40 CFR 721.90 - Release to water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Release to water. 721.90 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.90 Release to water. Whenever a... predict the surface water concentration which will result from the intended release of the substance, if...
40 CFR 721.90 - Release to water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Release to water. 721.90 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.90 Release to water. Whenever a... predict the surface water concentration which will result from the intended release of the substance, if...
40 CFR 721.90 - Release to water.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Release to water. 721.90 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.90 Release to water. Whenever a... predict the surface water concentration which will result from the intended release of the substance, if...
Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings.
Mehta, Prina; Al-Kinani, Ali A; Haj-Ahmad, Rita; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan
2017-10-01
Advances in nanotechnology have enabled solutions for challenging drug delivery targets. While the eye presents numerous emerging opportunities for delivery, analysis and sensing; issues persist for conventional applications. This includes liquid phase formulation localisation on the ocular surface once administered as formulated eye-drops; with the vast majority of dosage (>90%) escaping from the administered site due to tear production and various drainage mechanisms. The work presented here demonstrates a single needle electrohydrodynamic (EHD) engineering process to nano-coat (as an on demand and controllable fiber depositing method) the surface of multiple contact lenses rendering formulations to be stationary on the lens and at the bio-interface. The coating process was operational based on ejected droplet charge and glaucoma drug timolol maleate (TM) was used to demonstrate surface coating optimisation, bio-surface permeation properties (flux, using a bovine model) and various kinetic models thereafter. Polymers PVP, PNIPAM and PVP:PNIPAM (50:50%w/w) were used to encapsulate the active. Nano-fibrous and particulate samples were characterised using SEM, FTIR, DSC and TGA to confirm structural and thermal stability of surface coated formulations. More than 52% of nano-structured coatings (for all formulations) were <200nm in diameter. In vitro studies show coatings to exhibit biphasic release profiles; an initial burst release followed by sustained release; with TM-loaded PNIPAM coating releasing most drug after 24h (89.8%). Kinetic modelling (Higuchi, Korsmeyer-Peppas) was indicative of quasi-Fickian diffusion whilst biological evaluation demonstrates adequate ocular tolerability. Results from permeation studies indicate coated lenses are ideal to reduce dosing regimen, which in turn will reduce systemic drug absorption. Florescent microscopy demonstrated probe and probe embedded coating behaviour from lens surface in vitro. The multiple lens surface coating method demonstrates sustained drug release yielding promising results; suggesting both novel device and method to enhance drug activity at the eyes surface which will reduce formulation drainage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Improved systemic delivery of insulin by condensed drug loading in a dimpled suppository.
Matsumoto, Akihiro; Murakami, Kayoko; Watanabe, Chie; Murakami, Masahiro
2017-01-01
The development of peptide therapeutics owing to the advances in biotechnology has overcome some unmet medical needs; however, the route of administration is still limited to injections. Systemic delivery of insulin via an enteral route remains a great challenge due to its instability and low mucosal permeability. In this study, we investigated the effect of drug condensation in a suppository on the efficacy of insulin after rectal administration. Suppositories with dimples are prepared by a mold method using a hard fat (Suppocire ® AM). Insulin or fluorescein isothiocyanate-dextran (molecular weight: 3,000-5,000) (FD4) as a model of a hydrophilic macromolecule was loaded in the dimples, and sealed with other lipids with different melting points. The in vitro release test showed that the time to 50% drug release depends on the melting point of the lipid for sealing but not on the number of dimples. The suppositories with one-, or three-dimple containing insulin and caprylocaproyl macrogol-8 glyceride (Labrasol ® ) were administered to rats at 0.5 U/head. The reduction in plasma glucose level was more significant for the one-dimple-type suppository than for the three-dimple-type although the one-dimple-type suppository contained less amount of Labrasol by one-third compared to the three-dimple-type. These results suggest that condensation of an insulin dose in a limited surface area of a suppository improves systemic availability via the rectal route with a reduced amount of an absorption enhancer.
Ground deposition of liquid droplets released from a point source in the atmospheric surface layer
NASA Astrophysics Data System (ADS)
Panneton, Bernard
1989-05-01
A series of field experiments is presented in which the ground deposition of liquid droplets, 120 and 150 micrometers in diameter, released from a point source at 7 meters above the ground level, was measured. A detailed description of the experimental technique is provided, and the results are presented and compared to the predictions of a few models. A new rotating droplet generator is described. Droplets are produced by the forced breakup of capillary liquid jets and droplet coalescence is inhibited by the rotational motion of the spray head. A system for analyzing spray samples was developed. This is a specialized image analysis system based on an electronic digitizing camera which measures the area and perimeter of stains left by dyed droplets collected on Kromekote cards. A complete set of meteorological data supports the ground-deposition data. The turbulent air velocities at two levels above the ground and the temperature of the air at one level were measured with one sonic anemometer and a sonic anemometer-thermometer. The vertical heat and momentum fluxes were estimated using the eddy-correlation technique. The two-dimensional deposition patterns are presented in the form of plots of contours of constant density, normalized arcwise distributions and crosswind integrated distributions. Models of the crosswind integrated deposit from Godson, Csanady, Walker, Bache and Sayer, and Wilson et al., are evaluated. The results indicate that the Wilson et al random walk model is adequate for predicting the ground deposition of the 150 micrometer droplets.
Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp; Oda, Hideaki
2012-04-27
Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116more » and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.« less
An analytical study on groundwater flow in drainage basins with horizontal wells
NASA Astrophysics Data System (ADS)
Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong
2014-06-01
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.
Thakur, P; Lemons, B G; Ballard, S; Hardy, R
2015-08-01
The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the WIPP site, the increased risk from the WIPP releases is exceedingly small, approaching zero. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biocompatible, smooth, plasma-treated nickel-titanium surface--an adequate platform for cell growth.
Chrzanowski, W; Szade, J; Hart, A D; Knowles, J C; Dalby, M J
2012-02-01
High nickel content is believed to reduce the number of biomedical applications of nickel-titanium alloy due to the reported toxicity of nickel. The reduction in nickel release and minimized exposure of the cell to nickel can optimize the biocompatibility of the alloy and increase its use in the application where its shape memory effects and pseudoelasticity are particularly useful, e.g., spinal implants. Many treatments have been tried to improve the biocompatibility of Ni-Ti, and results suggest that a native, smooth surface could provide sufficient tolerance, biologically. We hypothesized that the native surface of nickel-titanium supports cell differentiation and insures good biocompatibility. Three types of surface modifications were investigated: thermal oxidation, alkali treatment, and plasma sputtering, and compared with smooth, ground surface. Thermal oxidation caused a drop in surface nickel content, while negligible chemistry changes were observed for plasma-modified samples when compared with control ground samples. In contrast, alkali treatment caused significant increase in surface nickel concentration and accelerated nickel release. Nickel release was also accelerated in thermally oxidized samples at 600 °C, while in other samples it remained at low level. Both thermal oxidation and alkali treatment increased the roughness of the surface, but mean roughness R(a) was significantly greater for the alkali-treated ones. Ground and plasma-modified samples had 'smooth' surfaces with R(a)=4 nm. Deformability tests showed that the adhesion of the surface layers on samples oxidized at 600 °C and alkali treatment samples was not sufficient; the layer delaminated upon deformation. It was observed that the cell cytoskeletons on the samples with a high nickel content or release were less developed, suggesting some negative effects of nickel on cell growth. These effects were observed primarily during initial cell contact with the surface. The most favorable cell responses were observed for ground and plasma-sputtered surfaces. These studies indicated that smooth, plasma-modified surfaces provide sufficient properties for cells to grow. © The Author(s), 2011.
Toxic Release Inventory Training Course (TRI) (2015 EIC)
Focusing on air releases, explore tried and true access points along with new ways to access the data including the new P2 tool (currently available) and the TRI Analyzer tool (schedule to go public summer 2015)
Preparation and In vitro Evaluation of Naproxen Suppositories
Hargoli, S.; Farid, J.; Azarmi, S. H.; Ghanbarzadeh, S.; Zakeri-Milani, P.
2013-01-01
The aim of this work was to develop the best formulations for naproxen suppositories. The effects of different bases and surfactants on the physicochemical characteristics of the suppositories were determined by several tests such as weight variation, melting point, assay, hardness, and release rate. All formulations met the standard criteria for tested physicochemical parameters; weight variation (97-112%), content uniformity (97-105%), melting point (4.66-8.7 min) and hardness tests (>5400 g). Based on release rate studies, hydrophilic, and lipophilic bases without surfactants were not suitable bases for naproxen suppository. Amongst the formulations containing surfactants only Witepsol H15 with 0.5% w/w of Tween 80 and Witepsol W35 with 0.5% of cetylpyridinium chloride were suitable and released nearly complete drug during 30 and 60 min, respectively. This study demonstrates the effects of incorporation of known agents on the in vitro release characteristics of naproxen suppository. PMID:24019561
CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software
NASA Astrophysics Data System (ADS)
Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team
2018-01-01
CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.
Allergy risks with laptop computers - nickel and cobalt release.
Midander, Klara; Hurtig, Anna; Borg Tornberg, Anette; Julander, Anneli
2016-06-01
Laptop computers may release nickel and cobalt when they come into contact with skin. Few computer brands have been studied. To evaluate nickel and cobalt release from laptop computers belonging to several brands by using spot tests, and to quantify the release from one new computer by using artificial sweat solution. Nickel and cobalt spot tests were used on the lid and wrist supports of 31 laptop computers representing five brands. The same surfaces were tested on all computers. In addition, one new computer was bought and dismantled for release tests in artificial sweat according to the standard method described in EN1811. Thirty-nine per cent of the laptop computers were nickel spot test-positive, and 6% were positive for cobalt. The nickel on the surface could be worn off by consecutive spot testing of the same surface. The release test in artificial sweat of one computer showed that nickel and cobalt were released, although in low concentrations. As they constitute a potential source of skin exposure to metals, laptop computers should qualify as objects to be included within the restriction of nickel in REACH, following the definition of 'prolonged skin contact'. Skin contact resulting from laptop use may contribute to an accumulated skin dose of nickel that can be problematic for sensitized individuals. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy
2015-04-01
For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papelis, Charalambos; Um, Wooyong; Russel, Charles E.
2003-03-28
The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossa, Nathan; Chaurand, Perrine; Levard, Clément
Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO 2 nanomaterials (TiO 2-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated. During cement use and aging, an altered surface layer is formed that exhibits increased porosity. The surface layer thickness alteration and porosity increase with the cement degradation rate. The hardened cement paste leaching behavior has been fully documented, but the fate of incorporated TiO 2-NMs and their state during/after potential release ismore » currently unknown. In this study, photocatalytic cement pastes with increasing initial porosity were leached at a lab-scale to produce a range of degradation rates concerning the altered layer porosity and thickness. No dissolved Ti was released during leaching, only particulate TiO 2-NM release was detected. The extent of release from this batch test simulating accelerated worst-case scenario was limited and ranged from 18.7 ± 2.1 to 33.5 ± 5.1 mg of Ti/m 2 of cement after 168 h of leaching. TiO 2-NMs released into neutral aquatic media (simulate pH of surface water) were not associated or coated by cement minerals. The TiO 2-NM release mechanism is suspected to start from freeing of TiO 2-NMs in the altered layer pore network due to partial cement paste dissolution followed by diffusion into the bulk pore solution to the surface. The extent of TiO 2-NM release was not solely related to the cement degradation rate.« less
Greene, Neil G.; Narciso, Ana R.; Filipe, Sergio R.; Camilli, Andrew
2015-01-01
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens. PMID:26114646
Greene, Neil G; Narciso, Ana R; Filipe, Sergio R; Camilli, Andrew
2015-06-01
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens.
Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei
2018-01-24
Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.
Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M. S.
2012-12-01
We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a 3D calculation of the Shoal underground nuclear explosion including tectonic prestress. Shoal was a 12.5 kiloton nuclear explosion detonated near Fallon, Nevada. This event had strong heterogeneity in near field waveforms and is in a region under primarily extensional tectonic stress. There were three near-field shot level recording stations located in three directions each at about 590 meters from the shot. Including prestress consistent with the regional stress field causes variations in the calculated near-field waveforms similar to those observed in the Shoal data.
Solar Polar Jets Driven by Magnetic Reconnection, Gravity, and Wind
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.
2014-06-01
Polar jets are dynamic, narrow, radially extended structures observed in solar EUV emission near the limb. They originate within the open field of coronal holes in “anemone” regions, which are intrusions of opposite magnetic polarity. The key topological feature is a magnetic null point atop a dome-shaped fan surface of field lines. Applied stresses readily distort the null into a current patch, eventually inducing interchange reconnection between the closed and open fields inside and outside the fan surface (Antiochos 1996). Previously, we demonstrated that magnetic free energy stored on twisted closed field lines inside the fan surface is released explosively by the onset of fast reconnection across the current patch (Pariat et al. 2009, 2010). A dense jet comprised of a nonlinear, torsional Alfvén wave is ejected into the outer corona along the newly reconnected open field lines. Now we are extending those exploratory simulations by including the effects of solar gravity, solar wind, and expanding spherical geometry. We find that the model remains robust in the resulting more complex setting, with explosive energy release and dense jet formation occurring in the low corona due to the onset of a kink-like instability, as found in the earlier Cartesian, gravity-free, static-atmosphere cases. The spherical-geometry jet including gravity and wind propagates far more rapidly into the outer corona and inner heliosphere than a comparison jet simulation that excludes those effects. We report detailed analyses of our new results, compare them with previous work, and discuss the implications for understanding remote and in-situ observations of solar polar jets.This work was supported by NASA’s LWS TR&T program.
Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander
2017-10-01
Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-11-01
High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter-deep pits within ~800 years and ~2,000 years, respectively. Since comet 67P has been around the inner solar system for about 7,000 years, both of these processes are viable explanations for the pits.The simulations also show that direct sublimation of crystalline ices of water, carbon monoxide, and carbon dioxide can cause deep pits but only in the absence of a surface layer of dust, known as a dust mantle, in that region of the comet. Direct sublimation could be a viable explanation for the pits, then, if dust grains in the area are so small that they are carried away with the released gas, rather than falling back to form a layer on the comets surface.Regardless of the formation mechanism for these pits, the authors conclude that their very existence implies that the physical and chemical properties across the surface and subsurface of the comet cannot be uniform. Further observations from Rosetta will continue to help us understand comet 67P.CitationO. Mousis et al 2015 ApJ 814 L5. doi:10.1088/2041-8205/814/1/L5
Carbon nanotubes as cancer therapeutic carriers and mediators
Son, Kuk Hui; Hong, Jeong Hee; Lee, Jin Woo
2016-01-01
Carbon nanotubes (CNTs) have received increasing attention in biomedical fields because of their unique structures and properties, including high aspect ratios, large surface areas, rich surface chemical functionalities, and size stability on the nanoscale. Particularly, they are attractive as carriers and mediators for cancer therapy. Through appropriate functionalization, CNTs have been used as nanocarriers for anticancer drugs including doxorubicin, camptothecin, carboplatin, cisplatin, paclitaxel, Pt(II), and Pt(IV), and genes including plasmid DNA, small-interfering RNA, oligonucleotides, and RNA/DNA aptamers. CNTs can also deliver proteins and immunotherapy components. Using combinations of light energy, they have also been applied as mediators for photothermal therapy and photodynamic therapy to directly destroy cancer cells without severely damaging normal tissue. If limitations such as a long-term cytotoxicity in the body, lack of size uniformity during the synthetic process, loading deviations for drug–CNT complexes, and release controllability at the target point are overcome, CNTs will become one of the strongest tools that are available for various other biomedical fields as well as for cancer therapy. PMID:27785021
High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.
Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei
2016-12-27
An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.
Ozdemir, N; Ozalp, Y; Ozkan, Y
2000-01-01
In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.
Release of bacterial spores from inner walls of a stainless steel cup subjected to thermal stress
NASA Technical Reports Server (NTRS)
Wolochow, H.; Chatigny, M. A.; Herbert, J.
1974-01-01
In an earlier report thermal stresses, simulating those expected on a Mars Lander, dislodged approximately 0.01% of an aerosol deposited surface burden, as did a landing shock of 8-10 G deceleration. This work confirms earlier results and demonstrates that release rate is not dependent on surface burden.
Discrete model of gas-free spin combustion of a powder mixture
NASA Astrophysics Data System (ADS)
Klimenok, Kirill L.; Rashkovskiy, Sergey A.
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Discrete model of gas-free spin combustion of a powder mixture.
Klimenok, Kirill L; Rashkovskiy, Sergey A
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Origin of tumor-promoter released fibronectin in fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrous, B.A.; Wolf, G.
1986-05-01
Previous work from the laboratory showed that the chemical tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated release of the cell surface glycoprotein, fibronectin (FN) from human lung fibroblasts (HLF), leading to depletion of cell surface FN, while FN synthesis is not altered by TPA. To further investigate the mechanism(s) by which TPA stimulates FN release, two types of experiments were performed. In the first, HLF were pulsed with /sup 35/S-methionine-labeled medium with or without TPA. In the second, cell-surface proteins were labeled by iodination (/sup 125/I) and then incubated in unlabeled medium with or without TPA. In both cases, the fate ofmore » labeled FN was followed over 12 hr. The /sup 35/S-meth-labeled HLF showed a rapid loss of labeled FN, first into a small, highly-labeled pool of cell surface FN (1 hr), later into the medium (4 hr or longer). Specific activities showed that this small pool in the cell surface turned over rapidly. TPA treatment resulted in more rapid movement of /sup 35/S-meth pulse-labeled FN to the cell surface and into the medium than in control cells. TPA thus affected the fate of intracellular FN. TPA treatment of HLF also resulted in more rapid removal of /sup 125/I-cell surface-labeled FN into the medium than in control cells. Thus, TPA affects the fate of preexisting cell surface FN in HLF. From these results, they hypothesize that TPA has two separate effects: it stimulates depletion of preexisting intracellular FN during the first hr of treatment, and it stimulates release of preexisting cell surface FN over all treatment times.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air...) The regulations. (i) Through navigation of surface craft outside the target areas will be permitted at...
NASA Astrophysics Data System (ADS)
Malott, S. S.; Vogel, L. J.; Edge, T.; O'Carroll, D. M.; Robinson, C. E.
2014-12-01
In recent years a number of studies have suggested that foreshore sand and porewater can act as a non-point source of microbial contamination to adjacent surface waters. Fecal indicator bacteria (FIB) can be released from the sand into the surface water through sand erosion or wave-induced porewater flows leading to FIB detachment. Although regression models often show that there is a strong correlation between wave events and high E. coli in surface waters, there is limited understanding of the mechanisms by which E. coli is transported from the subsurface foreshore reservoir (sand and porewater) to surface waters during wave events. An improved understanding of the transport mechanisms will facilitate the development of better water quality exceedences predictions. Detailed groundwater flow, sand level and E. coli measurements were conducted at Ipperwash Beach, Lake Huron (Ontario) for three wave events during the 2014 bathing season to evaluate the relative contribution of sand erosion and wave-induced pore water flow in transporting E. coli from the subsurface reservoir to the shallow waters. As expected, results indicate increased E. coli concentrations in ankle and waist deep surface water during periods of increased wave activity (wave height > 0.5m). Considerable sand erosion from the foreshore may have contributed to these increased surface water concentrations. The E. coli concentrations in the foreshore reservoir generally decreased as the wave height intensified, while E. coli concentrations in upshore sand and porewater locations increased.
Streaming Clumps Ejection Model and the Heterogeneous Inner Coma of Comet Wild 2
NASA Technical Reports Server (NTRS)
Clark, B. C.; Economou, T. E.; Green, S. F.; Sandford, S. A.; Zolensky, M. E.
2004-01-01
The conventional concept of cometary comae is that they are dominated by fine particulates released individually by sublimation of surface volatiles and subsequent entrainment in the near-surface gas. It has long been recognized that such particulates could be relatively large, with early estimates that objects perhaps up to one meter in size may be levitated from the surface of the typical cometary nucleus. However, the general uniformity and small average particulate size of observed comae and the relatively smooth, monotonic increases and decreases in particle density during the Giotto flythrough of comet Halley s coma in 1986 reinforced the view that the bulk of the particles are released at the surface, are fine-sized and inert. Jets have been interpreted as geometrically constrained release of these particulates. With major heterogeneities observed during the recent flythrough of the inner coma of comet Wild 2, these views deserve reconsideration.
Enhancement of biocompatibility of nickel-titanium by laser surface modification technology
NASA Astrophysics Data System (ADS)
Ng, Ka Wai
Nickel Titanium is a relatively new biomaterial that has attracted research interest for biomedical application. The good biocompatibility with specific functional properties of shape memory effect and superelasticity creates a smart material for medical applications. However, there are still concerns on nickel ion release of this alloy if it is going to be implanted for a long time. Nickel ion is carcinogenic and also causes allergic response and degeneration of muscle tissue. The subsequent release of Ni+ ions into the body system is fatal for the long term application of this alloy in the human body. To improve the long term biocompatibility and corrosion properties of NiTi, different surface treatment techniques have been investigated but no optimum technique has been established yet. This project will investigate the feasibility of applying laser surface alloying technique to improve the corrosion resistance and biocompatibility of NiTi in simulated body fluid condition. This thesis summarizes the result of laser surface modification of NiTi with Mo, Nb and Co using CO2 laser. The modified layer, which is free of microcracks and pores, acts as physical barrier to reduce nickel release and enhance the surface properties. The hardness values of the Mo-alloyed NiTi, Nb-alloyed NiTi and Co-alloyed NiTi surface were found to be three to four times harder than the NiTi substrate. Corrosion polarization tests also showed that the alloyed NiTi are significantly more resistant than the NiTi alloy. The release of Ni ions can be greatly reduced after laser surface alloying NiTi with Mo, Nb and Co. The improvement in wettability characteristics, the growth of the apatite on the specimen's surface and the adhesion of cell confirm the good biocompatibility after laser surface alloying. It is concluded that laser surface alloying is one of the potential technique not only to improve the corrosion resistance with low nickel release rate, but also retain the good biocompatibility of NiTi. The technique can be applied to bone fixation plates or implants with relatively large surface area. The results of this project are significant as they add new knowledge on the surface modification of NiTi for long term implant application.
Cho, Shin-Hyeong; Lee, Hyeong-Woo; Shin, E-Hyun; Lee, Hee-Il; Lee, Wook-Gyo; Kim, Chong-Han; Kim, Jong-Taek; Lee, Jong-Soo; Lee, Won-Ja; Jung, Gi-Gon; Kim, Tong-Soo
2002-09-01
In order to study the range of flight and feeding activity of Anopheles sinensis, the dispersal experiment was conducted in Paju city, located in the northern part of Gyeonggi-do, Republic of Korea, during the period of 7th to 28th September 1998. Unfed females An. sinensis were collected in cowshed and released after being marked with fluorescent dye at 23:00 hours on the same day. Released female mosquitoes were recaptured everyday during 21 days using light traps, which were set at 10 sites in the cowsheds located 1, 3, 6, 9 and 12 km north-northwest and north-northeast and at 3 sites located 1, 6 and 9 km toward south-west from the release point. In addition, to study the longest flight distance in one night, we set the light traps at 16 and 20 km toward north-northeast from the release site. All the collected mosquitoes were placed on filter papers and observed on UV transilluminator after treatment with one drop of 100% ethanol. Out of 12,773 females of An. sinensis released, 194 marked females mosquitoes were recaptured, giving 1.52% recapture rate. Of 194, 72 mosquitoes (37.1%) were recaptured in light traps from three places set at 1 km from the release point, 57 mosquitoes (29.4%) from two places at 1-3 km, 41 mosquitoes (21.1%) from three places at 3-6 km, 20 mosquitoes (10.3%) from three places at 6-9 km, and 4 mosquitoes (2.1%) from two places at 9-12 km. Since 170 female mosquitoes (87.6%) out of 194 marked mosquitoes were captured within 6 km from the release point, this flight radius represents the main activity area. An sinensis was found to be able to fly at least 12 km during one night.
Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill
NASA Astrophysics Data System (ADS)
Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.
2012-04-01
The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement Oil Appearance Code. The likelihoods were taken in both cases from probability distribution functions derived from the ensemble runs. Results were compared with a control-deterministic solution and checked against available reports to assess their skill in capturing the actual observed plumes and other in-situ data, as well as their relevance for planning surveys and reconnaissance flights for both cases.
Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu
2010-11-21
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V
2013-07-01
This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.
Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.
2012-01-01
Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and structural options were explored with the model scenarios. Multiple downstream temperature targets were used along with three sets of environmental forcing conditions representing cool/wet, normal, and hot/dry conditions. Five structural options at Detroit Dam were modeled, including the use of existing outlets, one hypothetical variable-elevation outlet such as a sliding gate, a hypothetical combination of a floating outlet and a fixed-elevation outlet, and a hypothetical combination of a floating outlet and a sliding gate. Finally, 14 sets of operational guidelines for Detroit Dam were explored to gain an understanding of the effects of imposing different downstream minimum streamflows, imposing minimum outflow rules to specific outlets, and managing the level of the lake with different timelines through the year. Selected subsets of these combinations of operational and structural scenarios were run through the downstream models of Big Cliff Reservoir and the North Santiam and Santiam Rivers to explore how hypothetical changes at Detroit Dam might provide improved temperatures for endangered salmonids downstream of the Detroit-Big Cliff Dam complex. Conclusions that can be drawn from these model scenarios include: *The water-temperature targets set by the U.S. Army Corps of Engineers for releases from Detroit Dam can be met through a combination of new dam outlets or a delayed drawdown of the lake in autumn. *Spring and summer dam operations greatly affect the available release temperatures and operational flexibility later in the autumn. Releasing warm water during midsummer tends to keep more cool water available for release in autumn. *The ability to meet downstream temperature targets during spring depends on the characteristics of the available outlets. Under existing conditions, although warm water sometimes is present at the lake surface in spring and early summer, such water may not be available for release if the lake level is either well below or well above the spillway crest. *Managing lake releases to meet downstream temperature targets depends on having outlet structures that can access both (warm) lake surface water and (cold) deeper lake water throughout the year. The existing outlets at Detroit Dam do not allow near-surface waters to be released during times when the lake surface level is below the spillway (spring and autumn). *Using the existing outlets at Detroit Dam, lake level management is important to the water temperature of releases because it controls the availability and depth of water at the spillway. When lake level is lowered below the spillway crest in late summer, the loss of access to warm water at the lake surface can result in abrupt changes to release temperatures. *Because the power-generation intakes (penstocks) are 166 feet below the full-pool lake level, imposing minimum power production requirements at Detroit Dam limits the amount of warm surface water that can be expelled from the lake in midsummer, thereby postponing and amplifying warm outflows from Detroit Lake into the autumn spawning season. *Likewise, imposing minimum power production requirements at Detroit Dam in autumn can limit the amount of cool hypolimnetic water that is released from the lake, thereby limiting cool outflows from Detroit Lake during the autumn spawning season. *Model simulations indicate that a delayed drawdown of Detroit Lake in autumn would result in better control over release temperatures in the immediate downstream vicinity of Big Cliff Dam, but the reduced outflows necessary to retain more water in the lake in late summer are more susceptible to rapid heating downstream. *Compared to the existing outlets at Detroit Dam, floating or sliding-gate outlet structures can provide greater control over release temperatures because they provide better access to warm water at the lake surface and cooler water at depth. These conclusions can be grouped into several common themes. First, optimal and flexible management and achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators to evaluate how different operational strategies or combinations of new dam outlets might affect downstream temperatures for many miles of critical endangered salmonid habitat. Temperatures can change quickly in these downstream reaches as the river exchanges heat with its surroundings, and heating or cooling of 6 degrees Celsius is not unusual in the 40–50 miles downstream of Big Cliff Dam. The results published in this report supersede preliminary results published in U.S. Geological Survey Open-File Report 2011-1268 (Buccola and Rounds, 2011). Those preliminary results are still valid, but the results in this report are more current and comprehensive.
Neutron-absorber release device
VAN Erp, Jan B.; Kimont, Edward L.
1976-01-01
A resettable device is provided for supporting an object, sensing when an environment reaches a critical temperature and releasing the object when the critical temperature is reached. It includes a flexible container having a material inside with a melting point at the critical temperature. The object's weight is supported by the solid material which gives rigidity to the container until the critical temperature is reached at which point the material in the container melts. The flexible container with the now fluid material inside has insufficient strength to support the object which is thereby released. Biasing means forces the container back to its original shape so that when the temperature falls below the melting temperature the material again solidifies, and the object may again be supported by the device.
Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces
NASA Astrophysics Data System (ADS)
Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung
2013-01-01
The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).
Expendable oceanographic sensor apparatus
McCoy, Kim O.; Downing, Jr., John P.; DeRoos, Bradley G.; Riches, Michael R.
1993-01-01
An expendable oceanographic sensor apparatus is deployed from an airplane or a ship to make oceanographic observations in a profile of the surface-to-ocean floor, while deployed on the floor, and then a second profile when returning to the ocean surface. The device then records surface conditions until on-board batteries fail. All data collected is stored and then transmitted from the surface to either a satellite or other receiving station. The apparatus is provided with an anchor that causes descent to the ocean floor and then permits ascent when the anchor is released. Anchor release is predetermined by the occurrence of a pre-programmed event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.
1983-11-01
MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the groundmore » and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables.« less
Formation of ions and radicals from icy grains in comets
NASA Technical Reports Server (NTRS)
Jackson, William M.; Gerth, Christopher; Hendricks, Charles
1991-01-01
Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.
Liu, X P; Niu, J L; Kwok, K C S; Wang, J H; Li, B Z
2011-08-15
In this present work, the characteristics of hazardous gas dispersion and possible cross-unit contamination around a complex-shaped high-rise residential building due to wind effect are thoroughly studied using physical modeling method. Experiments were performed in a boundary layer wind tunnel for a 1:30 scale model that represented a 10-story residential building in prototype. Tracer gas, simulating exhausted room air, was continuously released from different floor levels, and its concentrations on the adjacent envelope surfaces were measured using fast flame ionization detectors. The mean concentration fields were reported and analyzed under different configurations during the experiment to consider the effects on pollutant dispersion behavior due to changes in source position and approaching wind condition, with the main emphasis on the differences between open-window and closed-window conditions. In particular, the measured concentration fields were further examined from a practical point of view, with respect to hazard assessment. Understanding these hazardous plume dispersion features is useful for employing effective intervention strategies in modern residential building environment in case of hazardous substance release. The study on this physical process is not only helpful to reduce the hazardous effect of routine release of harmful pollutant near the building, but also useful for the purpose of prevention and control of accidental infectious diseases outbreak. Copyright © 2011 Elsevier B.V. All rights reserved.
Looking and homing: how displaced ants decide where to go
Zeil, Jochen; Narendra, Ajay; Stürzl, Wolfgang
2014-01-01
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s−1 and intermittent changes in turning direction. By mapping the ants’ gaze directions onto the local panorama, we find that neither the ants’ gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants’ habitat and how the insects’ behaviour informs us about how they may acquire and retrieve that information. PMID:24395961
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2006-08-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the entire release properties. As the first step, the dissolution test under various conditions is selected for the in vitro test, and usually the results are analyzed following Drug Approval and Licensing Procedures. In this test, 3 time points for each release ratio, such as 0.2-0.4, 0.4-0.6, and over 0.7, respectively, should be selected in advance. These are analyzed as to whether their values are inside or outside the prescribed aims at each time point. This method is very simple and useful but the details of the release properties can not be clarified or confirmed. The validity of the dissolution test in analysis using a combination of the square-root time law and cube-root law equations to understand all the drug release properties was confirmed by comparing the simulated value with that measured in the previous papers. Dissolution tests under various conditions affecting drug release properties in the human body were then examined, and the results were analyzed by both methods to identify their strengths and weaknesses. Hereafter, the control of pharmaceutical preparation, the manufacturing process, and understanding the drug release properties will be more efficient. It is considered that analysis using the combination of the square-root time law and cube-root law equations is very useful and efficient. The accuracy of predicting drug release properties in the human body was improved and clarified.
Amin Yavari, S; Loozen, L; Paganelli, F L; Bakhshandeh, S; Lietaert, K; Groot, J A; Fluit, A C; Boel, C H E; Alblas, J; Vogely, H C; Weinans, H; Zadpoor, A A
2016-07-13
Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make them promising candidates for combating peri-operative implant-associated infections.
Jun, Soo Kyung; Kim, Hae-Won; Lee, Hae-Hyoung; Lee, Jung-Hwan
2018-01-01
Zinc oxide eugenol (ZOE) is widely used as a therapeutic dental restorative material. However, ZOE has poor mechanical properties and high cytotoxicity toward human dental pulp stem cells (hDPSCs) due to the release of Zn ions. In this study, zirconia-incorporated ZOE (ZZrOE) was developed to reduce the cytotoxicity and improve the mechanical properties of ZOE with sustained therapeutic effects on inflamed hDPSCs in terms of inflammatory gene expression levels compared with those of the original material. After the setting time and mechanical properties of ZZrOE incorporating varying amounts of zirconia (0, 5, 10, and 20wt% in powder) were characterized, the surface morphology and composition of the resulting ZZrOE materials were investigated. The ions and chemicals released into the cell culture medium from ZOE and ZZrOE (3cm 2 /mL) were measured by inductively coupled plasma atomic emission spectroscopy and gas chromatography, respectively. After testing cytotoxicity against hDPSCs using the above extracts, the therapeutic effects on lipopolysaccharide-inflamed hDPSCs in terms of compromising the upregulation of inflammatory response-related mRNA expression were tested using real-time PCR. ZZrOE 20% exhibited increased compressive strength (∼45%), 3-point flexural strength (∼150%) and hardness (∼75%), as well as a similar setting time (∼90%), compared with those of ZOE. After the rough surface of ZZrOE was observed, significantly fewer released Zn ions and eugenol (∼40% of that from ZOE) were detected in ZZrOE 20%. ZZrOE showed less cytotoxicity because of the lower amount of Zn ions released from ZOE while showing sustained inhibition of inflammatory marker (e.g., interleukin 1β, 6 and 8) mRNA levels. The improved mechanical properties and cytocompatibility, as well as the sustained therapeutic effects on inflamed hDPSCs, were investigated in ZZrOE compared with those of ZOE. Therefore, ZZrOE has the potential to be used as an alternative to ZOE as a dental restorative material. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.
2009-07-15
The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption andmore » release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of {approx}2.7-3.3 nm and moderate to high surface areas up to {approx}1000 m{sup 2}/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for various model drug molecules.« less
Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong
2012-08-01
Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Harden, D. R.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery used in conjunction with the surface-drift cards indicated a southerly flow direction of the central California near surface coastal currents during mid-June 1973. The near-surface currents off northern California and southern Oregon were more complex. Some drift cards were recovered north and some south of their release points; however, the prevalent direction of flow was northerly. General agreement in flow direction of coastal currents obtained from ERTS-1 imagery and drift card data reinforces the image interpretation. Complete seasonal coverage of nearshore circulation interpreted from ERTS-1 imagery will provide information necessary for proper coastal zone management. Extent of snow cover can be readily delimited on ERTS-1 band 5. In the central Sierra Nevada Mountains this past winter season, the snow line, as recorded by ERTS-1, reached an elevation of less than 1500 meters in January but had melted back to between 2500 and 3000 meters by the end of May. ERTS-1 imagery seems to provide sufficient resolution to make it a useful tool for monitoring changes in snow cover in the Sierra Nevada Mountains.
Submesoscale dispersion in the vicinity of the Deepwater Horizon spill.
Poje, Andrew C; Ozgökmen, Tamay M; Lipphardt, Bruce L; Haus, Brian K; Ryan, Edward H; Haza, Angelique C; Jacobs, Gregg A; Reniers, A J H M; Olascoaga, Maria Josefina; Novelli, Guillaume; Griffa, Annalisa; Beron-Vera, Francisco J; Chen, Shuyi S; Coelho, Emanuel; Hogan, Patrick J; Kirwan, Albert D; Huntley, Helga S; Mariano, Arthur J
2014-09-02
Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society, and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 m to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf of Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200-m to 50-km scales and clearly indicate that dispersion at the submesoscales is local, driven predominantly by energetic submesoscale fluctuations. The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.
Submesoscale dispersion in the vicinity of the Deepwater Horizon spill
Poje, Andrew C.; Özgökmen, Tamay M.; Lipphardt, Bruce L.; Haus, Brian K.; Ryan, Edward H.; Haza, Angelique C.; Jacobs, Gregg A.; Reniers, A. J. H. M.; Olascoaga, Maria Josefina; Novelli, Guillaume; Griffa, Annalisa; Beron-Vera, Francisco J.; Chen, Shuyi S.; Coelho, Emanuel; Hogan, Patrick J.; Kirwan, Albert D.; Huntley, Helga S.; Mariano, Arthur J.
2014-01-01
Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society, and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 m to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf of Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200-m to 50-km scales and clearly indicate that dispersion at the submesoscales is local, driven predominantly by energetic submesoscale fluctuations. The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields. PMID:25136097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, R.D.; Carrier, R.F.
1991-12-01
At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory performed an investigative radiological survey at the former Diamond Magnesium Company (DMC) site at 720 Fairport-Nursery Road, Painesville, Ohio, in September 1990. The purpose of the survey was to determine if the site is contaminated with radioactive residues as a result of federal government operation in the development of nuclear energy for defense-related projects. The survey of the site, separate parcels of which are currently owned by the Uniroyal Chemical Company (DMP001) and the Lonza Chemical Company (DMP002), included a gamma scan overmore » the ground surface, determination of gamma exposure rates at the surface and at 1 m above the surface at grid points, collection and radionuclide analysis of soil samples, and directly measured radiation levels inside three buildings used during original DMC processing. Results of the survey revealed widespread radiological contamination outdoors on the Uniroyal property and several isolated spots of elevated radiation levels on the Lonza property. The contaminants consisted of radium, uranium, and thorium in surface and subsurface soil in concentrations exceeding DOE guidelines for the release of property for unrestricted use.« less
Detection and drug delivery from superhydrophobic materials
NASA Astrophysics Data System (ADS)
Falde, Eric John
The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, R.D.; Carrier, R.F.
At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory performed an investigative radiological survey at the former Diamond Magnesium Company (DMC) site at 720 Fairport-Nursery Road, Painesville, Ohio, in September 1990. The purpose of the survey was to determine if the site is contaminated with radioactive residues as a result of federal government operation in the development of nuclear energy for defense-related projects. The survey of the site, separate parcels of which are currently owned by the Uniroyal Chemical Company (DMP001) and the Lonza Chemical Company (DMP002), included a gamma scan overmore » the ground surface, determination of gamma exposure rates at the surface and at 1 m above the surface at grid points, collection and radionuclide analysis of soil samples, and directly measured radiation levels inside three buildings used during original DMC processing. Results of the survey revealed widespread radiological contamination outdoors on the Uniroyal property and several isolated spots of elevated radiation levels on the Lonza property. The contaminants consisted of radium, uranium, and thorium in surface and subsurface soil in concentrations exceeding DOE guidelines for the release of property for unrestricted use.« less
Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wofsy, C.; Goldstein, B.
1991-03-15
In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of themore » separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.« less
NASA Astrophysics Data System (ADS)
Wang, Xiang; Wang, Gen; Zhang, Ying
2017-10-01
Mesoporous bioactive glass (MBG) nanospheres have been synthesized by a facile method of sacrificing template using cetyl trimethyl ammonium bromide (CTAB) as surfactant. The prepared MBG nanospheres possess high specific surface area (632 m2 g-1) as well as uniform size (∼100 nm). In addition, MBG nanospheres exhibited a quick in vitro bioactive response in simulated body fluids (SBF) and excellent bioactivity of inducing hydroxyapatite (HA) forming on the surface of MBG nanospheres. Furthermore, MBG nanospheres can sustain release of doxorubicin (DOX) with a higher encapsulation efficiency (63.6%) and show distinct degradation in PBS by releasing Si and Ca ions. The encapsulation efficiency and DOX release of MBG nanospheres could be controlled by mesoporous structure and local pH environment. The greater surface area and pore volumes of prepared MBG nanospheres are conducive to bioactive response and drug release in vitro. The amino groups in DOX can be easily protonated at acidic medium to become positively charged NH+3, which allow these drug molecules to be desorbed from the surface of MBG nanospheres via electrostatic effect. Therefore, the synthesized MBG nanospheres have a pH-sensitive drug release capability. In addition, the cytotoxicity of MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized MBG nanospheres had no significant cytotoxicity to MC3T3 cells. These all indicated that as-prepared MBG nanospheres are promising candidates for bone tissue engineering.
2169 steel waveform experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd
2012-11-01
In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included themore » elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.« less
Comparison of point-of-care-compatible lysis methods for bacteria and viruses.
Heiniger, Erin K; Buser, Joshua R; Mireles, Lillian; Zhang, Xiaohong; Ladd, Paula D; Lutz, Barry R; Yager, Paul
2016-09-01
Nucleic acid sample preparation has been an especially challenging barrier to point-of-care nucleic acid amplification tests in low-resource settings. Here we provide a head-to-head comparison of methods for lysis of, and nucleic acid release from, several pathogenic bacteria and viruses-methods that are adaptable to point-of-care usage in low-resource settings. Digestion with achromopeptidase, a mixture of proteases and peptidoglycan-specific hydrolases, followed by thermal deactivation in a boiling water bath, effectively released amplifiable nucleic acid from Staphylococcus aureus, Bordetella pertussis, respiratory syncytial virus, and influenza virus. Achromopeptidase was functional after dehydration and reconstitution, even after eleven months of dry storage without refrigeration. Mechanical lysis methods proved to be effective against a hard-to-lyse Mycobacterium species, and a miniature bead-mill, the AudioLyse, is shown to be capable of releasing amplifiable DNA and RNA from this species. We conclude that point-of-care-compatible sample preparation methods for nucleic acid tests need not introduce amplification inhibitors, and can provide amplification-ready lysates from a wide range of bacterial and viral pathogens. Copyright © 2016. Published by Elsevier B.V.
Drinčić, Ana; Nikolić, Irena; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez
2017-01-01
The NEN 7375 test has been proposed for evaluating the long-term environmental impacts caused by the release of contaminants from monolithic building and waste materials. Over a period of 64days, at specific points in time, the leaching solution (demineralised water) is replenished. By applying the NEN 7375 test, leaching of contaminants that is based mainly on diffusion is followed. In the present work, the results from modified leaching protocols were evaluated against those obtained by NEN 7375 test. In modified protocols, synthetic sea, surface and MilliQ water were used for the leaching of selected elements and chromate, molybdate and vanadate from compact and ground building composites (98% mixture of fly ash (80%) and cement (20%), and 2% of electric arc furnace (EAF) dust) over 6months. The leaching solutions were not replenished, imitating both the diffusion and the dissolution of contaminants. The data revealed larger extent of leaching when the leaching solution was not replenished. More extensive was also leaching from ground composites, which simulated the disintegration of the material over time. The composition of the leaching solution influenced the release of the matrix constituents from the composites and, consequently, the amount of elements and their chemical species. Synthetic sea and surface water used as leaching solutions, without replenishing, were found to be suitable to simulate the conditions when the building material is immersed in stagnant environmental waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space suit bioenergetics: framework and analysis of unsuited and suited activity.
Carr, Christopher E; Newman, Dava J
2007-11-01
Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.
2017-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth’s surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent. PMID:29263765
Chen, Guobao; Lv, Yonggang
2015-01-01
Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring.
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F; Hall, Emrys G; Jordan, Allen F
2016-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.
TSCA Environmental Release Application (TERA) for Modified Escherichia coli
TERA submitted by University of North Carolina and given tracking designation of R-01-0001. The microorganism will be introduced into potential sources of fecal contamination to determine if the bacteria can be detected downstream from the release points.
Energy Release in Solar Flares,
1982-10-01
Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant
New Photosensitized Processes at Aerosol and Ocean Surfaces
NASA Astrophysics Data System (ADS)
Rossignol, S.; Aregahegn, K. Z.; Ciuraru, R.; Bernard, F.; Tinel, L.; Fine, L.; George, C.
2014-12-01
From a few years now, there is a growing body of evidence that photoinduced processes could be of great importance for the tropospheric chemistry. Here, we would like to present two additional outcomes of this new area of research, firstly the photosensitized direct VOC uptake by aerosols and, secondly, the photoinduced chemical formation of unsaturated VOC from marine microlayer proxy. It was recently shown that the chemistry of glyoxal toward ammonium ions into droplets and wet aerosols leads to the formation of light-absorbing compounds. Among them, we found that imidazole-2-carboxaldehyde (IC) acts as a photosensitizer and is able to initiate the growth of organic aerosols via the uptake of VOC, such as limonene. Given its potential importance, the mechanism of this photoinduced uptake was investigated thanks to aerosol flow tube experiments and UPLC-ESI-HRMS analysis. Results reveal hydrogen abstraction on the VOC molecule by the triplet state of IC leading to the VOC oxidation without any traditional oxidant. As well as aerosol, the sea-surface microlayer, known to be enriched in light-absorbing organics, is largely impacted by photochemical processes. Recent studies have pointed out for example the role of photosentitized processes in the loss of NO2 and ozone at water surfaces containing photoactive compounds such as chlorophyll. In order to go further, we worked from sea-surface microlayer proxy containing humic acids as photoactive material and organic acids as surfactants. Beside oxidation processes, we monitored by high resolution PTR-MS the release in the gas phase of unsaturated compounds, including C5 dienes (isoprene ?). A strong correlation between the measured surface tension and the C5 diene concentration in the gas phase was evidenced, clearly pointing toward an interfacial process. This contribution will highlight the similarities between both systems and will attempt to present a general chemical scheme for photosensitized chemistry at interfaces.
NASA Astrophysics Data System (ADS)
Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne
2016-08-01
This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.
Biorobotic adhesion in water using suction cups.
Bandyopadhyay, Promode R; Hrubes, J Dana; Leinhos, Henry A
2008-03-01
Echeneid fish, limpets and octopi use suction cups for underwater adhesion. When echeneid fish use suckers to 'hitch a ride' on sharks (which have riblet-patterned skins), the apparent absence of any pump or plumbing may be an advantage over biorobotic suction cups. An intriguing question is: How do they achieve seemingly persistent leak-free contact at low energy cost over rough surfaces? The design features of their suckers are explored in a biorobotic context of adhesion in water over rough surfaces. We have carried out experiments to compare the release force and tenacity of man-made suction cups with those reported for limpets and echeneid fish. Applied tensile and shear release forces were monotonically increased until release. The effects of cup size and type, host surface roughness, curvature and liquid surface tension have been examined. The flow of water in the sharkskin-like host surface roughness has been characterized. The average tenacity is 5.28 N cm(-2) (sigma = 0.53 N cm(-2), N = 37) in the sub-ambient pressure range of 14.6-49.0 kPa, in man-made cups for monotonically increasing applied release force. The tenacity is lower for harmonically oscillating release forces. The dynamic structural interactions between the suction cup and the oscillating applied forcing are discussed. Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface. However, for protracted, persistent contact, the negative topology would have to be maintained by active means. Energy has to be spent to maintain the negative host roughness topology to minute detail, and protracted hitch-riding on sharks for feeding may not be free for echeneid fish. Further work is needed on the mechanism and efficiency of the densely populated tiny actuators in the fish suckers that maintain leak-proof contact with minimal energy cost and the feasibility of their biorobotic replication.
Controlled Release Applications of Organometals.
ERIC Educational Resources Information Center
Thayer, John S.
1981-01-01
Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)
Automated life-detection experiments for the Viking mission to Mars
NASA Technical Reports Server (NTRS)
Klein, H. P.
1974-01-01
As part of the Viking mission to Mars in 1975, an automated set of instruments is being built to test for the presence of metabolizing organisms on that planet. Three separate modules are combined in this instrument so that samples of the Martian surface can be subjected to a broad array of experimental conditions so as to measure biological activity. The first, the Pyrolytic Release Module, will expose surface samples to a mixture of C-14O and C-14O2 in the presence of Martian atmosphere and a light source that simulates the Martian visible spectrum. The assay system is designed to determine the extent of assimilation of CO or CO2 into organic compounds. The Gas Exchange Module will incubate surface samples in a humidified CO2 atmosphere. At specified times, portions of the incubation atmosphere will be analyzed by gas chromatography to detect the release or uptake of CO2 and several additional gases. The Label Release Module will incubate surface samples with a dilute aqueous solution of simple radioactive organic substrates in Martian atmosphere, and the gas phase will be monitored continuously for the release of labeled CO2.
Uda, Ryoko M; Kato, Yutaka; Takei, Michiko
2016-10-01
When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimising seasonal streamflow forecast lead time for operational decision making in Australia
NASA Astrophysics Data System (ADS)
Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul
2016-10-01
Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.
The surface pH of glass ionomer cavity lining agents.
Woolford, M J
1989-12-01
It is considered that acid release from the surface of glass ionomer (polyalkenoate) cements may be associated with early pulpal sensitivity following the use of these materials. This study was carried out to examine the surface pH of different types of glass ionomer lining cements using a flat-ended pH electrode. It was found that the surface pH remains low for this group of materials during the first hour of setting. Different types of glass ionomer lining cement were also shown to behave differently when considering acid release from the surface. Conclusions regarding the behaviour of glass ionomers should only be made with reference to the specific material tested.
Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baireddy, Praveena; Liu, Jing; Hinsdale, Myron
2011-11-15
Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemicalmore » changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and cannabinoid CB1 receptor knockout littermates responded similarly to the toxic effects of chlorpyrifos. Black-Right-Pointing-Pointer OP-induced changes in acetylcholine release appeared sensitive to modulation by CB1-mediated endocannabinoid signaling.« less
Toward a probabilistic acoustic emission source location algorithm: A Bayesian approach
NASA Astrophysics Data System (ADS)
Schumacher, Thomas; Straub, Daniel; Higgins, Christopher
2012-09-01
Acoustic emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE analysis is the estimation of the stress wave source locations. Commonly, source location results are presented in a rather deterministic manner as spatial and temporal points, excluding information about uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces a novel holistic framework for the development of a probabilistic source location algorithm. Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all source location parameters are described with posterior probability density functions (PDFs). The proposed methodology is applied to an example employing data collected from a realistic section of a reinforced concrete bridge column. The selected approach is general and has the advantage that it can be extended and refined efficiently. Results are discussed and future steps to improve the algorithm are suggested.
Are fluoride releasing dental materials clinically effective on caries control?
Cury, Jaime Aparecido; de Oliveira, Branca Heloisa; dos Santos, Ana Paula Pires; Tenuta, Livia Maria Andaló
2016-03-01
(1) To describe caries lesions development and the role of fluoride in controlling disease progression; (2) to evaluate whether the use of fluoride-releasing pit and fissure sealants, bonding orthodontic agents and restorative materials, in comparison to a non-fluoride releasing material, reduces caries incidence in children or adults, and (3) to discuss how the anti-caries properties of these materials have been evaluated in vitro and in situ. The search was performed on the Cochrane Database of Systematic Reviews and on Medline via Pubmed. Caries is a biofilm-sugar dependent disease and as such it provokes progressive destruction of mineral structure of any dental surface - intact, sealed or restored - where biofilm remains accumulated and is regularly exposed to sugar. The mechanism of action of fluoride released from dental materials on caries is similar to that of fluoride found in dentifrices or other vehicles of fluoride delivery. Fluoride-releasing materials are unable to interfere with the formation of biofilm on dental surfaces adjacent to them or to inhibit acid production by dental biofilms. However, the fluoride released slows down the progression of caries lesions in tooth surfaces adjacent to dental materials. This effect has been clearly shown by in vitro and in situ studies but not in randomized clinical trials. The anti-caries effect of fluoride releasing materials is still not based on clinical evidence, and, in addition, it can be overwhelmed by fluoride delivered from dentifrices. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang
2012-09-01
Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.
Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K
2016-05-04
Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.
MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID
Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...
Study of adsorption of Neon on open Carbon nanohorns aggregates
NASA Astrophysics Data System (ADS)
Ziegler, Carl Andrew
Adsorption isotherms can be used to determine surface area of a substrate and the heat released when adsorption occurs. Our measurements are done determining the equilibrium pressures corresponding to a given amount of gas adsorbed on a substrate at constant temperature. The adsorption studies were done on aggregates of open dahlia-like carbon nanohorns. The nanohorns were oxidized for 9 hours at 550 °C to open them up and render their interior space accessible for adsorption. Volumetric adsorption measurements of Ne were performed at twelve different temperatures between 19 K and 48 K. The isotherms showed two substeps. The first substep corresponds to adsorption on the high energy binding sites in the interior of the nanohorns, near the tip. The second substep corresponds to low energy binding sites both on the outside of the nanotubes and inside the nanotube away from the tip. The isosteric heat measurements obtained from the isotherm data also shows these two distinct substeps. The effective surface area of the open nanotubes was determined from the isotherms using the point-B method. The isosteric heat and surface area data for neon on open nanohorns were compared to two similar experiments of neon adsorbed on aggregates of closed nanohorns.
Improvements in analysis techniques for segmented mirror arrays
NASA Astrophysics Data System (ADS)
Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.
2016-08-01
The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
NASA Astrophysics Data System (ADS)
Cross, Rod
2013-03-01
A tippe top (see Fig. 1) is usually constructed as a truncated sphere with a cylindrical peg on top, as indicated in Fig. 2(a). When spun rapidly on a horizontal surface, a tippe top spins about a vertical axis while rotating slowly about a horizontal axis until the peg touches the surface. At that point, weight is transferred to the peg, the truncated sphere rises off the surface, and the top spins on the peg until it is upright. A feature of a tippe top is that its center of mass, labeled G in Fig. 2, is below the geometric center of the sphere, C, when the top is at rest. That is where it will return if the top is tilted sideways and released since that is the stable equilibrium position. The fact that a tippe top turns upside down when it spins is therefore astonishing. The behavior of a tippe top is quite unlike that of a regular top since the spin axis remains closely vertical the whole time. The center of mass of a regular top can also rise, but the spin axis tilts upward as the top rises and enters a "sleeping" position.
Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A
2011-10-31
Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.
Hedberg, Yolanda; Gustafsson, Johanna; Karlsson, Hanna L; Möller, Lennart; Odnevall Wallinder, Inger
2010-09-03
Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549). The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure. It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.
2010-01-01
Background Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549). Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure. Conclusion It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel. PMID:20815895
Pires, Nayara Luiz; Muniz, Daphne Heloisa de Freitas; Kisaka, Tiago Borges; Simplicio, Nathan de Castro Soares; Bortoluzzi, Lilian; Lima, Jorge Enoch Furquim Werneck; Oliveira-Filho, Eduardo Cyrino
2015-08-31
The release of domestic sewage in water resources is a practical feature of the urbanization process, and this action causes changes that may impair the environmental balance and the water quality for several uses. The aim of this study was to evaluate the influence of urbanization on the surface water quality of the Preto River throughout the town of Formosa, Goiás, Brazil. Samples were collected at five points along the river, spatially distributed from one side to the other of the town of Formosa, from May to October of 2012. Data were subjected to descriptive statistics, as well as variance and cluster analysis. Point P2, the first point after the city, showed the worst water quality indicators, mainly with respect to the total and fecal coliform parameters, as well as nitrate concentrations. These results may be related to the fact that this point is located on the outskirts of the town, an area under urbanization and with problems of sanitation, including absence of sewage collection and treatment. The data observed in this monitoring present a public health concern because the water body is used for bathing, mainly in parts of Feia Lagoon. The excess of nutrients is a strong indicator of water eutrophication and should alert decision-makers to the need for preservation policies.
Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope
NASA Astrophysics Data System (ADS)
Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang
2017-12-01
A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
USDA-ARS?s Scientific Manuscript database
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
DOT National Transportation Integrated Search
2009-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2008-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2007-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2006-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2005-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2003-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
DOT National Transportation Integrated Search
2004-01-01
This CD presents nonstop operations (segments) as reported by U.S. air carriers. These data are releasable after a 3 year confidentiality period and include U.S. Air Carrier foreign point to foreign point traffic. These data fields contain informatio...
Dual-function antibacterial surfaces for biomedical applications.
Yu, Qian; Wu, Zhaoqiang; Chen, Hong
2015-04-01
Bacterial attachment and the subsequent formation of biofilm on surfaces of synthetic materials pose a serious problem in both human healthcare and industrial applications. In recent decades, considerable attention has been paid to developing antibacterial surfaces to reduce the extent of initial bacterial attachment and thereby to prevent subsequent biofilm formation. Briefly, there are three main types of antibacterial surfaces: bactericidal surfaces, bacteria-resistant surfaces, and bacteria-release surfaces. The strategy adopted to develop each type of surface has inherent advantages and disadvantages; many efforts have been focused on the development of novel antibacterial surfaces with dual functionality. In this review, we highlight the recent progress made in the development of dual-function antibacterial surfaces for biomedical applications. These surfaces are based on the combination of two strategies into one system, which can kill attached bacteria as well as resisting or releasing bacteria. Perspectives on future research directions for the design of dual-function antibacterial surfaces are also provided. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo
2018-06-01
The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.
The UKIRT Hemisphere Survey: definition and J-band data release
NASA Astrophysics Data System (ADS)
Dye, S.; Lawrence, A.; Read, M. A.; Fan, X.; Kerr, T.; Varricatt, W.; Furnell, K. E.; Edge, A. C.; Irwin, M.; Hambly, N.; Lucas, P.; Almaini, O.; Chambers, K.; Green, R.; Hewett, P.; Liu, M. C.; McGreer, I.; Best, W.; Zhang, Z.; Sutorius, E.; Froebrich, D.; Magnier, E.; Hasinger, G.; Lederer, S. M.; Bold, M.; Tedds, J. A.
2018-02-01
This paper defines the UK Infra-Red Telescope (UKIRT) Hemisphere Survey (UHS) and release of the remaining ∼12 700 deg2 of J-band survey data products. The UHS will provide continuous J- and K-band coverage in the Northern hemisphere from a declination of 0° to 60° by combining the existing Large Area Survey, Galactic Plane Survey and Galactic Clusters Survey conducted under the UKIRT Infra-red Deep Sky Survey (UKIDSS) programme with this new additional area not covered by UKIDSS. The released data include J-band imaging and source catalogues over the new area, which, together with UKIDSS, completes the J-band UHS coverage over the full ∼17 900 deg2 area. 98 per cent of the data in this release have passed quality control criteria. The remaining 2 per cent have been scheduled for re-observation. The median 5σ point source sensitivity of the released data is 19.6 mag (Vega). The median full width at half-maximum of the point spread function across the data set is 0.75 arcsec. In this paper, we outline the survey management, data acquisition, processing and calibration, quality control and archiving as well as summarizing the characteristics of the released data products. The data are initially available to a limited consortium with a world-wide release scheduled for 2018 August.
Porous polystyrene beads as carriers for self-emulsifying system containing loratadine.
Patil, Pradeep; Paradkar, Anant
2006-03-01
The aim of this study was to formulate a self-emulsifying system (SES) containing a lipophilic drug, loratadine, and to explore the potential of preformed porous polystyrene beads (PPB) to act as carriers for such SES. Isotropic SES was formulated, which comprised Captex 200 (63% wt/wt), Cremophore EL (16% wt/wt), Capmul MCM (16% wt/wt), and loratadine (5% wt/wt). SES was evaluated for droplet size, drug content, and in vitro drug release. SES was loaded into preformed and characterized PPB using solvent evaporation method. SES-loaded PPB were evaluated using scanning electron microscopy (SEM) for density, specific surface area (S BET ), loading efficiency, drug content, and in vitro drug release. After SES loading, specific surface area reduced drastically, indicating filling of PPB micropores with SES. Loading efficiency was least for small size (SS) and comparable for medium size (MS) and large size (LS) PPB fractions. In vitro drug release was rapid in case of SS beads due to the presence of SES near to surface. LS fraction showed inadequate drug release owing to presence of deeper micropores that resisted outward diffusion of entrapped SES. Leaching of SES from micropores was the rate-limiting step for drug release. Geometrical features such as bead size and pore architecture of PPB were found to govern the loading efficiency and in vitro drug release from SES-loaded PPB.
Porous polystyrene beads as carriers for self-emulsifying system containing loratadine.
Patil, Pradeep; Paradkar, Anant
2006-03-24
The aim of this study was to formulate a self-emulsifying system (SES) containing a lipophilic drug, loratadine, and to explore the potential of preformed porous polystyrene beads (PPB) to act as carriers for such SES. Isotropic SES was formulated, which comprised Captex 200 (63% wt/wt), Cremophore EL (16% wt/wt), Capmul MCM (16% wt/wt), and loratadine (5% wt/wt). SES was evaluated for droplet size, drug content, and in vitro drug release. SES was loaded into preformed and characterized PPB using solvent evaporation method. SES-loaded PPB were evaluated using scanning electron microscopy (SEM) for density, specific surface area (S(BET)), loading efficiency, drug content, and in vitro drug release. After SES loading, specific surface area reduced drastically, indicating filling of PPB micropores with SES. Loading efficiency was least for small size (SS) and comparable for medium size (MS) and large size (LS) PPB fractions. In vitro drug release was rapid in case of SS beads due to the presence of SES near to surface. LS fraction showed inadequate drug release owing to presence of deeper micropores that resisted outward diffusion of entrapped SES. Leaching of SES from micropores was the rate-limiting step for drug release. Geometrical features such as bead size and pore architecture of PPB were found to govern the loading efficiency and in vitro drug release from SES-loaded PPB.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.